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Abstract—Assessing the impact of different network conditions
on user experience is important for improving the telecommuni-
cation services. We have developed a modular framework that
includes monitoring and data collection tools and algorithms
for user-centric analysis and prediction of the QoE in video
streaming. The MLQoE employs several machine learning (ML)
algorithms and tunes their hyper-parameters. It dynamically
selects the ML algorithm that exhibits the best performance and
its parameters automatically based on the input (e.g., network
and systems metrics). We applied the MLQoE for predicting
the QoE of the video streaming service in the context of two
field studies, one performed in the production environment of
a large telecom operator and the other at our Institute. The
analysis indicated the parameters with the dominant impact on
the perceived QoE and revealed that the QoE vary across users.
This motivates the use of customized adaptation mechanisms in
video streaming under network performance degradation. The
MLQoE results in fairly accurate predictions e.g., a median error
in predicting the QoE of 0.0991 and 0.5517 in the first (second)
field study, respectively, on the MOS scale.

I. INTRODUCTION

The impact of the network performance on the quality of
experience (QoE) for various services is not understood in
depth. The QoE can be defined as “the degree of delight
or annoyance of a person whose experiencing involves an
application, service, or system. It results from the persons
evaluation of the fulfillment of his or her expectations and
needs with respect to the utility and/or enjoyment in the light
of the persons context, personality and current state” [1].
This definition reflects some of the user-centric and contextual
aspects of QoE. In general, depending on the type of service
and the context, the QoE can be affected by various techno-
socio-economic-cultural-psychological parameters, e.g., by the
user preferences with respect to QoE and price, willingness-
to-pay, and intrinsic indicators towards a service provider
(e.g., band name, perceived value, reliability), its content
(e.g., richness, diversity, searching mechanisms), and even
integration with other popular services (e.g., social networking
applications). It may be difficult to dynamically capture these
aspects and assess to which extend they affect the QoE of a
service, especially in a non-intrusive manner. Thus, the design
of the appropriate metrics and methodologies to monitor the
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infrastructure (e.g., network, system, and context), collect the
appropriate data, and model the QoE can be challenging.

Our community has been assessing the impact of the
network on the user experience, which is critical for im-
proving the telecommunication services. A diagnostic tool
that indicates whether users perceive the deterioration of the
network performance can be very useful. When users do
not perceive performance degradation, an adaptation could
be avoided. Moreover for churn prevention, cost reduction,
increasing revenue, rolling out new services and differentiating
their existing ones, the knowledge about the user engagement
and satisfaction is important in order to create competitive
advantages within the Internet market. Characterizing the QoE
for VoIP, video streaming, and web browsing, has been at the
epicenter of various activities. For example, the prediction of
QoE for video can be performed by applying mathematical
models based on QoS parameters [2]–[4], signal processing
techniques [5] or data-mining algorithms [6]–[11]. The ma-
jority of such efforts aim to characterize the user experience,
analyzing measurements in an aggregate manner.

We recently developed a modular algorithmic framework
for user-centric QoE prediction, MLQoE [12]. This framework
employs multiple machine learning (ML) algorithms, namely,
Artificial Neural Networks (ANN), Support Vector Regression
(SVR) machines, Decision Trees (DTs), and Gaussian Naive
Bayes (GNB) classifiers, and tunes their hyper-parameters. It
selects the ML algorithm that exhibits the best performance
and its parameters automatically, given the input. The input
involves network and systems metrics based on empirical
measurements as well as subjective opinion scores collected
from users. In an earlier work, we analyzed the performance of
this framework on VoIP and video traces from the LIVE Mo-
bile VQA database, which consists of a number of reference
and distorted videos. The distorted videos have been created
by varying the compression rate, rate-adaptation, number of
frame-freeze, and packet-loss. 18 subjects assessed the quality
of some of the distorted videos. This work further extends our
earlier research in several directions: we developed the QoE
tracker, a monitoring and data collection system. In the context
of a video streaming service on mobile devices provided
by a large telecom operator in Greece, in its production
environment, we performed the first field study. Volunteers
employed the QoE tracker and evaluated the perceived QoE
of the video streaming service. We analyzed the collected data
to understand the impact of various parameters, such as startup978-1-5090-0354-9/16/$31.00 c©2016 IEEE
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Fig. 1. (a) Histogram of the QoE distribution for different startup delays, (b) the duration of the session as a function of the buffering ratio, and (c) buffering
ratio as a function of the weighted mean video resolution for the sessions terminated by poor connectivity.

delay, rebuffering events, packet losses, and changes of resolu-
tion, on the QoE. This work also focused on the user-centric
aspects in QoE and sensitivity of users to different type of
impairments. We then applied the MLQoE to predict the QoE
score and compared its performance with the Weber-Fechner
Law (WFL) [2]. This field study took place in a dynamic
“open” relatively unrestricted and heterogeneous environment,
which imposed several challenges in the analysis. To validate
the outcome of the analysis and further extend it, we performed
a second more controlled field study in our Institute. The paper
evaluates the performance of the MLQoE prediction using the
data collected in the second field study and highlights the main
results. The paper is structured as follows: Section 2 describes
the field studies. Section 3 focusses on the analysis of the
field studies. Section 4 presents the proposed methodology,
while Section 5 discusses the performance analysis. Section
6 overviews the related work. Section 7 summarizes our
conclusions.

II. QOE TRACKER

A major Greek telecom operator has been providing a VoD,
LiveTV, TSTV, and TVoD video streaming service. The video
streaming service employs the HTTP Adaptive Streaming
(HAS) technique [13]. Also, the HAS technology uses the TCP
protocol for reliable video transmission. In a joint project, we
developed the QoE tracker, a monitoring system that collects
network and systems measurements (objective measurements)
as well as feedback from users (subjective measurements). The
QoE tracker follows the client-server architecture. It runs on
the smartphone of the user (client), monitors the network in
the background, and parses the log messages generated by
the video streaming client, when the user performs certain
actions. At the end of a video viewing session (from now
on called session), the user rates the session by providing an
opinion score (on the MOS scale). The collected measurements
“capture” various events, such as resolution changes, buffering
events, and user actions with respect to video viewing. The
QoE server (server from now on) is running on a Linux virtual
machine and collects, stores and analyzes the objective and
subjective data uploaded by the clients. The client consists
of the monitor, GUI, performance estimator, database, and

the back-end interface. The monitor is composed of three
sub-modules, namely, the logcat parser, active prober, and
localization. The logcat parser parses periodically the log
messages of the video streaming client, recognizes various user
actions and other events that may occur during the session,
and keeps track of the state of the video player. When a
video session start (end) is identified, the active prober is
launched (terminated), respectively. During its activation, the
active prober communicates with the active prober module of
the server, for the initiation of network measurements through
the iperf tool. The localization sub-module determines the
geographical location of the device during a video session.
The video streaming client uses only the wireless network
(i.e., WiFi). Similarly the communication of the QoE system
takes place via wireless network.

For each video session, the following features were col-
lected: the service type, startup delay, the ratio of the startup

delay over the session duration, session duration, QoE score,

number of buffering events (and statistics about the duration of
them, such as total, min, max, mean and standard deviation),
the mean weighted resolution and the ratio of the weighted

mean video resolution over the size of the display of the user

device, the number of switches of the video resolution (and
statistics based on them, e.g., min, max, mean and standard
deviation), packet loss, jitter, and signal strength. The user
activity is characterized by the duration of the pause, seek,
and off-screen events. The same statistics are also computed
for the last 15, 30, and 60 sec of the session. The termination
type which indicates whether the session was terminated due
to poor connectivity or normally by the user is also obtained.

III. ANALYSIS

The first field study took place in the context of the video
streaming service provided by a large Greek telecom operator.
During this field study (that lasted 56 days), 20 volunteers,
customers of the service, participated by viewing videos,
uploading at least one labelled video session. We consider as
labelled session a session that has been rated with a QoE score
by the user. The devices of the participants vary in terms of
their manufacturer, model, display size, and Android version.
The collected dataset includes 293 stationary sessions and five
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Fig. 2. Using the dataset from the first field study. Cumulative Distribution Function (CDF) of the (a) packet loss for sessions rated with different QoE scores,
(b) packet loss for sessions with different termination types as well as packet losses considering only the last 15 sec of the sessions, and (c) the mean absolute
error of the MLQoE per user, indicated at the top of each column, considering all his/her sessions (left column), the sessions with high buffering ratio and
QoE score of 5 (middle), and the sessions with high startup delay and QoE score of 5 (right column).

wireless handover ones. The handover sessions exhibit higher
packet loss and jitter, and stronger signal strength than the
stationary ones. We first analyzed the impact of the startup
delay on QoE. Users perceive the degradation (reflected by
the low QoE scores) when the startup delay is 10 sec or more
(Fig. 1 (a)). Prior related research (e.g., by Krishnan et al. [14])
reported that a startup delay beyond 2 sec causes viewers to
abandon the video. The dataset in [14] contains measurements
obtained from wired, wireless, and cellular connections. We
speculate that the smartphone wireless network users of our
study are perhaps more tolerant in the startup delay than users
with fixed devices using a larger bandwidth connection. The
higher the buffering ratio, the smaller the duration of the
session (Fig. 1 (b)). This trend has been also observed in
the related work (e.g., [14], [15]). Interestingly, there were
several sessions of high resolution that terminated with poor
connectivity and exhibit high buffering duration ratio and low
QoE scores (Fig. 1 (c)). Potentially, by lowering the resolution,
the buffering ratio could be reduced resulting in an improved
QoE. As expected, sessions that experience worse network
conditions (e.g., in terms of jitter, packet loss and RSSI),
high startup delay, and buffering ratio are rated with lower
QoE. The larger the packet loss, the lower the QoE score
(Fig. 2 (a)). These are also more likely to terminate with a poor
connectivity status (Fig. 2 (b)). Poor network performance
during the last 15 sec of the session may result in termination
due to poor connectivity. Specifically, sessions that have been
terminated with poor connectivity exhibit higher packet losses,
jitter, and buffering ratios during their last 15 seconds than
the entire sessions terminated with poor connectivity or the
sessions terminated normally by the user (Fig. 2 (b)).

There are sessions with high buffering ratio that lasted more
than 10 min and were rated with a score of 5. Moreover,
there were sessions of high QoE scores that were terminated
with poor connectivity status or had a startup delay of 50
sec or more (Figs. 2 (a) and (c)). That is, even though
users experienced a degraded performance, they still rated
these sessions with high QoE scores. As mentioned earlier,
the first field study took place in a dynamic heterogeneous

and relatively unrestricted environment. We speculate that
depending on the context and content of these sessions, the
expectations and tolerance of the users may vary. However, this
motivated us to perform a second (more controlled) field study
in our Institute. For the second study, we produced a number
of synthetic video sequences that correspond to a wide range
of network conditions. The effect of the network conditions
(such as packet loss, jitter, RSSI) on the systems parameters,
such as startup delay, buffering ratio, and resolution, depends
on the specific video codec and application. Moreover the
systems parameters affect directly the user perceived QoE.
We generated scenarios of different types of impairment by
varying these parameters and created (playback) videos that
“manifest” these impairments. We used four different reference
videos, each corresponding to high quality (i.e., did not exhibit
any type of impairment) and displaying a different scene.
Each scene has a total duration of 20 sec, while each video
consists of 4 chunks with a duration of 5 sec. Each playback
video was parametrized based on the startup delay, number
of buffering events, ratio of buffering duration, times when
buffering events occur, duration of each buffering event, video
resolutions for each chunk, and aggregate resolution of the
video. The startup delay and the buffering ratio have been
modelled according to the Bounded Pareto distribution. The
parameters of the distributions were estimated based on the
empirical measurements of the first field study. During a video,
up to three buffering events may occur, one after each chunk.
The resolution may remain fixed or vary during the video.
For the second study, fifty video sequences were produced.
20 participants, volunteers, mostly graduate students in our
Institute, assessed the quality of these sessions using the MOS
scale. Due to the large number of videos to be assessed,
each participant viewed the videos during two viewing phases
that took place in different days. The subjects viewed and
assessed the videos using an Android application implemented
on a Nexus 5. To obtain demographic information (e.g., age,
sex, frequency of use of mobile applications, video streaming
services, audiovisual tests) about the volunteers, each subject
had to first answer a short questionnaire. Before viewing the



videos, the subject had to read and follow the instructions
that appeared on the screen. After that, the training video
sequences appeared in order to familiarize the subject with
the various types of audiovisual quality degradation. Then,
the subject viewed each video sample and indicated his/her
opinion score about its QoE via the Android application.

We also aimed to further explore the subjectivity of the
assessments and sensitivity of users to different types of
impairment (e.g., large startup delay, number of rebuffering
events, low resolution). We considered three types of promi-
nent impairments, namely, the large startup delay, number of
rebuffering events, and low resolution, and created three homo-
geneous sets with respect to these impairments. Specifically,
the set with the prominent startup delay includes only the video
sessions of high startup delay, excluding the video sessions
of large number of rebuffering events or low resolution. We
also created the other two video sets in a similar manner. We
then analyzed how users rate the QoE of these videos. Indeed
it appears that depending on the type of impairment, some
users are more tolerant or strict than others. We define that
a user assessed a session in a lenient (strict) manner when
his/her score belongs to the 90-th (10-th) percentile of the total
scores for this video provided by all 20 users of the field study,
respectively. A user is labelled as lenient (strict) when 50% or
more of his/her sessions are rated in a lenient (strict) manner,
respectively. Some users are persistently labelled as lenient
(e.g., users 5 and 6) or strict (e.g., users 7 and 19) across
all the three types of impairment. Moreover, some users (e.g.,
users 1 and 2) are more tolerant to some types of impairment
(e.g., high startup delay and low resolution) but sensitive to
others (e.g., buffering events). To evaluate if the difference
of the scores of users for the various types of impairment
is statistically significant, we applied the Student’s T-test, on
their QoE scores. For the persistently lenient and strict users,
the QoE scores among the various types of impairment are
not statistically significant different, while for users that are
tolerant to only some types of impairment the QoE scores are
statistically significantly different.

IV. MLQOE ALGORITHM

The MLQoE employs supervised regression, in which the
predictors are metrics, e.g., based on jitter, packet loss, re-
buffering, startup delay, resolution, and the predicted outcome
is the QoE score. The predictors are determined based on the
specific service, size of the collected data, characteristics of
the testbed and measurement study. The MLQoE consists of
several modules, including the normalization, feature selection,
training multiple regressors, the selection of the best ML
model and the estimation of its performance. It employs a
set of ML algorithms, which can be easily extended. The
MLQoE has two main phases, namely, the model selection and
performance estimation. The model selection takes as input the
training set of the performance estimation loop, cross-validates
it, and reports the best model. The performance estimation
obtains as input the dataset, partitions it into folds, estimates
the performance of the best model (that the model selection
outputs) in each fold and reports (as output) the mean error for
the dataset. The performance metric is the absolute difference

of the predicted QoE score compared to the actual score
provided by the user (which serves as the “ground truth”).

To address the high dimensionality of the data (i.e., re-
duce the number of metrics that have to be measured), the
MLQoE employs the Max-Min Parents and Children (MMPC),
a causal-based and Bayesian Network-based feature selection
algorithm. The MMPC identifies the parameters that have a
dominant impact on QoE. In the model selection phase, the
MMPC selects its hyper-parameters, namely, the maximum
size of conditioning set k and the statistical level for accepting
probabilistic dependence a. Unfortunately, estimating the per-
formance of multiple models on the same test set leads to over-
estimation of the performance of the best performing model.
To provide a conservative estimation, while at the same time
avoid underfitting, the MLQoE employs the Nested Cross-
Validation (nested CV) protocol [16]. The data normalization
and feature selection is executed inside the nested CV, them
participating in the model selection procedure.

V. EVALUATION OF THE MLQOE PREDICTION

To evaluate the prediction accuracy of the MLQoE in
video streaming service, for the first field study, we used the
collected datasets and applied the MLQoE in an aggregate and
a user-centric manner. In this dataset, only 13 out of 20 users
have rated five sessions or more. We consider only these users
for the performance analysis of the MLQoE. The aggregate
approach considers all the video sessions for all users. Due
to the small number of samples for some users in the user-
centric approach (in the first dataset), we used the leave-one-
out nested CV (LOOCV) with random partitioning to folds.
For the aggregate approach, a 10-fold nested CV with random
partitioning to folds was applied. For the second dataset
(i.e., collected in the second field study), in the user-centric
approach, we used a 10-fold nested CV, for the evaluation of
the prediction, considering all 20 users (since each user has
assessed 50 video sessions).

Apart from the original datasets, a normalized version is
also maintained. The normalization is performed to handle
the variability across the metrics. It transforms the values
of each metric to fit a normal distribution of zero mean
and unit variance. Each ML algorithm has a number of
tuning parameters [12]. At the model selection process, all
the combinations of the different parameters are tested. 1

Parameter Impact In the aggregate MLQoE, in the context
of the first field study, the MMPC indicates that the parameters
with dominant impact on the QoE are the termination type
of the session, the buffering events frequency, the weighted
mean video resolution ratio, and the packet loss. Considering
the 13 subjects of the first field study, the MLQoE reported
the termination type as a dominant factor for 10 subjects, the

1The MMPC algorithm is tested with k = 0, 1, 2, 3 and a = 0.01, 0.05, 0.1, 1 (a
value a = 1 corresponds to selecting all variables without feature selection). Each dataset
is employed to train the ML algorithms. The LIBSVM library Version 3.14 was used for
the implementation of the SVR algorithm; the hyper-parameters were chosen as follows:
for the Gaussian, linear, and polynomial kernels were used with the default values, the
cost C was selected among the values {0.01, 0.1, 1, 10, 100}, and the insensitivity
parameter e within values {0.05, 0.1, 0.25, 0.5, 1}. The ANN was implemented with
one hidden layer. The number of nodes for the hidden layer varied from 8 up to 11
and 2 up to 5 [17] for the first and the second field study, respectively. The CART
implementation have been used for the DTs and we tested the following values of the
pruning level alpha a = {0.1, 0.01, 0.05}.
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Fig. 3. The absolute error of the MLQoE and WFL for the first and second field study, (a) and (b), respectively, and (c) the features that have a dominant
impact on QoE in the second field study.

mean jitter for 6 subjects, the startup delay and its ratio over
the entire video duration for 5 subjects, the packet loss for 4
subjects, and the weighted mean video resolution and its ratio
of the weighted mean video resolution over the display for 4
subjects. The diversity in the dominant parameters between
the aggregate case and the user-centric one is due to the
use of different datasets. The aggregate approach employs all
the video sessions for all subjects, while in the user-centric
approach, each subject views a different set of videos sessions,
under different network conditions and context. In the second
field study, the number of buffering events and buffering
ratio consistently are the parameters with the most prominent
impact on the QoE across all subjects (Fig. 3 (c)). The MLQoE
captures the individual user preferences, as different dominant
parameters are reporting for the different subjects.

Accuracy of the prediction For the first field study, the
user-centric MLQoE can predict the QoE in a fairly accurate
manner with a median and mean absolute error (MAE) of
0.0991 and 0.7716, respectively. The aggregate MLQoE re-
ports a median and mean absolute error of 0.1392 and 0.5185
(Fig. 3 (a)). The better mean performance of the aggregate
MLQoE compared to the user-centric approach is due to the
specific limitations of this field study (as discussed also in
Section III). For example, only ten users have rated more
than 15 sessions. Moreover, there were users that provided
only two or three different scores. These characteristics impact
the training of the data mining algorithms and result in large
prediction errors. For the second dataset, the user-centric
MLQoE can predict the QoE score with a median and mean
absolute error of 0.5517 and 0.6133, respectively (Fig. 3 (b)).
The ML algorithm that exhibits the best performance may vary
across users, so it is important to test various ML algorithms
and a range of their hyper-parameters. 2

We compared the MLQoE to the WFL, a state-of-the-
art QoE model. The WFL reflects the relation of QoE and
QoS using logarithmic regression [2]. The performance of the
WFL was evaluated using a 10-fold cross-validation and one
parameter as input (the packet loss or the mean resolution).
The aggregate MLQoE exhibits a statistically significant better

2For example, in the second field study, the best performing algorithm was the GNB,
the SVR with Gaussian kernel, and the SVR with Linear kernel, for 7 (MAE 0.5762), 7
(MAE 0.6371), and 6 (MAE 0.6790) users, respectively.

performance than the WFL in terms of mean and median
prediction (Fig. 3 (a)), while the user-centric MLQoE outper-
forms WFL in terms of median prediction error. Although the
WFL does not capture the interplay and impact of the multiple
factors (e.g., mean packet loss, mean video resolution), it still
has a reasonably good performance.

VI. RELATED WORK

The prediction of QoE for video can be performed by
applying mathematical models based on QoS parameters (e.g.,
WFL and IQX [2]), full-reference algorithms (e.g., VQM [5]).
For example, Hossfeld et al. [3] proposed a QoE model based
on WFL for YouTube. Different types of relations between
the QoS (network-level traffic characteristics) and QoE (e.g.,
linear, logarithmic, exponential and power) applied in [4]
and shown the relationship between them. There are studies
[14], [18] that used statistical tests (e.g., Pearson, Kendall)
to evaluate the QoE based on user engagement, abandonment
rate, and frequency of visits. Hands and Wilkins [19] exam-
ined the quality and acceptability for video streaming under
different network conditions and showed that the burst size
(number of consecutive dropped packets) has a considerable
impact on QoE and acceptability. In [20], [21] they built
applications that collect QoS (such as player state, statistics
of buffering events, and video quality level) in the context
of video streaming and web browsing services, parameters
that impact the perceived QoE. The evaluation of acceptance,
satisfaction, entertainment, and information recognition in dif-
ferent contexts (e.g., train station, bus) using ANOVA, Pearson
correlation, Spearman, and Chi-square was the focus of [22].
The role of the context on QoE for various streaming services
has been highlighted in several studies (e.g., [23]). Xue and
Chen [24] evaluated the influence of contextual factors, such
as display size, viewing distance, ambient luminance and
user movement on subjective perceived quality. The context
and the repeatability of the experiments was also analyzed
in [25]. In the context of video streaming and telepresence,
Wu et al. [26] characterized the QoS based on interactivity,
vividness and consistency and the QoE using as metrics the
concentration, enjoyment, telepresence, perceived usefulness,
and perceived easiness of use and applied Pearsons correlation
to map the QoS to QoE. Other studies use ML algorithms with



hold-out estimation [6], [7] or with cross-validation [8]–[10]
and try to estimate the QoE. Simple regression models have
been also used in order to characterize the user satisfaction
[15], [27]. In general, the ground-truth for the QoE has been
formed based on either the explicit opinion scores reported
by users (e.g., in the context of audiovisual tests or at the
end of their service via a GUI) or based on measurements
collected using physiological metrics [28], [29]. Note that all
the aforementioned models estimate the QoE for an average
user in contrast to MLQoE that can be employed to capture
also the individual user preferences. The closest paper in our
work [11] builds the aggregated model training two different
algorithms (DTs and ANN) using 10-fold cross validation
for DTs and hold-out estimation for ANN. So the estimated
performance is overestimated. They choose the best performed
model and train it in a user-centric manner. The models have
been trained using all the parameters, unlike our work that
performs feature selection for dimensionality reduction.

VII. CONCLUSION AND FUTURE WORK

The startup delay and buffering ratio affect the QoE. Ses-
sions with startup delay higher than 10 sec obtain lower QoE
scores, while sessions with buffering ratio, have typically a
smaller duration. Sessions with poor network performance
during the last 15 sec are likely to be terminate with poor
connectivity. In several sessions, we observed that a rate
adaptation could reduce the buffering ratio and improve the
QoE. In the first field study, the parameters with a dominant
impact on the QoE are the frequency of buffering events,
weighted mean video resolution ratio, termination type, and
packet loss (considering the aggregate prediction model). The
median error in the QoE prediction is less than 0.1. In the
second (more controlled) field study, the number of buffering
events and buffering ratio are the parameters of prominent
impact on QoE for each user. The sensitivity of users to the
different types of impairment varies across users. Moreover
we observed the presence of lenient and strict users (in terms
of their QoE assessments).

The performance of these two field studies enabled us to
reflect about the tradeoffs between small-scale studies with
homogeneous settings in non-controlled environments and
larger-scale (potentially crowd-sensing/sourcing participatory)
studies that can reach more people, representing a more
realistic set of conditions but with several unknown, difficult
to control, exogenous parameters and heterogeneous settings.
Obtaining reliable measurements in such crowd-sourcing non-
controlled field studies can be challenging. In general, it is
difficult to obtain the “ground truth” about the QoE. The above
tradeoffs also highlight the tension between the subjectivity
and reliability in the collected measurements.

Through the QoE tracker and proposed algorithms, the
provider can learn more about its customers (e.g., their traffic,
usage pattern, end-to-end network performance, QoE profile),
infrastructure and service performance. This can enable the
provider to improve the adaptation mechanisms, provide bet-
ter customer service, assess its agreements with infrastruc-
ture/network providers, and potentially perform better pricing.
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