
CSE 512 - Data Visualization

Networks

Jeffrey Heer University of Washington

Visualizing Trees
Visualizing Graphs

Goals
Overview of layout approaches
Assess strengths and weaknesses
Insight into implementation techniques

Topics

Graphs
Model relations among data
Nodes and edges

Trees
Graphs with hierarchical structure
· Connected graph with N-1 edges

Nodes as parents and children

Graphs and Trees

A primary concern of graph drawing is the
spatial arrangement of nodes and edges.

Often (but not always) the goal is to
effectively depict the graph structure:
· Connectivity, path-following
· Network distance
· Clustering
· Ordering (e.g., hierarchy level)

Spatial Layout

Tournaments
Organization Charts
Genealogy
Diagramming (e.g., Visio)
Biological Interactions (Genes, Proteins)
Computer Networks
Social Networks
Simulation and Modeling
Integrated Circuit Design

Applications

Tree Layout

Indentation
Linear list, indentation encodes depth

Node-Link diagrams
Nodes connected by lines/curves

Enclosure diagrams
Represent hierarchy by enclosure

Layering
Relative position and alignment

Fast: O(n) or O(n log n), interactive layout

Tree Visualization

Places all items along
vertically spaced rows
Indentation used to show
parent/child relationships
Commonly used as a
component in an interface
Breadth and depth
contend for space
Often requires a great
deal of scrolling

Indentation

Nodes are distributed in space, connected by
straight or curved lines
Typical approach is to use 2D space to break apart
breadth and depth
Often space is used to communicate hierarchical
orientation (e.g., towards authority or generality)

Node-Link Diagram

Repeatedly divide space for subtrees by leaf count
▪ Breadth of tree along one dimension
▪ Depth along the other dimension
Problem: exponential growth of breadth

Basic Recursive Approach

Goal: make smarter use
of space, maximize
density and symmetry.
Originally binary trees,
extended by Walker to
cover general case.
Corrected by Buchheim
et al. to achieve a linear
time algorithm.

Reingold & Tilford’s “Tidy” Layout

Design considerations
Clearly encode depth level
No edge crossings
Isomorphic subtrees drawn identically
Ordering and symmetry preserved
Compact layout (don’t waste space)

Reingold-Tilford Layout

Linear algorithm – starts with bottom-up pass of the tree
Y-coord by depth, arbitrary starting X-coord
Merge left and right subtrees

· Shift right as close as possible to left
· Computed efficiently by maintaining subtree contours

· “Shifts” in position saved for each node as visited
· Parent nodes are centered above their children

Top-down pass for assignment of final positions
· Sum of initial layout and aggregated shifts

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

11

12

Reingold-Tilford Layout

Reingold-Tilford Layout

0

Reingold-Tilford Layout

0

1

Reingold-Tilford Layout

0

1

2

Reingold-Tilford Layout

0

1

2

3

4

Reingold-Tilford Layout

0

1

2

3

0

1

2

4

3

5

Reingold-Tilford Layout

0

1

2

4

3

5

Reingold-Tilford Layout

0

1

2

4

3

5

Reingold-Tilford Layout

0

1

2

4

3

5

Reingold-Tilford Layout

0

1

2

4

3

5

Reingold-Tilford Layout

0

1

2 6

4

3

5

Reingold-Tilford Layout

0

1

2 6

4

3

5

Reingold-Tilford Layout

0

1

2 6

4

3

5

Reingold-Tilford Layout

0

1

2 6

4

3

5

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8

9

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

11

Reingold-Tilford Layout

0

1

2

7

6

4

3

5

8 10

9

11

12

Reingold-Tilford Layout

Node-link diagram in
polar co-ordinates.

Radius encodes depth,
with root in the center.

Angular sectors assigned
to subtrees (typically uses
recursive approach).

Reingold-Tilford method
could be applied here.

Radial Layout

http://www.sims.berkeley.edu/%7Erachna/courses/infoviz/gtv/

Layout in 3D to form
Cone Trees.

Balloon Trees can be
described as a 2D
variant of a Cone Tree.
Not just a flattening
process, as circles must
not overlap.

Circular Tree Layouts

Focus + Context

………

Indented Layout Reingold-Tilford Layout

Visualizing Large Hierarchies

Scale
Tree breadth often grows exponentially
Even with tidy layout, quickly run out of space

Possible Solutions
Filtering
Focus+Context
Scrolling or Panning
Zooming
Aggregation

More Nodes, More Problems…

MC Escher, Circle Limit IV

Perform tree layout in
hyperbolic geometry,
project the result on to
the Euclidean plane.

Why? Like tree breadth,
the hyperbolic plane
expands exponentially!

Also computable in 3D,
projected into a sphere.

Hyperbolic Layout

Space-constrained, multi-focal tree layout

Degree-of-Interest Trees

Cull “un-interesting” nodes on a per block basis
until all blocks on a level fit within bounds.
Attempt to center child blocks beneath parents.

Degree-of-Interest Trees

Enclosure / Layering

Encode structure using spatial enclosure
Popularly known as treemaps

Benefits
Provides a single view of an entire tree
Easier to spot large/small nodes

Problems
Difficult to accurately read structure / depth

Enclosure Diagrams

Recursively fill space.
Enclosure signifies
hierarchy.

Additional measures can
be taken to control
aspect ratio of cells.

Often uses rectangles,
but other shapes are
possible, e.g., iterative
Voronoi tesselation.

Treemaps

Signify tree structure using
· Layering
· Adjacency
· Alignment

Involves recursive sub-division of space.

Layered Diagrams

Higher-level nodes get a larger layer area, whether
that is horizontal or angular extent.
Child levels are layered, constrained to parent’s extent

Icicle & Sunburst Trees

Layered Tree Drawing

“Elastic Hierarchies”
Node-link diagram
with treemap nodes.

Hybrids are also possible…

Administrivia

Proposal Tues, May 10 (5pm)
Presentation Thur, May 19 (slides: 5/18, 5pm)
Poster & Demo Tues, Jun 7 (5-8pm)
Final Paper Thur, Jun 9 (8am)

Logistics
Groups of up to 4 people
Clearly report responsibilities of each member

Final Project Schedule

Graph Layout

Calculation using Graph Structure
Tree layout on spanning tree
Sugiyama-style (hierarchical) layout
Adjacency matrix layout

Optimization Methods
Constraint satisfaction
Force-directed layout

Attribute-Driven Layout
Layout using data attributes, not linkage

Approaches to Graph Drawing

Spanning Tree Layout

Many graphs have useful spanning trees
Websites, Social Networks

Use tree layout on spanning tree of graph
Trees created by BFS / DFS
Min/max spanning trees

Fast tree layouts allow graph layouts to be
recalculated at interactive rates
Heuristics may further improve layout

Spanning Tree Layout

Spanning tree layout may result in arbitrary parent node

Sugiyama-Style Layout

Evolution of the
UNIX operating
system

Hierarchical
layering based
on descent

Sugiyama-style Layout

Reverse edges to remove cycles
Assign nodes to hierarchy layers
Create dummy nodes to “fill in” missing layers
Arrange nodes within layer, minimize edge crossings
Route edges – layout splines if needed

Layer 1

Layer 2

Layer 3

Layer 4

…

…

Sugiyama-style Layout

Gnutella network

Hierarchical Layout

Force-Directed Layout

Treat layout as an optimization problem
Define layout using an energy model along with
constraints: equations the layout should obey.
Use optimization algorithms to solve

Commonly posed as a physical system
Charged particles, springs, drag force, …

We can introduce directional constraints
DiG-CoLa (Di-Graph Constr Optimization Layout) [Dwyer 05]
Iterative constraint relaxation

Optimization Techniques

Minimize edge crossings
Minimize area
Minimize line bends
Minimize line slopes
Maximize smallest angle between edges
Maximize symmetry

but, can’t do it all.

Optimizing these criteria is
often NP-Hard, requiring
approximations.

Optimizing Aesthetic Constraints

Nodes = charged particles F = G*m1*m2 / (xi – xj)2

 with air resistance F = -b * vi
Edges = springs F = -k * (xi – xj – L)

Iteratively calculate forces, update node positions
Naïve n-body calculation is O(N2)
O(N log N) using quadtree or k-d tree
Numerical integration of forces at each time step

Force-Directed Layout

Minimize stress function
stress(X) = Σi<j wij (||Xi-Xj|| - dij)2

 X: node positions, d: optimal edge length,
 w: normalization constants
Says: Try to place nodes dij apart

Constrained Optimization

Minimize stress function
stress(X) = Σi<j wij (||Xi-Xj|| - dij)2

 X: node positions, d: optimal edge length,
 w: normalization constants
Says: Try to place nodes dij apart

Add hierarchy ordering constraints
EH(y) = Σ(i,j)∈E (yi - yj - δij)2

 y: node y-coordinates
 δ: edge direction (e.g., 1 for i->j, 0 for undirected)
Says: If i points to j, it should have a lower y-value

Constrained Optimization

Sugiyama layout (dot)
Preserve tree structure

DiG-CoLa method
Preserve edge lengths

[Slide from Tim Dwyer]

Examples
[Slide from Tim Dwyer]

Quadratic programming is complex to code and
computationally costly. Is there a simpler way?

Iteratively relax each constraint [Dwyer 09]
 Given a constraint (e.g., | xi – xj | = 5)
 Simply push the nodes to satisfy!
Each relaxation may clobber prior results
But this typically converges quickly
Enables expressive constraints!

Iterative Constraint Relaxation

Use the Force!
http://mbostock.github.io/d3/talk/20110921/

http://mbostock.github.io/d3/talk/20110921/

Edge-crossings and occlusion

Limitations of Node-Link Layout

Matrix Diagrams

Adjacency Matrices

Node-link

Matrix

Matrix

Attribute-Driven Layout

Large node-link diagrams get messy!
Is there additional structure we can exploit?

Idea: Use data attributes to perform layout
For example, scatter plot based on node values

Dynamic queries / brushing to explore…

Attribute-Driven Layout

The “Skitter” Layout
• Internet Connectivity
• Radial Scatterplot

Angle = Longitude
• Geography

Radius = Degree
• # of connections
• (a statistic of the nodes)

Attribute-Driven Layout

Semantic Substrates [Shneiderman 06]

Semantic Substrates [Shneiderman 06]

Layout aggregate graphs using node attributes.
Analogous to pivot tables and trellis display.

PivotGraph [Wattenberg’06]

PivotGraph

PivotGraph

Roll-Up
Aggregate items with
matching data values

Selection
Filter on data values

Operators

PivotGraph Matrices

PivotGraph Matrix

Only 2 variables (no nesting as in Tableau)
Doesn’t support continuous variables
Multivariate edges?

Limitations of PivotGraph

ManyNets

Hierarchical
Edge Bundling

Trees with Adjacency Relations

Bundle Edges Along Hierarchy

Configuring Edge Tension

Tree Layout
Indented / Node-Link / Enclosure / Layers
Focus+Context techniques for scale

Graph Layout
Spanning Tree Layout
Hierarchical “Sugiyama” Layout
Optimization (Force-Directed Layout)
Matrix Diagrams
Attribute-Driven Layout

Summary

