CSE 512 - Data Visualization **Networks**

Jeffrey Heer University of Washington

Visualizing Trees Visualizing Graphs

Goals

Overview of layout approaches Assess strengths and weaknesses Insight into implementation techniques

Graphs and Trees

Graphs Model relations among data *Nodes* and *edges*

Trees

Graphs with hierarchical structure • Connected graph with N-1 edges Nodes as *parents* and *children*

Spatial Layout

A primary concern of graph drawing is the spatial arrangement of nodes and edges.

Often (but not always) the goal is to effectively depict the graph structure:

- Connectivity, path-following
- Network distance
- Clustering
- Ordering (e.g., hierarchy level)

Applications

Tournaments **Organization Charts** Genealogy Diagramming (e.g., Visio) **Biological Interactions (Genes, Proteins)** Computer Networks Social Networks Simulation and Modeling Integrated Circuit Design

Tree Layout

Tree Visualization

Indentation Linear list, indentation encodes depth **Node-Link diagrams** Nodes connected by lines/curves **Enclosure diagrams** Represent hierarchy by enclosure Layering Relative position and alignment *Fast*: O(n) or O(n log n), interactive layout

Indentation

Places all items along vertically spaced rows Indentation used to show parent/child relationships Commonly used as a component in an interface Breadth and depth contend for space Often requires a great deal of scrolling

Node-Link Diagram

Nodes are distributed in space, connected by straight or curved lines

Typical approach is to use 2D space to break apart breadth and depth

Often space is used to communicate hierarchical orientation (e.g., towards authority or generality)

Basic Recursive Approach

Repeatedly divide space for subtrees by leaf count

- Breadth of tree along one dimension
- Depth along the other dimension

Problem: exponential growth of breadth

Reingold & Tilford's "Tidy" Layout

Goal: make smarter use of space, maximize density and symmetry. Originally binary trees, extended by Walker to cover general case. Corrected by Buchheim et al. to achieve a linear time algorithm.

Design considerations Clearly encode depth level No edge crossings Isomorphic subtrees drawn identically Ordering and symmetry preserved *Compact layout (don't waste space)*

Linear algorithm – starts with bottom-up pass of the tree Y-coord by depth, arbitrary starting X-coord Merge left and right subtrees

- Shift right as close as possible to left
 - Computed efficiently by maintaining subtree contours
- "Shifts" in position saved for each node as visited
- Parent nodes are centered above their children

Top-down pass for assignment of final positions

Sum of initial layout and aggregated shifts

8

8

Radial Layout

Node-link diagram in polar co-ordinates. Radius encodes depth, with root in the center. Angular sectors assigned to subtrees (typically uses recursive approach). **Reingold-Tilford method** could be applied here.

Circular Tree Layouts

Layout in 3D to form Cone Trees.

Balloon Trees can be described as a 2D variant of a Cone Tree. Not just a flattening process, as circles must not overlap.

Focus + Context

Visualizing Large Hierarchies

Indented Layout

More Nodes, More Problems...

Scale

Tree breadth often grows exponentially Even with tidy layout, quickly run out of space

Possible Solutions

Filtering Focus+Context Scrolling or Panning Zooming Aggregation

Hyperbolic Layout

Perform tree layout in hyperbolic geometry, project the result on to the Euclidean plane.

Why? Like tree breadth, the hyperbolic plane expands exponentially!

Also computable in 3D, projected into a sphere.

Degree-of-Interest Trees

Space-constrained, multi-focal tree layout

Degree-of-Interest Trees

Cull "un-interesting" nodes on a per block basis until all blocks on a level fit within bounds. Attempt to center child blocks beneath parents.

Enclosure / Layering

Enclosure Diagrams

Encode structure using **spatial enclosure** Popularly known as **treemaps**

Benefits

Provides a single view of an entire tree Easier to spot large/small nodes

Problems

Difficult to accurately read structure / depth

Treemaps

Recursively fill space. Enclosure signifies hierarchy.

Additional measures can be taken to control aspect ratio of cells.

Often uses rectangles, but other shapes are possible, e.g., iterative Voronoi tesselation.

Layered Diagrams

Signify tree structure using

- Layering
- Adjacency
- Alignment

Involves recursive sub-division of space.

Icicle & Sunburst Trees

Higher-level nodes get a larger layer area, whether that is horizontal or angular extent. Child levels are layered, constrained to parent's extent

Layered Tree Drawing

		Coffee			Espresso				
		Amaretto	Columbian	Decaf Irish Cr	Caffe Latte	Caffe Mocha	Decaf Espresso	Regular B	Espre
Central	Colorado								
	Illinois								
	Iowa						1		
	Missouri		1				1		
	Ohio		1	1			1		
	Wisconsin								
East	Connecticut								
	Florida								
	Massachusetts								
	New Hamps		1					1	
	New York								
South	Louisiana						l I		
	New Mexico		1	l.		1	1		
	Oklahoma			l.					
	Texas								
West	California								
	Nevada						1		
	Oregon			l.					
	Utah								
	Washington			1					
		-20K 0K 20K	-20K 0K 20K	-20K 0K 20K	-20K 0K 20K	-20K 0K 20K	-20K 0K 20K	-20K 0K	20K
		SUM(Profit)	SUM(Profit)	SUM(Profit)	SUM(Profit)	SUM(Profit)	SUM(Profit)	SUM(P	rofit)

Hybrids are also possible...

"Elastic Hierarchies" Node-link diagram with treemap nodes.

Administrivia

Final Project Schedule

Proposal Presentation Poster & Demo Final Paper **Tues, May 10 (5pm)** Thur, May 19 (slides: 5/18, 5pm) Tues, Jun 7 (5-8pm) Thur, Jun 9 (8am)

Logistics Groups of up to 4 people Clearly report responsibilities of each member

Graph Layout

Approaches to Graph Drawing

Calculation using Graph Structure Tree layout on spanning tree Sugiyama-style (hierarchical) layout Adjacency matrix layout

Optimization Methods Constraint satisfaction

Force-directed layout

Attribute-Driven Layout

Layout using data attributes, not linkage

Spanning Tree Layout

Spanning Tree Layout

Many graphs have useful spanning trees Websites, Social Networks

Use tree layout on spanning tree of graph Trees created by BFS / DFS Min/max spanning trees

Fast tree layouts allow graph layouts to be recalculated at interactive rates Heuristics may further improve layout

Spanning tree layout may result in arbitrary parent node

Sugiyama-Style Layout

Sugiyama-style Layout

Evolution of the UNIX operating system

Hierarchical layering based on descent

Sugiyama-style Layout

Reverse edges to remove cycles Assign nodes to hierarchy layers Create dummy nodes to "fill in" missing layers Arrange nodes within layer, minimize edge crossings Route edges – layout splines if needed

Hierarchical Layout

Gnutella network

Force-Directed Layout

Optimization Techniques

Treat layout as an optimization problem Define layout using an *energy model* along with *constraints*: equations the layout should obey. Use optimization algorithms to solve

Commonly posed as a physical system Charged particles, springs, drag force, ...

We can introduce directional constraints DiG-CoLa (Di-Graph Constr Optimization Layout) [Dwyer 05] Iterative constraint relaxation
Optimizing Aesthetic Constraints

Minimize edge crossings Minimize area Minimize line bends Minimize line slopes Maximize smallest angle between edges Maximize symmetry

Optimizing these criteria is often NP-Hard, requiring approximations.

but, can't do it all.

min # crossings

max symmetries

Force-Directed Layout

Nodes = charged particles $F = G^*m_1^*m_2^/(x_i - x_j)^2$ with air resistance $F = -b^*v_i$ Edges = springs $F = -k^*(x_i - x_j - L)$

Iteratively calculate forces, update node positions Naïve n-body calculation is O(N²) O(N log N) using quadtree or k-d tree Numerical integration of forces at each time step

Constrained Optimization

Minimize stress function stress(X) = $\Sigma_{i < j} w_{ij} (||X_i - X_j|| - d_{ij})^2$ X: node positions, d: optimal edge length, w: normalization constants Says: Try to place nodes d_{ij} apart

Constrained Optimization

Minimize stress function stress(X) = $\Sigma_{i < i} w_{ii} (||X_i - X_i|| - d_{ii})^2$ X: node positions, d: optimal edge length, w: normalization constants Says: Try to place nodes d_{ii} apart Add hierarchy ordering constraints $E_{H}(y) = \sum_{(i,i) \in E} (y_{i} - y_{i} - \delta_{ii})^{2}$ y: node y-coordinates δ : edge direction (e.g., 1 for i->j, 0 for undirected) Says: If i points to j, it should have a lower y-value

Sugiyama layout (dot) Preserve tree structure

DiG-CoLa method Preserve edge lengths

[Slide from Tim Dwyer]

Iterative Constraint Relaxation

Quadratic programming is complex to code and computationally costly. Is there a simpler way?

Iteratively relax each constraint [Dwyer 09]
Given a constraint (e.g., |x_i - x_j | = 5)
Simply push the nodes to satisfy!
Each relaxation may clobber prior results
But this typically converges quickly
Enables expressive constraints!

Use the Force!

http://mbostock.github.io/d3/talk/20110921/

Limitations of Node-Link Layout

Edge-crossings and occlusion

Matrix Diagrams

Adjacency Matrices

<mark>ୡୖ୷୲</mark>୵୶୕୶ୡଊଊଋଌ<mark>ୠୠଌ୴ୣ୴ୣ୴</mark>୰୕ଽୢୖ୵ୡ୕ଊଽ୕ଽ୷ୡଊ୕ଢ଼୷ଽ୷ୡଽୡୠଌ୷୲୴ଊ୰୶ୡୡୠଌ୶୵ଊ୰୶୷ଌୢୄୡଽ୶ଵ୷ଌୢୄୡଌ୕୶ଽୡୡୡୡୡୡୡୡୡୡୡୡୡୡୡୡୡୡୡୡୡୡ

D8 B0 I9 A9 G5 G3 E2

•

'o _

☐ Images
✓ Animate

000

Graph Viewer

Roll-up by:

All

Visualization:

Matrix

Sort by:

Linkage

Edge centrality filters:

•		
\$		
0		

Graph Viewer

÷

 e^{-2}

ω.

际

00	Graph Viewer
Graph Viewer	
Roll-up by:	Control Control and the state of the stat
All	(1) (國際) 人名法法 法法法法法法律法律法律法律法律法律法律法律法律法律法律法律法律法律法律法
Visualization:	이 같은 것 같은 것은 것 같은 것 같은 것 같은 것 같은 것 같은 것
Matrix 🗘	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Sort by:	
None	- 2. [1] 국가 (19))는 (19)) 전 (1 9) 이 가지 않는 것이 있는 것이 있는 것이 있는 것이 가지 않는 것이 가지 않는 것이 있다. 이 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 이 가지 않는 것이 있는 것이 있 같이 있는 것이 있
Edge centrality filters:	
•	(1) Sing state (a) and (b) and (a) and (b) single (b) and (
	(1) 新闻的 新闻 新闻 新闻 化和利用 化和利用 化和利用 新闻 化和利用 化和利用 化和利用 化和利用 化和利用 化和利用 化和利用 化和利用
	(1) An an analysis of the bound of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st
	n a feir an an an 1997 ann an Arlann ann ann an Arlann an Brailtean an Arlanna an Arlanna. An Arlanna a' feir A Arlanna a' feir an ann ann ann ann ann ann ann ann ann
	(1) A set of the se

Attribute-Driven Layout

Attribute-Driven Layout

Large node-link diagrams **get messy**! Is there additional structure we can exploit?

Idea: Use **data attributes** to perform layout For example, scatter plot based on node values

Dynamic queries / brushing to explore...

Attribute-Driven Layout

The "Skitter" Layout

- Internet Connectivity
- Radial Scatterplot

Angle = Longitude

Geography

Radius = Degree

- # of connections
- (a statistic of the nodes)

Network Visualization by Semantic Substrates (NVSS)

Edit View Tools Help

File

Semantic Substrates [Shneiderman 06]

Supreme 1982 REGIONS 1998 1987 1992 36 Supreme 13 Circuit CITES Supreme to Supreme 0 Supreme to Circuit 0 🗹 Circuit to Supreme 18 Circuit to Circuit 2 RANGES Supreme ► ◀ 1978 -- 2002 Circuit 1991 -- 1993 0 0 0 0 0 0 HCI Ο 0 Circuit 1982 1987 1992 1998 Copyright (C) 2006 Univ. of Maryland

PivotGraph [Wattenberg'06]

Layout aggregate graphs using node attributes. Analogous to pivot tables and trellis display.

PivotGraph

Node and Link Diagram

PivotGraph Roll-up

Operators

Roll-Up

Aggregate items with matching data values

Selection Filter on data values

Limitations of PivotGraph

Only 2 variables (no nesting as in Tableau) Doesn't support continuous variables Multivariate edges?

ManyNets - window 1

File View Population Help

1/611/76				470 054	dia	2 930	ulus ministra	1 97	445 9474	man	إستسقياست	
ID	Edge count	Edge-vertex ratio	Edge density	Vertex count	Component count	Component sizes	Duplicate edge count	Degree	Duration (s)	• Start	Tower	æ
1	193	0.906	3.875E-3	213	45		18			1	المشيعين المحر	1
2	312	1.156	3.676E-3	270	33	L	45		Little.	1	المشعد انمر	
3	430	1.419	3.716E-3	303	19		90	·		1	المقيسية ليسرع	
4	555	1.647	3.736E-3	337	11		132	·		•	المقيمين انمر	
5	592	1.711	3.720E-3	346	9		148	L		1	المتعمد است	
6	568	1.701	3.830E-3	334	6		142			1	المساهمة فاست	
7	522	1.568	3.627E-3	333	12		121	L		1	الماسة للمست	4
8	393	1.264	3.381E-3	311	21		67			1	المحافظة والمحافظ	
9	289	1.032	3.303E-3	280	42		31			1	اد بابياليا والسب	
10	181	0.858	3.837E-3	211	50		11			L.	اد سامعظ السد	
11	191	0.88	3.691E-3	217	54		18				المقتصفا س	
12	284	1.036	3.249E-3	274	44		41			1	المعسمات ا	
13	413	1.295	3.332E-3	319	28		75			1	المقديمة است	
14	541	1.587	3.554E-3	341	13		129	·		1	المقتصية المسا	
15	567	1.673	3.727E-3	339	13		140	L		1	المسجو است	
16	546	1.625	3.669E-3	336	21	L .	133	k			المقسط فإستنا	
17	515	1.58	3.681E-3	326	23		125	L			الصفيح بالبيب	
18	404	1.299	3.485E-3	311	26		68	L			انتقب التبت	
19	314	1.154	3.568E-3	272	39		51				امتصفت فالتدي	
20	224	0.982	3.748E-3	228	53		30		_ فاطور _		استقباط فلتستنبأ	
21	190	0.909	3.842E-3	209	56		23				الصابية الأربيات	-

vast2008/100 nets

ManyNets

Hierarchical Edge Bundling

Trees with Adjacency Relations

Bundle Edges Along Hierarchy

Configuring Edge Tension

Summary

_				
				_
⊢	-		-	-
L				_

Tree Layout Indented / Node-Link / Enclosure / Layers Focus+Context techniques for scale

Graph Layout

Spanning Tree Layout Hierarchical "Sugiyama" Layout Optimization (Force-Directed Layout) Matrix Diagrams Attribute-Driven Layout