

Threshold Compression for 3G Scalable Monitoring

Suk-Bok Lee, Dan Pei, MohammadTaghi Hajiaghayi, Ioannis Pefkianakis Songwu Lu, He Yan, Zihui Ge, Jennifer Yates, Mario Kosseifi

CMUAT&T Labs-ResearchUCLAU of MarylandAT&T Network Services

What's unique challenges on 3G network

- A large number of network elements (NEs)
 - E.g. several thousands cell-sites in a single market area
 - Different-types of NEs:
 - GGSN SGSN RNC NodeB Sector
 - Various KPIs (key performance metrics)
- Dynamics on measurement results
 - Both in time and spatial domains
 - Reflecting:
 - Mobile user's daily 3G usage pattens
 - Cell-site physical location & network topology

Naïve threshold-based alarming model is not scalable to large 3G networks

- Single static threshold (across locations): poor alarm quality
- Fine-grained threshold (location & time specific): management complexity

Possible thresholding schemes with different monitoring granularity

- 1. Per-NE-hourly (fine-grained location & time dependent)
 - Each NE has its own hourly thresholds

2. Per-NE-static

• Each NE has a single (aggregating all hours) threshold

3. Per-NEtype-hourly

 Every NE shares the same hourly (aggregating all NEs) thresholds

4. Per-NEtype-static

• A single threshold (aggregating all hours and all NEs)

Threshold scheme	#thresholds	FPR	FNR
per-NE-hourly	25320	-	-
per-NE-static	1055	31.1%	51.8%
per-NEtype-hourly	24	51.2%	47.5%
per-NEtype-static	1	53.2%	58.0%

Thresholding on DL-throughput in a single area (2010/06 - 2010/10)

- Per-NE-hourly
 - ideal for capturing dynamic 3G characteristics
 - <u>threshold size per KPI grows very large with network size</u>
- Aggregate-based threshold schemes
 - small threshold settings
 - high FPR (false positive rate) and FNR (false negative rate)

Fundamental tradeoff: threshold setting solutions setting sett

- Fine-grained spatial-temporal thresholds
 - Pros: good alarm quality
 - Capture well each NE's location and time specific behavior
 - Cons: large # of thresholds, management complexity
 - E.g. a single area has >30,000 thresholds per KPI
- Aggregate-based thresholds
 - Pros: a single threshold value for all NEs and hours
 - low system management overhead
 - Cons: poor alarm quality
 - E.g. can be observed ~70% false positive/false negatives
- Can we have both advantages (small threshold settings and good alarm quality) in a large 3G network?

Our solution: threshold compression

- Intelligent threshold aggregation
 - Observation 1:
 - Some group of NEs show similar threshold behaviors
 - → threshold aggregation via **NE grouping**
 - Observation 2:
 - Certain group of hours show similar threshold behaviors
 → threshold aggregation via hourly grouping

- Our threshold-compression
 - characterizes the location- and time-specific threshold trend of each NE with minimal threshold setting
 - Maintains acceptable alarm accuracy

- Spatial-domain similarity
 - Geographic locations & user population around NEs
- Time-domain similarity

8

• Daily trend of 3G usage pattern

Desirable properties of the solution

- 1. High compression gain
 - Small threshold setting even with large number of NEs
- 2. Low false alarm rate
 - Enforced by two input parameters a and β
 - Applying a and β to historical data \rightarrow permissible interval
- 3. Management-oriented grouping
 - Each NE belongs to only one NE group, but multiple hour groups within an NE group → two-level hierarchical clustering

Threshold compression problem formulation

- Objective function
 - Find the minimum number of spatial-temporal clusters from a given fine-grained threshold setting (i.e. per-NE-hourly)

Constraints

- 1. Each compressed (aggregated) threshold must be within the permissible threshold interval of each spatial-temporal block which it represents to
- 2. NE grouping must be consistent across time

• Hardness result

 This problem is not only NP-hard, but indeed inapproximable as well

Threshold compression algorithm: two-staged approach

1. Spatial NE grouping

- Identifies NE groups each showing similar threshold behavior each hour among its members
- Each NE group consists of 24 hour-groups
- 2. Temporal-domain clustering within each NE group
 - Takes the NE grouping result as input to perform hour grouping for each identified NE group

• Strategy for clustering

- Combine spatial-temporal blocks if they
 - 1. have <u>common intersection</u> in their permissible intervals
 - 2. Meet the consistent NE grouping rule

NE grouping: greedy coloring approach

1. Convert to graph

- Each NE \rightarrow vertex
- Put edge between two NEs, if they have <u>disjoint permissible</u> <u>interval</u> in any hour
- 2. Apply graph coloring
 - Minimum number of colors (NE groups) assignable to each vertex (NE) such that no edge (common intersection) connects two identically colored vertices (NE group members)
 - We apply the Welsh-Powell coloring algorithm that uses at most one more than the maximum degree of the graph

Hour grouping: minimum cover selection 😂

- Convert to intervals
 - Each hour \rightarrow its threshold (permissible) interval
- Do minimum cover
 - Find the minimum number of interval groups such that there is <u>common intersection</u> in each interval group
 - 1. Sort all the interval endpoints
 - 2. Scan until first encountering an upperbound point
 - 3. Put all intervals containing this point in to a new interval group
 - 4. Repeat from step 2

Evaluation: compression gain & alarm quality

Within desired 10% false/miss alarm*, nearly 70-90% compression gain

14

^{*}In this study, we use slightly different definition of FPR = FP/(FP+TP) and FNR = FN/(FN+TP), to adapt them to the context where TP is much smaller than TN

Evaluation: compression gain & alarm quality by tuning input parameters

These give us a clear idea of how a and β should be chosen

• E.g., setting a=0.03 and $\beta=0.04$ meets the target FPR (<15%) and FNR (<10%), which leads to compression gain of 82%

Validation: operational experience

KPI name	Comp.Gain	FPR	FNR
DL-throughput	75.2	15.6	9.4
Packet-loss	84.0	10.5	4.3
RTT	82.5	9.1	8.8
CPU-load	65.1	17.4	12.8
Cell-user-count	71.3	16.8	11.9
lub-throughput	73.9	15.1	8.8
MAC-throughput	74.6	14.7	11.5
Accessibility	83.0	13.6	7.1
Retainability	81.6	13.4	8.5
Call-drop-rate	80.3	12.8	7.3

Validation results on various KPIs (Applying the compressed threshold setting to real data 2010/08 – 2010/10)

• The resulting FPR and FNR are within our target 10-15%

Spatial-temporal clustering consistency between training data and monitoring data on different KPIs

- All KPIs show above 70% consistency \rightarrow robustness of the solution
 - Similar behavior across locations are consistent over time
 - Members in each identified cluster behave very closely one another across time, just like one single entity \rightarrow key idea of our solution

Conclusion

- 3G monitoring is challenging due to its large scale and strong dynamics in both in time and spatial domains
 - Tradeoff: threshold setting vs. alarm quality
- We propose an intelligent threshold aggregation solution
 - Characterizes the location- and time-specific threshold trend of each individual NE with minimal threshold setting
- Operational experience with applying our solution has been very positive
 - Threshold setting reduction up to 90% with less than 10% false/miss alarm rates

Backup slides

Common practice for monitoring for a large-scale network

- Pre-defined (compute offline) thresholds is preferable
- Why not use a more sophisticated realtime-based dynamic thresholding? (e.g. exponential smoothing, regression analysis)
 - If applied to each individual node in the network, it will create excessive computational burden on the monitoring system.

Pre-computing thresholds

• First pass: remove anomalies.

- Holt-Winters algorithm
 - taking into consideration diurnal, weekly pattern etc and individual network elements

• Second pass: compute thresholds.

- compute the mean and standard deviation based on the data without anomalies, and then compute thresholds:
 - Yellow threshold: (mean std) for dip KPIs (e.g. throughput), (mean + std) for spike KPIs (e.g. loss)
 - Red threshold: (mean 2*std) for dip KPIs (e.g. throughput), (mean + 2*std) for spike KPIs (e.g. loss)

Observation of similar threshold behavior (Optima KPI: RNC CPU load)

• <u>NRCSGAJTCR0R03:ATLNGAUYRNC001|9:10:11:12:13:14:15</u>|14|64.56

across hours

- Grouping across NEs
- Previously 14 thresholds can become one threshold

These two RNCs are under the same SGSN...

Overall picture

For each KPI, the algorithm outputs the compressed thresholds with NE & hour grouping results

