CSE 512 - Data Visualization Uncertainty

Michael Correll University of Washington

The Visualization Pipeline

The Visualization Pipeline

The Visualization Pipeline

The Visualization Pipeline?

Unknown Unknowns

Things "Uncertainty" Can Mean

Doubt
Risk
Variability
Error
Lack of Knowledge Hedging

Uncertainty Visualization

There are different types and sources of uncertainty.

We can quantify or model our uncertainty.

The visual presentation of uncertainty can clash with cognitive and perceptual biases.

Terminology

Terminology

Aleatory Uncertainty
Epistemic Uncertainty
Type I error
Type II error
Precision
Bias

Aleatory Uncertainty

Aleatory Uncertainty

Aleatory Uncertainty

Aleatory Uncertainty

John Edmund Kerrich

FIGURE 4.1.1 Proportion of heads versus number of tosses for John Kerrich's coin-tossing experiment.

Epistemic Uncertainty

Uncertainty Types

Aleatory

Variability: things that we don't know (but can reason about the likelihood of).

Epistemic
Things we could in principle know for certain, but have not measured.

Should I Bring an Umbrella?

Decision Uncertainty

$$
\text { " } 50 \% \text { Chance of Rain" }
$$

Type I and Type II

Model Uncertainty

"50\% Chance of Rain"

Model Uncertainty

Model Uncertainty

Measurement Uncertainty

Measurement Uncertainty

Measurement Uncertainty

Accuracy

Measurement Uncertainty

Measurement Uncertainty

Accuracy

Precision

Measurement Uncertainty

Accuracy

Precision

Measurement Uncertainty

Accuracy

Precision

Should you take this \$4 bet?

Samples

Should you take this \$4 bet?

Should you take this \$4 bet?

Should you take this \$4 bet?

Expected Value

Mean And Error

Statistical Inference

Assuming bet returns
are normally
distributed.
$M=4.14$
SD $=2.33$
$\mathrm{n}=10$
$\mathrm{P}(\mu>4)=0.95$
I Take the bet

Statistical Inference

Assuming bet returns \smile MODEL are normally distributed.
$M=4.14$
SD $=2.33$
n = 10
$\mathrm{P}(\mu>4)=0.95$
I Take the bet

Statistical Inference

Assuming bet returns \smile MODEL are normally
distributed.
$M=4.14$
SD $=2.33$
n = 10
$\mathrm{P}(\mu>4)=0.95$
I Take the bet

Statistical Inference

Assuming bet returns $\mathcal{~ M O D E L}$
are normally
distributed.
$M=4.14$
SD $=2.33$
n = 10
$\mathrm{P}(\mu>4)=0.95$
I Take the bet
\leftrightarrow DECISION

Uncertainty Sources

Measurement Uncertainty: "We're not sure what the data are"

Model Uncertainty: "We're not sure how the data fit together"

Decision Uncertainty: "We're not sure what to do now that we have the data"

Measurement Uncertainty

Model Uncertainty

Model Uncertainty

Decision Uncertainty

Today

Decision Uncertainty

Today

Uncertainty Vis Pipeline

Uncertainty Vis Pipeline

1) Quantify Uncertainty
2) Choose a free visual variable
3) Encode uncertainty with the variable

Data Map

Uncertainty Map

Juxtaposition

Juxtaposition

Juxtaposition

Juxtaposition

Superposition

Superposition

Superposition

Griethe, Henning and Schumann, Heidrun. The Visualization of Uncertain Data: Methods and Problems. SimVis, 2006.

Uncertainty Vis Pipeline?

1) Quantify Uncertainty
2) Choose a free visual variable
3) Encode uncertainty with the variable

Design Decisions:
How to unify data and uncertainty map(s)?

Semiotics of Uncertainty

The Variable Matters!

- R $\quad \mathrm{D}$ ■

The Variable Matters!

$\square R \square D \quad$ |

Visual Variables for Uncertainty

Value

Size

Fuzziness

Semiotics of Uncertainty

Semiotics of Uncertainty

Semiotics of Uncertainty

Series \#1: General Uncertainty by Visual Variable

"Sketchiness"

Wood, Jo et al. Sketchy rendering for information visualization. IEEE VIS, 2012.

Boukhelifa, Nadia et al. Evaluating skrtchiness as a visual variable for the depiction
of qualitative uncertainty. IEEE VIS, 2012.

"Sketchiness"

Wood, Jo et al. Sketchy rendering for information visualization. IEEE VIS, 2012.

Boukhelifa, Nadia et al. Evaluating skrtchiness as a visual variable for the depiction
of qualitative uncertainty. IEEE VIS, 2012.

Encoding Uncertainty

Some visual variables (like fuzziness and value) have a semiotic connection to uncertainty.

However, intuitive variables may not always be accurately interpreted!

p-value

The probability of results at least as extreme as the observed results, given some null hypothesis.

If $p<a$ (usually 0.05), then the result is considered to be statistically significant.

Error Bars

Is the treatment statistically significantly better than the placebo?

Error Bars

Standard Deviation?
Standard Error (σ / \sqrt{n})
T-Confidence Interval?
Z-Confidence Interval?
Bootstrapped Interval?
Min/Max?
1.5*IOR (O3-O1)?

Guess the p-value

Guess the p-value

Guess the p-value

Inference by Eye

95\% Cls

Standard Error

Cumming, Geoff and Finch, Sue. Inference by eye: confidence intervals and how to read pictures of data. American Psychologist, 2005.

Confidence Intervals

CIs sampling distribution

95\% confidence intervals

T-Tests and Confidence Intervals

Confidence intervals and estimated difference

Sample 2 mean
33.71 ± 8.471

| | | |
| ---: | :--- | :--- | :--- |
| 25.239 | 42.181 | |
| Difference of means | $\mathrm{d}=24.465$ | $\mathrm{SE}=10.59 \quad \square \mathrm{p}=0.0462$ |

Within-the-bar bias

Newman, George E, and Brian J Scholl."Bar graphs depicting averages are perceptually misinterpreted: the within-the-bar bias." Psychonomic bulletin \&

Within-the-bar bias

Within-the-bar bias

Within-the-bar bias

Binary Bias

Alternatives

Gradient Plot

Violin Plot

Model Visualization

Polling Data

Candidate A is ahead of Candidate B in the polls, with 55% of the likely voters*

Polling Data

Candidate A is ahead of Candidate B in the polls, with 55% of the likely voters*
*poll of 100 people, margin of error +/-5

Poll

Poll

Actual Election?

Actual Election?

Actual Election?

Actual Election?

Pangloss Plot

Candidate A is ahead of Candidate B in the polls, with 55% of the likely voters*
*poll of 100 people, margin of error +/-5

Pangloss Plot

Romney is ahead of Obama in the polls, with 51% of the likely voters*
*poll of 3,117 people, margin of error +/-2

Model Visualization

Cox, Jonathan and House, Donald and Lindell, Michael. Visuazlising uncertainty in predicted hurricane tracks. International Journal for Uncertainty Quantification,
2013.

Model Visualization

Cox, Jonathan and House, Donald and Lindell, Michael. Visuazlising uncertainty in predicted hurricane tracks. International Journal for Uncertainty Quantification,
2013.

Model Visualization

Model Visualization

M. Mirzargar, R. Whitaker and R. Kirby. Curve Boxplot: Generalization of Boxplot for Ensembles of Curves. IEEE VIS 2014.

Life Expectancy

Gun Deaths

U.S. GUN DEATHS IN 20132010

JUNE
4,666
190,538
PEOPLE KILLED

Model Visualization

Building models is necessary to quantify uncertainty

It is important to communicate the variability in model outcomes

Dynamic displays can help communicate complex models

Cognitive Biases

T H N K I N G,

FAST $T_{\text {avd }}$ SLOW

Which Stock To Buy?

Company A

Company B

Neither!

Company A
Company B

Wu Wei

Pareidolia

Jobs Reports

If the economy actually added $\mathbf{1 5 0 , 0 0 0}$ jobs last month, it would be possible to see any of these headlines:
The jobs number is just an estimate, and it comes with uncertainty.

Job Growth Plummets Amid Prospect Of New Slump	Disappointing Jobs Report Raises Economic Worries	Slower Job Creation Disappoints Economists	Job Growth Steady, New Report Says	Job Creation Accelerates In Sign Of Economy Improving	Job Growth Robust, Pointing To Economy Surging
Under 55,000 jobs	55,000 to 110,000	110,000 to 140,000	160,000 to 190,000	190,000 to 245,000	245,000+
4\% chance	19\% chance	19\% chance	19\% chance	19\% chance	4\% chance

Have People Made Up Their Mind About Obama?

Visual Lineups

Visual Lineups

Wickham, Hadley et al." "Graphical inference for Infovis." IEEE transactions on visualization and computer graphics 16.6 (2010): 973-9.

Visual Lineups

Negative Results

People tend to analyze patterns and make decisions, even if there is "nothing to see."

Negative or null results can correspond to weak and non-robust visual patterns across a model space.

Base Rate Fallacy

1% of 40 year old women have breast cancer
The probability a mammogram will detect breast cancer is 80%

The probability of a false positive is 10%.
If a 40 year old woman gets a positive result, what is the probability she has breast cancer?

Bayes' Law $P(A \mid B)=P(B \mid A) P(A) / P(B)$

Bayes' Law

$P(A \mid B)=P(B \mid A) P(A) / P(B)$

P(Cancer $\mid+$ Test $)=P(+$ Test \mid Cancer $) P($ Cancer $) / P(+$ Test $)$

Bayes' Law

$$
P(A \mid B)=P(B \mid A) P(A) / P(B)
$$

$P($ Cancer $\mid+$ Test $)=P(+$ Test \mid Cancer $) P($ Cancer $) / P(+$ Test $)$
$P(+)=P(+\wedge C) P(C)+P(+\wedge \sim C) P(\sim C)$

Bayes' Law

$P(A \mid B)=P(B \mid A) P(A) / P(B)$

$P($ Cancer $\mid+$ Test $)=P(+$ Test \mid Cancer $) P($ Cancer $) / P(+$ Test $)$
$P(+)=P(+\wedge C) P(C)+P(+\wedge \sim C) P(\sim C)$
$P(+)=0.01 * 0.8+0.99 * 0.1$
$P(+)=0.107$
$\mathrm{P}(\mathrm{C} \mid+)=0.8$ * $0.01 / 0.107 \approx \mathbf{0 . 0 7 5}$

Base Rate Fallacy

Micallef, Luana, Pierre Dragicevic, and Jean-Daniel Fekete. "Assessing the
Effect of Visualizations on Bayesian Reasoning Through Crowdsourcing."
Visualization and ... October (2012).

Risk

"1 out of every 8 people with small cell lung cancer survive for at least 5 years"

Risk

Risk

$$
\begin{aligned}
& \text { ©i Ci © } \\
& \text { ©19 }
\end{aligned}
$$

"A large pharmaceutical company has recently developed a new drug to boost peoples' immune function. It reports that trials it conducted demonstrated a drop of forty percent (from eighty seven to forty seven percent) in occurrence of the common cold. It intends to market the new drug as soon as next winter, following FDA approval."

Persuaded by Nothing

"A large pharmaceutical company has recently developed a new drug to boost peoples' immune function. It reports that trials it conducted demonstrated a drop of forty percent (from eighty seven to forty seven percent) in occurrence of the common cold. It intends to market the new drug as soon as next winter, following FDA approval."

Cognitive Biases

Humans can be quite poor at reasoning about uncertain values.

Minor changes in visual design can influence decision-making for better or worse.

Conclusion

There are different types and sources of uncertainty.

We can quantify or model our uncertainty.

The visual presentation of uncertainty can clash with cognitive and perceptual biases.

