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Abstract
Many prior efforts have suggested that Internet video
Quality of Experience (QoE) could be dramatically im-
proved by using data-driven prediction of video quality
for different choices (e.g., CDN or bitrate) to make opti-
mal decisions. However, building such a prediction sys-
tem is challenging on two fronts. First, the relationships
between video quality and observed session features can
be quite complex. Second, video quality changes dy-
namically. Thus, we need a prediction model that is
(a) expressive enough to capture these complex relation-
ships and (b) capable of updating quality predictions in
near real-time. Unfortunately, several seemingly natu-
ral solutions (e.g., simple machine learning approaches
and simple network models) fail on one or more fronts.
Thus, the potential benefits promised by these prior ef-
forts remain unrealized. We address these challenges and
present the design and implementation of Critical Fea-
ture Analytics (CFA). The design of CFA is driven by
domain-specific insights that video quality is typically
determined by a small subset of critical features whose
criticality persists over several tens of minutes. This en-
ables a scalable and accurate workflow where we auto-
matically learn critical features for different sessions on
coarse-grained timescales, while updating quality pre-
dictions in near real-time. Using a combination of a
real-world pilot deployment and trace-driven analysis,
we demonstrate that CFA leads to significant improve-
ments in video quality; e.g., 32% less buffering time and
12% higher bitrate than a random decision maker.

1 Introduction
Delivering high quality of experience (QoE) is crucial
to the success of today’s subscription and advertisement-
based business models for Internet video. As prior work
(e.g., [33, 11]) has shown, achieving good QoE is chal-
lenging because of significant spatial and temporal vari-
ation in CDNs’ performance, client-side network condi-
tions, and user request patterns.

At the same time, these observations also suggest there
is a substantial room for improving QoE by dynamically
selecting the optimal CDN and bitrate based on a real-
time global view of network conditions. Building on this
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Figure 1: Overview of a global optimization system and
the crucial role of a prediction system.
insight, prior work makes the case for a quality optimiza-
tion system (Figure 1) that uses a prediction oracle to
suggest the best parameter settings (e.g., bitrate, CDN)
to optimize quality (e.g., [33, 11, 35, 32, 20]). Seen in a
broader context, this predictive approach can be applied
beyond Internet video (e.g., [10, 40, 15, 16, 43]).

However, these prior efforts fall short of providing
a concrete instantiation of such a prediction system.
Specifically, we observe that designing such a prediction
system is challenging on two key fronts (§2):

• Capturing complex factors that affect quality: For
instance, an outage may affect only clients of a spe-
cific ISP in a specific city when they use a specific
CDN. To accurately predict the quality of their ses-
sions, one must consider the combination of all three
factors. In addition, the factors that affect video qual-
ity vary across different sessions; e.g., wireless hosts
may be bottlenecked at the last connection, while
other clients may experience loading failures due to
unavailability of specific content on some CDNs.

• Need for fresh updates: Video quality changes
rapidly, on a timescale of several minutes. Ideally, we
must make predictions based on recent quality mea-
surements. This is particularly challenging given the
volume of measurements (e.g., YouTube had 231 mil-
lion video sessions and up to 500 thousand concurrent
viewers during the Olympics [7]), compounded with
the need for expressive and potentially complex pre-
diction models.

Unfortunately, many existing solutions fail on one or
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both counts. For instance, solutions that use less complex
models (e.g., linear regression, Naive Bayes, or simple
models based on last-mile connection) are not expressive
enough to capture high dimensional and diverse relation-
ships between video quality and session features. More
complex algorithms (e.g., SVM [42]) can take several
hours to train a prediction model and will be inaccurate
because predictions will rely on stale data.

In this work, we address these challenges and present
the design and implementation of a quality prediction
system called Critical Feature Analytics (CFA). CFA is
built on three key domain-specific insights:

1. Video sessions with same feature values have similar
quality. This naturally leads to an expressive model,
wherein the video quality of a given session can be ac-
curately predicted based on the quality of sessions that
match values on all features (same ASN, CDN, player,
geographical region, video content, etc). However, if
applied naively, this model can suffer from the curse
of dimensionality — as the number of combinations of
feature values grows, it becomes hard to find enough
matching sessions to make reliable predictions.

2. Each video session has a subset of critical features
that ultimately determines its video quality. Given this
insight, we can make more reliable predictions based
on similar sessions that only need to match on criti-
cal features. For example, in a real event that we ob-
served, congestion of a Level3 CDN led to relatively
high loading failure rate for Comcast users in Balti-
more. We can accurately predict the quality of the af-
fected sessions using sessions associated with the spe-
cific CDN, region and ISP, ignoring other non-critical
features (e.g., player, video content). Thus, this tack-
les the curse of dimensionality, while still retaining
sufficient expressiveness for accurate prediction (§3).

3. Critical features tend to be persistent. Two remain-
ing concerns are: (a) Can we identify critical features
and (b) How expensive is it to do so? The insight
on persistence implies that critical features are learn-
able from recent history and can be cached and reused
for fast updates (§4). This insight is derived from re-
cent measurement studies [25, 20] (e.g., the factors
that lead to poor video quality persist for hours, and
sometimes, even days).

Taken together, these insights enable us to engineer
a scalable and accurate video quality prediction system.
Specifically, on a coarse timescale of tens of minutes,
CFA learns the critical features, and on a fine timescale
of minutes, CFA updates quality prediction using recent
quality measurements. CFA makes predictions and deci-
sions as new clients arrive.

We implemented a prototype of CFA and integrated
it in a video optimization platform that manages many

premium video providers. We ran a pilot study on one
content provider that has 150,000 sessions each day. Our
real-world experiments show that the bitrates and CDNs
selected by CFA lead to 32% less buffering time and 12%
higher bitrate than a baseline random decision maker.
Using real trace-driven evaluation, we also show that
CFA outperforms many other simple ML prediction al-
gorithms by up to 30% in prediction accuracy and 5-17%
in various video quality metrics.
Contributions and Roadmap:
• Identifying key challenges in building an accurate pre-

diction system for video quality (§2).
• Design and implementation of CFA, built on domain-

specific insights to address the challenges (§3-5).
• Real-world and trace-driven evaluation that demon-

strates substantial quality improvement by CFA (§6).
• Using critical features learned by CFA to make inter-

esting observations about video quality (§7).

2 Background and Challenges
This section begins with some background on video
quality prediction (§2.1). Then, we articulate two key
challenges faced by any video quality prediction system:
(1) The factors affecting video quality are complex, so
we need expressive models (§2.2); (2) Quality changes
rapidly, so models must be updated in near real-time by
recent quality measurements (§2.3). We also argue why
existing solutions do not address these challenges.

2.1 Background
Most video service providers today allow a video client
(player) to switch CDN and bitrate among a set of avail-
able choices [33, 20, 32]. These switches have little over-
head and can be performed at the beginning of and dur-
ing a video playback [8]. Our goal then is to choose the
best CDN and bitrate for a client by accurately predict-
ing the video quality of each hypothetical choice of CDN
and bitrate. In theory, if we can accurately predict the
quality of each potential decision, then we can identify
the optimal decision.

To this end, we envision a prediction system that uses a
global view of quality measurements to make predictions
for a specific video session. It learns a prediction func-
tion for each quality metric Pred : 2S × S �→ R, which
takes as input a given set of historical sessions S ∈ 2S

whose quality is already measured, and a new session
s ∈ S, and outputs a quality prediction p ∈ R for s.

Each quality measurement summarizes the quality of a
video session for some duration of time (in our case, one
minute). It is associated with values of four quality met-
rics [18] and a set of features2 (summarized in Table 1).

1For one session, VSF is zero if it starts successfully, one otherwise.
2By feature, we refer to the type of attribute (e.g., CDN), rather than

value of these attributes (e.g., CDN = Akamai)

2



USENIX Association  13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 139

Metrics Description
BufRatio Fraction of time a session spends in buffering

(smooth playback is interrupted by buffering).
AvgBitrate Time-weighted average of bitrates in a session.
JoinTime Delay for the video to start playing from the time

the user clicks “play”.
Video start fail-
ure (VSF)

Fraction of sessions that fail to start playing
(e.g., unavailable content or overloaded server)1.

Features Description
ASN Autonomous System to which client IP belongs.
City City where the client is located.
ConnectionType Type of access network; e.g., mobile/fixed wire-

less, DSL, fiber-to-home [3].
Player e.g., Flash, iOS, Silverlight, HTML5.
Site Content provider of requested video contents.
LiveOrVoD Binary indicator of live vs. VoD content.
ContentName Name of the requested video object.
CDN CDN a session started with.
Bitrate Bitrate value the session started at.

Table 1: Quality metrics and session features associ-
ated with each session. CDN and Bitrate refer to initial
CDN/bitrate values as we focus on initial selections.
In general, the set of features depends on the degree of
instrumentation and what information is visible to a spe-
cific provider. For instance, a CDN may know the loca-
tion of servers, whereas a third-party optimizer [1] may
only have information at the CDN granularity. Our fo-
cus is not to determine the best set of features that should
be recorded for each session, but rather engineer a pre-
diction system that can take an arbitrary set of features
as inputs and extract the relationships between these fea-
tures and video quality. In practice, the above set of fea-
tures can already provide accurate predictions that help
improve quality.

Our dataset consists of 6.6 million quality measure-
ments collected from 2 million clients using 3 large pub-
lic CDNs distributed across 168 countries and 152 ISPs.

2.2 Challenge 1: Expressive models
We show real examples of the complex factors that im-
pact video quality, and the limitations in capturing these
relationships.
High-dimensional relationship between video quality
and session features. Video quality could be impacted
by combinations of multiple components in the network.
Such high-dimensional effects make it harder to learn the
relationships between video quality and features, in con-
trast to simpler settings where features affect quality in-
dependently (e.g., assumed by Naive Bayes).

In a real-world incident, video sessions of Comcast
users in Baltimore who watched videos from Level3
CDN experienced high failure rate (VSF) due to con-
gested edge servers, shown by the blue line in Figure 2.
The figure also shows the VSF of sessions sharing the
same values on one or two features with the affected ses-
sions; e.g., all Comcast sessions across different cities
and CDNs. In the figure, the high VSF of the affected
sessions cannot be clearly identified if we look at the ses-
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Figure 2: The high VSF is only evident when three fac-
tors (CDN, ISP and geo-location) are combined.
sions that match on only one or two features. Only when
three features of CDN (“Level3”), ASN (“Comcast”) and
City (“Baltimore”) are specified (i.e., blue line), can we
detect the high VSF and predict the quality of affected
sessions accurately.

In practice, we find that such high-dimensional effects
are the common case, rather than an anomalous corner
case. For instance, more than 65% of distinct CDN-ISP-
City values have VSF that is at least 50% higher or lower
than the VSF of sessions matching only one or two fea-
tures (not shown). In other words, their quality is af-
fected by a combined effect of at least three features.
Limitation of existing solutions: It might be tempting to
develop simple predictors; e.g., based on the last-hop
connection by using average quality of history sessions
with the same ConnectionType value. However, they do
not take into account the combined impact of features on
video quality. Conventional machine learning techniques
like Naive Bayes also suffer from the same limitation.
In Figures 3(a) and 3(b), we plot the actual JoinTime
and the prediction made by the last-hop predictor and
Naive Bayes (from Weka [6]) for 300 randomly sampled
sessions. The figures also show the mean relative error
( |predicted−actual|

actual ). For each session, the prediction algo-
rithms train models using historical sessions within a 10-
minute interval prior to the session under prediction. It
shows that the prediction error of both solutions is signif-
icant and two-sided (i.e., not fixable by normalization).
Highly diverse structures of factors. The factors that
affect video quality vary across different sessions. This
means the prediction algorithm should be expressive
enough to predict quality for different sessions using dif-
ferent prediction models. For instance, the fact that many
fiber-to-the-home (e.g., FiOS) users have high bitrates
and people on cellular connections have lower bitrates
is largely due to the speed of their last-mile connection.
In contrast, some video clients may experience video
loading failures due to unavailability of specific content
on some CDNs. A recent measurement study [25] has
shown that many heterogeneous factors are correlated
with video quality issues. In §7, we show that 15% of
video sessions are impacted by more than 30 different
combinations of features and give real examples of dif-
ferent factors that affect quality.
Limitation of existing solutions: To see why existing so-
lutions are not sufficient, let us consider the k-nearest
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(b) Naive Bayes (0.61)
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Figure 3: Prediction error of some existing solutions is
substantial (mean of relative error in parentheses).
neighbor (k-NN) algorithm. It does not handle diverse
relationships between quality and features, because the
similarity between sessions is based on the same func-
tion of features independent of the specific session un-
der prediction. In Figure 3(c), we plot the actual values
of JoinTime and the prediction made by k-NN with the
same setup as Figure 3(a)(b). Similar to Naive Bayes
and the last-hop predictor, k-NN has substantial predic-
tion error.

2.3 Challenge 2: Fresh updates
Video quality has significant temporal variability. In Fig-
ure 4(a), for each quality metric and combination of spe-
cific CDN, city and ASN, we compute the mean qual-
ity of sessions in each 10-minute interval, and then plot
the CDF of the relative standard deviation ( stddev

mean ) of the
quality across different intervals. In all four quality met-
rics of interest, we see significant temporal variability;
e.g., for 60% of CDN-city-ASN combinations, the rela-
tive standard deviation of JoinTime across different 10-
minute intervals is more than 30%. Such quality variabil-
ity has also been confirmed in other studies (e.g., [33]).

The implication of such temporal variability is that the
prediction system must update models in near real-time.
In Figure 4(b), we use the same setup as Figure 3, except
that the time window used to train prediction models is
several minutes prior to the session under prediction. The
figure shows the impact of such staleness on the predic-
tion error for JoinTime. For both algorithms, prediction
error increases dramatically if the staleness exceeds 10
minutes. As we will see later, this negative impact of
staleness on accuracy is not specific to these prediction
algorithms (§6.3).
Limitation of existing solutions: The requirement to use
the most recent measurements makes it infeasible to use
computationally expensive models. For instance, it takes
at least one hour to train an SVM-based prediction model
from 15K quality measurements in a 10-minute interval
for one video site, so the quality predictions will be based
on information from more than one hour ago.

3 Intuition behind CFA
This section presents the domain-specific insights we use
to help address the expressiveness challenge (§2.2). The
first insight is that sessions matching on all features have
similar video quality. However, this approach suffers
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Figure 4: Due to significant temporal variability of
video quality (left), prediction error increases dramati-
cally with stale data (right).

Input: Session under prediction s, Previous sessions S
Output: Predicted quality p
/* S�:identical sessions matching on all

features with s in recent history(Δ) */

1 S� ← SimilarSessionSet(s,S,AllFeatures,Δ);
/* Summarize the quality (e.g.,median) of

the identical sessions in S�. */

2 p ← Est(S�);
3 return p;

Algorithm 1: Baseline prediction that finds ses-
sions matching on all features and uses their ob-
served quality as the basis for prediction.

from the curse of dimensionality. Fortunately, we can
leverage a second insight that each video session has a
subset of critical features that ultimately determine its
video quality. We conclude this section by highlighting
two outstanding issues in translating these insights into a
practical prediction system.

3.1 Baseline prediction algorithm
Our first insight is that sessions that have identical fea-
ture values will naturally have similar (if not identical)
quality. For instance, we expect that all Verizon FiOS
users viewing a specific HBO video using Level3 CDN
in Pittsburgh at Fri 9 am should have similar quality
(modulo very user-specific effects such as local Wi-Fi
interference inside the home). We can summarize the
intuition as follows:

Insight 1: At a given time, video sessions having same
value on every feature have similar video quality.

Inspired by Insight 1, we can consider a baseline al-
gorithm (Algorithm 1). We predict a session’s quality
based on “identical sessions”, i.e., those from recent his-
tory that match values on all features with the session un-
der prediction. Ideally, given infinite data, this algorithm
is accurate, because it can capture all possible combina-
tions of factors affecting video quality.

However, this algorithm is unreliable as it suffers
from the classical curse of dimensionality [39]. Specif-
ically, given the number of combinations of feature val-
ues (ASN, device, content providers, CDN, just to name
a few), it is hard to find enough identical sessions needed
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to make a robust prediction. In our dataset, more than
78% of sessions have no identical session (i.e., matching
on all features) within the last 5 minutes.

3.2 Critical features
In practice, we expect that some features are more likely
to “explain” the observed quality of a specific video ses-
sion than others. For instance, if a specific peering point
between Comcast and Netflix in New York is congested,
then we expect most of these users will suffer poor qual-
ity, regardless of the speed of their local connection.

Insight 2: Each video session has a subset of critical
features that ultimately determines its video quality.

We already saw some real examples in §2.2: in the
example of high dimensionality, the critical features
of the sessions affected by the congested Level3 edge
servers are {ASN,CDN,City}; in the examples of di-
versity, the critical features are {ConnectionType} and
{CDN,ContentName}. Table 2 gives more real exam-
ples of critical features that we have observed in opera-
tional settings and confirmed with domain experts.

Quality issue Set of critical features
Issue on one player of Vevo {Player,Site}
ESPN flipping between CDNs {CDN,Site,ContentName}
Bad Level3 servers for Com-
cast users in Maryland

{CDN,City,ASN}

Table 2: Real-world examples of critical features con-
firmed by analysts at a large video optimization vendor.

A natural implication of this insight is that it can help
us tackle the curse of dimensionality. Unlike Algo-
rithm 1, which fails to find a sufficient number of ses-
sions, we can estimate quality more reliably by aggre-
gating observations across a larger amount of “similar
sessions” that only need to match on these critical fea-
tures. Thus, critical features can provide expressiveness
while avoiding curse of dimensionality.

Algorithm 2 presents a logical view of this idea:
1. Critical feature learning (line 1): First, find

the critical features of each session s, denoted as
CriticalFeatures(s).

2. Quality estimation (line 2, 3): Then, find similar
sessions that match values with s on critical features
CriticalFeatures(s) within a recent history of length Δ
(by default, 5 minutes). Finally, return some suitable
estimate of the quality of these similar sessions; e.g.,
the median3 (for BufRatio, AvgBitrate, JoinTime) or
the mean (for VSF).
A practical benefit of Algorithm 2 is that it is inter-

pretable [52], unlike some machine learning algorithms

3We use median because it is more robust to outliers.

Input: Session under prediction s, Previous sessions S
Output: Predicted quality p
/* CFs:Set of critical features of s */

1 CFs ←CriticalFeatures(s);
/* S�:Similar sessions matching values on

critical features CFs with s. */

2 S� ← SimilarSessionSet(s,S,CFs,Δ);
/* Summarize the quality of the similar

sessions in S�. */

3 p ← Est(S�);
4 return p;

Algorithm 2: CFA prediction algorithm, where pre-
diction is based on similar sessions matching on
critical features.

(e.g., PCA or SVM). This allows domain experts to com-
bine their knowledge with CFA and diagnose prediction
errors or resolve incidents, as we explore in §7.2.

At this time, it is useful to clarify what critical fea-
tures are and what they are not. In essence, critical fea-
tures provide the explanatory power of how a prediction
is made. However, critical features are not a minimal
set of factors that determine the quality (i.e., root cause).
That is, they can include both features that reflect the
root cause as well as additional features. For example, if
all HBO sessions use Level3, their critical features may
include both CDN and Site, even if CDN is redundant,
since including it does not alter predictions. The primary
objective of CFA is accurate prediction; root cause diag-
nosis may be an added benefit.

3.3 Practical challenges
There are two issues in using Algorithm 2.
Can we learn critical features? A key missing piece
is how we get the critical features of each session (line
1). This is challenging because critical features vary both
across sessions and over time [33, 25], and it is infeasible
to manually configure critical features.
How to reduce update delay? Recall from §2.3 that
the prediction system should use the most recent quality
measurements. This requires a scalable implementation
of Algorithm 2, where critical features and quality esti-
mates are updated in a timely manner. However, naively
running Algorithm 2 for millions of sessions under pre-
diction is too expensive (§6.3). With a cluster of 32 cores,
it takes 30 minutes to learn critical features for 15K ses-
sions within a 10-minutes interval. This means the pre-
diction will be based on stale information from tens of
minutes ago.

4 CFA Detailed Design
In this section, we present the detailed design of CFA
and discuss how we address the two practical challenges
mentioned in the previous section: learning critical fea-
tures and reducing update delay.

5
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Notations Domains Definition
s,S,S A session, a set of ses-

sions, set of all sessions
q(s) S �→ R Quality of s
QualityDist(S) 2S �→ 2R {q(s)|s ∈ S}
f ,F,F A feature, a set of features,

set of all features
CriticalFeatures(s) S �→ 2F Critical features of s
V Set of all feature values
FV ( f ,s) F×S �→ V Value on feature f of s
FSV (F,s) 2F×S �→ 2V Set of values on features in

F of s
SimilarSessionSet
(s,S,F,Δ)

F×2F×S×
R+ �→ 2F

{s�|s� ∈ S, t(s) − Δ <
t(s�) < t(s),FSV (F,s�) =
FSV (F,s)}

Table 3: Notations used in learning of critical features.
The key to addressing these challenges is our third and

final domain-specific insight:

Insight 3: Critical features tend to persist on long
timescales of tens of minutes.

This insight is derived from prior measurement stud-
ies [25, 20]. For instance, our previous study on shedding
light on video quality issues in the wild showed that the
factors that lead to poor video quality persist for hours,
and sometimes even days [25]. Another recent study
from the C3 system suggests that the best CDN tends to
be relatively stable on the timescales of few tens of min-
utes [20]. We independently confirm this observation in
§6.3 that using slightly stale critical features (e.g., 30-60
minutes ago) achieves similar prediction accuracy as us-
ing the most up-to-date critical features. Though this in-
sight holds for most cases, it is still possible (e.g., on mo-
bile devices) that critical features persist on a relatively
shorter timescale (e.g., due to the nature of mobility).

Note that the persistence of critical features does not
mean that quality values are equally persistent. In fact,
persistence of critical features is on a timescale an order
of magnitude longer than the persistence of quality. That
is, even if quality fluctuates rapidly, the critical features
that determine the quality do not change as often.

As we will see below, this persistence enables (a) au-
tomatic learning of critical features from history, and (b)
a scalable workflow that provides up-to-date estimates.

4.1 Learning critical features
Recall that the first challenge is obtaining the critical fea-
tures for each session. The persistence of critical features
has a natural corollary that we can use to automatically
learn them:

Corollary 3.1: Persistence implies that critical features
of a session are learnable from history.

Specifically, we can simply look back over the his-
tory and identify the subset of features F such that
the quality distribution of sessions matching on F is

Input: Session under prediction s, Previous sessions S
Output: Critical features for s
/* Initialization */

1 MaxSimilarity ←−∞,CriticalFeatures ← NULL;
/* D f inest:Quality distribution of

sessions matching on F in Δlearn. */
2 D f inest ← QualityDist(SimilarSessionSet(s,S,F,Δlearn));
3 for F ⊆ 2F do

/* Exclude F without enough similar
sessions for prediction. */

4 if |SimilarSessionSet(s,S,F,Δ)|< n then
5 continue;

/* DF:Quality distribution of
sessions matching on F in Δlearn.

*/
6 DF ← QualityDist(SimilarSessionSet(s,S,F,Δlearn));

/* Get similarity of D f inest & DF. */
7 Similarity ← Similarity(DF ,D f inest);
8 if Similarity>MaxSimilarity then
9 MaxSimilarity ← Similarity;

10 CriticalFeatures ← F ;
11 return CriticalFeature;

Algorithm 3: Learning of critical features.

most similar to that of sessions matching on all fea-
tures. For instance, suppose we have three features
�ContentName,ASN,CDN� and it turns out that sessions
with ASN = Comcast,CDN = Level3 consistently have
high buffering over the last few hours due to some in-
ternal congestion at the corresponding exchange point.
Then, if we look back over the last few hours, the
data from history will naturally reveal that the dis-
tribution of the quality of sessions with the feature
values �ContentName = Foo,ASN = Comcast,CDN =
Level3� will be similar to �ContentName = ∗,ASN =
Comcast,CDN = Level3�, but very different from, say,
the quality of sessions in �ContentName = ∗,ASN =
∗,CDN = Level3�, or �ContentName = ∗,ASN =
Comcast,CDN = ∗�. Thus, we can use a data-driven
approach to learn that ASN,CDN are the critical fea-
tures for sessions matching �ContentName=Foo,ASN =
Comcast,CDN = Level3�.

Algorithm 3 formalizes this intuition for learning crit-
ical features. Table 3 summarizes the notation used in
Algorithm 3. For each subset of features F (line 3), we
compute the similarity between the quality distribution
(DF ) of sessions matching on F and the quality distri-
bution (D f inest ) of sessions matching on all features (line
7). Then, we find the F that yields the maximum sim-
ilarity (line 8-10), under one additional constraint that
SimilarSessionSet(s,S,F,Δ) should include enough (by
default, at least 10) sessions to get reliable quality esti-
mation (line 4-5). This check ensures that the algorithm
will not simply return the set of all features.

As an approximation of the duration in which criti-
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(a) Naive workflow (b) CFA workflow 

Figure 5: To reduce update delay, we run critical
feature learning and quality estimation at different
timescales by leveraging persistence of critical features.
cal features persist, we use Δlearn = 60min. Note that
Δlearn is an order of magnitude larger than the time win-
dow Δ used in quality estimation, because critical fea-
tures persist on a much longer timescale than quality
values. We use (the negative of) Jensen-Shannon di-
vergence between D1 and D2 to quantify their similarity
Similarity(D1,D2).

Although Algorithm 3 can handle most cases, there
are corner cases where SimilarSessionSet(s,S,F,Δlearn)
does not have enough sessions (i.e., more than n) to com-
pute Similarity(DF ,D f inest) reliably. In these cases, we
replace D f inest by the set of n sessions that share most
features with s over the time window of Δlearn. For-
mally, we use {s�|s� matches ks features with s}, where
ks = argmink (|{s�|s� matches k features with s| ≥ n}|).
4.2 Using fresh updates
Next, we focus on reducing the update delay between
when a quality measurement is received and used for pre-
diction.

Naively running critical feature learning and quality
estimation of Algorithm 2 can be time-consuming, caus-
ing the predictions to rely on stale data. In Figure 5(a),
TCFL and TQE are the duration of critical feature learning
and the duration of quality estimation, respectively. The
staleness of quality estimation (depicted in Figure 5) to
respond to a prediction query can be as large as the total
time of two steps (i.e., TCFL + TQE ), which typically is
tens of minutes (§6.3). Also, simply using more parallel
resources is not sufficient. The time to learn critical fea-
tures using Algorithm 3 grows linearly with the number
of sessions under prediction, the number of history ses-
sions, and the number of possible feature combinations.
Thus, the complexity of learning critical features TCFL is
exponential in the number of features. Given the current
set of features, TCFL is on the scale of tens of minutes.

To reduce update delay, we again leverage the persis-
tence of critical features:

Corollary 3.2: Persistence implies that critical features
can be cached and reused over tens of minutes.

Building on Corollary 3.2, we decouple the critical

feature learning and quality estimation steps, and run
them at separate timescales. On the timescale of tens of
minutes, we update the results of critical feature learn-
ing. Then, on a faster timescale of tens of seconds, we
update quality estimation using fresh data and the most
recently learned critical features.

This decoupling minimizes the impact of staleness on
prediction accuracy. Learning critical features on the
timescale of tens of minutes is sufficiently fast as they
persist on the same timescale. Meanwhile, quality esti-
mation can be updated every tens of seconds and makes
predictions based on quality updates with sufficiently
low staleness. Thus, the staleness of quality estimation
TQE of the decoupled workflow (Figure 5(b)) is a magni-
tude lower than TQE +TCFL of the naive workflow (Fig-
ure 5(a)). In §6.3, we show that this workflow can retain
the freshness of critical features and quality estimates.

In addition, CFA has a natural property that two ses-
sions sharing all feature values and occurring close in
time will map to the same critical features. Thus, in-
stead of running the steps per-session, we can reduce the
computation to the granularity of finest partitions, i.e.,
distinct values of all features.

4.3 Putting it together
Building on these insights, we create the following prac-
tical three-stage workflow of CFA.

• Stage I: Critical feature learning (line 1 of Algo-
rithm 2) runs offline, say, every tens of minutes to
an hour. The output of this stage is a key-value table
called critical feature function that maps all observed
finest partitions to their critical features.

• Stage II: Quality estimation (line 2,3 of Algo-
rithm 2) runs every tens of seconds for all observed
finest partitions based on the most recent critical fea-
tures learned in the first stage. This outputs another
key-value table called quality function that maps a
finest partition to the quality estimation, by aggregat-
ing the most recent sessions with the corresponding
critical features.

• Stage III: Real-time query/response. Finally, we
provide real-time query/response on the arrival of each
client, operating at the millisecond timescale, by sim-
ply looking up the most recent precomputed value
function from the previous stage. These operations
are simple and can be done very fast.

Finally, instead of forcing all finest partition-level
computations to run in every batch, we can do triggered
recomputations of critical feature learning only when the
observed prediction errors are high.

5 Implementation and Deployment
This section presents our implementation of CFA and
highlights engineering solutions to address practical

7
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Figure 6: Implementation overview of CFA. The three
stages of CFA workflow are implemented in a backend
cluster and distribute frontend clusters.
challenges in operational settings (e.g., avoiding bulk
data loading and speeding up development iterations).

5.1 Implementation of CFA workflow
CFA’s three stages are implemented in two different lo-
cations: a centralized backend cluster and geographically
distributed frontend clusters as depicted in Figure 6.
Centralized backend: The critical feature learning and
quality estimation stages are implemented in a backend
cluster as periodic jobs. By default, critical feature learn-
ing runs every 30 minutes, and quality estimation runs
every minute. A centralized backend is a natural choice
because we need a global view of all quality measure-
ments. The quality function, once updated by the estima-
tion step, is disseminated to distributed frontend clusters
using Kafka [27].

Note that we can further reduce learning time using
simple parallelization strategies. Specifically, the criti-
cal features of different finest partitions can be learned
independently. Similarly in Algorithm 3, the similarity
of quality distributions can be computed in parallel. To
exploit this data-level parallelism, we implement them as
Spark jobs [4].
Distributed frontend: Real-time query/response and
decision makers of CDN/bitrate are co-located in dis-
tributed frontend clusters that are closer to clients than
the backend. Each frontend cluster receives the quality
function from the backend and caches it locally for fast
prediction. This reduces the latency of making decisions
for clients.

5.2 Challenges in an operational setting
Mitigating impact of bulk data loading: The backend
cluster is shared and runs other delay-sensitive jobs; e.g.,
analytics queries from production teams. Since the crit-
ical feature learning runs periodically and loads a large
amount of data (≈30 GB), it creates spikes in the de-
lays of other jobs (Figure 7). To address this concern,
we engineered a simple heuristic to evenly spread the
data retrieval where we load a small piece of data every
few minutes. As Figure 7 shows, this reduces the spikes
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Figure 7: Streaming data loading has smoother impact
on completion delay than batch data loading.
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Figure 8: Distributions of relative prediction error
({5,10,50,90,95}%iles) on AvgBitrate and JoinTime
and hit rates on BufRatio and VSF. They show that
CFA outperforms other algorithms.
caused by bulk data loading in batch mode. Note that this
does not affect critical feature learning.
Iterative algorithm refinement: Some parameters
(e.g., learning window size Δlearn) of CFA require iter-
ative tuning in a production environment. However, one
practical challenge is that the frontend-facing part of the
backend can only be updated once every couple of weeks
due to code release cycles. Thus, rolling out new predic-
tion algorithms may take several days and is a practi-
cal concern. Fortunately, the decoupling between critical
feature learning and quality estimation (§4.2) means that
changes to critical feature learning are confined to the
backend cluster. This enables us to rapidly refine and
customize the CFA algorithm.

6 Evaluation
In this section, we show that:
• CFA predicts video quality with 30% less error than

competing machine learning algorithms (§6.1).
• Using CFA-based prediction, we can improve video

quality significantly; e.g., 32% less BufRatio, 12%
higher AvgBitrate in a pilot deployment (§6.2).

• CFA is responsive to client queries and makes pre-
dictions based on the most recent critical features and
quality measurements (§6.3).
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6.1 Prediction accuracy
We compare CFA with five alternative algorithms: three
simple ML algorithms, Naive Bayes (NB), Decision Tree
(DT), k-Nearest Neighbor (k-NN)4, and two heuristics
which predict a session’s quality by the average quality
of other sessions from the same ASN (ASN) or matching
the last-mile connection type (LH). All algorithms use
the same set of features listed in Table 1.

Ideally, we want to evaluate how accurately an algo-
rithm can predict the quality of a given client on every
choice of CDN and bitrate. However, this is infeasible
since each video client is assigned to only one CDN and
bitrate at any time. Thus, we can only evaluate the pre-
diction accuracy over the observed CDN-bitrate choices,
and we use the quality measured on these choices as the
ground truth. That said, this approach is still useful for
doing a relative comparison across different algorithms.

For AvgBitrate and JoinTime, we report relative error:
|p−q|

q , where the q is the ground truth and p is the predic-
tion. For BufRatio and JoinTime, which have more “step
function” like effects [18], we report a slightly different
measure called hit rate: how likely a session with good
quality (i.e., BufRatio < 5%, VSF=0) or bad quality is
correctly identified. Figure 8 shows that for AvgBitrate
and JoinTime, CFA has the lowest {5,10,50,90}%th
percentiles of prediction error and lower 95%th per-
centiles than most algorithms. In particular, median er-
ror of CFA is about 30% lower than the best competing
algorithm. In terms of BufRatio and VSF, CFA signifi-
cantly outperforms other algorithms in the hit rate of bad
quality sessions. The reason for hit rate of bad quality
to be lower than that of good quality is that bad quality
sessions are almost always less than good quality, which
makes them hard to predict. Note that accurately iden-
tifying sessions that have bad quality is crucial as they
have the most room for improvement.

6.2 Quality improvement
Pilot deployment: As a pilot deployment, we integrated
CFA in a production system that provides a global video
optimization service [20]. We deployed CFA on one ma-
jor content provider and used it to optimize 150,000 ses-
sions each day. We ran an A/B test (where each algo-
rithm was used on a random subset of clients) to evaluate
the improvement of CFA over a baseline random deci-
sion maker, which many video optimization services use
by default (modulo business arrangement like price) [9].

Table 4 compares CFA with the baseline random deci-
sion maker in terms of the mean BufRatio, AvgBitrate
and a simple QoE model (QoE = −370 ∗ Bu f Ratio +
AvgBitrate/20), which was suggested by [33, 18]. Over
all sessions in the A/B testing, CFA shows an improve-

4NB, DT, and k-NN are mplemented using a popular ML library
weka[6].

CFA Baseline Improvement
QoE 155.43 138.27 12.4%
BufRatio 0.0123 0.0182 32%
AvgBitrate 3200 2849 12.31%

Table 4: Random A/B testing results of CFA vs. base-
line in real-world deployment.

ment in both BufRatio (32% reduction) and AvgBitrate
(12.3% increase) compared to the baseline. This shows
that CFA is able to simultaneously optimize multiple
(possibly conflicting) metrics. To put these numbers
in context, our conversation with domain experts con-
firmed that these improvements are significant for con-
tent providers and can potentially translate into substan-
tial benefits in engagement and revenues [2]. CFA’s su-
perior performance and that CFA is more automated than
the custom algorithm indicate that domain experts were
willing to invest time running longer pilot. Figure 9 pro-
vides more comparison and shows that CFA consistently
outperforms the baseline over time and across different
major cities in the US, connection types and CDNs.
Trace-driven simulation: We complement this real-
world deployment with a trace-driven simulation to si-
multaneously compare more algorithms over more qual-
ity metrics. However, one key challenge is that it is hard
to estimate the quality of a decision that was not used by
a specific client in the trace.

To address this problem, we use the counterfactual
methodology from prior work in online recommendation
systems [30, 31]. Suppose we have quality measure-
ments from a set of clients, where client c is assigned to
a decision drand(c) of CDN and bitrate at random. Now,
we have a new hypothetical algorithm that maps client
c to dalg(c). Then, we can evaluate the average quality
of clients assigned to each decision d, {c|dalg(c) = d},
by the average quality of {c|dalg(c) = d,drand(c) = d}.
Finally, the average quality of the new algorithm is the
weighted sum of average quality of all decisions, where
the weight of each decision is the fraction of sessions
assigned to it. This can be proved to be an unbiased (of-
fline) estimate of dalg’s (online) performance [5].5 For
instance, if out of 1000 clients assigned to use Akamai
and 500Kbps, 200 clients are assigned to this decision
in the random assignment, then we can use the average
quality of these 200 sessions as an unbiased estimate
of the average quality of these 1000 sessions. Fortu-
nately, our dataset includes a (randomly chosen) portion
of clients with randomized decision assignments (i.e.,

5One known limitation of this analysis is that it assumes the new
assignments do not affect each decision’s overall performance. For
instance, if we assign all sessions to one CDN, they may overload the
CDN and so this CDN’s quality in the random assignments is no longer
useful. Since this work only focuses on controlling traffic at a small
scale relative to the total load on the CDN (and our experiments are in
fact performed at such a scale), this methodology is still unbiased.
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Figure 9: Results of real-world deployment. CFA outperforms the baseline random decision maker (over time and
across different large cities, connection types and CDNs).

0 
10 
20 
30 
40 
50 
60 

QoE 

BufRatio 

AvgBitra
te 

JoinTime 
VSF 

Im
pr

ov
em

en
t (

%
) Over baseline 

Over the best prediction algorithm 

Figure 10: Comparison of quality improvement be-
tween CFA and strawmen.

Stage Run time (mean
/ median)

Required
freshness

Critical feature learning 30.1/29.5 min 30-60 min
Quality estimation 30.7/28.5 sec 1-5 min
Query response 0.66/0.62 ms 1 ms

Table 5: Each stage of CFA is refreshed to meet the
required freshness of its results.

CDN and bitrate). Thus, we only report improvements
for these clients.

Figure 10 uses this counterfactual methodology and
compares CFA with the best alternative from §6.1 for
each quality metric and the baseline random decision
maker (e.g., the best alternative of AvgBitrate is k-NN).
For each quality metric and prediction algorithm, the de-
cision maker selects the CDN and bitrate that has the best
predicted quality for each client. For instance, the im-
provement of CFA over the baseline on VSF is 52% – this
means the number of sessions with start failures is 52%
less than when the baseline algorithm is used. The fig-
ures show that CFA outperforms the baseline algorithm
by 15%-52%. They also show that CFA outperforms the
best prediction algorithms by 5%-17%.

6.3 Timeliness of prediction
Our implementation of CFA should (1) retain freshness
to minimize the impact of staleness on prediction accu-
racy, and (2) be responsive to each prediction query.

We begin by showing how fast each stage described
in §4.2 needs to be refreshed. Figure 11 shows the im-
pact of staleness of critical features and quality values
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Figure 11: Latency of critical features and quality val-
ues (x-axis) on increase in accuracy (y-axis).
on the prediction accuracy of CFA. First, critical features
learned 30-60 minutes before prediction can still achieve
similar accuracy as those learned 1 minute before predic-
tion. In contrast, quality estimation cannot be more than
10 minutes prior to when prediction is made (which cor-
roborates the results of Figure 4(b)). Thus, critical fea-
ture learning needs to be refreshed every 30-60 minutes
and quality estimation should be refreshed at least every
several minutes. Finally, prediction queries need to be
responded to within several milliseconds [20] (ignoring
network delay between clients and servers).

Next, we benchmark the time to run each logical stage
described in §4.2. Real-time query/response runs in 4
geographically distributed data centers. Critical feature
learning and quality estimation run on two clusters of 32
cores. Table 5 shows the time for running each stage and
the timescale required to ensure freshness. It confirms
that the implementation of CFA is sufficient to ensure
the freshness of results in each stage.

7 Insights from Critical Features
In addition to the predictive power, CFA also offers in-
sights into the “structure” of video quality in the wild. In
this section, we focus on two questions: (1) What types
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Figure 12: Analyzing the types of critical features: This
shows a breakdown of the total number of sessions as-
signed to a specific type of critical features.
of critical features are most common? (2) What factors
have significant impact on video quality?

7.1 Types of critical features
Popular types of critical features: Figure 12 shows
a breakdown of the fraction of sessions that are as-
signed to a specific type of critical feature set. We
show this for different quality metrics. (Since we fo-
cus on a specific VoD provider, we do not consider the
Site or LiveOrVoD for this analysis.) Across all qual-
ity metrics, the most popular critical features are CDN,
ASN and ConnectionType, which means video quality
is greatly impacted by network conditions at the server
(CDN), transit network (ASN), and last-mile connection
(ConnectionType).

We also see interesting patterns unique to individ-
ual metrics. City is among the top critical features of
BufRatio. This is perhaps because network congestion
usually depends on the volume of concurrent viewers in
a specific region. Bitrate (initial bitrate) has a larger
impact on AvgBitrate than on other metrics, since the
videos in the dataset are mostly short content (2-5 min-
utes) and AvgBitrate is correlated with initial bitrate. Fi-
nally, ContentName has a relatively large impact on fail-
ures (VSF) but not other metrics, because VSF is some-
times due to the requested content not being ready.
Distribution of types of critical features: While the
quality of about 50% of sessions is impacted by 3-4 pop-
ular types of critical features, 15% of sessions are im-
pacted by a diverse set of more than 30 types of critical
feature (not shown). This corroborates the need for ex-
pressive prediction models that handle the diverse factors
affecting quality (§2.2).

7.2 Values of critical features
Next, we focus on the most prevalent feature values (e.g.,
a specific ASN or player). To this end, we define preva-

City ASN Player ConnectionType
BufRatio Some major

east-coast
cities

Satellite,
Mobile,
Cable

AvgBitrate Cellular
carriers

Players with
different en-
codings

JoinTime Cellular
carrier

Satellite,
DSL

VSF Small
ISPs

Satellite,
Mobile

Table 6: Analysis of the most prevalent values of crit-
ical features. A empty cell implies that we found no
interesting values in this combination.
lence of a feature value by the fraction of video sessions
matching this feature value that have this feature as one
of their critical features; e.g., the fraction of video ses-
sions from Boston that have City as one of their critical
features. If a feature value has a large prevalence, then
the quality of many sessions that have this feature value
can be explained by this feature.

We present the values of critical features with a
prevalence higher than 50% for each quality metric
and only consider a subset of the features (ASN, City,
ContentName, ConnectionType) that appear promi-
nently in Figure 12. We present this analysis with two
caveats. First, due to proprietary concerns, we do not
present the names of the entities, but focus on their char-
acteristics. Second, we cannot confirm some of our hy-
pothesis as it involves other providers; as such, we intend
this result to be illustrative rather than conclusive.

Table 6 presents some anecdotal examples we ob-
served. In terms of BufRatio, we see some of the major
east coast cities (e.g., Boston, Baltimore) are more likely
to be critical feature values than other smaller cities. We
also see both poor (Satellite, Mobile) and broadband (Ca-
ble) connection types have high prevalence on BufRatio
and JoinTime. This is because poor quality sessions
are bottlenecked by poor connections, while some good
quality sessions are explained by their broadband con-
nections. “Player” has a relatively large prevalence on
AvgBitrate, because the content provider uses different
bitrate levels for different players (Flash or iOS). Finally,
in terms of VSF, some small ISPs have large prevalence.
We speculate that this is because their peering relation-
ships with major CDNs are not provisioned, so their
video sessions have relatively high failure rates.

8 Related Work
Internet video optimization: There is a large litera-
ture on measuring video quality in the wild (e.g., content
popularity [38, 55], quality issues [25] and server selec-
tion [51, 47]) and techniques to improve user experience
(e.g., bitrate adaptation algorithms [56, 26, 23], CDN
optimization and federation [32, 37, 11, 35] and cross-
provider cooperation [57, 19, 24]). Our work builds on
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insight from this prior work. While a case for a similar
vision is made in [33], our work gives a systematic and
practical prediction system.
Global coordination platform: Decision making based
on a global view is similar to other logically centralized
control systems (e.g., [14, 33, 20, 48]). They examined
the architectural issues of decoupling the control plane
from the data plane, including scalability (e.g., [50, 17]),
fault tolerance (e.g., [36, 54]), and use of big data sys-
tems (e.g., [20, 4]). In contrast, our work offers concrete
algorithmic techniques over such a control platform [20]
for video quality optimization.
Large-scale data analytics in system design: Many
studies have applied data-driven techniques for perfor-
mance diagnosis (e.g., [46, 15, 40]), revenue debugging
(e.g., [13]), TCP throughput prediction (e.g., [22, 34]),
and tuning TCP parameters (e.g., [43, 41]). Recent stud-
ies try to operate these techniques at scale [16]. While
CFA shares this data-driven approach, we exploit video-
specific insights to achieve scalable and accurate predic-
tion based on a global view of quality measurements.
QoE models: Prior work has shown correlations be-
tween various video quality metrics and user engagement
(e.g., users are sensitive to BufRatio [18]), and built vari-
ous QoE models (e.g., [28, 45, 12, 10]. Our work focuses
on improving QoE by predicting individual quality met-
rics, and can be combined with these QoE models.

9 Discussion
Relationship to existing ML techniques: CFA is
a domain-specific prediction system that outperforms
some canonical ML algorithms (§6.1). We put CFA in
the context of three types of ML algorithms.
• Multi-armed bandit algorithms [53] find the decision

with the highest reward (i.e., best CDN and bitrate)
from multiple choices. They assume each decision has
a fixed distribution of rewards, but the video quality of
a CDN also depends on client-side features. In con-
trast, contextual multi-armed bandit algorithms [44]
assume the best decision depends on contextual in-
formation, but they require appropriate modeling be-
tween the context and decision space, to which critical
features provide one viable approach.

• The feature selection problem [21] seems similar to
critical feature learning, but with a key difference:
critical features vary across video sessions. Thus,
techniques looking for features that are most impor-
tant for all sessions are not directly applicable.

• Advanced ML algorithms today can handle highly
complex models [29, 42] efficiently, so in theory the
critical features could be automatically identified, al-
beit in an implicit manner. CFA uses existing ML
models (specifically, the “variable kernel conditional
density estimation” method [49]) and may be less ac-

curate than advanced ML techniques, but CFA can
predict with more recent data since it tolerates stale
update on the critical features. Furthermore, CFA is
less opaque since it is based on domain-specific in-
sights about critical features (§7).

Finer grain information and selection: Currently,
CFA makes predictions based on client side information
only. While clients provide accurate information regard-
ing QoE, prediction can be much more accurate if CFA
were to leverage finer-grained information from other
entities in the ecosystem, including servers, caches and
network paths. Furthermore, CFA currently selects re-
sources at the CDN granularity. This means CFA cannot
do much if the CDN redirects the client based on its lo-
cation and the servers the CDN redirects the client to are
congested. However, if the client were able to specify
the server to stream from, we could avoid the overloaded
servers and improve quality.

10 Conclusions
Many prior research efforts posited that quality predic-
tion could lead to improved QoE (e.g., [33, 11, 35, 10]).
However, these efforts failed to provide a prescriptive so-
lution that (a) is expressive enough to tackle the complex
feature-quality relationships observed in the wild and (b)
can provide near real-time quality estimates. To this end,
we developed CFA, a solution based on domain-specific
insights that video quality is typically determined by a
subset of critical features which tend to be persistent.
CFA leverages these insights to engineer an accurate al-
gorithm that outperforms off-the-shelf machine learning
approaches and lends itself to a scalable implementation
that retains model freshness. Using real deployments and
trace-driven analyses, we showed that CFA achieves up
to 30% improvement in prediction accuracy and 12-32%
improvement in QoE over alternative approaches.
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