
Anomaly Detection in Computer Systems using

Compressed Measurements
Tingshan Huang, Nagarajan Kandasamy, Harish Sethu

ECE Department, Drexel University

Philadelphia, PA 19104, USA

Email: {th423, kandasamy, sethu}@drexel.edu

Abstract—Online performance monitoring of computer sys-
tems incurs a variety of costs: the very act of monitoring a
system interferes with its performance and if the information
is transmitted to a monitoring station for analysis and logging,
this consumes network bandwidth and disk space. Compressive
sampling-based schemes can help reduce these costs on the
local machine by acquiring data directly from the system in a
compressed form, and in a computationally efficient way. This
paper focuses on reducing the computational cost associated
with recovering the original signal from the transmitted sample
set at the monitoring station for anomaly detection. Towards
this end, we show that the compressed samples preserve, in an
approximate form, properties such as mean, variance, as well as
correlation between data points in the original full-length signal.
We then use this result to detect changes in the original signal
that could be indicative of an underlying anomaly such as abrupt
changes in magnitude and gradual trends without the need to
recover the full-length data. We illustrate the usefulness of our
approach via case studies involving IBM’s Trade Performance
Benchmark using signals from the disk and memory subsystems.
Experiments indicate that abrupt changes can be detected using
a compressed sample size of 25% with a hit rate of 95% for a
fixed false alarm rate of 5%; trends can be detected within a
confidence interval of 95% using a sample size of only 6%.

Index Terms—Online monitoring, anomaly detection, compres-
sive sampling, principal component analysis.

I. introduction

Online monitoring of performance-related metrics is a nec-

essary first step towards detecting anomalies in computer

systems. Measurements may include high-level metrics such as

response time and throughput as well as low-level ones such as

processor utilization, disk I/O, memory, and network activity.

The monitored information helps detect performance-related

hotspots and bottlenecks as well as incipient faults associ-

ated with gradual resource exhaustion—the so-called software

aging problem [1]–[3]. In the case of intermittent problems

that are hard to isolate, browsing back through historical data

can help identify and localize recurring problems affecting the

same portion of the computing infrastructure at different times.

The data can also help detect security breaches resulting in the

computers being infected by malicious software [4].

We consider a server cluster wherein software-based sen-

sors embedded within the infrastructure measure various

performance-related parameters associated with the cluster.

The measured information is transmitted over a network

to a monitoring station for data analysis and visualization.

Online monitoring, however, incurs a variety of costs. First,

the very act of monitoring an application interferes with

its performance. If sensing-related code is merged with the

application code, this change may interfere with the timing

characteristics of the application or if sensors execute as

separate processes, they contend for CPU resources along with

the original application. Transmitting the monitored data over

a network consumes bandwidth. Finally, logging the data for

future analysis consumes disk space. So, when monitoring a

large-scale computing system it is desirable to minimize the

above-described costs.

Traditional methods of sampling signals use Shannon’s

theorem: the sampling rate must be at least twice the signal

bandwidth to capture all the information content present in

the signal. The theory of compressive sampling (CS) states,

however, that we can recover a certain class of signals from

the original measurements using far fewer samples than that

used by techniques that rely on Shannon’s theorem [5]–[8]. In

previous work reported in [9]–[11], we have developed CS-

based sampling strategies for the performance monitoring of

computing systems that can acquire signals of interest from the

underlying system directly in a compressed form. The methods

exploit the fact that the signals often can be sparsified—that is,

encoded concisely—under an appropriate representation basis

and that the sampling rate itself can be tuned as a function of

sparsity. We show experimentally that the recovered signals

can be used to detect, with high confidence, the existence of

trends within the original signal as well as abrupt changes

where the signal’s magnitude exceeds some threshold value.

Detection of these anomalies is achieved using a substantially

reduced sample size—a reduction of more than 70% when

compared to the standard fixed-rate sampling method.

Compressive sampling allows for a very simple sampling

strategy on the local machine. Rather than tailoring the sensing

scheme to capture specific properties in the underlying signal,

a signal-independent strategy such as randomized sampling

can be used, significantly reducing the intrusion of monitor-

ing on application performance [11]. Also, since signals are

acquired directly in compressed form, the network bandwidth

needed to transmit these few samples to the monitoring station

is reduced and so is the hard-disk space required to store them.

When operators wish to analyze the original signal, there is

a way to use numerical optimization to reconstruct the full-

length signal from the sample set. The reconstructed signal

allows for real-time anomaly detection and diagnosis, and also

helps drive decisions of a longer-term nature such as intelligent

capacity planning. This paper focuses on reducing the com-

putational cost incurred by the monitoring station, associated

with recovering the original signal from the sample set and

analyzing it for anomalies. The recovery process is typically

posed as a linear programming (LP) problem and solved under

some sparsity assumptions using a class of reconstruction

algorithms called basis pursuit or iterative hard thresholding

pursuit [12]. Though modern LP solvers are quite efficient,

each monitoring station may be responsible for recovering

and analyzing hundreds of signals belonging to many servers,

making it important to reduce the corresponding overhead. The

paper makes the following contributions towards this goal:

• We prove from a theoretical viewpoint that the com-

pressed samples preserve statistical properties of the orig-

inal data such as variance and mean. This result allows

for the detection of abrupt changes and trends by directly

analyzing just the compressed samples without having to

reconstruct the full-length signal.

• Since the sampling process is just a linear projection

of the original data, we also prove that the compressed

samples approximately preserve spectral properties such

as correlation between data points, the length of the data

vectors, as well as the distance between two vectors,

under such a projection. This result allows for well-known

anomaly detection methods such as principal component

analysis (PCA) to be used directly on the compressed

samples; performance is almost equivalent to the case in

which the raw data is completely available.

We illustrate the usefulness of the approach via case studies

using IBM’s Trade Performance Benchmark (also known as

Trade6). We measure signals from the disk and memory sub-

systems using a CS-based sampling strategy, and analyze the

compressed samples for possible anomalies. The first scenario

involves detecting abrupt changes in the signal during which

the magnitude exceeds some nominal threshold value. In the

second scenario, we wish to detect the gradual deterioration

of system performance, say over hours or days, associated

with software aging by statistically analyzing the appropriate

signals for the existence of trends [2], [13]. We use a long-

running Trade6 application having a small memory leak and

evaluate the ability of the approach to estimate a positive

slope in the compressed data even in the presence of seasonal

variations and periodicity in the signal. Finally, we evaluate

the efficacy of applying PCA to the compressed samples to

detect abrupt changes in the signal.

Abrupt changes can be detected using a sample size of

25% with a hit rate of 95% for a fixed false alarm rate of

5%; trends can be detected with a confidence interval of 95%

using a sample size of 6%. Finally, the hit rate achieved by

the PCA-based analysis when using the compressed samples

to detect abrupt changes is higher than 95% when the false

alarm is fixed at 0.5%. The corresponding sample size is about

18%. These results point to the feasibility of adopting a two-

step anomaly detection process at the monitoring station: the

received compressed data is examined for possible anomalies;

if one is suspected, the relevant portion of the signal is fully

reconstructed to localize and further analyze the anomaly.

The paper is organized as follows. Section II describes

our experimental setup and familiarizes the reader with com-

pressive sampling. Section III describes the theoretical basis

behind being able to detect anomalies in compressed data

and Section IV presents the case studies that evaluate the

performance of the approach. Section V discusses related work

and Section VI provides some concluding remarks.

II. Preliminaries

We describe our experimental setup and familiarize the

reader with the basic concepts underpinning compressive

sampling and the subsequent signal reconstruction.

A. Experimental Settings

Figure 1(a) shows the system setup used in our experiments,

comprising three servers networked via a gigabit switch.

Virtualization of this system is enabled by VMWare’s ESX

Server running a Linux RedHat kernel. The operating system

on the virtual machine (VM) is the SUSE Enterprise Linux

Server Edition. The system hosts IBM’s Trade6 benchmark, a

stock-trading application which allows users to browse, buy,

and sell stocks. Users can perform dynamic content retrieval as

well as transaction commitments requiring database reads and

writes, respectively. The application logic for Trade6 resides

within the IBM WebSphere Application Server, which in turn

is hosted by the VM on the server within the application

tier. The database component is DB2, hosted on the server

running SUSE Enterprise Linux. The database maintains 500

user accounts and information for 3500 stocks.

We use httperf [14], an open-loop workload generator,

to send a mix of buy/browse transactions to the Trade6

application over a period of 48 hours. The workload traces

are synthesized to reflect realistic operating scenarios such as

time-of-day variations as well as bursty traffic where request

rates vary significantly within short time periods. A sample

workload is shown in Fig. 1(b), having an average arrival rate

of 50 requests per second with a 50/50 mix of buy/browse

transactions. Each data point in the figure represents the

aggregated workload within a 30-second interval.

Our experiments use the following metrics contained within

the /proc pseudo file system at the application tier, specif-

ically the contents of /proc/meminfo that report real-time

information about memory usage in Linux systems:

• MemFree. This quantity reflects the amount of physical

memory left unused in the system.

• CommittedAS. This quantity reflects the total amount

of memory allocated by processes in the system using

malloc() calls, even if the memory has not been used

by them as of yet. For example, a process may allocate

1 GB of memory but only touch 100 MB of it. Although

the current memory usage is only 100 MB, the 1 GB

allocation is memory that has been committed by the

memory subsystem to the process and can be used at

any time by the process.

• PageTables. This quantity reflects the amount of memory

dedicated to the lowest level of page tables.

• AnonPages. This quantity tracks the amount of anony-

mous or non-file backed pages mapped to page tables

responsible for the user space.

��������	

�������
������	�

������	
��
��

������	�

���

������	�

����������	��� �������	���

���	�� !	"	#$%	�����	
���	&��	'�'��(

���	�� !	"	#$%	�����	
���	&��	'�'��(

���	�� !	�	#$%	�����	
���	&��	'�'��(

(a) The Trade6 application.

1000 2000 3000 4000 5000
0

1000

2000

3000

4000

Time (in minutes)

N
um

be
r

of
 r

eq
ue

st
s

(b) Dynamic workload trace provided to the Trade6 application.

Fig. 1. The system architecture hosting the Trade6 application and an
example of the workload trace provided to the testbed in our experiments.
Incoming requests are plotted in granularity of 30 seconds.

0 1000 2000 3000 4000 5000 6000 7000

0

200

400

600

800

1000

1200

N
um

be
r

of
 s

ec
to

rs
 w

rit
te

n

Time (in seconds)

(a) Disk sectors written, the write activity signal.

0 2 4 6 8 10 12 14 16

x 10
4

3

4

5

6

7

x 10
5

Time (in seconds)

M
em

or
y

in
 k

ilo
B

yt
es

(b) Memory allocated to proesses, the CommittedAS signal.

Fig. 2. Signals corresponding to: (a) I/O activity collected at the database
tier showing the number of sectors written to disk and (b) total amount of
memory allocated by processes in the system. Note that a memory leak has
been injected around the 24 hour mark.

In addition to these features, we also use disk I/O activity

measurements (sectors read/written) collected at the database

tier as part of our evaluation. Our goal is to show that the

compressed samples can be used to detect various system

anomalies. The above-listed features were chosen to support

one of the case studies: detection of memory leaks. Here we

have chosen low-level metrics that are most likely impacted by

this fault. Figure 2 plots two of the features collected during

an experimental run of the system lasting 48 hours. The data

points are sampled once every two seconds.

B. Compressed Sampling of Signals

The fundamental premise behind signal compression is that

many natural signals are sparse in that they have concise rep-

0 0.5 1 1.5

−1

0

1

Haar wavelet basis

0 0.5 1 1.5

−1

0

1

Haar scaling function

0 1 2 3
−2

0

2
db2 wavelet basis

0 1 2 3
−2

0

2
db2 scaling function

0 2 4 6
−2

0

2
db4 wavelet basis

0 2 4 6
−2

0

2
db4 scaling function

Fig. 3. Waveforms corresponding to three members of the Daubechies
wavelet family. The Haar is the simplest wavelet that captures discontinuities
in the data; db2 and db4 also show similarity with our data but have longer
waveforms, leading to better frequency resolution.

TABLE I
Percentage of coefficients needed to keep the relative error within 1%

under each representation basis.

Signal Haar db2 db4

AnonPages 0.20% 0.51% 0.66%
Mapped 0.16% 0.37% 0.46%

CommittedAS 0.85% 1.27% 1.49%
PageTables 0.57% 0.64% 0.83%

resentations when expressed in the proper basis; this sparsity

determines the quality of the subsequent reconstruction. Using

the data collected from our testbed, we show how to find basis

functions in which this data can be most concisely represented.

Let us denote the data to be sampled as d, a vector of

length N, and its representation in basis B as x. In other words,

d =
∑N

i=1 xibi = Bx, where B = [b1, b2, . . . , bN]. For example,

if B is selected to be the Haar wavelet basis, the elements of

the vector x are coefficients of the wavelet decomposition for

signal d. Also, if at most S entries in x are nonzero, then x is

called an S -sparse vector; if S is small, d is said to be sparsely

represented in the basis B.

As possible basis functions, we consider the following

members of the Daubechies wavelet family that can capture

signal characteristics in both time and frequency domains: db1

(also known as Haar), db2, and db4 wavelet basis.1 These

wavelets are able to capture sharp or abrupt changes in the

signal. Figure 3 shows the waveforms for these wavelets. We

refer the reader to Walker for a primer on wavelets and their

scientific applications [15]. We analyze the basis functions in

terms of how concisely they encode the data collected from

our system. Table I summarizes the percentage of coefficients

needed to maintain the difference between the original and

reconstructed signals within 1% for each of the bases. In this

respect, the Haar wavelet represents our data most concisely.2

1Here ‘db’ is short for Daubechies and the number after it represents the
number of vanishing moments for the corresponding wavelet basis.

2Though beyond the scope of the reported work, rather than manually
having to select a basis, a best-basis selection algorithm that automatically
adapts the representation basis to the structure of the underlying signal being
sampled can be developed, as in Huang et al. [11].

When the signal can be represented sparsely in an appro-

priate basis, it can be acquired from the system directly in a

compressed form using a signal-independent strategy such as

randomized sampling. This process relies on a key concept

called coherence: given two N-dimensional bases Ψ and Φ,

the coherence between these bases is defined as the largest

coherence between any two basis vectors in Ψ and Φ as

μ(Ψ,Φ) =
√

N max
1 ≤ k, j ≤N

∣∣∣〈φk, ψ j〉
∣∣∣ ,

where 〈φk, ψ j〉 is the dot product of the vectors φk and ψ j.

Typically the coherence between the two bases lies between

1 and
√

N, and when the value of coherence is small we

consider the two bases to be uncorrelated or incoherent. When

the sensing and representation bases are uncorrelated, a spike

in one basis will be represented as a spread-out waveform

in the other. This property allows us to capture the complete

information present in the original data using a small number

of samples obtained by incoherent sampling.

As a sampling strategy to collect measurements from our

testbed, we choose Gaussian random matrices that have a low

coherence of
√

2 log N relative to any representation matrix

with high probability. Prior to sample collection, we generate

an M × N Gaussian random matrix G as the underlying

sampling matrix. Elements in the matrix are independently

chosen from a standard Gaussian distribution of zero mean

and variance 1/M. To obtain the samples from the input data,

we simply multiply this matrix G by the vector of data d. For

example, assume the data to be sampled is an N × 1 vector

d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1,1 B1,2 · · · B1,N

B2,1 B2,2 · · · B2,N

...
...

. . .
...

BN,1 BN,2 · · · BN,N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

...

xN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Bx,

where B is an N ×N matrix corresponding to the Haar wavelet

basis and x is the representation of d in that basis. Suppose

we wish to obtain a M × 1 vector of samples y. The data is

multiplied with a M × N Gaussian matrix G such that y =

Gd = GBx = Ax, where A = GB is a M × N matrix.

C. Recovering the Original Signal

The process of incoherent sampling gives us a set of

measurements y = Gd = GBx = Ax, where A = GB. To

reconstruct the original full-length data d at the monitoring

station, we must solve this inverse problem: given a vector y

of length M and matrix A of size M ×N where M � N, find a

sparse vector x̃ of length N such that y = Ax̃. In other words,

we are looking for x̃ as a solution to

min
b ∈ RN

‖ b ‖0 subject to: y = Ab, (1)

where ‖b‖0 is the l0 norm of b, i.e. the number of nonzero

entries in b. This problem is under-constrained since the matrix

A has more columns than rows; there are infinitely many can-

didate signals b for which Ab = y. Minimizing the l0 norm is

a computationally expensive nonlinear optimization problem.

However, the problem can be recast as one of minimizing the

l1 norm which is a linear programming problem as

min
b ∈ RN

‖b‖1 subject to: y = Ab, (2)

0 1000 2000 3000 4000 5000

0

200

400

600

800

1000

1200

N
um

be
r

of
 s

ec
to

rs
 w

rit
te

n

Time (in seconds)

Original
Reconstructed

Fig. 4. The write activity signal reconstructed using a sample size of 25%,
overlaid with the original. (Best viewed in color.)

5.8 6 6.2 6.4 6.6

x 10
4

3.5

4

4.5

5

5.5
x 10

5

M
em

or
y

in
 k

ilo
B

yt
es

Time (in seconds)

(a) The original CommittedAS signal.

5.8 6 6.2 6.4 6.6

x 10
4

3.5

4

4.5

5

5.5
x 10

5

M
em

or
y

in
 k

ilo
B

yt
es

Time (in seconds)

(b) The reconstructed CommittedAS signal.

Fig. 5. The original and reconstructed CommittedAS signals. The reconstruc-
tion is achieved by compressive sampling using a sample size of 30%.

and solved using a class of reconstruction algorithms called

basis pursuit or iterative hard thresholding pursuit (HTP)

previously proposed by Foucart [12].

Figures 4 and 5 show the original write activity and

CommittedAS signals along with their reconstructed versions

obtained via compressive sampling. For a given sample size,

compressive sampling is superior to a random sampling strat-

egy in terms of capturing spikes and abrupt changes in the

full-length signal.

III. Anomaly Detection using Compressed Samples

The optimization problem posed in (2) can be solved effi-

ciently by modern LP solvers. However, a monitoring station

may be responsible for recovering and analyzing hundreds of

signals belonging to many servers. In the following, we prove

from a theoretical viewpoint that key statistical properties of

the original data such as the variance, mean, and correlation

between data points are preserved in approximate form within

the compressed samples. We also show how these properties

can be exploited to detect, with high confidence, data spikes

and trends by analyzing just the compressed samples without

having to reconstruct the full-length signal.

We first describe the compressive sampling process on each

local server in greater detail since this knowledge is crucial

to understanding the claims and the proofs presented later

G(1, t)

G(2, t)

G(3, t)

G(4, t)

G(M, t)

Data d(t)

sampling waveform

t = NT

t = NT

t = NT

t = NT

t = NT

to zero at time t = NT
Multiply by Send sum and reset back

Samples

y(1)

y(2)

y(3)

y(4)

y(M)

Fig. 6. An implementation of compressive sampling that takes N data items
over a time window as input and returns M samples, where M � N.

in this paper. As shown in the schematic in Fig. 6, this

process involves multiplying the incoming signal d (treated as

a vector) with a sampling matrix to form a set of compressed

measurements y. When a new data item d(t) arrives at time

t, it is multiplied by the entries in the sampling matrix

G(i, t), i = 1, . . . ,M and the partial products are accumulated

into y(i). After a period of length N × T , where T is the

sampling period, the current values of y(i) are sent out as the

M samples to the monitoring station, and then reset back to

zero. So, effectively, y(i) =
∑N

t=1 G(i, t)d(t), where i = 1, . . . ,M,

giving us y = Gd.

The sampling matrix is often designed to have random

Gaussian entries [5]. Thus, the generated compressed samples

are linear combinations of the original data, and these samples

are able to preserve certain properties of the original data.

A. Detection of spikes from compressed samples

We show in the following that a data spike, i.e., an abrupt

rise and fall in the value of a data item, within a time window

leads to a significant change in the corresponding compressed-

sample variance. Let d denote the vector of data within a

window of length N exhibiting no data spikes. Let d′ denote

another length-N data series whose entries have the same

magnitude as those in d with the exception of the n-th entry,

d(n), i.e., d′(t) = d(t), t = 1, · · · , n − 1, n + 1, · · · ,N, and

d′(n) = d(n) + Δ. If G is the M × N sampling matrix, then

the compressed samples of length M corresponding to d and

d′ are y = Gd and y′ = Gd′, respectively.

Let us denote the sample mean of y and y′ as μ(y) and

μ(y′), respectively; denote the (unbiased) sample variance of

y and y′ as σ2(y) and σ2(y′), respectively. Let G j denote the

jth column of G and let μ(G j) denote the mean of the jth

column of G.

Let σ2(G j) denote the (unbiased) sample variance of G’s

j-th column, that is σ2(Gi) = 1
M−1

∑M
i=1[G(i, j) − μ(G j)]

2.

Let σG(j, t) denote the sample covariance between the j-th

column and the t-th column of G, σG(j, t) = 1
M−1

∑M
i=1[G(i, j)−

μ(G j)][G(i, t) − μ(Gt)].

0 20 40 60 80 100
0

1

2

3

4
x 10

4

Window index

with spikes
without spikes

Fig. 7. The sample variance of the compressed samples for write activity

data and the spike-free data in each time window.

In the Appendix, we prove that the change in sample

variance as a result of the data spike of size Δ in the n-th

element of d leads to a change in the variance given by

σ2(y′) − σ2(y) = σ2(Gn)Δ2 + 2Δ

N∑
t=1

d(t)σG(n, t). (3)

In the proof of (3), we also prove that μ(y′) = μ(y) + μ(Gn)Δ.

Note that since entries of G are independently generated

random Gaussian variables, the expected column mean of G is

0. As a result, the expected difference between μ(y) and μ(y′),
i.e., μ(Gn)Δ, is 0. A large Δ, therefore, cannot be expected to

cause a significant change in the sample mean.

The expected column variance of G is 1/M. The fact that

two columns of G are independent of each other leads to zero

covariance between any two columns of G. As a result, the

expected value of σ2(Gn) is 1/M and the expected value of

σG(n, t) is 0. The expected value of the difference between

σ2(y) and σ2(y′), i.e., σ2(Gn)Δ2 + 2Δ
∑N

t=1 d(t)σG(n, t), is

therefore equal to Δ2/M. Therefore, a large Δ may not lead to

a significant change in the sample mean, but it will lead to a

significant change in the sample variance.

This inference from (3) is consistent with our observations.

For the write activity data, we set the window length to N =

64 and the sample size to M = 16; so for every 64 data points,

16 compressed samples are generated. We then calculate the

sample variance for each window. We also repeat the sampling

and variance calculation on the data without any spikes. An

overlay of the sample variance for the data with and without

spikes is shown in Fig. 7. Windows containing spikes have

extremely large variance compared with other time windows.

Our method to detect data spikes or abrupt changes is to

collect data in each time window using compressive sampling,

and calculate the sample variance of each time window. We

then detect a window that has a variance exceeding a threshold

as the window that contains spikes or abrupt changes. To

select the proper threshold for the sample variance, we learn

its distribution by training a dataset that contains no spikes.

After obtaining the set of variance for each time window, we

obtain the sample mean μ and sample variance σ, and set the

threshold to μ + σz1−α, where z1−α is the upper 1 − α critical

value of a standard normal distribution.

During the detection phase, a time window that has a sample

variance above this threshold is said to contain spikes or abrupt

changes. To find out the exact time stamp within the particular

window for the spikes, one can use the reconstruction algo-

rithm, such as HTP, on samples of the detected time window

0 20 40 60 80 100
0

1

2

3

4
x 10

4

Window index

with spikes
without spikes

Fig. 8. The variance of the random samples collected for write activity in
each time window.

to recover the original data.

Note that compressive sampling preserves the data spikes

better than random sampling. To compare these two sampling

techniques, we use random sampling to collect the same

amount of samples from the write activity data, and show the

sample variance in Fig. 8. The sample variance is extremely

large only for the window that contains the fourth spike. The

other spikes are not selected as the samples, which is expected

since a spike in the original data is selected as a sample with

probability M/N.

B. Detection of trends from compressed samples

In the following, we show that the compressed samples

preserve the mean of the original data. Let μ(G) be the average

of all entries of G, μ(G) = 1
MN

∑M
i=1

∑N
t=1 G(i, t). As before,

denote the mean of d and y as μ(d) and μ(y), respectively. We

prove in the Appendix that

μ(y)
P≈ Nμ(G)μ(d), (4)

where
P≈ stands for being approximately equal with high

probability. In other words, the sample mean is approximately

the mean of the original data scaled by Nμ(G). Given this

property, when the original data increases or decreases in

magnitude, the mean of the compressed samples increases or

decreases proportionally.

The implications of (4) are consistent with our simulation

results. For the CommittedAS dataset, we use time bins that

each includes 1024 data points in 34 minutes. Sampling is

applied on each time bin separately. The sample size for

compressive sampling is 3.12%. Figure 9 shows the average

of the original data in each time window compared with the

scaled mean of the compressed samples (scaled by 1/Nμ(G)).

The two sets of average values are similar and both of them

can capture the increasing trend in the CommittedAS. We

also show the average of random samples in Fig. 9 and find

that the values are closer to the average of the original data.

However, the process of random sampling loses information of

the original data. The original data cannot be fully recovered

using the random samples. On the other hand, the samples

collected via compressive sampling can be used to reconstruct

the original data with much greater fidelity.

To detect the increasing trend in CommittedAS, we exploit

the fact that the average of the original data within each

time window is preserved in scaled form by the compressed

samples. To estimate the global trend, we use a 24-hour sliding

window, which includes 40 time bins, and move the sliding

0 10 20 30 40 50 60 70 80
3

4

5

6

7
x 10

5

Window index

Original data
Random samples
Compressed samples

Fig. 9. The average value of the original CommittedAS data in each time
window overlaid with the scaled average of the compressed samples and
random samples.

window by one time bin at each step. We use the linear model

d = a × t + b, where d is the average of compressed samples

within each time bin, t is the beginning time of the sliding

window, a is the slope, and b is the intersection. For each

sliding window, 40 (d, t) pairs are applied to this model and

the slope within each sliding window is estimated along with

the 95% confidence interval. We use the slope estimates to

check whether an increasing trend or a decreasing trend exists

in the original data.

C. PCA-based detection from compressed samples

Principal component analysis (PCA) is a dimension re-

duction technique that is frequently used for anomaly detec-

tion [16], [17]. It transforms a high-dimensional dataset into

new bases called principal components ordered by the strength

of the correlations exhibited by the data along their respective

directions. As a result, the first principal component captures

the strongest correlation pattern of the original data, the second

principal component captures the second strongest correlation

pattern, and so on [18]. The first few principal components

are often chosen as the signature pattern of the data.

For anomaly detection purposes, PCA is typically applied

on the original raw data. In this work, on the other hand,

we apply PCA directly on the compressed samples to extract

normal patterns of behavior present in the original data. These

extracted features are then exploited to detect occurrences such

as spikes in this data. Our method comprises two phases:

training and detection. During training, we use a large dataset

to obtain its signature pattern. To remove extreme values from

the dataset, we replace the top 0.1% of the data with its median

value. For every N data points, M samples are generated

via compressive sampling. Assume the sample from the t-th

time window is the length-M vector st and that the obtained

samples from T windows are [s1, · · · , sT]. Applying PCA on

the sample sets gives us M principal components p1, · · · , pM ,

each a length-M vector.

We then study the strength of the correlation captured by

each of the principal components and choose the top k among

them which capture more than 95% of the correlations. We

then define the normal pattern of the data using the first k

principal components as Pk = [p1, · · · , pk], also referred to as

the normal subspace. The anomalous subspace is the subspace

orthogonal to the normal subspace.

In the detection phase, we subtract the statistical mean

μ(y) from the compressed data y, project it onto the normal

subspace Pk, and then examine the difference between the

projection and the original test data y −μ(y) − PkPT
k

(y − μ(y)).

We then compare the norm of the difference ry = || y −
μ(y) − PkPT

k
(y − μ(y)) ||2, which we call the projection resid-

ual, to a certain threshold, and issue an alert indicating an

anomaly when it exceeds the threshold. We set the threshold

to
√

2(N − k)(N/M + 1)z1−α+N−k; the choice of this threshold

is explained later in this section.

Rationale behind the method. The PCA-based detection

described above is based on the fact that the projection residual

ry as a result of our detection process is sufficiently similar to

rd to allow the use of ry (in place of rd) for anomaly detection.

Here, rd is the residual obtained using the full-length data.

Let Σd be the covariance matrix of the original data d

with Σd = UΛUT being the singular value decomposition

of Σd where U is a unitary matrix and Λ is a diagonal

matrix. The columns of U, ui, are the eigenvectors/principal

components of the original data and the diagonal entries of Λ,

λi, are the corresponding eigenvalues. Let Σy be the covariance

matrix of the compressed samples with Σy = VΛ∗VT , where

V = [v1, · · · , vN], being the principal components of Σy. The

diagonal entries of Λ∗, λ∗
i
, are the eigenvalues.

The sampling matrix for compressive sampling is a random

Gaussian matrix, the entries of which follow the Gaussian

distribution of zero mean and variance 1/M. As a result, the

obtained compressed samples are linear combinations of the

original data. Such linear projections should preserve some

spectral properties of the original data.

Our detection method relies on one major finding. We find

that when the test data is normal, key statistical properties

of the distribution of ry, the projection residual as a result

of applying the subspace method directly on the compressed

samples, is related to those of the distribution of rd, the

projection residual of the original data. More specifically, we

prove in Section VIII-C in the Appendix that

E(ry) − E(rd) = O(1). (5)

That is, the difference between E(ry) and E(rd) is a constant

independent of M or N. Further, it is known from [19] that

var(ry)

var(rd)
= 1 + γ + z(M), (6)

where z(M) = O(1/
√

M), N/M = γ for large N, λ1 > 1 +
√
γ,

and Λd follows the spiked covariance model, i.e., λ1 ≥ λ2 ≥
· · · ≥ λk > λk+1 = λk+2 = · · · = λN = 1.

The above results show that the mean of the two projection

residuals differ by a constant and the variance of one is a

scaled version of the other. As a result, it can be stated that

the principal components of the compressed samples preserve

some of the correlation relationship within the original data.

Under the spiked covariance model, the mean of rd and

ry are both
∑N

i=k+1 λi = N − k; the variance of rd is∑N
i=k+1 2λ2

i
= 2(N − k), and the variance of ry is approximately

2(1 + N/M)(N − k). So, during the detection process, the

threshold for the projection residual ry is set to

√
2(N − k)(N/M + 1)z1−α + N − k.

30 35 40 45 50
0.2

0.4

0.6

0.8

1

Sample size (as a percentage)

H
it

ra
te

Random samples

Compressed samples

Fig. 10. An overlay of the hit rate achieved as a result of using the
compressed samples versus that of random sampling.

IV. Performance evaluation

We use the compressed samples for anomaly detection under

the following two scenarios:

• The system operator wishes to detect performance-related

bottlenecks or anomalies that manifest themselves as the

magnitude of the signal exceeding some nominal thresh-

old value—as spikes or abrupt changes. The performance

in this regard is quantified by a hit-rate metric.

• The operator wishes to detect gradual performance deteri-

oration, say over hours or days, associated with software

aging or resource exhaustion by analyzing the signals for

the existence of trends. Common causes involve resource

exhaustion due to memory leaks and bloat, unreleased

network sockets and file locks, and unterminated threads.

Here the performance is quantified by the confidence with

which the samples can be used to estimate a positive

slope, if one exists.

A. Detection of Spikes and Abrupt Changes

This case study uses the write activity signal shown pre-

viously in Fig. 2(a) to evaluate how well threshold violations

are detected from the compressed samples, specifically abrupt

changes and spikes present in the original full-length signal.

We use a hit-rate metric to characterize the number of abrupt

changes that can be detected by defining a hit as follows: given

a time window t within the original data and the compressed

samples, a spike occurring in the compressed samples matches

a similar spike seen in the original signal.

Figure 10 shows the result of applying our method on the

write activity data as a function of the sample size. The length

of each observation window is set to N = 64 data points. Once

the sample size exceeds 28%, the hit rate is higher than 95%

when the false alarm is fixed at 0.5%. (A sample size smaller

than 28% would lead to a false alarm higher than 0.5%.) We

find this result is significantly better than that obtained using

randomly selected samples from the original signal. The hit

rate achieved by random sampling is linear with the sample

size, since a higher sampling rate proportionally increases the

probability of sampling the spikes present in the original data.

B. Detection of Trends

The second case study shows that analysis of the com-

pressed samples can detect trends within the full-length signal

that may indicate a system resource being slowly exhausted—

such as memory. We use a long-running Trade6 application

5 10 15 20 25 30 35 40
−1

0

1

2

3

Window index

E
st

im
at

ed
 s

lo
pe

6.25%

12.5%

25%

(a) Estimation of slope using compressed samples.

5 10 15 20 25 30 35 40
−1

0

1

2

3

Window index

E
st

im
at

ed
 s

lo
pe

Original data
Random samples
Compressed samples

(b) Comparision of the slope estimates.

Fig. 11. Slope estimates obtained for CommittedAS using the compressed
data for different sample sizes; overlay of the estimated slope values obtained
using the original, compressed, and randomly sampled data.

executing over a period of 48 hours and inject a small memory

leak of about 100 KB/minute at around the 24-hour mark;

referring back to Fig. 2(b), note the increasing trend in the

CommittedAS dataset.

Figure 11 summarizes the results. The quality of the slope

estimate, in terms of the confidence interval, obtained using the

compressed data is relatively insensitive to the sample size as

it varies from 6.25% to 25%. Also, the overlay of the estimated

slope values obtained using the original, compressed, and

randomly sampled data, shown in Fig. 11(b), shows only

minor differences in the achieved quality. The sample size

for both the compressive and random sampling methods was

set to 6.25%. The use of compressive sampling over random

sampling is however still advantageous since it allows us to

recover the full-length signal with much higher fidelity.

C. PCA-based Detection of Spikes and Abrupt Changes

The final case study deals with using PCA to analyze

the write activity dataset for spikes and abrupt changes.3

Figure 12(a) shows the projection of write activity on to the

anomalous subspace—obtained via the previously described

training process—for a sample size of 20%. Observation

windows containing spikes have significantly higher projection

residuals than those without spikes. Figure 12(b) shows the

achieved hit rate as a function of sample size when the false

alarm rate is fixed. With the false alarm rate fixed at 0.5%,

the PCA-based method achieves a hit rate greater than 95%

using a sample size of about 18%.

3A MATLAB implementation of our PCA-based solution for detecting
spikes is available via a GitHub repository located at https://github.com/

TingshanHuang/AnomalyDetectionWithCompressedMeasurements. The result
in Figure 12(b) is reproducible using the provided dataset and demo script.

0 20 40 60 80 100
0

200

400

600

800

Index of time window

P
ro

je
ct

io
n

re
si

du
al

(a) The projection residuals.

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Sample size (as a percentage)

H
it

ra
te

(b) Hit rate versus sample size.

Fig. 12. The projection residual of the write activity signal is shown in (a)
wherein windows containing a spike have extremely large projections on the
anomalous subspace. The achieved hit rate is shown in (b) when the false
alarm rate is fixed as 0.5%. The length of the measurement length is set to
N = 64 and the sample size varies from 3% to 50%.

V. Related work

Compressive sampling has recently gained traction as a

low-cost monitoring solution in varied fields such as wireless

sensor networks [20], power grids [21], and microprocessor

design [22]. Our previous research applied the concept to

the performance monitoring of computing systems [9]–[11].

The emphasis in [9], [10] was on studying the feasibility of

using fixed-rate compressive sampling for monitoring server

systems. More recently. we developed an adaptive-rate model

that exploits any time-varying sparsity in the signal to further

reduce the number of collected samples [11]. Tuma et al. study

the applicability of compressive sampling for fine-grained

monitoring of processor performance and evaluate its per-

formance on signals representing micro-architecture counters

within a core [22]. They show that compressive sampling can

recover these signals if one can identify the bases in which

the signals can be sparsely represented.

Lakhina et al. develop a PCA-based method for real-time

detection of anomalies in computer networks [23]. Here, PCA

is applied to high-dimensional network-wide traffic data to

extract normal traffic patterns which have a highly reduced

dimension. During the detection phase, traffic that does not

correspond to the normal pattern is identified as an anomaly.

The patterns extracted by this approach is also called a normal

subspace; so it is also referred to as the PCA-based sub-

space method. Recent extensions of this method for network

anomaly detection include [24]–[26]. We have also seen PCA-

based methods developed for anomaly detection in cloud

computing systems [16]. Here, PCA is applied to the run-time

performance data collected from each server to extract relevant

features, which are then used to train decision tree classifiers

for anomaly detection. The aforementioned techniques for

anomaly detection have been shown to be quite effective in

detecting anomalies affecting network and computing systems.

However, these techniques require the full-length data stream

to perform the necessary analysis.

There have been a few recent attempts focused on anomaly

detection using compressed data obtained from the underlying

system [19], [27]. These papers show that the performance

of spectral-based methods (e.g., the PCA-based subspace

method) using only knowledge of the compressed samples is

similar to that of knowing the original data. Motivated by the

fact that the samples should preserve more information than

just the spectral properties of the original data, such as the

sample mean and variance, our work extends their use to detect

abrupt changes and trends in the raw data.

VI. Conclusions

From a viewpoint of reducing monitoring costs, compressive

sampling allows for a simple, randomized sensing strategy to

acquire the signals of interest on the local server; the network

bandwidth needed to transmit these samples to the monitoring

station is also significantly reduced. When operators wish to

analyze the original signal, there is a way to use numerical

optimization to reconstruct the signal from the sample set. We

have shown that the compressed samples preserve important

statistical properties of the original signal such as the mean,

variance, and correlation. This result can be used to reduce the

processing cost associated with data analysis on the monitoring

station via a two-step process: the compressed samples are

first examined for characteristics of interest such as spikes,

abrupt changes, and trends; if necessary, the full-length signal

is then reconstructed to find out a more accurate time stamp

of occurrence within a particular window.

VII. Acknowledgments

This work was partially funded by NSF Award 1228847.

VIII. Appendix

A. Proof of Equation (3)

In Section III, we stated that a data spike of size Δ in

a single entry of d leads to an expected change of Δ2 in

the sample variance of the compressed samples. It follows

from the following claim, also stated in (3). Using notation

developed in Section III, we prove the claim in this section.

Claim 1: If y′ and y are the compressed sample vectors with

and without a spike of size Δ in one element of the original

data vector d, then:

σ2(y′) − σ2(y) = σ2(Gn)Δ2 + 2Δ

N∑
t=1

d(t)σG(n, t)

Proof: Recall that d′, the data vector with the spike of

size Δ, is the same as d except for its n-th element for which

d′(n) = d(n) + Δ. For i � n, d′(t) = d(t).

First, we show that the sample mean of d′ differs from that

of d by μ(Gn)Δ.

μ(y) =
1

M

M∑
i=1

y(i) =
1

M

M∑
i=1

N∑
t=1

G(i, t)d(t)

=

N∑
t=1

[
1

M

M∑
i=1

G(i, t)]d(t) =

N∑
t=1

μ(Gt)d(t)

μ(y′) =

N∑
t=1

μ(Gt)d
′(t) =

N∑
t=1

μ(Gt)d(t) − μ(Gn)d(n) + μ(Gn)d′(n)

=

N∑
t=1

μ(Gt)d(t) + μ(Gn)Δ = μ(y) + μ(Gn)Δ

In the following we show that due to the change by Δ the

sample mean of d′ differs by σ2(Gn)Δ2 + 2Δ
∑N

t=1 d(t)σG(n, t),

where σ2(Gn) is the sample variance of G’s n-th column and

σG(n, t) is the sample covariance between the n-th column and

t-th column of G.

Note that, since y′(i) = y(i) + G(i, n)Δ, y′(i) − μ(y′) is

equivalent to y(i) − μ(y) + [G(i, n) − μ(Gn)]Δ. This enables us

to break σ2(y′) = 1
M−1

∑M
i=1[y′(i) − μ(y′)]2 into three parts:

1

M − 1

M∑
i=1

{y(i) − μ(y)}2

+
1

M − 1

M∑
i=1

[G(i, n) − μ(Gn)]2Δ2

+
1

M − 1

M∑
i=1

⎧⎪⎪⎨⎪⎪⎩2
N∑

t=1

[G(i, t) − μ(Gt)]d(t)[G(i, n) − μ(Gn)]Δ

⎫⎪⎪⎬⎪⎪⎭
The first part is the (unbiased) sample variance of y, σ2(y).

By the definition of σ2(Gn), σ2(Gn) = 1
M−1

∑M
i=1[G(i, n) −

μ(Gn)]2. Therefore, the second part is equivalent to σ2(Gn)Δ2.

By the definition of σG(n, t), σG(n, t) = 1
M−1

∑M
i=1[G(i, n) −

μ(Gn)][G(i, t) − μ(Gt)]; therefore, the third part equals

2Δ
∑N

t=1 d(t)σG(n, t).

As a result, the following holds true:

σ2(y′) = σ2(y) + σ2(Gn)Δ2 + 2Δ

N∑
t=1

d(t)σG(n, t)

B. Proof of Equation (4)

In Section III, we stated that it is possible to detect a trend

by examining only the changes in the mean of the compressed

samples instead of the original data. This follows from the

following claim:

Claim 2: The expected value of the sample mean, E[μ(y)],

and the mean of the original data, μ(d), are related by:

μ(y)
P≈ Nμ(G)μ(d)

where
P≈ stands for approximately equal with high probability,

N is the length of d, G is the sampling matrix for compressive

sampling, and μ(G) is the average of entries in G.

Proof: From the earlier proof in Section VIII-A, we

know that the compressed sample mean μ(y) is equal to

∑N
t=1 μ(Gt)d(t). By the definition of μ(G), we have μ(G) =

1
MN

∑M
i=1

∑N
t=1 G(i, t) = 1

N

∑N
t=1 μ(Gt), which leads to the fol-

lowing:

μ(Gt)

Nμ(G)
=

μ(Gt)

μ(Gt) +
∑N

j=1, j�t μ(G j)
=

1

1 +

∑N
j=1, j�t μ(G j)

μ(Gt)

(7)

Note that entries of G, G(i, t), are independent and follow

Gaussian distribution with zero mean and variance 1/M. As

a result, the t-th column mean of G, μ(Gt) = 1
M

∑M
i=1 G(i, t),

also follows a Gaussian distribution with zero mean, but

with a variance of 1/M3 (denoted by N(0, 1/M3)). Therefore,√
M3μ(Gt) can be said to follow N(0, 1).

Similarly,
∑N

j=1, j�t μ(G j) follows N(0, (N − 1)/M3). As a

result,
√

M3/(N − 1)
∑N

j=1, j�t μ(G j) can be said to follow

N(0, 1).

The ratio of the above two independent variables which both

follow the standard normal distribution N(0, 1) is given by:

√
M3

N−1

∑N
j=1, j�t μ(G j)

√
M3μ(Gt)

=
1√

N − 1

∑N
j=1, j�t μ(G j)

μ(Gt)

Thus, 1√
N−1

∑N
j=1, j�t μ(Gj)

μ(Gt)
follows the standard Cauchy distribu-

tion, denoted by Cauchy(0, 1).

We now apply the fact that if a random variable X follows

Cauchy(μ, σ), then the linear transformation αX + β follows

Cauchy(αμ + β, |α|σ) [28]. This implies that 1 +

∑N
j=1, j�t μ(Gj)

μ(Gt)

follows Cauchy(1,
√

N − 1).

Similarly, we again apply another result on transforma-

tion of Cauchy distributions: if X follows Cauchy(μ, σ),

then 1/X follows Cauchy(μ/c, σ/c) where c = μ2 + σ2

[28]. This implies that the right hand side of (7) follows

Cauchy(1/N,
√

N − 1/N).

Given (7) and given the probability density function of the

above Cauchy distribution with mean 1/N and small variance,

it follows that μ(Gt)/(Nμ(G)) is 1/N or close to it with high

probability. Since μ(y) is equal to
∑N

t=1 μ(Gt)d(t),
μ(y)

Nμ(G)
is close

to
∑N

t=1
1
N

d(t) = μ(d) with high probability. That is, μ(y) is

close to Nμ(G)μ(d) with high probability.

C. Proof of Equation (5)

Under normal conditions, ry, the projection residual of the

compressed samples, has an expected mean that differs by a

constant from that of rd, the projection residual of the original

data. This, along with the result on the variance of these two

distributions ((6)), allows the use of ry for anomaly detection

instead of rd .

Claim 3: When the original data d contains no spikes, the

expected mean of ry = ||(y−μ(y))−VkV
T
k

(y−μ(y))||2 is related

to expected mean of rd = ||(d − μ(d)) − UkUT
k

(d − μ(d))||2 by

E(ry) − E(rd) = O(1)

Proof: First, we show that the mean of rd is E(rd) =∑N
i=k+1 λi. Let IN denote an N × N identity matrix. By the

definition of rd, we have:

rd = ||(d − μ(d)) − UkUT
k (d − μ(d))||2

= (d − μ(d))T (IN − UkUT
k)(d − μ(d))

= (d − μ(d))T (UUT − UkUT
k)(d − μ(d))

= (d − μ(d))T

N∑
i=k+1

uiu
T
i (d − μ(d))

=

N∑
i=k+1

||uT
i (d − μ(d))||2

Since ||uT
i

(d −μ(d))||2 captures the variance of d along uT
i

, we

have E(rd) =
∑N

i=k+1 E(||uT
i

(d − μ(d))||2) =
∑N

i=k+1 λi. Similarly,

the mean of ry is E(ry) =
∑M

i=k+1 λ
∗
i
.

Next, we show that rd is similar to ry by proving E(ry) −
E(rd) is a constant independent of M or N, or equivalently,∑M

i=k+1 λ
∗
i
− ∑N

i=k+1 λi = O(1). The proof is completed in two

parts: (i) by proving that E(
∑N

i=1 λi) = E(
∑M

i=1 λ
∗
i
), and (ii) by

proving that E(
∑k

i=1 λ
∗
i
) − E(

∑k
i=1 λi) = O(1).

Part (i): We first prove that E(
∑N

i=1 λi) = E(
∑M

j=1 λ
∗
j
).

Note that
∑M

j=1 λ j is also the trace of the covariance ma-

trix Σd, i.e., tr(Σd) =
∑N

i=1 Σd(i, i) =
∑N

i=1 λi. Similarly,

tr(Σy) =
∑M

i=1 Σ∗
d
(i, i) =

∑M
i=1 λ

∗
i
. Recall that y = Gd, we have

Σy = GΣdGT = GUΛUTGT . The i-th diagonal entry of Σy,

therefore, is given by:

N∑
k=1

λk(

N∑
j=1

G(i, j)uk(j))(

N∑
j=1

uk(j)G(i, j))

As a result, the trace of Σy can be rewritten as

tr(Σy) =

M∑
i=1

N∑
k=1

λk

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

j=1

G(i, j)uk(j)

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

N∑
j=1

uk(j)G(i, j)

⎞⎟⎟⎟⎟⎟⎟⎠

=

N∑
k=1

λk

M∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

j=1

uk(j)G(i, j)

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

N∑
j=1

G(i, j)uk(j)

⎞⎟⎟⎟⎟⎟⎟⎠

=

N∑
k=1

λkuT
k GTGuk

The difference between the traces of Σy and Σd is∑N
k=1 λkuT

k
(GTG − IN)uk, where IN is an N × N identity matrix.

Note that entries of matrix G follow N(0, 1
M

). Therefore,

E(GTG) = IN , and E(tr(Σy)) = E(tr(Σd)).

Part (ii): We next prove that
∑k

i=1 λi

P≈ ∑k
j=1 λ

∗
j
.

Consider a length-N vector x that follows a Gaussian distri-

bution N(0,Σx) where Σx = diag{λ(x)

1
, · · · , λ(x)

N
} is a diagonal

matrix that follows the spiked covariance model. It is shown

in [29] that if we build X = [x1, · · · , xM] with M realizations

of x, then the i-th largest eigenvalue of matrix S = 1
M

XXT ,

λ
(s)

i
, satisfies:

√
M(λ

(s)

i
−λ(x)

i
)−

√
M
γλ

(x)

i

λ
(x)

i
− 1

∼ N(0, 2λ
(x)

i

2 − γ2λ
(x)

i

2

(λ
(x)

i
− 1)2

) (8)

as M,N → ∞ and N
M

→ γ. Applying the result of [29] to our

case, we build X as X = Λ
1
2 UTGT . The i-th column of X is xi =

Λ
1
2 UT gT

i
. Due to randomness of G(i, j), we have the mean of xi

E(xi) = Λ
1
2 UT E(gT

i
) = 0, and E(xix

T
i

) = Λ
1
2 UT E(gT

i
gi)UΛ

1
2 =

Λ
1
2 UT 1

M
INUΛ

1
2 = 1

M
Λ. Therefore, λ

(x)

i
= λi/

√
M. On the other

hand, S = 1
M

XXT has the same eigenvalues with those of
1
M

XT X = 1
M

GΣdGT = 1
M

Σy which implies that λ
(s)

i
= λ∗

i
/
√

M,

i = 1, · · · ,M. Applying the result of [29] in our case allows

us to relate λ∗
i

to λi as:

(λ∗i − λi) − γλi

λi − 1
∼ N(0, 2λi

2 − γ2λi
2

(λi − 1)2
) (9)

Using this relationship between λ∗
i

and λi, we get that the dif-

ference between E(
∑k

i=1 λ
∗
i
) and E(

∑k
i=1 λi) is only a constant

since E(
∑k

i=1 λ
∗
i
−∑k

i=1 λi) = E(
∑k

i=1 γλi/(λi − 1)) = O(1).

Combining the results in Parts (i) and (ii) above, we have:

E(ry) − E(rd) = (

M∑
i=1

λ∗i −
M∑

i=1

λi) − (

k∑
i=1

λ∗i −
k∑

i=1

λi) = O(1)

References

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys, vol. 41, no. 3, pp. 1–58, 2009.

[2] A. Avritzer et al., “Performance assurance via software rejuvenation:
Monitoring, statistics and algorithms,” in Proc. IEEE Conf. Dependable

Syst. Netw. (DSN), 2006, pp. 435–444.
[3] K. Vaidyanathan and K. S. Trivedi, “A comprehensive model for

software rejuvenation,” IEEE Trans. Dependable Secur. Comput., vol. 2,
no. 2, pp. 124–137, April 2005.

[4] R. Canzanese, M. Kam, and S. Mancoridis, “Toward an automatic, online
behavioral malware classification system,” in Proc. IEEE 7th Int’l Conf.

Self-Adaptive and Self-Organizing Systems (SASO), 2013, pp. 111–120.
[5] E. J. Candès and M. B. Wakin, “An introduction to compressive

sampling,” IEEE Signal Proc. Mag., vol. 25, no. 2, pp. 21–30, 2008.
[6] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:

Exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489–509, 2006.

[7] E. J. Candès and T. Tao, “Near optimal signal recovery from random
projections: Universal coding strategies?” IEEE Trans. Inform. Theory,
vol. 52, no. 12, pp. 5406–5425, 2006.

[8] D. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol. 52,
no. 4, pp. 1289–1306, 2006.

[9] T. Huang, N. Kandasamy, and H. Sethu, “Evaluating compressive
sampling strategies for performance monitoring of data centers,” in Proc.
ACM 9th Int’l conf. Autonomic computing, 2012, pp. 201–210.

[10] ——, “Evaluating compressive sampling strategies for performance
monitoring of data centers,” in Proc. IEEE Network Operations &

Management Symp. (NOMS), 2012, pp. 655–658.

[11] T. Huang, N. Kandasamy, H. Sethu, and M. C. Stamm, “An efficient
strategy for online performance monitoring of datacenters via adaptive
sampling,” ECE Department, Drexel University, Tech. Rep., May 2015,
Can be accessed at www.ece.drexel.edu/kandasamy/adaptive cs.pdf.

[12] S. Foucart, “Hard thresholding pursuit: An algorithm for compressive
sensing,” SIAM J. Numer. Anal., vol. 49, no. 6, pp. 2543–2563, 2011.

[13] L. Li, K. Vaidyanathan, and K. Trivedi, “An approach for estimation of
software aging in a web server,” in Proc. Symp. Empirical Softw. Eng.,
2002, pp. 91–100.

[14] D. Mosberger and T. Jin, “httperf: A tool for measuring web server
performance,” Perf. Eval. Review, vol. 26, no. 3, pp. 31–37, 1998.

[15] J. S. Walker, A Primer on Wavelets and their Scientific Applications,
2nd ed. Chapman and Hall, 2008.

[16] S. Fu, “Performance metric selection for autonomic anomaly detection
on cloud computing systems,” in IEEE Global Communications Confer-
ence, Exhibition & Indudstry Forum (GLOBECOM), 2011, pp. 1–5.

[17] Q. Guan and S. Fu, “Adaptive anomaly identification by exploring
metric subspace in cloud computing infrastructures,” in IEEE Int’l Symp.
Reliable Distributed Systems, Sept 2013, pp. 205–214.

[18] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John
Wiley & Sons, 2012.

[19] Q. Ding and E. D. Kolaczyk, “A compressed pca subspace method for
anomaly detection in high-dimensional data,” IEEE Trans. Information

Theory, vol. 59, no. 11, pp. 7419–7433, 2013.
[20] C. Caione, D. Brunelli, and L. Benini, “Distributed compressive sam-

pling for lifetime optimization in dense wireless sensor networks,” IEEE

Transactions on Industrial Informatics, vol. 8, no. 1, pp. 30–40, 2012.
[21] R. Ward, “Compressed sensing with cross validation,” IEEE Transac-

tions on Information Theory, vol. 55, no. 12, pp. 5773–5782, 2009.
[22] T. Tuma, S. Rooney, and P. Hurley, “On the applicability of compressive

sampling in fine grained processor performance monitoring,” in IEEE
International Conference on Engineering of Complex Computer Systems,
2009, pp. 210–219.

[23] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide
traffic anomalies,” ACM SIGCOMM Computer Communication Review,
vol. 34, no. 4, pp. 219–230, Aug. 2004.

[24] C. Pascoal, M. Rosario de Oliveira, R. Valadas, P. Filzmoser, P. Salvador,
and A. Pacheco, “Robust feature selection and robust PCA for Internet
traffic anomaly detection,” in Proc. IEEE INFOCOM, Mar. 2012, pp.
1755–1763.

[25] T. Kudo, T. Morita, T. Matsuda, and T. Takine, “PCA-based robust
anomaly detection using periodic traffic behavior,” Proc. IEEE Int’l
Conf. on Communications, pp. 1330–1334, June 2013.

[26] C. Callegari, L. Gazzarrini, S. Giordano, M. Pagano, and T. Pepe,
“Improving PCA-based anomaly detection by using multiple time scale
analysis and kullback–leibler divergence,” International Journal of Com-

munication Systems, vol. 27, no. 10, pp. 1731–1751, 2014.
[27] D.-S. Pham, S. Venkatesh, M. Lazarescu, and S. Budhaditya, “Anomaly

detection in large-scale data stream networks,” Data Mining and Knowl-
edge Discovery, vol. 28, no. 1, pp. 145–189, 2014.

[28] A. Papoulis and S. U. Pillai, “Probability, random variables, and stochas-
tic processes,” Tata McGraw-Hill Education, 2002.

[29] D. Paul, “Asymptotics of sample eigenstructure for a large dimensional
spiked covariance model,” Statistica Sinica, vol. 17, no. 4, p. 1617, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

