CSE 512 - Data Visualization

Multidimensional Vis

Jeffrey Heer University of Washington

Last Time: Exploratory Data Analysis

Exposure, the effective laying open of the data to display the unanticipated, is to us a major portion of data analysis. Formal statistics has given almost no guidance to exposure; indeed, it is not clear how the informality and flexibility appropriate to the exploratory character of exposure can be fitted into any of the structures of formal statistics so far proposed.

Graph Viewer

Roll-up by:

All $\stackrel{\rightharpoonup}{*}$

Visualization:

Node-Link
Sort by:
None
Edge centrality filters:

Graph Viewer
Roll-up by:
All
Visualization:
Matrix

Sort by:

Linkage
Edge centrality filters:

Graph Viewer

Roll-up by:

All
Visualization:

Matrix

Sort by:
None

Edge centrality filters:

Antibiotic Effectiveness

Table l: Burtin's data.	Antibiotic			
Bacteria	Penicillin			Streptomycin

How do the drugs compare?

| Bacteria | Penicillin | Antibiotic
 Streptomycin | Neomycin | Gram
 stain |
| :--- | ---: | :--- | ---: | :--- | :--- |
| Aerobacter aerogenes | 870 | 1 | 1.6 | - |
| Brucella abortus | 1 | 2 | 0.02 | - |
| Bacillus anthracis | 0.001 | 0.01 | 0.007 | + |
| Diplococcus pneumoniae | 0.005 | 11 | 10 | + |
| Escherichia coli | 100 | 0.4 | 0.1 | - |
| Klebsiella pneumoniae | 850 | 1.2 | 1 | - |
| Mycobacterium tuberculosis | 800 | 5 | 2 | - |
| Proteus vulgaris | 3 | 0.1 | 0.1 | - |
| Pseudomonas aeruginosa | 850 | 2 | 0.4 | - |
| Salmonella (Eberthella) typhosa | 1 | 0.4 | 0.008 | - |
| Salmonella schottmuelleri | 10 | 0.8 | 0.09 | - |
| Staphylococcus albus | 0.007 | 0.1 | 0.001 | + |
| Staphylococcus aureus | 0.03 | 0.03 | 0.001 | + |
| Streptococcus fecalis | 1 | 1 | 0.1 | + |
| Streptococcus hemolyticus | 0.001 | 14 | 10 | + |
| Streptococcus viridans | 0.005 | 10 | 40 | + |

Original graphic by Will Burtin, 1951

How do the drugs compare?

Mike Bostock
Stanford CS448B, Winter 2009

Do the bacteria group by resistance? Do different drugs correlate?

[The Elements of Graphing Data. Cleveland 94]

Transforming Data

How well does the curve fit the data?

[Cleveland 85]

Plot the Residuals

Plot vertical distance from best fit curve
Residual graph shows accuracy of fit

[Cleveland 85]

Multiple Plotting Options

Plot model in data space
Plot data in model space

[Cleveland 85]

A2: Exploratory Data Analysis

Use visualization software to form \& answer questions
First steps:
Step 1: Pick domain \& data
Step 2: Pose questions Step 3: Profile the data Iterate as needed
Create visualizations
Interact with data
Refine your questions
Make a notebook
Keep record of your analysis Prepare a final graphic and caption

Due by 5:00pm
Friday, April 15

Tutorials!

Visualization Tools
Tue 4/12, 3:00-4:20pm PAA 114A
Introduction to Tableau, plus a few others.
d3.js: Data-Driven Documents
Tue 4/19, 3:00-4:20pm PAA 114A
Focus on D3, touches on HTML/CSS/JS

The Design Space of Visual Encodings

Univariate Data

variable

Univariate Data

variable

Tukey box plot

$0 \quad 20$

Bivariate Data

Scatter plot is common

Trivariate Data

3D scatter plot is possible

Three Variables

Two variables $[x, y$] can map to points
Scatterplots, maps, ...
Third variable [z] must use
Color, size, shape, ...

Large Design Space

[Bertin, Graphics and Graphic Info. Processing, 1981]

Multidimensional Data

Visual Encoding Variables

Position (X)
Position (Y)
Size
Value
Texture
Color
Orientation
Shape
~8 dimensions?

Example: Coffee Sales

Sales figures for a fictional coffee chain
Sales
Q-Ratio
Profit
Q-Ratio
Marketing
Q-Ratio

Product Type Market

N \{Coffee, Espresso, Herbal Tea, Tea\}
N \{Central, East, South, West\}
Filters
YEAR(Date): 2010

Filters

YEAR(Date): 2010

Marks

x^{+}Automatic $\quad v$

Shape Market
Label
Color - Product Type
Size

Level of Detail

Product Type
Coffee
Espresso
Herbal Tea
Tea

Market

O Central

- East
+ South
\mathbf{X} West

YEAR(Date): 2010

Marks

```
\(x^{+}\)Automatic \(v\)
Shape Market
Label
Color • Product Type
```



```
Level of Detail
```

Product Type
\square Coffee
\square Espresso
Herbal Tea
Market
O Central
\square East

+ South

Marketing

-	\$0	\wedge
O	\$50	
	\$100	v

Trellis Plots

A trellis plot subdivides space to enable comparison across multiple plots.
Typically nominal or ordinal variables are used as dimensions for subdivision.

Small Multiples

[MacEachren 95, Figure 2.11, p. 38]

Small Multiples

[MacEachren 95, Figure 2.11, p. 38]

Scatterplot Matrix (SPLOM)

Scatter plots for pairwise comparison of each data dimension.

Multiple Coordinated Views

Linking Assists to Position

Life in Los Angeles

Chernoff Faces

Observation: We have evolved a sophisticated ability to interpret faces.

Idea: Map data variables to facial features.

Question: Do we process facial features in an uncorrelated way? (i.e., are they separable?)

This is just one example of nD "glyphs"

Visualizing Multiple Dimensions

Strategies:
Avoid "over-encoding"
Use space and small multiples intelligently Reduce the problem space
Use interaction to generate relevant views
Rarely does a single visualization answer all questions. Instead, the ability to generate appropriate visualizations quickly is key.

Parallel Coordinates

Parallel Coordinates [Inselberg]

Parallel Coordinates [Inselberg]

Figure 1: The full dataset consisting of 473 batches

The Multidimensional Detective

Production data for 473 batches of a VLSI chip

16 process parameters
X1: The yield: \% of produced chips that are useful X2: The quality of the produced chips (speed) X3-12: 10 types of defects (0 defects shown at top) X13-16: 4 physical parameters
Objective:
Raise the yield (X1) and maintain high quality (X2)
A. Inselberg, Multidimensional Detective, Proc. IEEE InfoVis, 1997

Parallel Coordinates [Inselberg]

Figure 1: The full dataset consisting of 473 batches

Inselberg's Principles

1. Do not let the picture scare you.
2. Understand your objectives. Use them to obtain visual cues.
3. Carefully scrutinize the picture.
4. Test your assumptions, especially the "I am really sure of's".
5. You can't be unlucky all the time!

Each line represents a tuple (e.g., VLSI batch)

Filtered below for high values of X1 and X2

Figure 2: The batches high in Yield, X1, and Quality, $X 2$.

Look for batches with nearly zero defects (9/10)

 Most of these have low yields -> defects OK.

Figure 5: The best batch. Highest in Yield, $X 1$, and very high in Quality, X2.

Figure 7: Upper range of split in X15

Notice that X6 behaves differently.

Allow 2 defects, including X6 -> best batches

Figure 1: The full dataset consisting of 473 batches

Radar Plot / Star Graph

"Parallel" dimensions in polar coordinate space Best if same units apply to each axis

Dimensionality Reduction

Dimensionality Reduction

cosers)
http://www.ggobi.org/

1:0.098,0.367(242.00) - .2:-0.157, 0.106t(47.74)
4.3:-0.251,-0.178(9.00) 4:-0.442,0.723(1.00)
5:0.016,0.222(1.00)

6:0.726,0.461 (3.00)
7:0.424,-0.195(1.00)

Principal Components Analysis

1. Mean-center the data.
2. Find \perp basis vectors that maximize the data variance.
3. Plot the data using the top vectors.

PCA of Genomes [Demiralp et al. '13]

Time Curves [Bach et al. '16]

Circles are data cases with a time stamp. Similar colors indicate similar data cases.

Folding:

Time curve:

The temporal ordering of data cases is preserved. Spatial proximity now indicates similarity.
(a) Folding time

Wikipedia "Chocolate" Article

U.S. Precipitation over 1 Year

Many Reduction Techniques!

Principal Components Analysis (PCA)
Multidimensional Scaling (MDS)
Locally Linear Embedding (LLE)
t-Dist. Stochastic Neighbor Embedding (t-SNE)
Isomap
Auto-Encoder Neural Networks
Topological methods

Tableau / Polaris

Polaris [Stolte et al.]

Tableau

Tableau Demo

The dataset:
Federal Elections Commission Receipts
Every Congressional Candidate from 1996 to 2002
4 Election Cycles
9216 Candidacies

Dataset Schema

Year (Qi)
Candidate Code (N)
Candidate Name (N)
Incumbent / Challenger / Open-Seat (N)
Party Code (N) [1=Dem,2=Rep,3=Other]
Party Name (N)
Total Receipts (Or)
State (N)
District (N)
This is a subset of the larger data set available from the FEC.

Hypotheses?

What might we learn from this data?

Hypotheses?

What might we learn from this data?
Correlation between receipts and winners?
Do receipts increase over time?
Which states spend the most?
Which party spends the most?
Margin of victory vs. amount spent?
Amount spent between competitors?

Tableau Demo

Tableau/Polaris Approach

Insight: can simultaneously specify both database queries and visualization

Choose data, then visualization, not vice versa Use smart defaults for visual encodings
More recently: automate visualization design

Specifying Table Configurations

Operands are the database fields
Each operand interpreted as a set $\{\ldots\}$
Quantitative and Ordinal fields treated differently
Three operators: concatenation (+)
cross product (x)
nest (/)

E Data Source
 Sheet 1

E Data Source
 Sheet 1


```
# Quantity
```

\# Sales
\oplus Latitude (generated)
© Longitude (generated)
=\# Number of Records
\# Measure Values

Category

\square Technology
\square Office Supplies
\square Furniture

Table Algebra: Operands

Ordinal fields: interpret domain as a set that partitions table into rows and columns.
Quarter $=\{(\mathrm{Qtr1}),(\mathrm{Qtr} 2),(\mathrm{Qtr} 3),(\mathrm{Qtr} 4)\}->$

Qtr1	Qtr2	Qtr3	Qtr4
95892	101760	105282	98225

Quantitative fields: treat domain as single element set and encode spatially as axes.
Profit $=\{($ Profit $[-410,650])\}$->

Concatenation (+) Operator

Ordered union of set interpretations

Quarter + Product Type
$=\{(\mathrm{Otr} 1),(\mathrm{Otr2),(Otr3),(Otr4)} \mathrm{\}+} \mathrm{\{(} \mathrm{Coffee} \mathrm{),(} \mathrm{Espresso} \mathrm{)} \mathrm{\}}$
$=\{($ Otr1) ,(Otr2),(Otr3),(Otr4),(Coffee),(Espresso)\}

Qtr1	Qtr2	Qtr3	Qtr4	Coffee	Espresso
48	59	57	53	151	21

Profit + Sales $=\{($ Profit[-310,620]),(Sales[0,1000]) $\}$

-					-		-......	-
$1 \quad 1$	0	200	1	$\mathbf{6 0 0}$	$\underset{200}{ }$	1	${ }_{600}$	$\stackrel{1}{800}$
Profit						Sates		

Cross (x) Operator

Cross-product of set interpretations

Quarter x Product Type =
\{(Otr1 ,Coffee), (Qtr1, Tea), (Qtr2, Coffee), (Otr2, Tea), (Qtr3,
Coffee), (Qtr3, Tea), (Qtr4, Coffee), (Otr4, Tea)\}

Qtr1		Qtr2			Qtr3		Qtr4	
Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	
131	19	160	20	178	12	134	33	

Product Type \times Profit $=$

Nest (/) Operator

Cross-product filtered by existing records
Quarter x Month ->
creates twelve entries for each quarter. i.e.,
(Otr1, December)
Quarter / Month ->
creates three entries per quarter based on tuples in database (not semantics)

Table Algebra

The operators ($+, x, /$) and operands (O, Q) provide an algebra for tabular visualization.

Algebraic statements are then mapped to:
Visualizations - trellis plot partitions, visual encodings
Queries - selection, projection, group-by aggregation
In Tableau, users make statements via drag-and-drop Note that this specifies operands NOT operators!
Operators are inferred by data type (O, Q)

Ordinal-Ordinal

$=$
\pm
me
\%
m

Quantitative-Quantitative

Ordinal-Quantitative

Querying the Database

(1)
from the database,

Select records from the database,
filtering by user-defined criteria.
(2)

Partition the records into layers and panes. The same record may appear in multiple partitions.
(3)

Group, sort, and aggregate the relations within each pane.

Render and compose layers.

Visualizing Multiple Dimensions

Strategies:
Avoid "over-encoding"
Use space and small multiples intelligently Reduce the problem space
Use interaction to generate relevant views
Rarely does a single visualization answer all questions. Instead, the ability to generate appropriate visualizations quickly is key.

