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Thus, the limiting distribution of the square error of a parametric estimate of a multi-
dimensional normal density is given by the relation

lim P{n2k+3rk/2v/det CO. < x} F(x).
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NON-PARAMETRIC ESTIMATION OF A MULTIVARIATE PROBABILITY DENSITY

V. A. EPANECHNIKOV

(Translated by B. Seckler)

Introduction

Let

Si S(x]i), x), xi)), 1, n,

be a given sample of n independent realizations ofa k-dimensional random variable X(xl, x., ...,
xk) from a population characterized by a continuous k-variate probability density f(xl, ..., xk).
We define the multivariate empirical probability densityf,(xl, ..., xk) to be the function ofsample
values X given by

(1) f.(xl,

Each "kernel" K(y) has the following properties:

(a) 0=<K(y)<C< ,
(b) Kt(y) Kl(-" y),

(c) K(y) dy 1,
(

(d) Kl(y)y2 dy 1,

(e) K(y)y"dy < oo for 0__<m<

and the "spreading" coefficients h(n) of the kernels depend in general on the sample size n and
tend to zero as n--

Non-parametric estimation of a true univariate (k 1) probability density of the form (1)
was considered by Parzen [1] with arbitrary kernel K(y) and by Rosenblatt [2] (for k 1) and
Maniya [3] (for k 2) with a specific kernel ofthe form

a for ly[ =< 1/2a,
K(y)=

0 for lyl> 1/2a.
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154 V. A. Epanechnikov

A bivariate empirical probability density of the form

L(XI’ X2) nh2(n) i=1 h(n) M J
was used by Nadaraya [4].

This paper examines some properties of the multivariate empirical probability density (1)
with kernels of arbitrary form (subject to restrictions (2)) in the case where the true probability
density has a Taylor expansion in all its arguments about each point X(xl, ..., Xk).

1. Asymptotic Properties of the Empirical Probability Density

Performing some simple operations in the expression for the averaged empirical density,

Ef,,(xl, ..., Xk) hi(n) K f(y,,...
h,(n)

we can write

(3) Ef,(xl, ,Xk) Kl(Yl) f(xx + hyl, ,Xk + hyk)dyl dYk.

We expandf(x + hyl, ..., x + hkYk) in a Taylor series with respect to all xi about the point
X(xl, x2, ..., Xk), we integrate the right-hand side of (3) and we let n oe. This yields for the
averaged difference between the empirical and true probability densities, EAfn(Xl,...,Xk)

E[f,(x, -, XR) f(xx,’’’, Xk)], the result

(4) cZf(xl,x2,...,Xk)hEArn(x1’’"’ Xk) /=1 -- /2(n)"

The mean-square error of approximation defined by

E(Af,(x,..., Xk))z E[f,(x,""’, Xk) f(Xl ,’", Xk)]2,
is equal to

-2f(x, ,Xk’;’’’f[l=lgl(Yl)1
xf(xl d- hlYl, ,Xk dr hkYk) dyl dyk + f2(xx,’’" ,Xk).

Substituting the Taylor expansion forf(x + hyx,..., X -1- hyk) about the point X(xl, ..., Xk)
into the right-hand side of (5) and letting n oe, we obtain

E(Afn(xa, "", Xk)) 1-f(xl,..., Xk) KZ(y)dy
6)

f(x,, x) (n)

Expressions (4) and (5) imply that when h(n) 0 and n h(n) the empirical probability
density (]) is a consistent estimator of the true probability density f(x, ..., x) at each point
X(Xl, "’", x).
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Non-parametric estimation ofa multivariate probability density 155

(7)

2. Relative Global Approximation Error

The relative global approximation error/2 due to approximating the true probability density
f(xl, ..., Xk) by the empirical densityf,(xl, .-., Xk) is defined by- f f E(Af.(x,, xk))2 dx dxk,

where

(8) Q f f fZ(x xk) dX dxk

We arrive at an asymptotic relative global error (as n oo) by substituting the value of
E(Af,(xl, ...., xk)) from (6) into the right-hand side of (7)"- /=1 h K21(y dy q- - /=1 : h n

Setting KI(y) K(y) and h(n) h(n), we shall examine ways ofminimizing the relative global
error

(9) /2

where

(10)

n- h-k(n)Lk + (1/4)h4(n)M

L K2(y) dy,

f(x,... x(11) M dx dXk?-X-ij"

a) OPTIMIZATION OF THE SPREADING COEFFICIENT. To determine the optimum spreading
coefficient h(n) ho(n) minimizing the asymptotic relative global error/2 (as /’/ OO), we dif-
ferentiate the right-hand side of (9) with respect to h(n) and we equate the derivative to zero.
Thus for n m,

kLk 1](k + 4-)
(12) ho(n) 1

b) OPTIMIZATION OF THE FORM OF THE KERNEL. From (9) it follows that to determine the op-
timum kernel form K(y)- Ko(y) minimizing the relative global error, it suffices to minimize

the expression L t K2(y)dy for fixed h, n and k subject to the additional conditions (2b)-
(2d). This problem belongs to those isoperimetric problems of the calculus of variations with
constraints present (see, for example, [5]).

Euler’s equation for such variational problems can be written in the form K(y) + 21 + 22y2
0, where the parameters 21 and 22 are determined from conditions (2b)-(2d). Having

This error could also be termed the relative total mean-square error. The relative global
error 2 is a special case of the relative weighted total mean-square error, with weight function
0(X1, "’", Xk) defined by

if f E(AL(X Xk))20(X1, Xk) dX dXk.Q
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156 V. A. Epanechnikov

ascertained constants 21 and 22, we find the optimum kernel Ko(y) to be

3 3y x/,
(13) Ko(y 4x/ 20x/

for lyl =<
0 for [y{ > ,,f.

The resultant optimum kernel Ko(y) is independent ofthe true probability density, the sample
size and the dimensionality of the space.

TABLE

K(y) L r

Ko(y) (13) 3/5w/
N///7 8 N// 8

COS y
4 2

for ]y] =< rc rx//Tr 8/16 1.001
N// 8

0 for [y[ > x// 8

1/x/ [y[/6 for [y[ __< x/ x//9 1.015
0 for

(2to)- 1/2 e-y2/2 1/2x/ 1.051

1/2x/ for [y[ __< x/
0 for lyl > ,f

1/2w/ 1.077

1/2e -’/Iyl 1/4x/ 1.320

Table gives the values of the integral L K2(y) dy, occurring in (9), and of the ratio

r K2(y) dy K(y) dy for certain kernels K(y).

C) COMBINED OPTIMIZATION OF THE KERNEL AND SPREADING COEFFICIENT. To minimize the
relative global error t completely, one has to minimize t2 first with respect to the form ofthe kernel
K(y) and then with respect to the spreading coefficient h(n). Substituting the optimum ho(n) from
(12) and Ko(y) from (13) into the right-hand side of (9), we obtain, as n

(14) ,,2 ag (k + 4)(3/5X/)*k/(k+g)M
t/min min 4n./(k + 4)kk/(k + 4)Q

where Q and M are given by (8) and (11).
Table 2 cites the values of the integral M occurring in the expressions (9) and (14) for 2

for certain true probability densitiesf(xl,..., Xk).
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Non-parametric estimation ofa multivariate probability density 157

TABLE 2

f(xl Xk) M

(2rt)//2 exp -- p=

p; (Xp +

p=lxp +

k(2 + k)

k(98k + 307)
4(2x/)

k(5 + k)
4(2rr)

d) VARIANCE OF THE RELATIVE TOTAL SQUARE ERROR. TO estimate the random deviation of
Usarap2, the sampling value of the relative total square error, from the relative global error 2,
we consider the asymptotic variance (n oz) of the relative total square error

2 F(u2)2 (t2)2 Q-2 E [f,(xl, Xk) f(xl, Xk)] MX1 dXk( U2

(5)

[f f [f,(xl, x) f(x, x)] dx x]}.
Integrating on the right-hand side of (15) and discarding higher order terms (the tedious

intermediary calculations have been omitted), we obtain as n ,
(16) a2 2 g(y)K(y z) dy dz/nhk(n)Q

For the optimum values h(n) ho(n) and K(y) Ko(y), we have

(17) 2(0.0875x/)kMk/tk+ 4)2u2 n(8 + k)/(4 +k)kk/(k + 4)Q
(see (8), (11)).

Expressions (16) and (17) imply that the asymptotic ratio (n oe) of the standard deviation
a,2 of the relative total square error to the relative global error z is proportional to ea2/fl2

n-k/2(k + 4) and tends to zero.

3. Determination of the Sample Size Assuring a Prescribed Level for the Minimum Relative
Global Error

Solving equation (7) for n, we find how the required sample size depends on the admissible
value of the minimum relative global error min.

Table 3 gives values of the same size that assure a prescribed level for the minimum relative
global error min when the true density isf(xl Xk) (2n) k/2 exp(-,’", Zl= lX) and the kernel is
taken to be of the form K(y) (2rt)-1/2 e-(l/2)y2.

TABLE 3

0.1 0.2 0.3 0.4 0.5

22 11 6 4 3
2 58 21 11 7 5
3 175 52 26 16 11
4 600 150 67 38 24
5 2.22.103 470 190 98 59
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158 G. V. Martynov

The values of the sample sizes cited in Table 3 (which were rounded off to the nearest higher
integer) were obtained from the exact expression for the minimum relative global error

t]2min 1{ n--1 n.2(k+2)/2= + [1 + h(n)]k/z- [ -(h-k/z + n

the optimum spreading coefficient ho(n) being related to the sample size n by

[(1 + h(n))/h]k + z)/z

[(1 + h20(n))/(1 + 1/2h(n))]0’ +z)/z 1"

For small t2, we obtain

[ 4 l’/(k+4) (k+4)(k+4)/4.(k-k-2)k/4ho(n) n(k + }) n (t2)(k +,)/4.2 + 2

The above non-parametric estimation of a true multivariate probability density can also be
applied to solve various problems involving the statistical tests of hypotheses.
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LINEAR BINARY TWO-SAMPLE TESTS FOR SHIFT ALTERNATIVES

G. V. MARTYNOV

(Translated by B. Seckler)

0. A class oflinear binary tests based on pairwise comparisons ofobservations oftwo samples
is considered. Sign tests and Wilcoxon’s test in particular belong to this class. On the basis of
the notion of asymptotic relative efficiency (A.R.E.), linear binary tests are compared with
Student’s t-test for alternative shifts when the distributions of the sample observations have a
density function belonging to L2(- ct3, cx3)-space. In conclusion, a special case of a linear binary
test is considered--the k-diagonal test--which is nearly as simple as the sign test and as efficient
as the Wilcoxon test.

1. Let {A,} be a given sequence of sets of observations. For instance, A. {xl,-.., x,}
are sample observations of a random variable or A. {xl, ..., Xa.; y,’", Yb,} are a. and b.
observations oftwo samples. Suppose that the tests Tand T’ are based on the statistics T. T(A.)
and T’, T’(A.) and are used to test hypotheses concerning some parameter 0. We shall compare
these tests as to the A.R.E. of one with respect to the other.

DEFINITION. With n indexing the size of the sets of observations, suppose that the test T.
(T’.) is used with confidence level . (’.) such that lim. . lim. ’. , where is a given positive
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