

香港中文大學 The Chinese University of Hong Kong

Identifying Impactful Service System Problems via Log Analysis

Shilin He^{1,2}, Qingwei Lin³, Jian-Guang Lou³, Hongyu Zhang⁴, Michael R. Lyu^{1,2}, Dongmei Zhang³

¹The Chinese University of Hong Kong, Hong Kong, China ²Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China ³Microsoft Research, Beijing, China ⁴The University of Newcastle, Australia Modern systems are serving many aspects of our life

System reliability is very crucial!

An Real-World Example

[Statistics from: https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-apps/]

How to maintain these systems and keep them reliable?

Traditional tools (e.g., Java Debugger)

- - - W= Variables - - Breakpoints - Expression

Debug - C:\work\workspaces\birtFull\Birt Reports\book\script\charts\charteventorderreports\blocks.rptdesign - Eclipse SDK

🧏 🕩 🗉 🔳 🕅 🔍 👁 🥀 🔜 🕱 🍸 🛛 Name

File Edit Navigate Search Project Run Window Help

🏇 Debug 🖾 🛛 🆓 Servers

In practice:

Log is often the	sole data so	urce for trou	ubleshooting

_ O _ X

😭 🕸 Debug

🍋 🐗 🗖

			•			۲.	
🔝 applica	ation_session_ 👔 blocks.rpt	:design 🦷 📋 blocks.rpt	tdesign 🛛 🔭 16		Dutline 🛛	- E	
Script: C	Chart(MyChart).onRender				blocks.rptdesign		
98 99	98 importPackage (Packages.org.eclipse.birt.chart.model.attribute.impl ^ 99 9						
≫100 —	label = lerh.getLab	el();	l		Table(30).DetailRow(34).Cell(41)		
101	<pre>labelString = lal if(labelString =</pre>	Copy Ctrl+C	Value();		Chart(MyChart)		
103	label.getCaptic	n().getFont().set	<pre>set(32, 100, 235 Italic(true);</pre>);			
105	label.getCaptio	n().getFont().set	Rotation(5);		-		
4		m		Þ			
Consol	le 🛿 🖉 Tasks				🔲 🗶 🔆 🔒 🔐 🗗 🚝 🖃 🖻 🔻 📑	• -	
ReportScriptDebugProfile [Report] C:\jdk1.6.0_03\bin\javaw.exe (Feb 28, 2008 11:55:03 AM)							
>>>> Line changed to: 20							
>>>> Line changed to: 21							
۲							
·							

hard to apply in distributed systems

widely utilized by developers in system maintenance

Manual Inspecting of logs is infeasible!

Automated log analysis is highly in demand

Problem Identification

Normal

1) Huge log size 10+ Terabytes

2) Highly-imbalanced

3) Clustering alone cannot determine problematic or not

Imbalanced Log Data

Why is log data imbalanced?

Cloud-based online service systems

"Five Nines" of service availability

System executes normally in most cases and problems occasionally happen

Long tail distribution: An example

System KPIs (Key Performance Indicators)

measure the system's health status in a certain time period, i.e.,

Failure Rate

Service Availability

Average Request Latency

Periodically collected!

Framework

Framework of Log3C

Log Parsing

Raw Logs

	_							
		01	Name=Request (GET:http://AAA:1000/BBBB/sitedata.	html)				
		02	Leaving Monitored Scope (EnsureListItemsData) Execution Time=52.90131					
		03	TP request URL: /14/teamX/Emails/MrX(MrX@mail.com)/20Private%-1b1c- f0-b206-40a7279b2829.eml					
		04	HTTP Request method: GET					
		05	ΓTP request URL: /55/RST/UVWX/YZ/ABCDE/Lists/Attachments/docXX.doc					
	(06	Overridden HTTP request method: GET	erridden HTTP request method: GET				
		07	HTTP request URL: http://AAA:1000/BBBB/sitedata.html					
	(08	Leaving Monitored Scope (Request (POST:http://AAA:100/BBBB/sitedata.html Execution Time=334.319268903038					
	_							
		E1	Name=Request (*)					
		E2	Leaving Monitored Scope (*) Execution Time = *					
_		E3	HTTP Request method: *	Log Parsing				
Event		E4	HTTP request URL: *					
Templates		E5	Overridden HTTP request method: *					

Log Parsing

Logs in each time interval are parsed separately

Logs that share the same task ID are linked as a log sequence

Log3C–Sequence Vectorization

Weights from two perspectives:

- 1. IDF weighting
- 2. Importance weighting

$$w_{idf}(e) = \log\left(\frac{N}{n_e}\right)$$
 (1)

$$w(e) = \alpha * Norm(w_{idf}(e)) + (1 - \alpha) * w_{cor}(e)$$
(2)

Target: Conduct clustering on log sequences from each time interval

Challenge: Huge amount of data

Traditional Clustering:

Distance calculation between any two data samples

Cascading Clustering: Efficient and Effective

Impactful problems:

Can lead to the degradation of KPI

Target:

Identify clusters that are highly correlated with KPI's changes

Method: Model *Cluster sizes—KPI values* relation

Multivariate Linear Regression (MLR)

t-statistic hypothesis test

4. Correlation Analysis

Datasets: Real-world data from the service system X

✓ Logs during a certain time period on three different days

Data	Snapshot starts	#Log Seq (Size)	#Events	#Types
Data 1	Sept 5th 10:50	359,843 (722MB)	365	16
Data 2	Oct 5th 04:30	472,399 (996MB)	526	21
Data 3	Nov 5th 18:50	$184,751 \ (407 \mathrm{MB})$	409	14

Manual labelling from two aspects:

- 1. Does the log sequence indicate a problem?
- 2. What is the problem type?

Experiments

Evaluation Metrics:

1. Problem Detection (Binary Classification):

Precision / Recall / F1-Measure

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

2. Problem Identification (Clustering)

Normalized Mutual Information (NMI) ~ between [0, 1]

$$NMI(Y,C) = \frac{2 \times I(Y;C)}{[H(Y) + H(C)]}$$

Y = class labels H(.) = Entropy C = cluster labels I(Y;C) = Mutual Information b/w Y and C

3. Clustering Time (in seconds)

Accuracy of Problem **Detection**:

	Data 1	Precision	Recall	F1-measure
	PCA	0.465	0.946	0.623
	Invariants Mining	0.604	1	0.753
	m Log3C	0.900	0.920	0.910
	Data 2	Precision	Recall	F1-measure
	PCA	0.142	0.834	0.242
	Invariants Mining	0.160	0.847	0.269
	m Log3C	0.897	0.826	0.860
	Data 3	Precision	Recall	F1-measure
	PCA	0.207	0.922	0.338
	Invariants Mining	0.168	0.704	0.271
_	m Log3C	0.834	0.903	0.868

Accuracy of Problem Identification:

	Size	10k	50k	100k	200k
Data 1	Log3C-SC	0.659	0.706	0.781	0.822
	m Log3C	0.720	0.740	0.798	0.834
	Size	10k	50k	100k	200k
Data 2	Log3C-SC	0.610	0.549	0.600	0.650
	m Log3C	0.624	0.514	0.663	0.715
	Size	10k	50k	100k	180k
Data 3	Log3C-SC	0.601	0.404	0.792	0.828
	m Log3C	0.680	0.453	0.837	0.910

Log3C-SC is the comparison method, which replaces the *Cascading Clustering* with the *standard clustering* (HAC)

Experiments

Time Performance of Cascading Clustering

	Size	10k	50k	100k	200k
Data 1	SC	127.6	2319.2	9662.3	38415.5
	\mathbf{CC}	1.0	4.3	9.2	20.7
Data 2	Size	10k	50k	100k	200k
	SC	80.6	2469.1	8641.2	38614.0
	\mathbf{CC}	0.7	3.8	9.5	18.9
Data 3	Size	10k	50k	100k	180k
	SC	81.5	2417.2	8761.2	33728.3
	$\mathbf{C}\mathbf{C}$	0.8	4.0	8.8	18.3

1800x faster on Data 1 of size 200k

Experiments

Cascading Clustering with Different Sample Rate

Decreasing sample rate does not sacrifice the accuracy while greatly reducing the time

Contributions:

✓ Cascading Clustering, Efficient and Effective

✓ Propose Log3C by integrating cascading clustering and correlation analysis

 ✓ Log3C has been successfully applied in the actual maintenance of online service systems at Microsoft.

LogAdvisor (ICSE'15)

 Learning to log: A framework for determining optimal logging points

LogHub (in submission)

 A collection of system log datasets for massive log analysis

Logizer (ISSRE'16)

 A log analysis toolkit for automated anomaly detection

https://github.com/logpai

Thanks!