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Abstract—Logs, which record runtime information of modern
systems, are widely utilized by developers (and operators) in
system development and maintenance. Due to the ever-increasing
size of logs, data mining models are often adopted to help
developers extract system behavior information. However, before
feeding logs into data mining models, logs need to be parsed
by a log parser because of their unstructured format. Although
log parsing has been widely studied in recent years, users are
still unaware of the advantages of different log parsers nor the
impact of them on subsequent log mining tasks. Thus they often
re-implement or even re-design a new log parser, which would
be time-consuming yet redundant. To address this issue, in this
paper, we study four log parsers and package them into a toolkit
to allow their reuse. In addition, we obtain six insightful findings
by evaluating the performance of the log parsers on five datasets
with over ten million raw log messages, while their effectiveness
on a real-world log mining task has been thoroughly examined.

I. INTRODUCTION

Logs are widely used to record runtime information of

software systems, such as the timestamp of an event, the

unique ID of a user request, and the state of a task execution.

The rich information of logs enables system developers (and

operators) to monitor the runtime behaviors of their systems

and further track down system problems in production settings.

With the ever-increasing scale and complexity of modern

systems, the volume of logs is rapidly growing, for example,

at a rate of about 50 gigabytes (around 120∼200 million lines)

per hour [1]. Therefore, the traditional way of log analysis

that largely relies on manual inspection has become a labor-

intensive and error-prone task. To address this challenge, many

efforts have recently been made to automate log analysis by the

use of data mining techniques. Typical examples of log mining

include anomaly detection [2], [3], [4], program verification

[5], [6], problem diagnosis [7], [8], and security assurance

[9], [10]. However, raw log messages are usually unstructured,

because developers are allowed to record a log message using

free text for convenience and flexibility. To enable automated

mining of unstructured logs, the first step is to perform

log parsing, whereby unstructured raw log messages can be

transformed into a sequence of structured events.

Typically, a log message, as illustrated in the following

example, records a specific system event with a set of fields:

timestamp (recording the occurring time of the event), ver-

bosity level (indicating the severity level of the event, e.g.,

INFO), and raw message content (recording what has hap-

pened during system operation).

2008-11-09 20:35:32,146 INFO dfs.DataNode$DataXceive
r: Receiving block blk_-1608999687919862906 src: /10
.251.31.5:42506 dest: /10.251.31.5:50010

As observed in the example, the raw message content can

be divided into two parts: constant part and variable part.

The constant part constitutes the fixed plain text and remains

the same for every event occurrence, which can reveal the

event type of the log message. The variable part carries the

runtime information of interest, such as the values of states and

parameters (e.g., the IP address and port: 10.251.31.5:50010),

which may vary among different event occurrences. The goal

of log parsing is to extract the event by automatically separat-

ing the constant part and variable part of a raw log message,

and further transform each log message into a specific event

(usually denoted by its constant part). In this example, the

event can be denoted as “Receiving block * src: * dest:
*”, where the variable part is identified and masked using

asterisks. We will use “event” and “template” interchangeably

in this paper.

Log parsing is essential for log mining. Traditionally, log

parsing relies heavily on regular expressions to extract the

specific log event (e.g., SEC [11]). However, modern software

systems, with increasing size and complexity, tend to produce

a huge volume of logs with diverse log events. It requires non-

trivial efforts for manual creation and maintenance of regular

expression rules. Especially, when a system constantly evolves,

the rules of log parsing will most likely become outdated very

often. For example, Google’s systems, as studied in [12], have

been introduced with up to thousands of new log printing

statements every month. As a result, there is a high demand

for automated log parsing methods, capable of evolving with

the system.

To achieve this goal, recent studies have proposed a number

of data-driven approaches for automated log parsing (e.g.,

SLCT [13], IPLoM [14], LKE [3], LogSig [15]), in which

historical log messages are leveraged to train statistical models

for event extraction. Despite the importance of log parsing, we

found that, to date, there is a lack of systematic evaluations on
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the effectiveness and efficiency of the automated log parsing

methods available. Meanwhile, except SLCT [13] that was

released more than 10 years ago, there are no other ready-to-

use tool implementations of log parsers. Even with commercial

log management solutions, such as Splunk [16] and Logstash

[17], users need to provide complex configurations with cus-

tomized rules to parse their logs. In this context, engineers

and researchers have to implement their own log parsers when

performing log mining tasks (e.g., [5], [8], [18]), which would

be a time-consuming yet redundant effort. Besides, they are

likely unaware of the effectiveness of their implementations

compared to other competitive methods, nor do they notice

the impact of log parsing on subsequent log mining tasks.

To fill this significant gap, in this paper, we perform a

systematic evaluation study on the state-of-the-art log parsing

methods and their employment in log mining. In particular, we

intend to investigate the following three research questions:

RQ1: What is the accuracy of the state-of-the-art log
parsing methods?

RQ2: How do these log parsing methods scale with the
volume of logs?

RQ3: How do different log parsers affect the results of log
mining?

Towards this end, we have implemented four widely-employed

log parsers: SLCT [13], IPLoM [14], LKE [3], LogSig [15].

They are currently available on our Github1 as an open-

source toolkit, which can be easily re-used by practitioners

and researchers for future study. For evaluation, we have also

collected five large log datasets (with a total of over 10 million

raw log messages) produced by production software systems.

The evaluation is performed in terms of both accuracy and

efficiency in log parsing. Furthermore, we evaluate the impact

of different log parsers on subsequent log mining tasks, with

a case study on system anomaly detection (proposed in [2]).

Through this comprehensive evaluation, we have obtained

a number of insightful findings: Current log parsing methods

could obtain high overall accuracy (Finding 1), especially

when log messages are preprocessed with some domain knowl-

edge based rules (Finding 2). Clustering-based log parsing

methods could not scale well with the volume of logs (Finding
3), and the tuning of parameters (e.g., number of clusters)

is time-consuming (Finding 4). Log mining is effective only

when the parsing accuracy is high enough (Finding 5). Because

log mining can be sensitive to some critical events. 4% parsing

errors on critical events can cause an order of magnitude

performance degradation in log mining (Finding 6). These

findings as well as our toolkit portray a picture about the

current situation of log parsing methods and their effectiveness

on log mining, which we believe could provide valuable

guidance for future research in this field.

The remainder of this paper is organized as follows. Section

II reviews the existing log parsing methods, and Section III

reviews recent studies on log mining with a detailed example

of anomaly detection. The evaluation results and findings are

1https://github.com/cuhk-cse/logparser

2008-11-11 03:40:58 BLOCK* NameSystem.allocateBlock: /user /root/randtxt4/
_temporary/_task_200811101024_0010_m_000011_0/part-
00011.blk_904791815409399662
2008-11-11 03:40:59 Receiving block blk_904791815409399662 src: /
10.251.43.210:55700 dest: /10.251.43.210:50010
2008-11-11 03:41:01 Receiving block blk_904791815409399662 src: /
10.250.18.114:52231 dest: /10.250.18.114:50010
2008-11-11 03:41:48 PacketResponder 0 for block blk_904791815409399662 
terminating
2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864 
from /10.250.18.114
2008-11-11 03:41:48 PacketResponder 1 for block blk_904791815409399662 
terminating
2008-11-11 03:41:48 Received block blk_904791815409399662 of size 67108864 
from /10.251.43.210
2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated: 
10.251.43.210:50010 is added to blk_904791815409399662 size 67108864
2008-11-11 03:41:48 BLOCK* NameSystem.addStoredBlock: blockMap updated: 
10.250.18.114:50010 is added to blk_904791815409399662 size 67108864
2008-11-11 08:30:54 Verification succeeded for blk_904791815409399662

Raw Log�������s

 1    2008-11-11 03:40:58 Event1 
 2    2008-11-11 03:40:59 Event2
 3    2008-11-11 03:41:01 Event2
 4    2008-11-11 03:41:48 Event3
 5    2008-11-11 03:41:48 Event4
 6    2008-11-11 03:41:48 Event3
 7    2008-11-11 03:41:48 Event4
 8    2008-11-11 03:41:48 Event5
 9    2008-11-11 03:41:48 Event5
10    2008-11-11 08:30:54 Event6

Structured Logs
Event1    BLOCK* NameSystem.allocateBlock: *

Event2    Receiving block * src: * dest: *

Event3    PacketResponder * for block * terminating

Event4    Received block * of size * from *

Event5    BLOCK* NameSystem.addStoredBlock:  
  blockMap updated: * is added to * size * 

Event6    Verification succeeded for *

Log Events

Log Parsing

Fig. 1: Overview of Log Parsing

reported in Section IV. We discuss some limitations in Section

V. We then introduce the related work in Section VI, and

finally conclude this paper in Section VII.

II. LOG PARSING

This section first provides an overview of log parsing

and then describes four existing log parsing methods. These

methods are widely employed and thus become the main

subjects of our study.

A. Overview of Log Parsing

Fig. 1 illustrates an overview of log parsing. The raw log

messages, as shown in the figure, contain ten log messages

extracted from HDFS log data on Amazon EC2 platform [2].

The log messages are unstructured data, with timestamps and

raw message contents (some fields are omitted for simplicity

of presentation). In real-world cases, a log file may contain

millions of such log messages. The goal of log parsing is

to distinguish between constant part (fixed plain text) and

variable part (e.g., blk ID in the figure) from the log message

contents. Then, all the constant message templates can be

clustered into a list of log events, and structured logs can be

generated with each log message corresponding to a specific

event. For instance, the log message 2 is transformed to

“Event2” with a log template “Receiving block * src: * dest:
*”. The output of a log parser involves two files with log events
and structured logs. Log events record the extracted templates

of log messages, while structured logs contain a sequence of

events with their occurring times. Finally, the structured logs

after parsing can be easily processed by log mining methods,

such as anomaly detection [2] and deployment verification [6].
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B. Existing Log Parsing Methods

Log parsing has been widely studied in recent years. Among

all the approaches proposed, we choose four representative

ones, which are in widespread use for log mining tasks. With

the main focus on evaluations of these log parsing methods,

we only provide brief reviews of them; the details can be found

in the corresponding references.

1) SLCT

SLCT (Simple Logfile Clustering Tool) [13] is, to the best

of our knowledge, the first work on automated log parsing. The

work also released an open-source log parsing tool, which has

been widely employed in log mining tasks, such as event log

mining [19], symptom-based problem determination [20] and

network alert classification [21].

Inspired by association rule mining, SLCT works as a three-

step procedure with two passes over log messages: 1) Word
vocabulary construction. It makes a pass over the data and

builds a vocabulary of word frequency and position. 2) Cluster
candidates construction. It makes another pass to construct

cluster candidates using the word vocabulary. 3) Log template
generation. Clusters with enough log messages are selected

from candidates. Then, the log messages in each cluster can

be combined to generate a log template, while remaining log

messages are placed into an outlier cluster.

2) IPLoM

IPLoM (Iterative Partitioning Log Mining) [22] is a log

parsing method based on heuristics specially designed accord-

ing to the characteristics of log messages. This method has also

been used by a set of log mining studies (e.g., alert detection

[4], event log analysis [23] and event summarization [24]).

Specifically, IPLoM performs log parsing through a three-

step hierarchical partitioning process before template genera-

tion: 1) Partition by event size. Log messages are partitioned

into different clusters according to different lengths. 2) Parti-
tion by token position. For each partition, words at different

positions are counted. Then the position with the least number

of unique words is used to split the log messages. 3) Partition
by search for mapping. Further partition is performed on

clusters by searching for mapping relationships between the

set of unique tokens in two token positions selected using

a heuristic criterion. 4) Log template generation. Similar to

SLCT, the final step is to generate log templates from every

cluster.

3) LKE

LKE (Log Key Extraction) [3] is a log parsing method

developed by Microsoft, and has been applied in a set of tasks

on unstructured log analysis [3], [25].

LKE utilizes both clustering algorithms and heuristic rules

for log parsing: 1) Log clustering. Raw log messages are first

clustered by using hierarchical clustering algorithms with a

customized weighted edit distance metric. 2) Cluster splitting.
A splitting step based on heuristic rules is performed to further

split the clusters. 3) Log template generation. The final step is

to generate log templates from every cluster, similar to SLCT

and IPLoM.

4) LogSig

LogSig [15] is a more recent log parsing method, which has

been validated in [26].

LogSig works in three steps: 1) Word pair generation. Each

log message is converted to a set of word pairs to encode

both the word and its position information. 2) Log Clustering.
Based on the word pairs, a potential value is calculated for

each log message to decide which cluster the log message

potentially belongs to. After a number of iterations, the log

messages can be clustered. 3) Log template generation. In

each cluster, the log messages are leveraged to generate a log

template.

C. Tool Implementation

Among these log parsing methods, we only found an open-

source implementation on SLCT in C language. To enable our

evaluations, we have implemented the other three log parsing

methods in Python and also wrapped up SLCT as a Python

package. For ease of use, we define standard input/output

formats for these log parsers. As shown in Fig. 1, the input is

a file with raw log messages, while the output contains both a

file with log events and a file with structured logs. The output

can be easily fed into subsequent log mining tasks. Currently,

all our implementations have been open source on Github,

which can be used as a toolkit for log parsing. We believe

our toolkit could benefit other researchers and practitioners as

well.

It is also worth noting that our current implementation

targets at exactly reproducing the log parsing methods (as

described in original work) for our evaluation purposes. As we

will show in Section IV-C, LKE and LogSig do not scale well

on large datasets. Although we plan to improve their efficiency

in our future work, users may need to pay more attention when

using our current toolkit.

III. LOG MINING

In this section, we briefly introduce three representative log

mining tasks and explain how the adopted log parsing step can

affect the performance of these tasks. Further, we describe the

details of a specific log mining task, system anomaly detection,

which will be used for our evaluations.

A. Overview of Log Mining

Anomaly detection: Logs of Hadoop File System (HDFS)

are used by Xu et al. [2] to detect anomalies in a 203-nodes

HDFS. In this case, they employ source code based log parsers

(not evaluated because it is beyond the scope of this paper) to

find out the log events associated with each block ID, which

are further interpreted with a block ID-by-event count matrix.

This matrix is fed into a machine learning model to detect

anomalies of the system. If the log parser adopted does not

work well, some block IDs will match wrong log events, which

could ruin the generated matrix and lead to failure of the

anomaly detection approach.
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Deployment verification: Big data application is usually

developed in pseudo-cloud environment (with several PC

nodes) and finally deployed in a large-scale cloud environ-

ment. Runtime analysis and debugging of such applications in

deployment phase is a challenge tackled by Shang et al. in

[6]. To reduce the amount of log messages which needs to be

checked by developers, they compare the log event sequences

generated in pseudo-cloud and large-scale cloud. Only the

different log event sequences are reported to the developers,

which greatly alleviates their workload. In this task, a bad log

parser may produce wrong log event sequences. This could

largely degrade the reduction effect because their method is

based on the comparison of log event sequences.

System model construction: Computer systems are difficult

to debug and understand. To help developers gain insight into

system behaviors, Beschastnikh et al. [5] propose a tool called

Synoptic to build an accurate system model based on logs.

Synoptic requires parsed log events as input and generates

a finite state machine as the output system model. If an

unsuitable log parser is used, both initial model building step

and model refinement step will be affected. These may result

in extra branches or even totally different layout of the model.

B. System Anomaly Detection

To better study the impact of log parsing approaches on

the subsequent log mining task, we reproduce the anomaly

detection method proposed in [2] on its original HDFS logs

while using different log parsing approaches discussed in

Section. II-B. The anomaly detection method contains three

steps: log parsing, event matrix generation, and anomaly

detection.

1) Log Parsing: The input of the anomaly detection task is

a text file, each line of which is a raw log message recording an

event occurring on a block in HDFS. In this step, log parsing

method is adopted to figure out two things. One is all the

event types appearing in the input file. The other is the events

associated with each block, which distinguished by block ID.

These two are exactly in the two output files of our log parser

modules. We emphasize that the parsing output is not specific

to anomaly detection, but also suitable for other log mining

tasks.

2) Matrix Generation: Parsed results are used to generate

an event count matrix Y , which will be fed into the anomaly

detection model. In the event count matrix, each row represents

a block, while each column indicates one event type. The

value in cell Yi,j records how many times event j occurs

on block i. We could generate Y with one pass through the

parsed results. Instead of directly detecting anomaly on Y , TF-

IDF [27], which is a well-established heuristic in information

retrieval, is adopted to preprocess this matrix. Intuitively, TF-

IDF is to give lower weights to common event types, which

are less likely to contribute to the anomaly detection process.

3) Anomaly Detection: In this case, anomaly detection is

to find out suspicious blocks that may indicate problems

(e.g., HDFS namenode not updated after deleting a block).

The model used is Principle Component Analysis (PCA)

[2], which is a statistical model that captures patterns in

high-dimensional data by selecting representative coordinates

(principle components). PCA is used in this problem because

principle components can represent most frequent patterns of

events associated with blocks, which is called normal space

Sd. Specifically, the first k principle components are selected

to form Sd, while the remaining n − k dimensions form Sa

(anomaly space), where n is the number of columns (total

number of event type) of the matrix. In this task, each row in

the event count matrix is a vector y associated with a block.

The intuition of anomaly is the vector whose end point is far

away from normal space. The “distance” could be formalized

by squared prediction error SPE ≡ ||ya||2, where ya is the

projection of y on Sa. ya is calculated by ya = (I − PPT )y,

where P = [v1,v2,..., vk]. A block is marked as anomaly if its

corresponding y satisfies:

SPE = ||ya||2 > Qα,

where Qα is a threshold providing (1−α) confidence level.

For Qα, we choose α = 0.001 as in the original paper [2].

IV. EVALUATION STUDY

This section presents our study methodology and reports on

the detailed results for the proposed research questions.

A. Study Methodology

Log Datasets: To facilitate systematic evaluations on the

state-of-the-art log parsing methods, we have used five large

log datasets ranging from supercomputers (BGL and HPC)

to distributed systems (HDFS and Zookeeper) to standalone

software (Proxifier), with a total of 16,441,570 lines of log

messages. Table I provides a basic summarization of these

datasets. Logs are scarce data for research, because companies

are often reluctant to release their production logs due to

confidentiality issue. We obtained three log datasets, with

the generous support from their authors. Specifically, BGL

is an open dataset of logs collected from a BlueGene/L

supercomputer system at Lawrence Livermore National Labs

(LLNL), with 131,072 processors and 32,768GB memory [28].

HPC is also an open dataset with logs collected from a high

performance cluster at Los Alamos National Laboratory, which

has 49 nodes with 6,152 cores and 128GB memory per node

[29]. HDFS logs are collected in [2] by using a 203-node

cluster on Amazon EC2 platform. To enrich the log data for

evaluation purpose, we further collected two datasets: one from

a desktop software Proxifier, and the other from a Zookeeper

installation on a 32-node cluster in our lab.

In particular, the HDFS logs from [2] have well-established

anomaly labels, each of which indicates whether or not a

request for a data block operation is an anomaly. The labels are

made based on domain knowledge, which are suitable for our

evaluations on anomaly detection with different log parsers.

Specifically, the dataset with over 11 million log messages

records 575,061 operation requests with a total of 29 event

types. Among all the 575,061 requests, 16,838 are marked as

anomalies, which we use as ground truth in our evaluation.
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TABLE I: Summary of Our System Log Datasets

System Description #Logs Length #Events

BGL
BlueGene/L

4,747,963 10∼102 376Supercomputer

High Performance
HPC Cluster 433,490 6∼104 105

(Los Alamos)

Proxifier Proxy Client 10,108 10∼27 8
HDFS Hadoop File System 11,175,629 8∼29 29

Zookeeper
Distributed

74,380 8∼27 80System Coordinator

TABLE II: Parsing Accuracy of Log Parsing Methods

(Raw/Preprocessed)

BGL HPC HDFS Zookeeer Proxifier
SLCT 0.61/0.94 0.81/0.86 0.86/0.93 0.92/0.92 0.89/-
IPLoM 0.99/0.99 0.64/0.64 0.99/1.00 0.94/0.90 0.90/-
LKE 0.67/0.70 0.17/0.17 0.57/0.96 0.78/0.82 0.81/-

LogSig 0.26/0.98 0.77/0.87 0.91/0.93 0.96/0.99 0.84/-

Experimental Setup: All our experiments were run on a

Linux server with Intel Xeon E5-2670v2 CPU and 128GB

DDR3 1600 RAM, running 64-bit Ubuntu 14.04.2 with Linux

kernel 3.16.0. We use F-measure [30], [31], a commonly-

used evaluation metric for clustering algorithms, to evaluate

the parsing accuracy of log parsing methods. To calculate F-

measure, we manually obtain the ground truths for all logs of

these dataset. It is possible because we iteratively filter out logs

with confirmed event using regular expression. Experiments

about LKE and LogSig are run 10 times to avoid bias of

clustering algorithms, while others are run once because they

are deterministic. We note here that only the parts of free-text

log message contents are used in evaluating the log parsing

methods.

B. RQ1: Accuracy of Log Parsing Methods

To study the accuracy of different log parsing methods, we

use them to parse our collected real logs. As with the existing

work [15], we randomly sample 2k log messages from each

dataset in our evaluation, because the running time of LKE

and LogSig is too long on large log datasets (e.g., LogSig

requies 1 day to parse entire BGL data). The average results

of 10 runs are reported in Table II. We can observe that the

overall accuracy of these log parsing methods is high (larger

than 0.8 in most cases). Meanwhile, the overall accuracy on

HDFS, Zookeeper and Proxifier datasets is higher than that

obtained on the others. We found that this is mainly because

BGL and HPC logs involve much more event types, each of

which has a longer length than other datasets.

Especially, we found that LKE takes an aggressive clus-

tering strategy, which groups two clusters if any two log

messages between them has a distance smaller than a specified

threshold. This is why LKE has an accuracy drop on HPC

dataset, in which it clusters almost all the log messages into

one single cluster in the first step. BGL contains a lot of

log messages whose event is “generating core.*”, such as

“generating core.2275” and “generating core.852”. Intuitively,

the similarity of these two log messages are 50%, because half

of the words are different. LogSig tends to separate these log

messages into different clusters, which causes its low accuracy

on BGL. Particularly, IPLoM leverages some heuristic rules

developed on the characteristics of log messages, while other

log parsing methods rely on well-studied data mining models.

However, we found that IPLoM obtains the superior overall

accuracy (0.88) against other log parsing methods. This further

implies the particular importance of exploiting the unique

characteristics of log data in log parsing, which would shed

light on future design and improvement of a log parser.

Finding 1: Current log parsing methods achieve high

overall parsing accuracy (F-measure).

Instead of running log parsing methods directly on raw log

messages, developers usually preprocess log data with domain

knowledge. In this experiment, we study the impact of prepro-

cessing on parsing accuracy. Specifically, we remove obvious

numerical parameters in log messages (i.e., IP addresses in

HPC&Zookeeper&HDFS, core IDs in BGL, and block IDs

in HDFS). Proxifier does not contain words that could be

preprocessed based on domain knowledge. Preprocessing is

mentioned in LKE and LogSig; however, its importance has

not been studied.

In Table II, the numbers on the left/right side represent the

accuracy of log parsing methods on raw/preprocessed log data.

In most cases, accuracy of parsing is improved. Preprocessing

greatly increases the accuracy of SLCT/LKE/LogSig on one

dataset (in bold). However, preprocessing could not improve

the accuracy of IPLoM. It even slightly reduces IPLoM’s ac-

curacy on Zookeeper. This is mainly because IPLoM considers

preprocessing internally in its four-step process. Unnecessary

preprocessing may cause wrong splitting.

Finding 2: Simple log preprocessing using domain

knowledge (e.g. removal of IP address) can further

improve log parsing accuracy.

C. RQ2: Efficiency of Log Parsing Methods

In Fig. 2, we evaluate the running time of the log parsing

methods on all datasets by varying the number of raw log

messages. Notice that as the number of raw log messages

increases, the number of events becomes larger as well (e.g.,

60 events in BGL400 while 206 events in BGL40k). SLCT

and IPLoM, which are based on heuristic rules, scale linearly

with the number of log messages (note that Fig. 2 is in

logarithmic scale). Both of them could parse 10 million HDFS

log messages within five minutes. For the other two clustering-

based parsing methods, LogSig also scales linearly with the

number of log messages. However, its running time also

increases linearly with the number of events, which leads to

relatively longer parsing time (e.g, 2+ hours for 10m HDFS

log messages). The time complexity of LKE is O(n2), which

makes it unable to handle large-scale log data, such as BGL4m

and HDFS10m. Some running time of LKE is not plotted

because LKE could not parse some scales in a reasonable
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(a) BGL (b) HPC (c) HDFS (d) Zookeeper (e) Proxifier

Fig. 2: Running Time of Log Parsing Methods on Datasets in Different Size

(a) BGL (b) HPC (c) HDFS (d) Zookeeper (e) Proxifier

Fig. 3: Parsing Accuracy on Datasets in Different Size

time (may cause days or even weeks). To reduce the running

time of clustering-based log parsing method, parallelization is

a promising direction.

Finding 3: Clustering-based log parsing methods could

not scale well on large log data, which implies the

demand for parallelization.

The accuracy of log parser is affected by parameters. For

example, the number of clusters of LogSig decides the number

of events, which should be set beforehand. For large-scale

log data, it is difficult to select the most suitable parameters

by trying different values, because each run will cause a lot

of time. A normal solution is to tune the parameters in a

sample dataset and directly apply them on large-scale data. To

evaluate the feasibility of this approach, we tune parameters

for log parsing methods on 2k sample log messages, which are

used in our parsing accuracy experiment. In Fig. 3, we vary

the size of the dataset and evaluate the accuracy of the log

parsing method using these parameters. The results show that

the IPLoM performs consistently in most cases. SLCT is also

consistent in most cases except HPC. The accuracy of LKE

is volatile because of the weakness of its clustering algorithm

discussed in Section IV-B. LogSig performs consistently on

datasets with limited types of events, but its accuracy varies

a lot on datasets with many events (i.e., BGL and HPC).

Thus, for LKE and LogSig, directly using parameters tuned on

sample dataset is not practical, which makes parameter tuning

on large-scale logs time-consuming.

Finding 4: Parameter tuning for clustering-based log

parsing methods is a time-consuming task, especially on

large log datasets.

TABLE III: Anomaly Detection with Different Log Parsing

Methods (16,838 Anomalies)

Parsing Reported Detected False
Accuracy Anomaly Anomaly Alarm

SLCT 0.83 18,450 10,935 (64%) 7,515 (40%)

LogSig 0.87 11,091 10,678 (63%) 413 (3.7%)

IPLoM 0.99 10,998 10,720 (63%) 278 (2.5%)

Ground truth 1.00 11,473 11,195 (66%) 278 (2.4%)

D. RQ3: Effectiveness of Log Parsing Methods on Log Mining

To evaluate the effectiveness of log parsing methods on

log mining, we use three log parsers to tackle the parsing

challenge of a real-world anomaly detection task described in

Section III-B. In this task, there are totally 16,838 anomalies,

which are found manually in [2]. The parameters of SLCT and

LogSig are re-tuned to provide good Parsing Accuracy. LKE

is not employed because it could not handle this large amount

of data (10m+ lines) in reasonable time. The evaluation results

are illustrated in Table III. Reported Anomaly is the number

of anomalies reported by PCA, while adopting different log

parsers in the log parsing step. Detected Anomaly is the

number of true anomalies detected by PCA. False Alarm

means the number of wrongly detected anomalies. Ground

truth is the experiment using exactly correct parsed results

in anomaly detection. Notice that even the Ground truth could

not detect all anomalies because of the boundary of the PCA

anomaly detection model.

From Table III, we observe that the parsing accuracy of

these parsing methods are high (0.83 at least). LogSig and

IPLoM lead to nearly optimal results on the anomaly detec-

tion task. However, not all parsing methods lead to optimal

results. SLCT presents high Parsing Accuracy (0.83), but it
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brings about 7,515 False Alarms in anomaly detection, which

introduces extensive unnecessary human effort on inspection.

Finding 5: Log parsing is important because log mining is

effective only when the parsing accuracy is high enough.

From Table III, we observe that the parsing accuracy of

SLCT (0.83) and LogSig (0.87) is comparable. However, the

performance of log mining using LogSig as parser is an order

of magnitude better than that using SLCT. Log mining task

using SLCT presents 7,515 False Alarms, introducing much

more human inspection effort than that using LogSig, which

only leads to 413 False Alarms. Besides, the log mining tasks

using LogSig and IPLoM as parsers produce comparable re-

sults. However, LogSig presents 12% more parsing errors than

IPLoM. These reveal that log mining results are sensitive to

some critical events, which could cause an order of magnitude

performance degradation. These also indicate that f-measure,

despite pervasively used in clustering algorithm evaluation,

may not be suitable to evaluate the effectiveness of log parsing

methods on log mining.

Finding 6: Log mining is sensitive to some critical events.

4% errors in parsing could even cause an order of

magnitude performance degradation in log mining.

V. DISCUSSIONS

Limitations: 1) Diversity of dataset. Not all datasets (two

out of five) used in our evaluation are production data. This is

mainly because of the lack of public log data. We thanks those

who release log data [2], [29], [28], which greatly facilitates

our research. However, Zookeeper and HDFS are popular

systems adopted by many companies for their distributed

computing jobs. We believe these logs could reflect the logs

from industrial companies to some extent. 2) Diversity of log
mining tasks. Results of effectiveness of log parsing methods

are evaluated on anomaly detection, which may not generalize

to other log mining tasks. This mainly because log mining task

with released real-world data is scarce. However, the anomaly

detection task evaluated is presented in a paper [2] with more

than 250 citations, which is an important log mining task

widely studied [32], [33]. Besides, even conducting evaluation

on one log event mining task, our results reveal the inconspic-

uous fact that the performance of log mining is sensitive to

parsing errors on critical events. We will consider to extend

our methodology on more varied log data as well as log mining

tasks in our future work.

Potential Directions: 1) Distributed Log Parsing. Our

experiments show that current log parsing methods cost a

lot of time on big data input. The amount of log message

in industrial companies could be much larger. Log parsing

methods based on heuristic rules are fast but their parsing

result is not good enough to fulfill the need of log mining task.

Thus, to accelerate the parsing process and further improve

its accuracy, log parsing methods which run in a distributed

manner are in demand. Clustering algorithms which could

be parallelized should be considered. 2) Logging of Event

ID. We could also improve log parsing process by recording

event ID in logs in the first place. This approach is feasible

because developer writing log knows exactly which event a

log message statement match. Thus, adding event ID to log

message is a good logging practice [34] from the perspective

of log mining. Tools that could automatically add event ID into

source code may greatly facilitate the log parsing process.

VI. RELATED WORK

Log Analysis: Logs, as an important data source, are in

widespread use for system management tasks, such as anomaly

detection [3], [2], program verification [5], [6], performance

monitoring [8], [7], security assurance [9], [10], failure anal-

ysis [35], etc. As shown in our evaluation results, log parsing

is a critical step to enable effective log analysis. Thus, we

believe our work on log parsing could benefit future studies

on log analysis.

Log Parsing: Log parsing has been widely studied. Xu et al.

[2] implement a log parser with very high accuracy based on

source code analysis to infer log message templates. However,

in practice, source code is often unavailable or incomplete to

access, especially when third-party components are employed.

Some other work proposes data-driven approaches to log

parsing (e.g., SLCT [13], IPLoM [22], LKE [3], LogSig [15]),

in which data mining techniques are leveraged to extract log

message templates. But there is currently a lack of open-source

implementations on log parsing tools. Many researchers (e.g.,

[5], [8], [18]) and practitioners (as revealed in StackOverflow

questions [36], [37]) in this field have to implement their

own log parsers to deal with their log data. This is a time-

consuming yet redundant task. Our work not only provides

valuable insights on log parsing, but also releases open-

source tool implementations on the state-of-the-art log parsing

methods.

Empirical Study: Empirical studies have attracted consid-

erable attraction in recent years, because the empirical results

could usually provide useful insights and direct suggestions

to both academic researchers and industrial practitioners. In

particular, Yuan et al. [38], [7] perform a characteristic study

on the logging practices in open-source systems and further

provide actionable suggestions for improvement. Meanwhile,

some recent work [39], [40], [41] has studied the logging

practices in industry. Our work is another empirical study, with

a focus on evaluations on log parsing and its use in log mining.

VII. CONCLUSION

Log parsing is employed pervasively in log mining. How-

ever, due to the lack of studies on performance of log parsing

methods, users often re-design a specialized log parser, which

is time-consuming. In this paper, we study the performance

of four state-of-the-art log parsing methods through extensive

experiments. We also analyze the effectiveness of the log

parsing methods on a real-world log mining task with 10

million log messages. We provide six valuable findings on

the parsing accuracy of the log parsers, efficiency of the log

parsers, and their effectiveness on log mining. In addition, the
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source code of these log parsing methods is released for reuse

and further study.
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