A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series

Chuxu Zhang[#], Dongjin Song^{\$}, Yuncong Chen^{\$}, Xinyang Feng^{\$&}, Cristian Lumezanu^{\$}, Wei Cheng^{\$}, Jingchao Ni^{\$}, Bo Zong^{\$}, Haifeng Chen^{\$}, Nitesh V. Chawla[#]

[#]University of Notre Dame, ^{\$}NEC Labs America, [&]Columbia University

NEC Laboratories America Relentless passion for innovation

www.nec-labs.com

Motivation

• Large Scale Complex Systems/Multivariate Time Series

♦ Abnormal period: few root causes, multi-scale (duration) anomalies

Goal

- \circ Unsupervised Anomaly Detection: A₁, A₂
- Anomaly Diagnosis
 - Root cause identification \checkmark find causal sensor
 - Anomaly scale analysis \checkmark interpret anomaly duration

Challenge

- C1: Time series contain noise false positive of temporal dependency based models, e.g., SIAT[1], ARMA, LSTM-AE[2]
- C2: Multi-dimensional input, Temporal dependency density based models can not capture, e.g., OC-SVM[3], DMM[4]
- C3: Multi-scale (duration) anomalies both temporal dependency/density based models can not handle

[1] Exploiting local and global invariants for the management of large scale information systems, ICDM 2008

- [2] A Dual-stage attention-based recurrent neural network for time series prediction, IJCAI 2017
- [3] One-class SVMs for document classification, JMLR 2001
- [4] Deep autoencoding gaussian mixture model for unsupervised anomaly detection, ICLR 2018

The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI2019), Hawaii, USA

Model

- System Signature for C1 (avoid noise)
 - Signature matrix: compute inner-product between every pair of sensors on each time segment
 - Capture both shape and range
 - Robust to noise as the noise of individual time series impacts little on the signature of the whole system

- Auto-Encoder for C2 (multi-dimen, temporal)
 - ✤ Signature matrix pattern encoding: CNN
 - Temporal dependency modeling: RNN
 - Signature matrix pattern decoding: CNN
 - Profiling the normal period for model training, test the abnormal period
- Multi-Scale Matrices for C3 (multi-scale)
 - Multi-scale (resolution) signature matrices

Model

Figure 2: Framework of the proposed model: (a) Signature matrices encoding via fully convolutional neural networks. (b) Temporal patterns modeling by attention based convolutional LSTM networks. (c) Signature matrices decoding via deconvolutional neural networks. (d) Loss function.

- Signature matrix encoding: 4 layer CNNs
- Temporal dependency modeling: convLSTM
- Signature matrix decoding: 4 layer CNNs
- Connect to convLSTM in each conv layer for model enhancement
- Anomaly score: number of broken elements in residual matrix (by cutoff threshold)
- MSCRNN: multi-scale (resolution) convolutional recurrent auto-encoder

\circ Dataset

- Synthetic data: 30 time series, 20000 points, train: 0 8000, validate: 8001 10000 test: 10001 20000, 5 anomalies, 3 root causes for each anomaly
- Real world Power Plant data: 36 time series, 23040 points, train: 0 10080, validate: 10081 18720, test: 18721 23040, 5 anomalies, 3 root causes for each anomaly

\circ Baseline

- ✓ Classification model: One Class-SVM(OC-SVM)[1],
- ✓ Density estimation model: Deep Autoencoding Gaussian Mixture Model(DAGMM)[2]
- Prediction model: History Average(HA), Auto-Regression Moving Average(ARMA), LSTM Encoder-Decoder(LSTM-ED)[3]
- Model variant: ConvLSTM layers removed (CNN^{ED(3,4)}_{ConvLSTM}, CNN^{ED(4)}_{ConvLSTM}), attention module removed (CNN^{ED}_{ConvLSTM})

\circ Metric

✓ Recall, Precision, F1 Score

- ✓ Experiment on both synthetic data and real world data are repeated 5 times, average scores are reported
- [1] One-class SVMs for document classification, JMLR 2001
- [2] Deep autoencoding gaussian mixture model for unsupervised anomaly detection, ICLR 2018
- [3] A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction, IJCAI 2017

Anomaly Detection: Performance

Method	Synthetic Data			Power Plant Data		
	Pre	Rec	F_1	Pre	Rec	F ₁
OC-SVM	0.14	0.44	0.22	0.11	0.28	0.16
DAGMM	0.33	0.20	0.25	0.26	0.20	0.23
HA ARMA LSTM-ED	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.52 0.52 <u>0.56</u>	0.60 0.66 <u>0.72</u>	0.48 0.58 <u>0.75</u>	0.52 0.60 <u>0.68</u>	0.50 0.59 <u>0.71</u>
$\begin{array}{c} \text{CNN}_{ConvLSTM}^{ED(4)} \\ \text{CNN}_{ConvLSTM}^{ED(3,4)} \\ \text{CNN}_{ConvLSTM}^{ED} \end{array}$	0.37 0.63 0.80	0.24 0.56 0.76	0.29 0.59 0.78	0.67 0.80 0.85	0.56 0.72 0.72	0.61 0.76 0.78
MSCRED	1.00	0.80	0.89	0.85	0.80	0.82
Gain (%)	-	30.0	23.8	13.3	19.4	15.5

Table 2: Anomaly detection results on two datasets.

- Temporal prediction models perform better than classification model and density based models. Both synthetic and real world datasets have time dependency property
- LSTM-ED has better performance than ARMA, indicating deep learning based model achieves better generalization ability than traditional temporal dependency models
- Our proposed MSCRNN performs best on all metrics of two datasets, demonstrating the effectiveness of MSCRNN
- With the increment of ConvLSTM layers, the performance of MSCRED improves

\Orchestrating a brighter world

The attention module further improves anomaly detection performance

Anomaly Detection: Case Study

Figure 3: Case study of anomaly detection. The shaded regions represent anomaly periods. The red dash line is the cutting threshold of anomaly.

- The anomaly score of ARMA is not stable and * the results contain many false positives and false negatives
- The anomaly score of LSTM-ED is smoother * than ARMA while still contains several false positives and false negatives
- MSCRED can detect all anomalies without any * false positive and false negative

America

- Anomaly Diagnosis: Performance
 - ✓ Root Cause Identification
 - Ranking sensors based on anomaly score, find causal sensors
 - MSCRNN performs better than the best baseline LSTM-ED for both datasets
 - ✓ Anomaly Scale Analysis
 - MSCRNN(S) detects three types of anomalies
 - MSCRNN(M) detects medium and long anomalies
 - MSCRNN(L) detects long anomaly
 - Interpret anomaly types (duration) by joint considering three detection results

MSCRNN(S): anomaly score computed on residual matrix of small-scale widow MSCRNN(M): anomaly score computed on residual matrix of medium-scale widow MSCRNN(L): anomaly score computed on residual matrix of large-scale widow

Figure 5: Performance of root cause identification.

Figure 6: Performance of three channel anomaly scores of MSCRED over different types of anomalies.

• Anomaly Diagnosis: Case Study

Figure 7: Case study of anomaly diagnosis.

- MSCRED(S) detects all of 5 anomalies including 3 short, 1 medium and 1 long duration anomalies. MSCRED(M) misses two short duration anomalies and MSCRED(L) only detects long duration anomaly
- We can accurately pinpoint more than half of the anomaly root causes (rows/columns highlighted by red rectangles) in this case
- \circ Robustness to Noise

Figure 8: Impact of data noise on anomaly detection.

MSCRED consistently outperforms ARMA and LSTM-ED when the scale of noise varies from 0.2 to 0.45. Compared with ARMA and LSTM- ED, MSCRED is more robust to the input noise

Conclusion

- \circ One Innovative Model
 - ✓ Multi-scale (resolution) signature matrices for the whole system
 - ✓ System signature encoding via CNN
 - ✓ Temporal dependency modeling via ConvLSTM
 - ✓ System signature decoding via CNN
- $\circ\,$ Two Useful Applications
 - ✓ Anomaly detection
 - ✓ Anomaly diagnosis: root cause identification, anomaly scale interpretation

Experiment Demonstration

- ✓ Both synthetic data and real data
- ✓ Four category baselines
- ✓ Best performance for all metrics in both datasets
- ✓ Robustness to noise

