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Automated tools for understanding application behavior and its changes during the application life-
cycle are essential for many performance analysis and debugging tasks. Application performance
issues have an immediate impact on customer experience and satisfaction. A sudden slowdown
of enterprise-wide application can effect a large population of customers, lead to delayed projects,
and ultimately can result in company financial loss. Significantly shortened time between new
software releases further exacerbates the problem of thoroughly evaluating the performance of an
updated application. Our thesis is that online performance modeling should be a part of routine
application monitoring. Early, informative warnings on significant changes in application perfor-
mance should help service providers to timely identify and prevent performance problems and their
negative impact on the service. We propose a novel framework for automated anomaly detection
and application change analysis. It is based on integration of two complementary techniques: (i) a
regression-based transaction model that reflects a resource consumption model of the application,
and (ii) an application performance signature that provides a compact model of runtime behavior
of the application. The proposed integrated framework provides a simple and powerful solution
for anomaly detection and analysis of essential performance changes in application behavior. An
additional benefit of the proposed approach is its simplicity: It is not intrusive and is based on
monitoring data that is typically available in enterprise production environments. The introduced
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solution further enables the automation of capacity planning and resource provisioning tasks of
multitier applications in rapidly evolving IT environments.
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1. INTRODUCTION

Today’s IT and services departments are faced with the difficult and challeng-
ing task of ensuring that enterprise business-critical applications are always
available and provide adequate performance. As the complexity of IT systems
increases, performance analysis becomes time consuming and labor intensive
for support teams. For larger IT projects, it is not uncommon for the cost fac-
tors related to performance tuning, performance management, and capacity
planning to result in the largest and least controlled expense.

We address the problem of efficiently diagnosing essential performance
changes in application behavior in order to provide timely feedback to applica-
tion designers and service providers. Typically, preliminary performance profil-
ing of an application is done by using synthetic workloads or benchmarks which
are created to reflect a “typical application behavior” for “typical client trans-
actions.” While such performance profiling can be useful at the initial stages of
design and development of a future system, it may not be adequate for analysis
of performance issues and observed application behavior in existing production
systems. For one thing, an existing production system can experience a very
different workload compared to the one that has been used in its testing envi-
ronment. Secondly, frequent software releases and application updates make
it difficult and challenging to perform a thorough and detailed performance
evaluation of an updated application. When poorly performing code slips into
production and an application responds slowly, the organization inevitably loses
productivity and experiences increased operating costs.

Automated tools for understanding application behavior and its changes
during the application lifecycle are essential for many performance analysis
and debugging tasks. Yet, such tools are not readily available to application
designers and service providers. The traditional reactive approach is to set
thresholds for observed performance metrics and raise alarms when these
thresholds are violated. This approach is not adequate for understanding
the performance changes between application updates. Instead, a proactive
approach that is based on continuous application performance evaluation
may assist enterprises in reducing loss of productivity by time-consuming di-
agnosis of essential performance changes in application performance. With
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complexity of systems increasing and customer requirements for QoS growing,
the research challenge is to design an integrated framework of measurement
and system modeling techniques to support performance analysis of complex
enterprise systems. Our goal is to design a framework that enables automated
detection of application performance changes and provides useful classification
of the possible root causes. There are a few causes that we aim to detect and
classify.

—Performance Anomaly. By performance anomaly we mean that the observed
application behavior (e.g., current CPU utilization) cannot be explained by
the observed application workload (e.g., the type and volume of transactions
processed by the application suggests a different level of CPU utilization).
Typically, it might point to either some unrelated resource-intensive process
that consumes system resources or some unexpected application behavior
caused by not fully debugged application code.

—Application Transaction Performance Change. By transaction performance
change we mean an essential change (increase or decrease) in transaction
processing time, for example, as a result of the latest application update. If
the detected change indicates an increase of the transaction processing time
then an alarm is raised to assess the amount of additional resources needed
and provides the feedback to application designers on the detected change
(e.g., is this change acceptable or expected?).

It is important to distinguish between performance anomaly and workload
change. A performance anomaly is indicative of abnormal situation that needs
to be investigated and resolved. On the contrary, a workload change (i.e., varia-
tions in transaction mix and load) is typical for Web-based applications. There-
fore, it is highly desirable to avoid false alarms raised by the algorithm due to
workload changes, though information on observed workload changes can be
made available to the service provider.

Effective models of complex enterprise systems are central to capacity plan-
ning and resource provisioning. In Next Generation Data Centers (NGDC),
where server virtualization provides the ability to slice larger, underutilized
physical servers into smaller, virtual ones, fast and accurate performance mod-
els become instrumental for enabling applications to automatically request
necessary resources and support design of utility services. Performance man-
agement and maintenance operations come with more risk and an increased
potential for serious damage if they are done wrong, and/or decision making is
based on “erroneous” data. The proposed approach aims to automatically detect
the performance anomalies and application changes. It effectively serves as the
foundation for an accurate, online performance modeling, automated capacity
planning, and provisioning of multitier applications using simple regression-
based analytic models [Zhang et al. 2007b].

The rest of the article is organized as follows. Section 2 introduces client ver-
sus server transactions. Section 3 provides two motivating examples. Section 4
introduces a regression-based modeling technique for performance anomaly
detection. Section 5 presents a case study to validate the proposed technique
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and discusses its limitations. Section 6 introduces a complementary technique
to address observed limitations of the first method. Section 6.3 extends the
earlier case study to demonstrate the additional power of the second method,
and promotes the integrated solution based on both techniques. Section 7 ap-
plies the results of the proposed technique to automate and improve accuracy
of capacity planning in production systems. Section 8 describes related work.
Finally, a summary and conclusions are given in Section 9.

2. CLIENT VS. SERVER TRANSACTIONS

The term transaction is often used with different meanings. In our work, we
distinguish between a client transaction and a server transaction.

A client communicates with a Web service (deployed as a multitier applica-
tion) via a Web interface, where the unit of activity at the client side corresponds
to a download of a Web page. In general, a Web page is composed of an HTML
file and several embedded objects such as images. This composite Web page is
called a client transaction.

Typically, the main HTML file is built via dynamic content generation (e.g.,
using Java servlets or JavaServer Pages) where the page content is generated
by the application server to incorporate customized data retrieved via multiple
queries from the back-end database. This main HTML file is called a server
transaction. Typically, the server transaction is responsible for most latency
and consumed resources [Cherkasova et al. 2003] (at the server side) during
client transaction processing.

A client browser retrieves a Web page (client transaction) by issuing a se-
ries of HTTP requests for all the objects: First it retrieves the main HTML
file (server transaction) and after parsing it, the browser retrieves all the em-
bedded objects. Thus, at the server side, a Web page retrieval corresponds to
processing multiple requests that can be retrieved either in sequence or via
multiple concurrent connections. It is common that a Web server and applica-
tion server reside on the same hardware, and shared resources are used by the
application and Web servers to generate main HTML files as well as to retrieve
page-embedded objects. Since the HTTP protocol does not provide any means
to delimit the beginning or the end of a Web page, it is very difficult to accu-
rately measure the aggregate resources consumed due to Web page processing
at the server side. There is no practical way to effectively measure the service
times for all page objects, although accurate CPU consumption estimates are
required for building an effective application provisioning model. To address
this problem, we define a client transaction as a combination of all the pro-
cessing activities at the server side to deliver an entire Web page requested by
a client, that is, generate the main HTML file as well as retrieve embedded
objects and perform related database queries.

We use client transactions for constructing a “resource consumption” model
of the application. The server transactions reflect the main functionality of the
application. We use server transactions for analysis of the application perfor-
mance changes (if any) during the application lifecycle.
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Fig. 1. CPU utilization of OVSD service.

3. TWO MOTIVATING EXAMPLES

Frequent software updates and shortened application development time dra-
matically increase the risk of introducing poorly performing or misconfigured
applications to production environment. Consequently, the effective models
for online, automated detection of whether application performance deviates
from its normal behavior pattern become a high-priority item on the service
provider’s “wish list.”

Example 1. Resource Consumption Model Change. In earlier papers
[Zhang et al. 2007a, 2007b], a regression-based approach is introduced for re-
source provisioning of multitier applications. The main idea is to use a statis-
tical linear regression for approximating the CPU demands of different trans-
action types (where a transaction is defined as a client transaction). However,
the accuracy of the modeling results critically depends on the quality of moni-
toring data used in the regression analysis: If collected data contain periods of
performance anomalies or periods when an updated application exhibits very
different performance characteristics, then this can significantly impact the
derived transaction cost and can lead to an inaccurate provisioning model.
Figure 1 shows the CPU utilization (red line) of the HP Open View Service
Desk (OVSD) over a duration of 1 month (each point reflects an 1-hour mon-
itoring period). Most of the time, CPU utilization is under 10%. Note that for
each weekend, there are some spikes of CPU utilization (marked with circles
in Figure 1) which are related to administrator system management tasks and
which are orthogonal to transaction processing activities of the application.
Once provided with this information, we can use only weekdays’ monitoring
data for deriving CPU demands of different transactions of the OVSD ser-
vice. As a result, the derived CPU cost accurately predicts CPU requirements
of the application and can be considered as a normal resource consumption
model of the application. Figure 1 shows predicted CPU utilization which is
computed using the CPU cost of observed transactions. The predicted CPU
utilization accurately models the observed CPU utilization with an exception
of weekends’ system management periods. However, if we were not aware of
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Fig. 2. The transaction latency measured by HP (Mercury) Diagnostics tool.

“performance anomalies” over weekends, and would use all the days (i.e., includ-
ing weekends) of the 1-month dataset, the accuracy of regression would be much
worse (the error would double) and this would significantly impact the modeling
results.

Example 2. Updated Application Performance Change. Another typical sit-
uation that requires a special handling is the analysis of the application per-
formance when it was updated or patched. Figure 2 shows the latency of two
application transactions, Tr1 and Tr2, over time (here, a transaction is defined
as a server transaction).

Typically, tools like HP (Mercury) Diagnostics [Mercury Diagnostics] are
used in IT environments for observing latencies of the critical transactions and
raising alarms when these latencies exceed the predefined thresholds. While
it is useful to have insight into the current transaction latencies that implic-
itly reflect the application and system health, this approach provides limited
information on the causes of the observed latencies and cannot be used directly
to detect the performance changes of an updated or modified application. The
latencies of both transactions vary over time and get visibly higher in the sec-
ond half of the figure. This does not look immediately suspicious because the
latency increase can be a simple reflection of a higher load in the system.

The real story behind this figure is that after timestamp 160, we began
executing an updated version of the application code where the processing time
of transaction Tr1 is increased by 10 ms. However, by looking at the measured
transaction latency over time we can not detect this: The reported latency metric
does not provide enough information to detect this change.

Problem Definition. Application servers are a core component of a multitier
architecture. A client communicates with a service deployed as a multitier appli-
cation via request-reply transactions. A typical server reply consists of the Web
page dynamically generated by the application server. The application server
may issue multiple database calls while preparing the reply. Understanding the
cascading effects of the various tasks that are sprung by a single request-reply
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transaction is a challenging task. Furthermore, significantly shortened time
between new software releases further exacerbates the problem of thoroughly
evaluating the performance of an updated application.

Typically, a performance analyst needs to perform additional data-cleansing
procedures to identify and filter out time periods that correspond to abnor-
mal application performance. These procedures are manual and time consum-
ing, and are based on offline data analysis and ad hoc techniques [Arlitt and
Farkas 2005]. Inability to extract “correct” data while eliminating erroneous
measurements can lead to inappropriate decisions that have significant tech-
nical and business consequences. At the same time, such a cleansing technique
cannot identify periods when the updated or patched application performs “nor-
mally” but its performance exhibits a significant change. While there could be
a clear difference in system performance before and after such an application
update, the traditional data-cleansing techniques fail to identify such a change.
In this way, while collected measurements are correct and accurate, the overall
dataset has measurements related to two, potentially very different, systems:
before the application update and after the application update. For accurate
and efficient capacity planning and modeling future system performance, one
needs to identify a subset of measurements that reflect the updated/modified
application.

The goal of this article is to design an online approach that automatically
detects the performance anomalies and application changes. Such a method
enables a set of useful performance services:

—early warnings on deviations in expected application performance,
—raise alarms on abnormal resource usage,
—create a consistent dataset for capacity planning and modeling future appli-

cation resource requirements (by filtering out performance anomalies and
pointing out the periods of changed application performance).

The next sections present our solution that is based on integration of two com-
plementary techniques: (i) a regression-based transaction model that correlates
processed transactions and consumed CPU time to create a resource consump-
tion model of the application; and (ii) an application performance signature that
provides a compact model of runtime behavior of the application.

4. REGRESSION-BASED APPROACH FOR DETECTING MODEL CHANGES
AND PERFORMANCE ANOMALIES

We use statistical learning techniques to model the CPU demand of the appli-
cation transactions (client transactions) on a given hardware configuration, to
find the statistically significant transaction types, to discover the time segments
where the resource consumption of a given application can be approximated
by the same regression model, to discover time segments with performance
anomalies, and to differentiate among application performance changes and
workload-related changes as transactions are accumulated over time.

Prerequisite to applying regression is that a service provider collects the
application server access log that reflects all processed client transactions
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(i.e., client Web page accesses), and the CPU utilization of the application
server(s) in the evaluated system.

4.1 Regression-Based Transaction Model

To capture the site behavior across time we observe a number of different client
transactions over a monitoring window t of fixed length L. The transaction mix
and system utilization are recorded at the end of each monitoring window.
Assuming that there are totally n transaction types processed by the server, we
use the following notation.

—Tm denotes the time segment for monitored site behavior and |Tm| denotes
the cardinality of the time segment Tm, that is, the number of monitoring
windows in Tm;

— Ni,t is the number of transactions of the ith type in the monitoring window
t, where 1 ≤ i ≤ n;

—UCPU ,t is the average CPU utilization of application server during this mon-
itoring window t ∈ Tm;

— Di is the average CPU demand of transactions of the ith type at application
server, where 1 ≤ i ≤ n;

— D0 is the average CPU overhead related to activities that “keep the system
up”. There are operating system processes or background jobs that consume
CPU time even when there are no transactions in the system.

From the utilization law, one can easily obtain Eq. (1) for each monitoring
window t.

D0 +
n∑

i=1

Ni,t · Di = UCPU ,t · L (1)

Let Ci,m denote the approximated CPU cost of Di for 0 ≤ i ≤ n in the time
segment Tm. Then, an approximated utilization U ′

CPU ,t can be calculated as

U ′
CPU ,t = C0,m +

∑n
i=1 Ni,t · Ci,m

L
, (2)

To solve for Ci,m, one can choose a regression method from a variety of known
methods in the literature. A typical objective for a regression method is to
minimize either the absolute error or the squared error. In all experiments, we
use the nonnegative Least Squares Regression (nonnegative LSQ) provided by
MATLAB to obtain Ci,m. This nonnegative LSQ regression minimizes the error

εm =
√∑

t∈Tm

(U ′
CPU ,t − UCPU ,t)2.

such that Ci,m ≥ 0.
When solving a large set of equations with collected monitoring data over a

large period of time, a direct (naive) linear regression approach would attempt
to set nonzero values for as many transactions as it can to minimize the error
when the model is applied to the training set. However, this may lead to poor
prediction accuracy when the model is later applied to other datasets, as the
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model may have become too finely tuned to the training set alone. In statistical
terms, the model may “overfit” the data if it sets values to some coefficients to
minimize the random noise in the training data rather than to correlate with
the actual CPU utilization. In order to create a model which utilizes only the
statistically significant transactions, we use stepwise linear regression [Draper
and Smith 1998] to determine which set of transactions are the best predictors
for the observed CPU utilization.

The algorithm initializes with an “empty” model which includes none of the
transactions. At each following iteration, a new transaction is considered for
inclusion in the model. The best transaction is chosen by adding the transaction
which results in the lowest mean squared error when it is included.

For each Ni (0 ≤ i ≤ n ) we try to solve the set of equations in the form

D0 + Ni,t · Di = UCPU ,t · L, (3)

while minimizing the error

εi =
√∑

t∈Tm

(U ′
CPU ,t − UCPU ,t)2.

Once we performed this procedure for all the transactions, we select the
transaction Nk (0 ≤ k ≤ n ) which results in the lowest mean squared error,
that is, such that

εk = min
0≤i≤N

εi.

Then, transaction Nk is added to the empty set. After that, the next iteration
is repeated to choose the next transaction from the remaining subset to add to
the set in a similar way.

Before the new transaction is included in the model, it must pass an F-test
which determines if including the extra transaction results in a statistically
significant improvement in the model’s accuracy. If the F-test fails, then the
algorithm terminates since including any further transactions cannot provide
a significant benefit. The coefficients for the selected transactions are calculated
using the linear regression technique described before. The coefficient for the
transactions not included in the model is set to zero.

Typically, for an application with n transactions, one needs at least n + 1
samples to do regression using all n transactions. However, since we do trans-
action selection using a stepwise linear regression and an F-test, we can do
regression by including only a subset of n transactions in the regression model.
This allows us to apply regression without having to wait all n + 1 samples.

4.2 Algorithm Outline

Using statistical regression, we can build a model that approximates the overall
resource cost (CPU demand) of application transactions on a given hardware
configuration. However, the accuracy of the modeling results critically depends
on the quality of monitoring data used in the regression analysis: If the col-
lected data contain periods of performance anomalies or periods when an up-
dated application exhibits very different performance characteristics, then this
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Fig. 3. Finding optimal segmentation and detecting anomalies.

Fig. 4. Model reconciliation.

can significantly impact the derived transaction cost and can lead to an inac-
curate approximation model. The challenge is to design an online method that
alarms service providers of model changes related to performance anomalies
and application updates. Our method has the following three phases.

—Finding the Optimal Segmentation. This stage of the algorithm identifies the
time points when the transaction cost model exhibits a change. For example,
as shown in Figure 3, the CPU costs of the transactions (Tr1, Tr2, . . . , Trn)
during the time interval (T0, T1) are defined by a model (C0, C1, C2, . . . , Cn).
After that, for a time interval (T1, T2) there was no a single regression model
that provides the transaction costs within a specified error bound. This time
period is signaled as having anomalous behavior. As for time interval (T2, T3),
the transaction cost function is defined by a new model (C′

0, C′
1, C′

2, . . . , C′
n).

—Filtering Out the Anomalous Segments. Our goal is to continuously maintain
the model that reflects a normal application resource consumption behav-
ior. At this stage, we filter out anomalous measurements identified in the
collected dataset, for example, the time period (T1, T2) that corresponds to
anomalous time fragment as shown in Figure 3.

—Model Reconciliation. After anomalies have been filtered out, one would like
to unify the time segments with no application change/update/modification
by using a single regression model: We attempt to “reconcile” two different
segments (models) by using a new common model as shown in Figure 4.

We try to find a new solution (new model) for combined transaction data
in (T0, T1) and (T2, T3) with a given (predefined) error. If two models can
be reconciled then an observed model change is indicative of the workload
change and not of the application change. We use the reconciled model to
represent application behavior across different workload mixes.

If the model reconciliation does not work, then it means these models indeed
describe different consumption models of application over time, and it is indica-
tive of an actual application performance change.
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4.3 Online Algorithm Description

This section describes the three phases of the online model change and anomaly
detection algorithm in more detail.

(1) Finding the optimal segmentation. This stage of the algorithm identi-
fies the time points where the transaction cost model exhibits a change. In
other words, we aim to divide a given time interval T into time segments Tm

(T = ⋃
Tm) such that within each time segment Tm the application resource

consumption model and the transaction costs are similar. We use a cost-based
statistical learning algorithm to divide the time into segments with a similar
regression model. The algorithm is composed of two steps:

—construction of weights for each time segment Tm;
—dynamic programming to find the optimum segmentation (that covers a given

period T ) with respect to the weights.

The algorithm constructs an edge with a weight, wm, for each possible time
segment Tm ⊆ T . This weight represents the cost of forming the segment Tm.
Intuitively, we would like the weight wm to be small if the resource cost of
transactions in Tm can be accurately approximated with the same regression
model, and to be large if the regression model has a poor fit for approximating
the resource cost of all the transactions in Tm.

The weight function, wm is selected as a Lagrangian sum of two cost func-
tions: w1,m and w2,m, where

—the function w1,m is the total regression error over Tm:

w1,m =
√∑

t∈Tm

(U ′
CPU ,t − UCPU ,t)2,

—the function w2,m is a length penalty function. A length penalty function
penalizes shorter time intervals over longer time intervals and discourages
the dynamic programming from breaking the time into segments of very short
length (since the regression error can be significantly smaller for a shorter
time segments). It is a function that decreases as the length of the interval
Tm increases. We set it to a function of the entropy of segment length as

w2,m = −(|Tm|) · log(|Tm|/|T |).
Our goal is to divide a given time interval T into time segments Tm (T =⋃

Tm) that minimize the Lagrangian sum of w1,m and w2,m over the considered
segments, that is, the segmentation that minimiz

W1(T ) + λW2(T ), (4)

where the parameter λ is the Lagrangian constant that is used to control the
average regression error εallow (averaged over T ) allowed in the model, and

W1(T ) =
∑

m

w1,m and W2(T ) =
∑

m

w2,m.

We denote the set of all possible segmentations of T into segments by S. For
instance, for T with three monitoring windows, t1,t2,t3, S would have 4 ele-
ments: (t1,t2,t3), (t1

⋃
t2,t3), (t1, t2

⋃
t3), and (t1

⋃
t2

⋃
t3). Each element of the
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set S consists of segments, that is, Tm’s. For instance, (t1, t2
⋃

t3) consists of the
segments t1 and t2

⋃
t3.

The minimization problem defined by formula (4) can be expressed as

s∗ = argmins∈SW (s) = W1(s) + λW2(s), (5)

where λ is the fixed Lagrangian constant, s denotes an element of S, and

W1(s) =
∑
Tm∈s

w1,m

and

W2(s) =
∑
Tm∈s

w2,m.

We first provide the segmentation algorithm for a fixed value of λ (we have an
explanation after the algorithm, how to find the “right” value of λ to be used in
the algorithm for a given, allowable regression error ε).

In the algorithm, l represents the index of the monitoring window, where
the monitoring windows are denoted by tl . We represent segments using the
following form: [t j , tk]. It indicates the segment that extends from monitoring
window t j to monitoring window tk . W tl denotes the minimum Lagrangian
weight sum for segmentation of the first l time points, that is, t1,t2, . . . tl .

(1) Set W t1 = 0, and set l = 2.
(2) For 1 ≤ j < l , set w1,[t j ,tk ] to the total regression error when a regression

model is fit over the time samples in the segment [t j , tk], then set

w2,[t j ,tk ] = −|tk − t j |log(|tk − t j |/|T |)
and, finally, set

w[t j ,tk ] = w1,[t j ,tk ] + λw2,[t j ,tk ].

(3) Set W tl = min1≤ j≤l−1(W tj + w[t j ,tl ]).
(4) Set j ∗ = argmin1≤ j≤l−1(W tj + w[t j ,tl ]).
(5) Then the optimum segmentation is the segmentation result for j ∗ (already

obtained in previous iterations) augmented by the single segment from j ∗

to l .
(6) Set l = l + 1, and return to step 2.

In the preceding algorithm, step 2 sets the values for the w1, w2, and w terms,
and step 3 and step 4 apply dynamic programming to find the minimum cost
W l of segmentation up to the l th time sample.

The algorithm shows the best segmentation for a fixed value of λ. Here is the
additional sequence of steps to find the appropriate value of λ for the use in the
algorithm. In our implementation, we first decide on an allowable regression
error ε (typically, provided by the service provider), and then seek the λ that
gives the best segmentation for that allowable error ε by iterating over different
values of λ = λ0, λ1, . . . , λk . In particular, if the algorithm for λ0 = 1 results in
the optimal segmentation with regression error greater than ε, then we choose
λ1 = 2 · λ0, and repeat the segmentation algorithm. Once we find a value λk
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that results in the optimal segmentation with regression error smaller than ε,
then we use a binary search between values λk−1 and λk to find the best value
of λ for a use in the algorithm with a given allowable regression error ε.

Let us consider an example to explain the intuition for how the Eq. (5) works.
Let us first consider the time interval T with no application updates or changes.
Let time interval T be divided into two consecutive time segments T1 and T2.

First of all, W1(T1) + W1(T2) ≤ W (T ), hence there are two possibilities.

—One possibility is that a regression model constructed over T is also a good
fit over time segments T1 and T2, and the combined regression error of this
model over time segments T1 and T2 is approximately equal to the total
regression error over the original time interval T .

—The other possibility is that there could be different regression models that
are constructed over shorter time segments T1 and T2 with the sum of regres-
sion errors smaller than a regression error obtained when a single regression
model is constructed over T .

For the second possibility, the question is whether the difference is due to a
noise or small outliers in T , or do segments T1 and T2 indeed represent different
application behaviors, that is, “before” and “after” the application modification
and update.

This is where the W2 function in Eq. (4) comes into play. The term
log(|Tm|/|T |) is a convex function of |Tm|. Therefore, each time a segment is
split into multiple segments, W2 increases. This way, the original segment T
results in the smallest W2 compared to any subset of its segments, and λ can
be viewed as a parameter that controls the amount of regression error allowed
in a segment.

By increasing the value of λ, we allow a larger W1, regression error, in the
segment. This helps in reconciling T1 and T2 into a single segment representa-
tion T . In such a way, by increasing the value of λ one can avoid the incorrect
segmentations due to noise or small outliers in the data T . When an average re-
gression error over a single segment T is within the allowable error εallow (εallow

is set by a service provider), the overall function (4) results in the smallest value
for the single time segment T compared to the values computed to any of its
subsegments, for instance, T1 and T2. Therefore, our approach groups all time
segments defined by the same CPU transaction cost (or the same regression
model) into a single segment.

By decreasing the value of λ, one can prefer the regression models with a
smaller total regression error on the data, while possibly increasing the number
of segments over the data.

There is a trade-off between the allowable regression error (it is a given
parameter for our algorithm) and the algorithm outcome. If the allowable re-
gression error is set too low then the algorithm may result in a high number
of segments over data, with many segments being neither anomalies or ap-
plication changes (these are the false alarms, typically caused by significant
workload changes). From the other side, by setting the allowable regression er-
ror too high, one can miss a number of performance anomalies and application
changes that happened in these data and masked by the high allowable error.
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(2) Filtering out the anomalous segments. An anomalous time segment is
one where observed CPU utilization cannot be explained by an application
workload, that is, measured CPU utilization cannot be accounted for by the
transaction CPU cost function. This may happen if an unknown background
process(es) is using the CPU resource either at a constant rate (e.g., using 40%
of the CPU at every monitoring window during some time interval) or randomly
(e.g., the CPU is consumed by the background process at different rates at
every monitoring window). It is important to be able to detect and filter out the
segments with anomalous behavior, as otherwise the anomalous monitoring
windows will corrupt the regression estimations of the time segments with
normal behavior. Furthermore, detecting anomalous time segments provides
an insight into the service problems and a possibility to correct the problems
before they cause major service failure.

We consider a time segment Tm as anomalous if one of the following condi-
tions take place.

—The constant coefficient, C0,m, is large. Typically, C0,m is used in the regres-
sion model to represent the average CPU overhead related to “idle system”
activities. There are operating system processes or system background jobs
that consume CPU time even when there is no transaction in the system. The
estimate for the “idle system” CPU overhead over a monitoring window is set
by the service provider. When C0,m exceeds this threshold a time segment Tm

is considered as anomalous.
—The segment length of Tm is short, indicating that a model does not have a good

fit that ensures the allowed error threshold. Intuitively, the same regression
model should persist over the whole time segment between the application
updates/modifications unless something else, anomalous, happens to the ap-
plication consumption model and it manifests itself via the model changes.

(3) Model reconciliation. After anomalies have been filtered out, one would
like to unify the time segments with no application change/update/modification
by using a single regression model. This way, it is possible to differentiate be-
tween the segments with application changes from the segments which are the
parts of the same application behavior and were segmented out by the anoma-
lies in between. In such cases, the consecutive segments can be reconciled into a
single segment after the anomalies in the data are removed. If there is an appli-
cation change, on the other hand, the segments will not be reconciled, since the
regression model that fits to the individual segments will not fit to the overall
single segment without exceeding the allowable error (unless the application
performance change is so small that it still fits within the allowable regression
error).

4.4 Algorithm Complexity

The complexity of the algorithm is O(M 2), where M is the number of time
samples collected so far. This is problematic since the complexity is quadratic
in a term that increases as more time samples are collected. In our case study, we
have not experienced a problem as we used only 30 hours of data with 1-minute
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Table I. Testbed Components

Processor RAM
Clients (Emulated-Browsers) Pentium D / 6.4 GHz 4 GB
Front Server - Apache/Tomcat 5.5 Pentium D / 3.2 GHz 4 GB
Database Server - MySQL5.0 Pentium D / 6.4 GHz 4 GB

intervals, namely M = 1800. However, in measuring real applications over long
periods of time, complexity is likely to become challenging. To avoid this, one
solution might retain only the last X samples, where X should be a few orders
larger than the number of transaction types n and/or cover a few weeks/months
of historic data. This way, one would have a sufficiently large X to get accurate
regression results, yet the complexity will not be too large.

5. CASE STUDY

In this section, we validate the proposed regression-based transaction model
as an online solution for anomaly detection and performance changes in appli-
cation behavior and discuss limitations of this approach. The next subsection
describes the experimental environment used in the case study as well as a
specially designed workload for evaluating the proposed approach.

5.1 Experimental Environment

In our experiments, we use a testbed of a multitier e-commerce site that sim-
ulates the operation of an online bookstore, according to the classic TPC-W
benchmark [TPC-W Benchmark]. This allows to conduct experiments under
different settings in a controlled environment in order to evaluate the proposed
anomaly detection approach. We use the terms “front server” and “application
server” interchangeably in this article. Specifics of the software/hardware used
are given in Table I.

Typically, client access to a Web service occurs in the form of a session consist-
ing of a sequence of consecutive individual requests. According to the TPC-W
specification, the number of concurrent sessions (i.e., customers) or emulated
browsers (EBs) is kept constant throughout the experiment. For each EB, the
TPC-W benchmark statistically defines the user session length, the user think
time, and the queries that are generated by the session. The database size is
determined by the number of items and the number of customers. In our exper-
iments, we use the default database setting, that is, the one with 10,000 items
and 1,440,000 customers.

TPC-W defines 14 different transactions which are classified as either of
browsing or ordering types as shown in Table II. We assign a number to each
transaction (shown in parentheses) according to their alphabetic order. Later,
we use these transaction ids for presentation convenience in the figures.

According to the weight of each type of activity in a given traffic mix, TPC-W
defines 3 types of traffic mixes as follows:

—the browsing mix with 95% browsing and 5% ordering;
—the shopping mix with 80% browsing and 20% ordering;
—the ordering mix with 50% browsing and 50% ordering.
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Table II. 14 Basic Transactions and Their Types in
TPC-W

Browsing Type Ordering Type
Home (8) Shopping Cart (14)
New Products (9) Customer Registration (6)
Best Sellers (3) Buy Request (5)
Product detail (12) Buy Confirm (4)
Search Request (13) Order Inquiry (11)
Execute Search (7) Order Display (10)

Admin Request (1)
Admin Confirm (2)

Fig. 5. The pseudocode for the random process.

One drawback of directly using the transaction mixes described previously
in our experiments is that they are stationary, that is, the transaction mix
and load do not change over time. Since real enterprise and e-commerce ap-
plications are typically characterized by nonstationary transaction mixes (i.e.,
with changing transaction probabilities in the transaction mix over time) un-
der variable load [Douglis et al. 1997; Cherkasova and Karlsson 2001; Stew-
art et al. 2007] we have designed an approach that enables us to generate
nonstationary workloads using the TPC-W setup. To generate a nonstationary
transaction mix with variable transaction mix and load we run 4 processes as
follows:

—the three concurrent processes each executing one of the standard transaction
mixes (i.e., browsing, shopping and ordering respectively) with the arbitrary
fixed number of EBs (e.g, 20, 30, and 50 EBs, respectively). We call them base
processes;

—the fourth, so-called random process executes one of the standard transaction
mixes (in our experiments, it is the shopping mix) with a random execution
period while using a random number of EBs for each period. To navigate
and control this random process we use specified ranges for the “random”
parameters in this workload. The pseudocode of this random process is shown
in Figure 5 (the code also shows parameters we use for the nonstationary mix
in this article).

Due to the fourth random process the workload is nonstationary and the trans-
action mix and load vary significantly over time.
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Fig. 6. 30-hour TPC-W workload used in the case study.

In order to validate the online anomaly detection and application change
algorithm, we designed a special 30-hour experiment with TPC-W that has 7
different workload segments shown in Figure 6, which are defined as follows.

(1) The browsing mix with the number of EBs equal to 200, 400, 600, 800, and
1000 respectively.

(2) In order to validate whether our algorithm correctly detects performance
anomalies, we generated a special workload with nonstationary transaction
mix as described earlier and an additional CPU process (that consumes
random amount of CPU) on a background.

(3) The shopping mix with the number of EBs equal to 200, 400, 600, 800, and
1000 respectively.

(4) The ordering mix with the number of EBs equal to 200, 400, 600, 800, and
1000 respectively.

(5) The nonstationary TPC-W transaction mix described earlier in this section.
(6) In order to validate whether we can automatically recognize the application

change, we modified the source code of the “Home” transaction (the 8th
transaction) in TPC-W by inserting a controlled CPU loop into the code of
this transaction and increasing its service time by 5 ms. Using this modified
code, we performed experiment with the nonstationary TPC-W transaction
mix described before.

(7) Another experiment with the modified TPC-W benchmark, where the ser-
vice time of the “Home” transaction is increased by 10 ms and the nonsta-
tionary TPC-W transaction mix described previously.

5.2 Validation of Online Regression-Based Algorithm

We applied our online regression-based algorithm to the special 30-hour work-
load shown in Figure 6. The expectations are that the algorithm should exhibit
a model change and issue an alarm for anomaly workload described by seg-
ment 2 in Figure 6. Then a single model should represent workload segments
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Fig. 7. Model changes in the studied workload.

Fig. 8. Model reconciliation in the studied workload.

3, 4, and 5 as shown in Figure 6. Moreover, the algorithm should reconcile seg-
ments 1, 3, 4, and 5 with a single model (since they are all generated with the
same application operating under different workloads), while issuing the model
changes for application modifications described by segments 6 and 7.

We experimented with two values of allowable error in our experiments:
ε1

allow = 3% and ε2
allow = 1% to demonstrate the impact of error setting and

stress the importance of tuning this value.
When we used ε1

allow = 3%, the algorithm had correctly identified 4 major
model changes as shown in Figure 7. In fact, for the second segment there were
42 model changes (not shown in this figure to simplify the presentation) with
maximum segment being 5 epochs.

The algorithm accurately detected that the whole segment 2 is anomalous.
Then the tool correctly performed the model reconciliation for the consecutive
segments around the anomalous segment as shown in Figure 8.

Finally, the algorithm correctly raised alarms on the application change when
the regression model has changed and could not be reconciled (last two segments
in Figure 8).
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When we used ε1
allow = 1%, the algorithm had identified 6 major model

changes: In addition to 4 model changes shown in Figure 7 the algorithm re-
ported 2 extra segments at timestamps 790 and 1030 (separating apart seg-
ments 3, 4, and 5 shown in Figure 6) that correspond to workload changes
and that are false alarms. It is important to use the appropriate error setting
to minimize the number of false alarms. When the allowable error is set too
small the proposed algorithm often overreacts and identifies model changes
that correspond to significant workload changes under the same, unmodified
application. In the next section, we will introduce a complementary technique
that helps to get an insight in whether the model change is indeed an appli-
cation change or whether it rather corresponds to a workload change. This
technique can also be used for error tuning in the earlier described online
algorithm.

The power of the introduced regression-based approach is that it is sensitive
to accurately detect a difference in the CPU consumption model of application
transactions. However, it cannot identify the transactions that are responsible
for this resource consumption difference. To complement the regression-based
approach and to identify the transactions that cause the model change we use
a different method described in the next section and which is based on building
a representative application performance signature.

6. DETECTING TRANSACTION PERFORMANCE CHANGE

Nowdays there is a new generation of monitoring tools, both commercial and
research prototypes, that provide useful insights into transaction activity track-
ing and latency breakdown across different components in multitier systems.
However, typically such monitoring tools just report the measured transaction
latency and provide an additional information on application server versus
database server latency breakdown. Using this level of information it is often
impossible to decide whether an increased transaction latency is a result of a
higher load in the system or whether it can be an outcome of the recent appli-
cation modification, and is directly related to the increased processing time for
this transaction type.

In this section, we describe an approach based on an application performance
signature that provides a compact model of runtime behavior of the applica-
tion. The application signature is built based on new concepts: the transaction
latency profiles and transaction signatures. These become instrumental for cre-
ating an application signature that accurately reflects important performance
characteristics. Comparing new application signature against the old applica-
tion signature allows detecting transaction performance changes.

6.1 Server Transaction Monitoring

Many enterprise applications are implemented using the J2EE standard, a
Java platform which is used for Web application development and designed
to meet the computing needs of large enterprises. For transaction monitoring
we use the HP (Mercury) Diagnostics [Mercury Diagnostics] tool which offers
a monitoring solution for J2EE applications. The Diagnostics tool consists of
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Fig. 9. Multitier application configuration with the Diagnostics tool.

two components: the Diagnostics Probe and the Diagnostics Server as shown
in Figure 9.

The Diagnostics tool collects performance and diagnostic data from appli-
cations without the need for application source-code modification or recompi-
lation. It uses bytecode instrumentation and industry standards for collecting
system and JMX metrics. Instrumentation refers to bytecode that the Probe
inserts into the class files of the application as they are loaded by the class
loader of the virtual machine. Instrumentation enables a Probe to measure
execution time, count invocations, retrieve arguments, catch exceptions, and
correlate method calls and threads.

The J2EE Probe shown in Figure 9 is responsible for capturing events from
the application, aggregating the performance metrics, and sending these cap-
tured performance metrics to the Diagnostics Server. We have implemented a
Java-based processing utility for extracting performance data from the Diag-
nostics Server in real time and creating a so-called application log that provides
a complete information on all transactions processed during the monitoring
window, such as their overall latencies, outbound calls, and the latencies of
the outbound calls. In a monitoring window, Diagnostics collects the following
information for each transaction type:

—a transaction count;
—an average overall transaction latency for observed transactions.1 This over-

all latency includes transaction processing time at the application server as
well as all related query processing at the database server, that is, latency is
measured from the moment of the request arrival at the application server
to the time when a prepared reply is sent back by the application server; see
Figure 10;

—a count of outbound (database) calls of different types;
—an average latency of observed outbound calls (of different types). The aver-

age latency of an outbound call is measured from the moment the database

1Note that here a latency is measured for the server transaction (see the difference between client
and server transactions described in Section 2).
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Fig. 10. The transaction latency measured by the Diagnostics tool.

request is issued by the application server to the time when a prepared reply
is returned back to the application server, that is, the average latency of the
outbound call includes database processing and communication latency.

The transaction latency consists of the waiting and service times across the dif-
ferent tiers (e.g., front and database servers) that a transaction flows through.
Let Rfront

i and RDB
i be the average latency for the ith transaction type at the

front and database servers, respectively. We then have the transaction latency
breakdown calculated as follows.

Ri = Rfront
i + RDB

i (6)

= Rfront
i +

∑Pi
j=1 NDB

i, j ∗ RDB
i, j

Ni

Using this equation we can easily compute Rfront
i .

6.2 Application Performance Signature

In this section, we describe how to create a representative application signature
that compactly reflects important performance characteristics of application. As
shown in Mi et al. [2008], we can compute the transaction service times using
measured transaction latencies and corresponding system utilization. For a
concrete transaction type Tri, we have a relationship based on transaction
service time Si, transaction residence time Ri (measured at the application
server, i.e., Ri corresponds to Rfront

i in formula 6), and utilization U of the
system (the application server).

Ri = Si/(1 − U ) (7)

Therefore, it is equivalent to

Si = Ri ∗ (1 − U ). (8)

Since in real production system we collect measured latencies for each transac-
tion type i over different monitoring windows, we have multiple equations that
reflect transaction latencies at different CPU utilization points as shown next
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Fig. 11. Service time CDF of a typical server transaction.

(since we collect CPU utilization expressed in percents, we need to divide it by
100 to use correctly in Eq. (8)).

Si = Ri,1 ∗ (1 − U1/100) (9)

Si = Ri,2 ∗ (1 − U2/100)

... ....

Our goal is to find the solution that is the best fit for the overall equation
set (9). A linear regression-based (LSR) method can be chosen to solve for Si.
However, there are two reasons why we chose a different method. First, a num-
ber of outliers that often present in production data could significantly affect
the accuracy of the final solution, as LSR aims to minimize the absolute error
across all points. Second, there may be a significant difference in the number of
transactions contributing to different CPU utilization points. LSR aims to min-
imize the absolute error across the equations, and it treats all these equations
equally.

Therefore, we propose another method to compute the service time Si for
the ith transaction type. By solving Si = Ri,k ∗ (1 − Uk/100) in Eq. (9), a set
of solutions Sk

i is obtained for different utilization points Uk in the transac-
tion latency profile. We generate a Cumulative Distribution Function (CDF)
for Si. Intuitively, since we conjecture that each transaction type is uniquely
characterized by its service time, then we should see a curve similar to shown
in Figure 11 with a large number of similar points in the middle and some
outliers in the beginning and the tail of the curve. We then select the 50th per-
centile value as the solution for Si as most representative.2 The 50th percentile
heuristics works well for all transactions in our study.

Finally, an application performance signature is created.

Tr1 −→ S1

Tr2 −→ S2

... ...

Trn −→ Sn

2Selecting the mean of Si allows the outliers (i.e., the tail of the distribution) to influence our service
time extrapolation, which is not desirable. Because of the shape of the CDF curve, the selection of
the 50th percentile is a good heuristics.
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As shown in Mi et al. [2008], such an application signature uniquely re-
flects the application transactions and their CPU requirements and is invariant
for different workload types. The application signature compactly represents a
model of application runtime behavior.

Continuous calculation of the application signature allows us to detect events
such as software updates that may significantly affect transaction execution
time. By comparing the new application signature against the old, one can
detect transaction performance changes and analyze their impacts.

The application signature technique is complementary to the regression-
based resource consumption model described in Section 4. For example, it is
not capable of detecting abnormal resource consumption caused by processes
unrelated to the application and its transaction processing.

6.3 Case Study Continued: Application Signature Analysis

The power of regression-based approach is that it is sensitive and accurate
to detect a difference in the CPU consumption model of application transac-
tions. The proposed online algorithm correctly raises alarms on the application
change when the regression model has changed and could not be reconciled
(last two segments in Figure 8). However, it cannot identify those transac-
tions that are responsible for this resource consumption difference. To com-
plement the regression-based approach and to identify the transactions that
cause the model change we use the complementary method based on the ap-
plication performance signature. Comparison of the new application signature
against the old one allows efficient detection of transactions with performance
changes.

The application signature stays unchanged for the first 5 segments of the
studied 30-hour workload. It is plotted in Figure 12 as the baseline. The new
application signatures for the 6th and 7th segments reflect the change in service
time of the “Home” (8th) transaction, while for the other transactions their
service times stay unchanged. Thus, indeed, 6th and 7th segments correspond
to the application change.

When we used ε1
allow = 1%, the regression-based algorithm had identified

6 major model changes: In addition to four model changes shown in Figure 7
the algorithm reported two extra segments at timestamps 790 and 1030 that
correspond to workload changes and that are false alarms as follows from the
application signature method. One can use the application signature technique
while performing the allowable error tuning for regression-based approach: It
enables a quick and efficient performance analysis of transactions’ service times
while the application is executing in the production environment.

The preceding experiments show that the proposed integrated framework
of regression-based transaction model and application signature provides a
simple and powerful online solution for anomaly detection and analysis of es-
sential performance changes in application behavior. The proposed algorithms
provide necessary data-analysis and data-cleansing support for automated ca-
pacity planning described in the next section.
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7. AUTOMATED CAPACITY PLANNING

There is a continuing trend in enterprise computing to automate different in-
frastructure management and decision making processes. It is motivated by the
fact that these management tasks account for half of enterprise IT budget [Chou
2004].

Performance management and maintenance operations come with more risk
and an increased potential for serious damage if they are wrong. Imagine in-
troducing a change or making an adjustment that results in dramatically slow
application response times or/and creates significantly higher resource con-
sumption in the shared infrastructure. Today’s IT and services departments
simply cannot afford to operate without some help in the form of a tool providing
automated, comprehensive, and highly informative performance management
and capacity planning functions.

Many enterprise services are built using the three-tier architecture
paradigm. It is important to design effective and accurate performance models
that predict behavior of multitier applications when they are placed in enter-
prise production environment and operate under a real workload mix. Under-
standing application behavior and its changes during the application lifecycle
is a part of this problem: One needs to separate performance issues that are
caused by a high load of incoming workload from the performance problems
caused by possible errors, anomalies, or inefficiencies that often occur during
the application updates and new software releases.

To automate capacity planning for existing production system with real
workload mix we propose a refined capacity planning framework that is based
on the following three components shown in Figure 13.

—Online Workload Profiler. Our workload profiler is built on top of HP (Mer-
cury) Diagnostics tool. It extracts information on number of processed trans-
actions and their outbound DB calls.
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Fig. 13. The overall capacity planning framework.

Fig. 14. The queuing model of the enterprise three-tier application.

If the solution has multiple application servers in the configuration then
there are multiple Diagnostics Probes installed at each server and they col-
lect data independently at these application servers supported by (possibly)
heterogeneous machines with different CPU speeds. Data processing is done
for each probe separately.

—Online Regression-Based Solver and Analyzer. This module uses the informa-
tion provided by the workload profiler and performs an automated anomaly
detection and application change analysis.

Our online regression algorithm discovers the time segments where the
resource consumption of a given application cannot be approximated by
the same regression model and filters out time segments with performance
anomalies. It differentiates among application performance changes and
workload-related changes as transactions are accumulated over time. The
application signature approach refines the time intervals where the appli-
cation might have been updated in order to create a consistent dataset for
capacity planning and modeling stage. This dataset is used by the solver to
approximate the up-to-date resource cost (CPU demand) of the application
transactions on a given hardware as well as estimates the CPU cost of each
outbound DB call.

Such an approach aims to eliminate error-prone manual processes for data
cleansing in order to support a fully automated solution.

—Analytical Model. For capacity planning of multitier applications with
session-based workloads, an analytical model based on network of queues
(shown in Figure 14) is developed, where the queues represent different tiers
of the application.

Additionally, this model uses a set of refined measurements for the DB tier
that are provided by the workload profiler and HP (Mercury) Diagnostics
tool. The results of the regression method in the previous module are used to
parameterize an analytic model of queues for capacity planning and resource
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Fig. 15. The MVA algorithm.

provisioning tasks. For most production multitier services CPU is a typical
system bottleneck. However, in practice, when one needs to make a projec-
tion of the maximum achievable system throughput, additional “back of the
envelope” computations for estimating memory and network requirements
under the maximum number of concurrent clients are required to justify
this maximum throughput projection. These computations can augment the
results of the analytic model module.

Due to the session-based client behavior, a multitier system is usually mod-
eled as a closed system with a network of queues (see Figure 14). The number
of clients in the system is fixed. When a client receives the response from the
server, it issues another request after certain think time. This think time is
modeled as an infinite server Q0 in Figure 14. Once the service time in each
queue is obtained, this closed system can be solved efficiently using Mean-Value
Analysis (MVA) [Menasce et al. 1994]. MVA is based on the key assumption that
when a new request enters a queue, this request sees the same average sys-
tem statistics in the system as without this new request. Figure 15 presents a
description of the detailed MVA algorithm.

The visit ratio Vi (definition in Figure 15) is controlled by the load balancing
policy. For example, if the load balancing policy used is equally partitioning the
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transactions across all servers, then the number of visits Vs to server s in tier
l is equal to 1/ml , where ml is the number of servers in tier l .

Note that the original MVA (as in Figure 15) takes the number of clients N
as input, and computes the average performance metrics for a system with N
clients. In capacity planning, the number of clients is unknown. In the contrary,
the model needs to be solved for exactly this unknown variable. Here, we assume
that the Service Level Agreement (SLA) specifies a threshold �R (i.e., upper
bound) of the average transaction response time. Then the condition in step 2
of MVA is changed to the following condition: “while R ≤ �R do”.

Workload characterization of real traces [Zhang et al. 2007a] shows that
the workload mix changes over time, and hence the service time could not be
modeled as a fixed distribution for the entire lifetime of the system, but one
can treat the workload as fixed during shorter time intervals (e.g., 1 hour),
perform the capacity planning procedure for each monitoring time window (of
1 hour), and then combine the results across these time points to get the overall
solution.

Next we show how to answer a typical service provider question: How many
clients can be supported by the existing system, while

—providing the desirable performance guarantees, for example, response time
under �R , and

—assuming that the system processes a given (varying, nonstationary) type of
workload?

The detailed sequence of steps performed by our tool to answer this question
is summarized in Figure 16.

The first two steps that use the workload profiler and the regression-based
solver and analyzer have been presented in details in the previous sections. We
use the same workload as input to the third step of the analytic model, and this
completes and automates the overall capacity planning process.

8. RELATED WORK

Nowadays, a new generation of monitoring tools, both commercial and re-
search prototypes, provides useful insights into transaction activity track-
ing and latency breakdown across different components in multitier systems.
Some of them concentrate on measuring end-to-end latencies observed by the
clients [IBM Corporation; Rajamony and Elnozahy 2001; Cherkasova et al.
2003; Mercury Real User Monitor; NetQoS Inc]. Typically, they provide a la-
tency breakdown into network- and server-related portions. While these tools
are useful for understanding the client network-related latencies and improving
overall client experience by introducing a geographically distributed solution at
the network level, this approach does not offer sufficient insights in the server-
side latency as it does not provide a latency breakdown into application- and
database-related portions.

Another group of tools focuses on measuring server-side latencies [Barham
et al. 2004; Mercury Diagnostics; Nimsoft Co. ; CA Willy Introscope; Quest
Software Inc.] using different levels of transaction tracking that are useful for

ACM Transactions on Computer Systems, Vol. 27, No. 3, Article 6, Publication date: November 2009.



6:28 • L. Cherkasova et al.

Fig. 16. The tool framework.

“drill-down” performance analysis and modeling. Unfortunately, such monitor-
ing tools typically report the measured transaction latency and provide addi-
tional information on application server versus database server latency break-
down. Using this level of information it is often difficult to decide whether
an increased transaction latency is a result of a higher load in the system or
whether is an outcome of the recent application modification that is directly re-
lated to the increased processing time for this transaction type. Measurements
in real systems cannot provide accurate transaction “demands”, that is, exe-
cution times without any delays due to queuing/scheduling in each tier/server.
Approximate transaction demands are extrapolated using measurements at
very low utilization levels or with nearly 100% utilization [Urgaonkar et al.
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2005]. Variability across different customer behaviors and workload activity
further exacerbates the problem of accurately measuring and understanding
transaction demands.

Applications built using Web services can span multiple computers, oper-
ating systems, languages, and enterprises. Measuring application availability
and performance in such environments is exceptionally challenging. However,
the tightly defined structures and protocols that have been standardized by
the Web services community have opened the door for new solutions. There
is a set of commercial tools [IBM Corporation; Nimsoft Co.; Mercury Diagnos-
tics; Quest Software Inc.] for monitoring Java applications by instrumenting
the Java Virtual Machine (JVM) which provides a convenient locus for nonin-
trusive instrumentation (some systems focus on .Net instead of Java). These
tools analyze transaction performance by reconstructing the execution paths
via tagging end-to-end user transactions as they flow through a J2EE-based
system and looking for performance problems using one or more of the following
techniques.

—Fixed or statistical baseline-guided threshold setting in HP BTO product
suite [Mercury Diagnostics], IBM Tivoli Web Management Solutions [IBM
Corporation], CA Application Performance Management [CA Willy Intro-
scope], and Symantec I3 Application Performance Management [Symantec
I3]. This approach can be labor intensive and error prone.

—Adaptive threshold setting, where the baselines and statistical workload is
evaluated periodically, for instance, every 24 hours, and thresholds are ad-
justed. Examples include BMC ProactiveNet [BMC] and Netuitive [Netuitive
Inc.]. This approach can result in a lot of false alarms while adjusting to
change.

—Change detection combined with statistical baselining and thresholding,
such as, CA Application Performance Management [CA Willy Introscope].

While it is useful to have detailed information into the current transaction la-
tencies, the aforesaid tools provide limited information on the causes of the ob-
served latencies, and cannot be used directly to detect the performance changes
of an updated or modified application.

In addition to commercial tools, several research projects have addressed the
problem of performance monitoring and debugging in distributed systems. Pin-
point [Chen et al. 2004] collects end-to-end traces of client requests in a J2EE
environment using tagging and identifies components that are highly corre-
lated with failed requests using statistics. Statistical techniques are also used
by Aguilera et al. [2003] to identify sources of high latency in communication
paths. Magpie [Barham et al. 2004] provides the ability to capture the resource
demands of application requests as they are serviced across components and
machines in a distributed system. Magpie records the communication path of
each request and also its resource consumption, which allows for better un-
derstanding and modeling of system performance. Cohen et al. [2005] use a
statistical approach to model performance problems of distributed applications
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using low-level system metrics. They design a set of signatures to capture the es-
sential system state that contributes to service-level objective violations. These
signatures are used to find symptoms of application performance problems and
can be compared to signatures of other application performance problems to
facilitate their diagnosis.

From the preceding works, the two most closely related to our approach are
Barham et al. [2004] and Cohen et al. [2005]. Magpie uses a more sophisticated
tracing infrastructure than in our approach and concentrates on detecting rela-
tively rare anomalies. The goal of our work is to detect performance changes in
application behavior caused by application modifications and software updates
that are complementary and independent on workload conditions in production
environments.

9. CONCLUSION AND FUTURE WORK

Today, the three-tier architecture paradigm has become an industry standard
for building enterprise client-server applications. The application server is a
core component in this architecture and defines the main service functional-
ity. Typically, when a new application update is introduced and/or unexpected
performance problems are observed, it is important to separate performance
issues that are caused by a high load of incoming workload from the per-
formance issues caused by possible errors or inefficiencies in the upgraded
software.

In this work, we propose a new integrated framework of measurement and
system modeling techniques for anomaly detection and analysis of essential
performance changes in application behavior. Our solution is based on inte-
gration of two complementary techniques: (i) a regression-based transaction
model that characterizes the resource consumption pattern of the application;
and (ii) an application performance signature that provides a compact model
of runtime behavior of the application. The proposed online regression-based
algorithm accurately detects a change in the CPU consumption pattern of the
application and alarms about either observed performance anomaly or possible
application change. However, it cannot distinguish which of the transactions is
responsible for a changed CPU consumption of the application. To complement
the regression-based approach and to identify the transactions that cause the
model change, we use the application performance signature.

Finally, we demonstrate the automated capacity planning framework for
enterprise services that integrates the designed modules (workload profiler
and regression-based solver) with analytic model to answer additional service
provider questions on required future capacity and resource provisioning while
providing desirable QoS guarantees.

This article concentrates on performance anomalies and model changes in
the CPU consumption of enterprise applications. Another representative group
of performance problems in multitier applications is related to memory usage
anomalies (e.g., memory leaks). The question is whether a similar approach can
be applied for evaluating memory usage. We plan to exploit this avenue in our
future work.
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