
39

Data-driven Techniques in Computing System Management

Tao Li, Nanjing University of Posts and Telecommunications & Florida International University

Chunqiu Zeng, Florida International University

Yexi Jiang, Florida International University

Wubai Zhou, Florida International University

Liang Tang, Florida International University

Zheng Liu, Nanjing University of Posts and Telecommunications

Yue Huang, Nanjing University of Posts and Telecommunications

Modern forms of computing systems are becoming progressively more complex, with an increasing number of heterogeneous
hardware and software components. As a result, it is quite challenging to manage these complex systems and meet the require-
ments in manageability, dependability, and performance that are demanded by enterprise customers. The survey presents a

variety of data-driven techniques and applications with a focus on computing system management. In particular, the survey in-
troduces the intelligent methods for event generation that can transform diverse log data sources into structured events, reviews
different types of event patterns and the corresponding event mining techniques, and summarizes various event summarization
methods and data-driven approaches for problem diagnosis in system management. We hope the survey will provide a good
overview for data-driven techniques in computing system management.

General Terms: Survey, Design, Algorithms

Additional Key Words and Phrases: Computing System Management, Data Mining, Application

1. DATA-DRIVEN SYSTEM MANAGEMENT

Large and complex systems often have a large number of heterogeneous components and are difficult
to monitor, maintain, and manage. Traditionally, the system management methods mainly based on
domain experts through a cumbersome, error-prone and labor-intensive process, which called knowl-
edge acquisition process. This process translates domain knowledge into operational rules, policies,
and dependency models. Generally, it is an expensive process for managing such complex systems
with the dynamically changing environment. For instance, in many companies, the maintenance costs
about 30% to 70% of their information technology resources [Research 2003]. As a result, intelligent
and efficient approaches are greatly needed for monitoring and managing large and complex systems.

Significant initiatives, such as the IBM Autonomic Computing (AC) initiative, with the aim of build-
ing autonomic systems capable of self-managing [Horn 2001; Kephart and Chess 2003], led to aware-
ness of automatic system management in both scientific and industrial communities as well as facil-
itated to bring in more automated and sophisticated procedures, which improve the productivity and
guarantee the overall quality of the delivered service.

To realize the goal of self-management, systems need to automatically monitor, characterize, and un-
derstand their behaviors and dynamics, mine events to uncover useful patterns, and acquire valuable
knowledge from historical log/event data.

Figure 1 presents an architecture of data-driven system management [Li et al. 2010; Li 2015], whose
key components are described below.

Author’s addresses: T. Li, School of Computer Science, Nanjing University of Posts and Telecommunication & School of Comput-
ing and Information Sciences, Florida International University, email: taoli@cs.fiu.edu. C. Zeng, Y. Jiang, W. Zhou and L. Tang
are with School of Computing and Information Sciences, Florida International University. Z. Liu and Y. Huang are with Jiangsu
BDSIP Key Lab, School of Computer Science, Nanjing University of Posts and Telecommunications. The work was supported
in part by the National Science Foundation under Grant Nos. IIS-1213026, CNS-1126619, CNS-1461926, Chinese National
Natural Science Foundation under grant 91646116, Scientific and Technological Support Project (Society) of Jiangsu Province
No. BE2016776, Ministry of Education/China Mobile joint research grant under Project No.5-10, and an FIU Dissertation Year
Fellowship.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to
lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2015 ACM 0360-0300/2015/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Real Time Management

Fault

Diagnosis

Anomaly

Detection

Knowledge Management

Temporal

Pattern

Discovery

Visualization/

Exploration

Real Time Management

Fault

Diagnosis

Anomaly

Detection

Realtime Analysis

Knowledge Management

Temporal

Pattern

Discovery

Visualization/

Exploration

Offline Analysis

Correlation/Dependency

Knowledge

An Integrated Framework on Data-Driven Computing System Management

Log Parser/

Adapter

Component

Logs

Event

Generation

System Monitoring/

Actions

SComponent

Logs

Component

Logs

Historical

Data Collection

Log Data Organization

Problem

Determination

Summarization

Fig. 1. The architecture of an integrated data-driven system management framework.

— Log Data Organization: The log data are generated and collected by different system components,
possibly with instrumented applications. Log Parser/Adapter and Event Generation enable generic
data collection, integration, and transformation from multiple heterogeneous data sources into the
historical data collection.

— Real-time Analysis: This module processes and analyzes incoming data in real time. Based on the
knowledge obtained from offline analysis module, real-time analysis performs online operations and
actions. Some representative real-time analysis tasks include problem diagnosis and determination,
anomaly detection, and performance prediction.

— Offline Analysis: This module constructs and derives knowledge repositories (such as correlation
rules, dependency patterns, and relationship knowledge) from historical data. Representative offline
analysis techniques include temporal pattern discovery, event summarization, and correlation rule
construction.

1.1. The Scope of the Survey

In computing system management, the historical data often include the raw log data, performance
data (e.g., time series), discrete system events, monitoring events, and incident tickets. The service
providers usually keep track of the raw log data, the time series data as well as the historical sys-
tem events (generated by the production systems), monitoring events (generated by the monitoring
system) and incident tickets (edited by humans) to diagnose incoming system issues. The time series
data often report the observed system performance; the raw log data, system events and monitor-
ing events describe system internal operations, alerts and faults; and the incident tickets reveal the
human judgements on these events in terms of system incidents. Data-driven techniques, including
techniques for log data organization, real-time analysis, and offline analysis, can automatically and
efficiently extract valuable knowledge from historical log/event data and play an important role in
computing system management. The purpose of this survey is to present a variety of data-driven tech-
niques and applications with a focus on computing system management.

There are a few existing surveys on complex event processing [Owens 2007; Fülöp et al. 2010;
de Carvalho et al. 2013], data stream processing [Cugola and Margara 2012], and data and event min-
ing [Wrench et al. 2016; Liu et al. 2016]. However, to the best of our knowledge, there is no work that
provides a systematic and comprehensive coverage on data-driven techniques in computing system
management, covering different real-time and offline tasks (including log parsing, event generation,
classification, clustering, pattern mining, summarization, and problem diagnosis) acted on various
types of data (including raw logs, time series, historical system events, monitoring events, and inci-
dent tickets). Table I summarizes the main content of the related surveys. In particular, this paper
compares different event generation methods for transforming diverse log data sources into structured
events, reviews different types of event patterns and the corresponding event mining techniques, and

2

summarizes various event summarization methods and data-driven approaches for problem diagnosis
in system management.

Table I. Relations with other related surveys
Related Surveys Summary Pros & Cons
[Owens 2007] . Introduces the brief history, basic key words, phrases and con-

cepts related to event processing, and its several application sce-
narios

. Presents several existing event processing systems and query
languages

(+) A complete introduction on basic concepts of event and event
processing system

(-) Limited coverage on technical details

[Fülöp et al. 2010]

. Offers a review on terminology, research areas/achievements,
existing solutions/tools and open issues

. Examines the related fields of predictive analytics and those
specific methods applicable in telecommunication

(+) An informative review on existing commercial and academic
tools in event processing and predictive analytics

(+) Good comparison and classification of different methods
(-) Mainly focused on predictive methods in telecommunication do-

main
(-) Lack of a systematic approach in organization and presentation

and in-depth discussion on technical details

[Cugola and Margara
2012] . Reviews information flow processing (IFP) systems for event

processing from the perspective of data stream management
(+) A good comparison on different data stream management sys-

tems for event processing
(-) Mainly focused on data stream management

[de Carvalho et al.
2013] . Discusses the weaknesses and limitations on a set of state-of-

the-art event processing systems
. mainly focuses on the systems requiring high throughputs over
large amount of data

(+) Good reference material for existing commercial event process-
ing systems

(-) Limited coverage, and only present some popular event process-
ing systems at a high level

(-) Lack of technical details

[Wrench et al. 2016]

. Clarifies the positions of Event Stream Processing (ESP) and
Complex Event Processing (CEP)

. Outlines the range of Data Mining opportunities within ESP
and CEP

(+) A systematic review of the core concepts and difference between
ESP and CEP

(-) Mainly focused on event stream data processing

This paper

. provides a comprehensive review of data-driven techniques in
computing system management

. Summarizes a wide range of techniques acted on different data
types

(+) A comprehensive and systematic review on data-driven tech-
niques

(+) Good coverage on technical details
(-) mainly focused on computing system management.

Learning about data-driven techniques in computing system management is challenging, as it is an
inter-disciplinary field that requires familiarity with several research areas and the relevant literature
is scattered in a variety of publication venues such as ACM International Conference on Knowledge
Discovery and Data Mining (ACM SIGKDD), IEEE International Conference in Data Mining (IEEE
ICDM), IEEE/IFIP Network Operations and Management Symposium (NOMS), International Confer-
ence on Network and Service Management (CNSM), and IFIP/IEEE Symposium on Integrated Net-
work and Service Management (IM). We hope that this survey will make the field easier to approach
by providing a good starting point for readers not familiar with the topic as well as a comprehensive
reference for those working in the field.

The rest of this survey is organized as follows. Section 2 investigates the methods that can trans-
form the log data in disparate formats and contents into a canonical form, which creates consistency
and enables the correlation discovery across multiple logs. Section 3 reviews different types of event
patterns and presents the corresponding event mining techniques as well as the application scenarios.
Section 4 introduces time lag mining for temporal patterns, and both non-parametric and parametric
methods are discussed for discovering time lags between correlated events. Section 5 provides a sum-
mary of different event summarization techniques and presents an algorithm independent summariza-
tion framework that can efficiently support different summarization techniques in real applications.
Section 6 summarizes several data-driven approaches that can help administrators perform a detailed
diagnosis for detecting system issues. Finally Section 7 concludes the survey.

2. EVENT GENERATION: FROM LOGS TO EVENTS

The data in the log/trace files indicate the status of each component and are usually collected or re-
ported when some event occurs. Contents of the data may include the running states of the component
(e.g., started, interrupted, connected, and stopped), its CPU utilization, and its parameter values. Since
most computing systems record the internal operations, status, and errors by logs, it is straightforward
to obtain the system events from the system logs. In this section we mainly focus on the methodologies
of event generation from the system logs. In system management, many researchers have studied sys-
tem event mining and proposed many techniques and algorithms for discovering the abnormal system

3

behaviors and relationships of events/system components [Peng et al. 2007; Xu et al. 2008; Hellerstein
et al. 2002a; Li et al. 2005; Gao et al. 2009; Oliner et al. 2008; Wang et al. 2010; Kiernan and Terzi
2009]. In those studies, the data is a collection of discrete items or structured events, rather than
textual log messages. Discrete or structured events are much easier to be visualized and explored by
human experts than raw textual log messages. Many visualization toolkits were developed to provide
a quick overview of system behaviors over a large collection of discrete events. However, most of the
computing systems only generate textual logs containing detailed information. Therefore, there is a
need to convert the textual logs into discrete or structured events.

2.1. An Example of Converting Textual Logs into Events

Before introducing the details of the approaches, an example is presented to illustrate the benefits of
the conversion.

Figure 2 presents an example of messages from a Simple File Transfer Protocol (SFTP) log collected
from a FTP software called FileZilla [url 2015a]. Each message in the example describing a certain
event. To understand and analyze the behaviors of FTP visits, these messages are often converted into
types of events and organized as timelines. The event timeline formed by the example messages is
shown in Figure 3. Note that the event timelines can help people understand the event behaviors and
enable the discovery of event patterns.

Fig. 2. An example of FileZilla’s log.

Fig. 3. Event timeline for the FileZilla’s log example.

Converting log messages to events provides the capability of canonically describing the semantics
of log data and improves the ability of correlating the logs from multiple components. Due to the het-
erogeneous nature of current systems, the log generating mechanisms result in disparate formats and
contents focused on individual components. Each component may generate the data using its own for-
mat and content. As a result, analyzing errors and logs collected by different components and products
is quite challenging due to the variability in log messages [Topol et al. 2003]. By organizing the mes-
sages into a set of common semantic events (also termed “situations” or “categories”), i.e., adding a
semantic situation type to a message [Li et al. 2010], the transformed representation creates consis-
tency, enables the correlation discovery across multiple logs, and also provides the initial connections
of syntax to semantics.

2.2. Potential Solutions

To convert a collection of textual logs into system events, there are generally three types of solutions:
log-parser-based solutions, classification-based solutions, and clustering-based solutions. In this sec-
tion, we provide an overview for the three types of solutions. The pros and cons of the three types of
approaches are briefly summarized in Table II.

The most straightforward solution is the log-parser-based approach, in which a log parser is built for
log files in different formats. Since the log users may be very familiar with the meanings of each log
message, they can write a simple text parser and accurately extract all the needed system information
from the logs. However, for a large and complex system, implementing the log parser is not easy.
The user may not understand all possible log message generation mechanisms. It is also not efficient
to implement different parsers for different types of system logs. Although there are some common
formats of logs, how to adapt a log parser for different types of logs is still a challenging issue in
reality.

4

In many event mining applications, people only need to know the type of an event since many min-
ing algorithms are mainly discovering the unknown relationship between different event types. Con-
sequently, in those applications, there is no need to extract the detailed information of a system event,
such as system metrics. Therefore, converting a log message into an event is equivalent to finding
the type of the log message. As a result, the conversion problem becomes a text classification prob-
lem. Many classification algorithms, such as support vector machines (SVMs), can be applied to solve
the classification problem. The main disadvantage of these types of methods (e.g., classification-based
methods) is that the classification algorithms require the users to provide the labeled training data
in advance. In other words, a set of labeled log messages has to be prepared. For a complicated large
system, this can only be done by domain experts, so it is time consuming and costly.

Clustering-based approaches do not require the user to prepare the labeled training data. They
can infer the event type from the log message itself. Although the inferred event types may not be
as accurate as those obtained using the classification-based or log-parser-based approaches, they are
often acceptable for event mining algorithms or human exploration.

Table II. Summary of the three types of event generation approaches
Approach
Type

Pros Cons Application Scenarios

Log Parser Very accurate. Require the user to understand sys-
tem logs. Hard to adapt to various sys-
tem logs with different formats. Re-
quire human efforts to develop the log
parser software.

The application needs accurate gener-
ated system events, such as alarm de-
tection systems or monitoring systems.

Classification Accurate and can be adapted to
various system logs.

Require the user to provide the train-
ing log data. Labeling the log data by
domain experts may be costly and time
consuming.

Easy to have labeled training log data.

Clustering Do not need a lot of human ef-
fort and can be adapted to var-
ious system logs.

Not very accurate. Some event mining applications that
can be tolerant to some errors or noisy
events.

2.3. Log Parser

Implementing a log parser is a straightforward solution to converting textual logs into structural
events. However, the approach requires the familiarity with the type and format of each raw message,
so that the detailed semantic information can be extracted. Clearly, the approach is not efficient for
large complex systems with heterogeneous components having different log-generating mechanisms,
and disparate formats and contents.

In software development, there are a lot of log generation libraries, such as log4j1 and Apache com-
mon logging2. The log messages generated by these libraries have some standard formats. Hence, many
researchers argue that those logs are structural or semi-structural data, rather than pure textual data.
However, log messages generated by many other software packages or systems have no such standard
formats.

Many researchers have investigated the approaches to building log parsers based on analysis of the
source code [Xu et al. 2008]. In particular, using the Common Base Event (CBE) format, the Generic
Log Adapter (GLA) provided in the IBM Autonomic Computing toolkit allows for generic data collection
from heterogeneous data sources [Grabarnik et al. 2004]. For those approaches, the input is the source
code of the software that generates the log data. The output is a log parser or some information to be
embedded into a log parser. Many modern computing systems are open-source, so these approaches
can be applied to many software packages, such as Apache Tomcat and Hadoop.

The log generation code usually has some fixed patterns. As mentioned in [Xu et al. 2008], the source
code can be viewed as the schema of the logs and the structure of the generated logs can be inferred
from the schema. Then, the log parser makes use of the schema to determine the event type of each
log message. It also can extract the variable values as the attributes of the event.

2.4. Log Message Classification

In many applications, the monitoring and analysis only need to extract the types of events described by
the log messages. In these scenarios, the detailed information, e.g., attribute values of every log mes-
sage, are not necessary. Moreover, the log messages are allowed to be classified in a hierarchal manner.

1http://logging.apache.org/log4j/1.2/
2http://commons.apache.org/proper/commons-logging/

5

A straightforward approach to identifying the event types of log messages is the classification method,
which categorizes a log message into several pre-defined event types. A simple classification method
is to define a regular expression pattern for an event type. Then, when a log message is collected, if it
matches a given regular expression, it will then be categorized to the corresponding event type. This
type of classification is also called “filter.”

Another approach for log message classification is the learning-based method. Users can provide
some labeled log messages, where the event type of each log message is assigned. Then, a learning
algorithm builds a classification model using the labeled data to classify incoming log messages. The
classification model is built based on the joint distribution of the message terms and the corresponding
event types. In text mining, a traditional approach for handling the text information is the bag-of-
words model [Salton and McGill 1984]. In such a model, a log message is split into a collection of
terms, where a term represents one feature. For the binary vector space representation, a feature
value is 1 or 0 where 1 indicates that the term appears in the log message and 0 indicates that the
term does not appear in the log message. Then, any classification algorithms can be applied to train a
classification model. However, the learning-based method is not practical in many real-world system
management applications. The main reason is that the human cost of labeling log messages may not
be less than the cost of implementing a partial log parser or a regular-expression-based filter. The log
messages are often short. Given a set of log messages, if you already know how to label them, then it
may not be more difficult to define the corresponding parsing logic or write the regular expression.

2.5. Log Message Clustering

Log message clustering is an unsupervised method to categorize the logs to events [Li and Peng 2005].
Since it does not require preparing a set of labeled training data or regular expressions, this approach
is more practical and useful.

Recent studies [Aharon et al. 2009; Makanju et al. 2009] apply data clustering techniques to divide
log messages into separate groups, where each group corresponds a certain event type. Traditionally,
the clustering approaches, based on the bag-of-words model, cannot achieve good performance since the
log messages often have short message length with a large vocabulary size [Stearley 2004]. Message
clustering methods using the structure/format information [Aharon et al. 2009; Makanju et al. 2009]
have also been proposed. As a result, these clustering techniques only perform well for structured
logs as their performances largely depend on the message formats/structures. In [Aharon et al. 2009],
Aharon et al. introduced a similarity function based on the number of matched words between two log
messages. If a group of log messages belong to the same event type, they must be generated by the
same piece of codes, which is also called “template” in [Aharon et al. 2009]. The only different words
in these log messages are the variable terms. Another limitation is that this similarity function treats
every word equally (as having equal importance).

In [Makanju et al. 2009], a log message clustering algorithm is presented. The algorithm consists of
the following four steps: (1) Partition by the number of words (or tokens); (2) Partition by the word po-
sitions; (3) Partition by search for bijection; and (4) Discover the descriptive words from each partition.
It should be pointed out that the algorithm tries to identify the template words (non-variable terms) in
the clustering algorithm. In the second step, it first discovers some word positions in which the words
have a large number of occurrences (say, most frequent words), then partitions the logs using those
words’ positions. These frequent words actually are very likely to be the template words (non-variable
terms). In the third step, the bijection is the relationship between two elements in the most frequent
word positions. Once the bijection is found, different token values (or words) of the bijection can be
partitioned into different clusters. In other words, the algorithm aims to partition the log messages
using the value of those template words. Therefore, the two steps of [Makanju et al. 2009] partition
the log messages according to the positions and values of the potential template words. This method
can run very fast since the time complexity is linear, so it is applicable for massive log data generated
by production systems. However, it still may not work for some types of log data. For example, if the
variable terms of one template have a different number of words in different log messages, the first
step would fail and the following three steps would not be correct as well. Here the main challenge is
the identification of the template words.

Recently Liang and Li [Tang and Li 2010] presented a tree-structure-based clustering algorithm,
LogTree, which computes the similarity of log messages based on the established tree representation in
the clustering process. The structural and format information in log messages are used in the LogTree

6

algorithm and the event can be generated more effectively and efficiently utilizing message segment
table. The LogTree algorithm builds tree patterns for log messages, where the root of a tree pattern is
the category of the log message (e.g., event types), and the leaves are the field information in messages.
LogSig, a message-signature-based clustering algorithm for converting textual logs into system events
is proposed in [Tang et al. 2011]. Although log messages have various types and different variables and
parameters (e.g., host name and IP address), different log messages often have common subsequences
describing the semantic information. These common subsequences are treated as the signatures of
event types. LogSig extracts the most representative message signatures, and categorizes the textual
log messages into different event types based on the extracted signatures.

3. EVENT PATTERN MINING

3.1. Introduction

Temporal data is prevalent across different application domains. Basically, temporal data is often re-
ferred to as a collection of data items associated with timestamps, describing the state changes or
evolving trends over time. A typical example for temporal data in system management is illustrated in
Figure 4. System monitoring, one important component in system management, tracks the states of a
system by collecting system information such as the CPU utilization, the memory usage, the number
of data bytes written and read on disk, the amount of data received and sent through the network, the
sequence of requests and responses processed on an application server, etc. All the system information
is collected with a fixed frequency and each data item is recorded with its timestamp.

System Monitoring

Fig. 4. Temporal data in system management.

In light of the different types of data items, temporal data are generally divided into two categories:
event data and time series. Time series are used to describe the temporal data where the value of the
data item is continuous. Event data denotes the temporal data with discrete data item values. For
example, in the system management shown in Figure 4, the CPU utilization, the memory usage, and
the number of data bytes written and read on disk, the amount of data received and sent through the
network are represented as time series. The requests and responses processed by an application server
in system management and the posts occurring in social media are referred to as event data since their
values are categorical. Although mining both types of temporal data has attracted increasing attention
in recent years, our main focus in this survey is on the event data.

Event pattern mining aims to find the hidden patterns, latent trends, or other interesting relation-
ships among events. The techniques used in event pattern mining are related in many research areas,
like data mining, database, machine learning, and statistics. The event patterns discovered can be
used by analysts to make decisions for the behaviors of future events. Diverse requirements in vari-
ous application domains dictate different types of event patterns for problem solving. In this section,
we provide a survey of different types of event patterns and present the corresponding event mining
techniques as well as the application scenarios.

3.2. Sequential Pattern

Agrawal and Srikant propose the sequential pattern mining problem at first in [Agrawal and Srikant
1995], with the purpose of discovering frequent subsequences from a sequence database. In comparison

7

with frequent pattern mining [Agrawal et al. 1993], which is to find frequent item sets within each
transaction, sequential pattern mining mainly focuses on the patterns across different transactions by
considering their sequential order.

Problem Definition. The problem of sequential pattern mining can be formally described as fol-
lows. A sequence database D is defined as a set of sequences D = {S0, S1, ..., Si, ..., Sn}. Each sequence
Si ∈ D is a sequence of itemsets, denoted as Si =< T1, ..., Tj , ..., Tm > where Tj is a non-empty set of
items and all the itemsets in the sequence are organized in temporal order. For a sequence, if itemset Ti

happens before itemset Tj , we denote it as Ti ≺ Tj . A sequence containing k itemsets is also referred to
as a k-sequence. A non-empty itemset Tj can be further represented as Tj = {I1, I2, ..., Ik, ..., Il}, where
Ik is an item. In sequential pattern mining, the non-empty itemset Tj is also referred to as an event,
so these two concepts are interchangeable in this paper.

A sequence R =< TR1, TR2..., TRm > is a subsequence of S =< TS1, TS2, ..., TSn > if existing m item-
sets TSi1 ≺ TSi2 ≺ ... ≺ TSim in S satisfy TR1 ⊆ TSi1, TR2 ⊆ TSi2, ..., TRm ⊆ TSim. It is also said that S
contains R.

Given a sequence database D, we define the support of a sequence S as the fraction of all data
sequences that contains S. Sequential patterns are those sequences whose supports are not less than
a predefined threshold with respect to the sequence database D.

Mining sequential patterns is a computationally challenging task because there are exponentially
many sequences contained in a given data sequence [Tan et al. 2005]. Since the sequential pattern
mining problem was introduced in [Agrawal and Srikant 1995], various studies and strategies with
respect to this problem have been presented. Typically, the related algorithms in the literature for
sequential pattern discovery are classified broadly into two groups: Apriori-based and pattern-growth-
based methods.

Apriori-Based Algorithms. The main characteristics of Apriori-based algorithms involve three as-
pects [Irfan and Anoop 2012]. First, Apriori-based algorithms are regarded as level-wise search algo-
rithms since all the k-sequences are constructed in the kth iteration of the algorithms when traversing
the search space. Second, after the candidates are generated, pruning techniques are used for removing
those candidates which cannot be sequential patterns. Third, Apriori-based algorithms often require
multiple scans of the sequence database with a high I/O cost.

Accompanying the definition of sequential pattern mining in [Agrawal and Srikant 1995], the Aprio-
riAll algorithm is first proposed to address the sequential pattern discovery problem utilizing the Apri-
ori property (which is also referred to as the anti-monotone property). The Apriori property is that, if
a sequence is not a sequential pattern, then all of its supersequences cannot be sequential patterns
either. On the basis of Apriori and AprioriAll algorithms, a set of improved algorithms utilizing the
Apriori property are proposed. The GSP (i.e., Generalized Sequential Pattern) algorithm proposed
in [Srikant and Agrawal 1996] requires multiple scans of the sequence database. In comparison with
AprioriAll, the GSP algorithm uses the number of items as the length of a sequence instead of the num-
ber of itemsets. An algorithm named SPIRIT (i.e., Sequential Pattern mIning with Regular expressIon
consTraints) is proposed in [Garofalakis et al. 1999] for sequential pattern mining. This algorithm is
capable of discovering sequential patterns with flexible constraints represented in regular expression.
SPADE (i.e., Sequential PAttern Discovery using Equivalence classes), a new algorithm for fast mining
sequential pattern in a large database, is presented in [Zaki 2001]. The SPADE algorithm transforms
the sequential dataset into a vertical ID-List database format. Utilizing this format, each sequence
is linked with a list of objects occurring in the sequence and along with the timestamps. All the se-
quential patterns can be enumerated via simple temporal joins on ID-Lists. For propose of finishing a
sequential pattern mining task, the SPADE algorithm requires three passes of database scanning. To
reduce the merge cost, SPAM (i.e., Sequential PAttern Mining) is proposed in [Ayres et al. 2002]. The
SPAM algorithm represents each ID-List as a vertical bitmap data structure. As a consequence, the
space for storing ID-Lists is reduced so that the ID-Lists can be entriely stored in the main memory
during sequential pattern mining.

Pattern-Growth-Based Algorithms. Pattern-growth-based algorithms utilize efficient data struc-
tures to prune candidate sequences early in the sequential pattern mining process. The search space
of sequential patterns is typically represented as a tree data structure. The Apriori property can be
used when the tree is traversed for searching sequential patterns in either breadth-first or depth-first
order. When the number of candidate sequences is large, for managing memory efficiently, the tree
data structure representation allows partitioning of the corresponding search space [Irfan and Anoop

8

2012]. After the partition is completed, each smaller space can be searched in parallel. Related liter-
atures have been proposed several pattern-growth-based algorithms for handling various application
scenarios.

FreeSpan (i.e., Frequent pattern-projected Sequential Pattern) is one of the initial pattern-growth-
based algorithms for sequential pattern mining [Han et al. 2000]. The novel idea of this approach is to
integrate the mining of sequential patterns with the mining of frequent patterns. It also uses projected
sequence databases to confine the search and the growth of subsequence fragments. Given a sequence
S =< T1, ..., Tk, ..., Tm >, the itemset T = ∪m

k=1Tk is the projected itemset of S. A useful property is
that, if an itemset T is infrequent, any sequence whose projected itemset is a superset of T cannot
be a sequential pattern. Based on the property, the efforts of candidate subsequence generations are
greatly reduced during the process of sequential pattern mining.

The WAP-Mine (i.e., Web Access Pattern Mine) algorithm is proposed to mine access patterns from
web logs in [Pei et al. 2000]. This algorithm takes advantage of a novel data structure named WAP-
tree (Web Access Pattern tree) for mining access patterns from pieces of logs efficiently. This algorithm
takes two passes of scanning the sequence database to build the WAP-tree. Although this algorithm
is able to avoid the issue of generating a huge number of candidates like Apriori-based approach,
WAP-Mine suffers from the huge memory consumption problem because of recursive reconstruction of
numerous intermediate WAP-trees during sequential pattern mining.

PrefixSpan (i.e., Prefix-projected Sequential pattern mining), a novel sequential pattern mining
method, is proposed in [Pei et al. 2001]. The PrefixSpan algorithm takes advantage of prefix projection
techniques to substantially reduce the size of projected databases and leads to efficient processing for
sequential pattern mining. The related study shows that the performance of PrefixSpan algorithm is
better than both the Apriori-based GSP algorithm and the pattern-growth-based FreeSpan algorithm
in mining large sequence databases.

3.3. Fully Dependent Pattern

In system management, the system administrators typically have much more interest in the patterns
that are capable of predicting undesirable situations such as service disruptions and security intru-
sions. As a matter of fact, however, such patterns do not happen frequently but have statistically
significant dependency, especially in a well-managed systems. Therefore, traditional frequent pattern
mining methods are no longer suitable/feasible in the application scenarios of system management.

Several issues cause the pattern discovery to be a challenging task. First, the patterns to be found
are typically infrequent but can be statistically dependent events which can provide insights into the
system. For example, in a computer network, the knowledge acquired from the dependent temporal
event sequences enables the prediction of incoming events. In particular, if the events are related to
malfunctions or service disruptions, such knowledge can be used for problem detection and root cause
determination. Unfortunately, in order to discover the infrequent patterns, the support thresholds
should be set very low. Consequently, this would raise a new issue that a large number of unimpor-
tant patterns are mixed in with a few patterns of interest. Second, the event data are collected in
a noisy environment. For the applications depending on networks, data may be lost because of the
traffic-overloaded communication lines or the overflowing router buffer. In addition, the data may be
corrupted because of human errors during data processing. As a result, some valid patterns may be
missed due to the presence of noise. Third, the distribution of events is often skewed in the whole data
collection. As a consequence, a fixed minimum support threshold is not applicable for mining patterns
from such event data.

In [Liang et al. 2002], to address the aforementioned issues, the concept of a fully dependent pattern,
known as a d-pattern, is proposed to discover the infrequent, but dependent event patterns. To avoid
the issue brought about by the fixed minimum support threshold, the hypothesis test is applied for a
dependency test.

Let Ω be the item space and assume that there are k distinct items (i.e., |Ω| = k) in the item space.
An event is an itemset E = {I1, ..., Ii, ..., Im} where Ii is an item from the item space. An event is
considered to be a random variable taking values of all possible subsets of the item space. Assume that
there exists an unknown distribution P on the 2k possible states of E. Given an event database D, all
events E ∈ D are assumed to independently and identically follow the distribution P . Obviously, if all

9

the items in an event E are independent, the probability of event E occurring can be derived as follows.

pE = P (I1, ..., Ii, ...Im) =
m
∏

i=1

P (Ii) =
m
∏

i=1

pi, (1)

where pi is the probability of occurrence of item Ii. On the other hand, the probability of their occur-
rence should be higher than the one under the independent assumption. Let p∗ =

∏m
i=1 pi; then the

hypothesis test for dependency is given as below.

H0 (null hypothesis) : pE = p∗

H1 (alternative hypothesis) : pE > p∗
(2)

Since the real values of pi’s are not available, in order to calculate p∗, all pis are replaced by their

estimators p̂i =
support(Ii)

|D| , where support(Ii) is the number of events containing item Ii and |D| is the

number of events in the event database D. If the null hypothesis in Eq. (2) is true, then the random
variable CE = support(E) follows a binomial distribution B(p∗, n), where support(E) is the occurring
number of event E in event database D. The null hypothesis should be rejected if CE is bigger than
some threshold. The threshold can be determined by a pre-specified significance level α, where α is
known as the upper bound for the probability of a false positive.

Accordingly, a new random variable can be derived as follows:

Z =
CE − np∗

√

np∗(1 − p∗)
. (3)

Typically, the number of events in D is very large, so Z is assumed to follow the standard normal dis-
tribution N(0, 1) according to the central limiting theorem [Durrett 2010]. With Eq. (3), the dependency
test is equivalent to test whether CE is greater than minsup(E), which is given in

minsup(E) = np∗ + zα
√

np∗(1− p∗), (4)

where zα is the corresponding 1− α normal quantile which can be easily found in any normal table or
calculated. Different events Es should have different minsup(E)s since their p∗s have different values.

However, the dependency test is neither upward nor downward closed. Therefore, it is computation-
ally infeasible to discover all events that are dependent. In order to discover all such dependent events
efficiently, a stronger dependency condition is given to define such patterns, which are referred to as
d-patterns.

Definition 3.1. Given a significant level α, an event E = {I1, ..., Ii, ..., Im} (m ≥ 2) is a qualified
d-pattern if the two conditions below are satisfied.

(1) support(E) ≥ minsup(E).
(2) If ES ⊆ E and |ES | > 1, then support(ES) ≥ minsup(ES).

With condition (2) in Definition 3.1, the d-pattern can be proved to be downward closed. It can also be
shown that the minimum support minsup(E) increases as the frequency of items increases, when the
product p∗ ≤ 0.5. With the help of the downward property, the d-patterns can be efficiently discovered
by a level-wise search algorithm similar to the Apriori algorithm.

With the definition of d-pattern, three fundamental issues of traditional association mining are ad-
dressed so that it is capable of discovering the patterns which are infrequent from noise and unevenly
distributed data. Although the strong dependency test requires not only an event but also all its sub-
sets satisfying the dependency test, a level-wise algorithm can be constructed to discover all d-patterns
regardless of their supports.

3.4. Partially Periodic Dependent Pattern

Periodicity is one of the most common phenomena in the real world. The characteristics of periodic
patterns help analysts gain great insights into the data. First, periodic patterns indicate the persis-
tent occurrence of events. With the help of this characteristic, periodic patterns can be applied for
the anomaly detection and problem diagnosis. Second, periodic patterns provide evidence for the pre-
dictability of events. It is helpful for analysts to predict the behavior of coming events and study the
evolving trends in the future.

10

However, the limitations of data collection methods and the inherent complexity of periodic behav-
iors pose a great challenge for periodic pattern detection. In real practice, several issues need to be
considered [Ma and Hellerstein 2001b].

— First, the periodic behaviors are not persistent. Take complex networks as an example. Periodic prob-
lem reports are initialized when there occurs an exception such as disconnection of the network and
are terminated once the problem is fixed.

— Second, imprecise time information is recorded due to lack of clock synchronization, rounding, and
network delays.

— Third, periods are not known in advance. It is computationally infeasible to discover the true period
by exhaustively searching for all possible periods.

— Furthermore, a fixed support level has difficulty in capturing the periods for all the patterns, since
the numbers of occurrences of periodic patterns vary drastically. For example, a daily periodic pattern
results in at most seven occurrences in a week, while an hourly pattern results in 168 occurrences for
one week.

— Finally, events may be missing from a periodic pattern, or random events may be introduced into a
periodic pattern. As a result, the periodicity may be disrupted due to noise.

To discover periodic patterns considering the above issues, partial patterns (i.e., p-patterns) are dis-
cussed in this section.

Problem Description. Note that an event is defined as a tuple (type, time), where type is the event
type and time is the occurring timestamp of the event.

Definition 3.2. An event sequence is defined as a collection of events ordered by the occurring
timestamps, i.e., S =< e1, ..., ei..., en >, where ei = (typei, timei). A point sequence is an ordered
collection of timestamps with respect to a given event type A, PA =< t1, t2, ..., ti, ..., tn >, where ti is a
timestamp.

Definition 3.3. A partially periodic point process of a given event type A is a point sequence
PA =< t1, ..., ti, ..., tn >. Assume p is the period and δ is the time tolerance. If ti and ti+1 are on the
same on-segment, then ti+1 − ti = p± δ, where 1 ≤ i ≤ n.

Based on the definition of a partially periodic point process, the definition of a partially periodic
temporal association is given as follows.

Definition 3.4. Given an event sequence S, let TS be the set of all the event types occurring in S, δ
be the time tolerance of period length, ω be the length of time window, minsup be the minimum support
threshold, and p be the period length. A set of event types T ⊆ TS is a partially periodic temporal
association, referred to as a p-pattern, if the number of qualified instances of T in S exceeds the
minimum support threshold minsup. A qualified instance S1 satisfies the following conditions.
(1) All types of events in T happen in S1, where there exists a timestamp t such that for all ei ∈ S1,
t ≤ time(ei) ≤ t+ ω.
(2) The point sequence for each event type in S1 is a partially periodic point process with parameters p
and δ.

3.4.1. Solution. According to the definition of the p-pattern, it can be verified that p-patterns satisfy
the downward closure property. Because of this property, a level-wise search algorithm can be pro-
posed for computational efficiencies. To discover p-patterns, δ, ω, and minsup are supposed to be given.
Therefore, the task for p-pattern discovery includes two steps: finding possible periods p and discover-
ing p-patterns with parameters ω,δ, and minsup.

One existing method to find the periods of a point process is to use the Fast Fourier Transform (i.e.,
FFT). However, some issues of p-pattern discovery make an FFT algorithm infeasible. The random
on-segments and off-segments are introduced in the p-pattern discovery; as a result, an FFT algorithm
cannot cope with such a situation well. Moreover, the computational efficiency of FFT is O(NlogN).
Here N represents the number of time units. Note that the number of time units is typically large.
In [Ma and Hellerstein 2001b], an approach based on chi-squared tests is proposed to find periods.
When all the possible periods for each event type are discovered, the subsequent task is to find the
p-patterns.

In [Ma and Hellerstein 2001b], according to different orders for period determination and p-pattern
discovery, two other algorithms (i.e., association-first and hybrid algorithms) are proposed as well.

11

The Association-first algorithm starts with temporal association mining and then selects only those
associations whose event types occur in a periodic point process with the same period p and tolerance
δ. The association-first algorithm suffers a computational complexity comparable to that of temporal
mining, where a substantial amount of cost would be caused in the case of large patterns and low
support levels. However, the association-first algorithm is more robust to noise [Ma and Hellerstein
2001b]. The hybrid algorithm is a trade-off between the period-first and association-first algorithms.
The former provides efficiency while the latter provides robustness to noise.

3.5. Mutually Dependent Pattern

In some application domains, including problem detection in computer networks, intrusion detection
in computer systems, and fraud detection in financial systems, normal behaviors dominate compared
with rare abnormal behaviors such as failures and intrusions [Ma and Hellerstein 2001a]. Therefore,
in these applications, it is more interesting to discover such patterns that comprise infrequent, but
highly correlated items than the frequent patterns whose occurring frequencies exceed a predefined
minimum support threshold. An example from network management is considered. Three events, i.e.,
cold start trap, network interface card failure, and unreachable destination, are commonly generated
from a router. Typically, the occurrence of cold start trap indicates the router has failed and restarted.
Thus, given the occurrences of the first two events, the monitoring system can provide an advanced
warning that the third event will happen.

It is difficult to mine such infrequent but strongly correlated patterns. One intuitive way is to apply
the traditional frequent pattern mining methods with a very low minimum support threshold to get the
initial pattern set. Then, significantly correlated patterns can be identified from these initial pattern
set. However, it is impractical since a large number of irrelevant patterns dominate the whole initial
pattern set. In order to address the issue, mutually dependent patterns are proposed, which are also
known as m-patterns.

Assume that an event is a non-empty set of items associated with its timestamp. Let S be a sequence
of events, and E1 and E2 be two events. Given S, the dependency of E1 on E2 is quantified by the
empirical conditional probability denoted by PS(E1|E2).

PS(E1|E2) =
support(E1 ∪E2)

support(E2)
, (5)

where E1 ∪ E2 represents a new event containing all the items from E1 and E2, and support(E) is the
number of occurrences of E in sequence S.

Definition 3.5. Given the minimum dependence threshold 0 ≤ minp ≤ 1, two events E1 and E2 are
significantly mutually dependent with respect to the sequence S iff (i.e., if and only if) PS(E1|E2) ≥
minp and PS(E2|E1) ≥ minp.

Definition 3.6. Given a sequence S and the minimum dependence threshold minp, let E be an event
from S. If any two events E1 ⊆ E and E2 ⊆ E are significantly mutually dependent with respect to S,
then E is referred to as an m-pattern.

According to the definition, an m-pattern can be discovered regardless of the frequency of its occur-
rence. M-patterns are different from the frequent association rules and correlated patterns.

(1) An m-pattern E requires mutual dependence, which is a two-way dependence. An association rule
E1 → E2 only requires one-way dependence (i.e., E2 depends on E1). A correlated pattern refers to
an itemset whose items are not independent according to a statistical test.

(2) An m-pattern does not require minimum support. This property makes it possible to find all in-
frequent m-patterns. In contrast, association rule mining is not applicable for infrequent pattern
discovery since low minimum support often leads to a large number of irrelevant patterns.

(3) E is an m-pattern if any two sub-events of E are dependent on each other. This requirement makes
the correlations in m-patterns more significant than those in both association rules and correlated
patterns.

The definition of m-patterns offers several nice properties, which can be used to develop efficient
algorithms for m-pattern discovery.

LEMMA 3.7. An event E is an m-pattern iff PS(E − {I}|{I}) ≥ minp, for every item I ∈ E.

12

Similar to frequent itemset discovery, the number of all potential m-patterns is huge. An efficient
algorithm is required to search for all m-patterns.

LEMMA 3.8. Let E′ and E be two events satisfying E′ ⊆ E. If E is an m-pattern, then E′ is an
m-pattern as well.

The property given in Lemma 3.8 is the downward closure property of an m-pattern. Similar to the
Apriori algorithm, a level-wise search algorithm is proposed for efficient m-pattern discovery.

LEMMA 3.9. If E is an m-pattern with minp, then
support(E−{I})
support({I}) ≥ minp for any item I ∈ E.

Provided along with Lemma 3.9, the supports of patterns found at level 1 and k − 1 can be used
to prune the impossible m-pattern at level k. Clearly, the smaller the candidate set is, the faster the
m-pattern searching algorithm can perform.

The m-pattern discovery algorithm [Ma and Hellerstein 2001a] is similar to the Apriori algorithm
[Agrawal et al. 1993]. The only difference is that more pruning techniques can be incorporated accord-
ing to Lemma 3.8 and Lemma 3.9.

3.6. T-Pattern

In system management, the analysis of historical event data helps to discover some interesting pat-
terns, which can provide great insights into system behavior. Specifically, a series of symptom events
can be triggered by a computer system problem and they often serve as natural signatures for root
cause analysis of system problems. As summarized in [Hellerstein et al. 2002b; Houck et al. 1995], “a
problem can identify itself as a sequence of events that propagate from the origin and low layers to
high software layers through the dependency tree”. Therefore, discovering temporal patterns is useful
for pinpointing the root causes and taking subsequent actions.

The pairwise temporal dependency among events has been given much attention for several reasons.
First, the pairwise temporal dependency can be well visualized and easily interpreted by domain ex-
perts. Moreover, complex temporal dependencies can be constructed on the basis of pairwise temporal
dependencies. Therefore, the t-pattern is proposed in [Li et al. 2005] as a pairwise temporal dependent
pattern.

With respect to a given event sequence S, a t-pattern describes a statistical dependency between
events, where the temporal dependency is characterized by the timing information indicating that one
event is followed by another event within a time lag interval.

Mining frequent episodes from an event sequence typically can be done by predefining a fixed time
window size [Mannila et al. 1995]. With the help of window size, items in the same sliding window are
viewed as items in a single transaction. Then the idea of mining frequent itemsets from transaction
data is applied for discovering frequent episodes. However, this method causes two issues which must
be addressed in applications. First, the fixed-time-window scheme cannot investigate and utilize the
temporal information within a window, and may not be able to discover temporal relationships longer
than the given window size. For example, in real system management applications, the temporal dis-
tance between events may rang from 1 second to 1 day. Second, the common frequent pattern mining
framework can not discover infrequent but significant patterns. For example, normal operations in
many applications are frequent, but service disruptions are usually infrequent. However, obviously, it
is significant.

To address the aforementioned issues, in [Li et al. 2005; Li and Ma 2004], a novel algorithm is
proposed for discovering temporal patterns without pre-defined time windows. The temporal patterns
discovery consists of two sub-tasks: 1) dependence testing and candidate removal using statistical
techniques; and 2) identifying the temporal relationships between dependent event types. The core
idea is formulating the dependence problem as a problem of comparing two probability distributions
and solving it utilizing the statistical methods including the distance methods of the spatial point
process and chi-squared tests. The statistical techniques are often robust against noises and also useful
for characterizing the event patterns.

Herein, both event sequence and point sequence are described in Definition 3.2. Let S =<
e1, ..., ei, ..., en >, where ei = (typei, timei). A point sequence as to event type A is denoted as
PA =< a1, a2, ..., aj , ..., am >, where aj is a timestamp and ai < ai+1. Assume the time range for a

13

point sequence PA is [0, T]. Given a point z, we define the distance from z to the point sequence PA as

d(z, PA) = inf
x∈PA∧x≥z

||x− z||. (6)

Intuitively, the distance is defined to be the shortest distance between the point z and its closest neigh-
bor in PA.

Definition 3.10. Given two point sequences PA =< a1, a2, ..., aj , ..., am > and PB =<
b1, b2, ..., bi, ..., bn > for event A and event B, respectively, a t-pattern defined over PA and PB is de-
noted as A →[τ−δ,τ+δ] B, where τ is B’s waiting period after the occurrence of A and δ is the time
tolerance. It indicates that B is statistically dependent on A, and that most B’s waiting periods after
the occurrences of A fall into the interval [τ − δ, τ + δ].

To qualify a t-pattern, a two-stage method is proposed in [Li et al. 2005]. At the first stage, the depen-
dency between events is tested statistically. The task of the second stage is to identify the waiting peri-
ods between two possible dependent events. In order to test the dependency in t-pattern A →[τ−δ,τ+δ] B,
two distributions are defined as follows.

Definition 3.11. The unconditional distribution of event B’s waiting time is defined as

FB(r) = P (d(x, PB) ≤ r),

where x and r are any real numbers. FB(r) describes the probability that event B occurs within time
r.

Definition 3.12. The conditional distribution of event type B’s waiting time w.r.t to event type A is
defined as

FB|A(r) = P (d(x, PB) ≤ r : x ∈ PA),

where r is a real number and x is any point in the point sequence PA. FB|A(r) describes the conditional
probability distribution given that there is an event A occurred at time x.

With the help of the two distributions FB(r) and FB|A(r), the dependency between event A and event
B is given in the following definition.

Definition 3.13. Given two point sequences PA and PB corresponding to event types A and B, re-
spectively, A → B, indicating that B is directly dependent on A, can be statistically true if FB(r) is
significantly different from FB|A(r).

After stage one, two sub-tasks are involved in stage two: 1) dependence identification between the
candidate pairs, and 2) waiting period discovery between the pair of dependent events. Assume δ to be
the time tolerance considering factors such as lack of clock synchronization and phase shifts.

Definition 3.14. Given B depending on A, the waiting period of B after A is τ if the distance se-
quence DB|A has a period τ with time tolerance δ.

The waiting periods discovery is conducted utilizing the chi-squared test-based approach proposed
in [Ma and Hellerstein 2001b]. Given an arbitrary element τ in DB|A and a fixed δ, let Cτ denote the
total number of elements of DB|A occurred in [τ − δ, τ + δ]. Intuitively, Cτ should be small if τ is not a
period; otherwise Cτ should be large. The main idea of determining whether or not τ is a period is to
compare Cτ with the expected number of elements from a random sequence in [τ − δ, τ + δ].

3.7. Frequent Episode

In event sequences, an episode is referred to as a collection of events occurring close to each other with
respect to a given partial order in terms of timestamps [Mannila et al. 1997]. Typically, a window size
is given to describe that all the events within one episode are close to each other. For example, as shown
in Figure 5, there are six types of events (i.e.,A,B,C,D,E, F). The episode with window size 2 happens
several times, where event E is followed by event F (e.g., < e1, f1 >,< e2, f2 >,< e3, f3 >,< e5, f4 >).

The episodes occurring with high frequencies (i.e., greater than a given threshold) are referred to
as frequent episodes. One of the basic problems in event mining is to discover recurrent episodes from
event sequences.

14

D

A

1 5 10 15 20

Event

Time

B

C

a1 a2 a3 a4

b1 b3b4

c1 c2 c3 c4 c5

d1 d2 d3 d4

e1
e3 e4 e5

E

F

25 30 35 40

e2

f1 f2 f3 f4

w1

w2

Fig. 5. Episodes of event sequences.

q0 q1

e1, e2, , ei, , en, ...

p

p

1-p1-p

Fig. 6. Two states q0 and q1 correspond to the states with a low
rate and a high rate, respectively. p denotes the probability of
state change. The events generated in both states q0 and q1 are
mixed into an event sequence.

Let TS and TE be the starting time and the ending time of event sequence S. Accordingly, TS = 0 and
TE = 40, as shown in Figure 5.

In order to describe the episodes of event sequence S, a window w is defined as a slice of the event
sequence S. In particular, w can be denoted as w = (Sw, ws, we), where Sw is the subsequence of S whose
timestamps fall into [ws, we), and ws ≥ Ts and we ≤ Te represent the starting time and the ending time
of the window w, respectively. Let W be the set of all possible windows on event sequence S. For
instance, two time windows w1 and w2 are marked in Figure 5, where w1 = (< a1, b1, c1, e2 >, 6, 11) and
w2 = (< b1, c1, e2, f2 >, 7, 12).

With the help of the definition of window, episodes can be described as directed acyclic graphs. Ac-
cording to the directed acyclic graphs, episodes are divided into three categories.

— A parallel episode is defined by a set of event types and a given window, where all the event types
happen within the time window, without considering the order of them.

— A serial episode is defined by a set of event types and a given window as well. The window contains
occurrences of all the event types, and the occurrences of them should keep in a consistent order.

— A composite episode is built recursively from events by serial and parallel composition. A composite
episode is defined as: 1) an event, 2) the serial composition of two or more events, and 3) the parallel
composition of two or more events.

Definition 3.15. Given the window size, let W be the set of all possible episodes on event sequence

S. The frequency of an episode α is defined as freq(α) = |{w∈W : α occurs in w}|
|W | . If freq(α) is no less than

the predefined minimum frequency threshold min freq, then α is referred to as a frequent episode.

Based on the definition of frequent episode [Mannila et al. 1997], a useful lemma is described as
follows.

LEMMA 3.16. If an episode α is frequent in an event sequence S, then all subepisodes β of α are
frequent as well.

According to Lemma 3.16, similar to the Apriori algorithm, a level-wise searching algorithm can be
applied to discover all the frequent episodes with respect to the event sequence S [Mannila et al. 1997].
Extended work on the frequent episode discovery in different scenarios can be found in [Laxman et al.
2004] and [Laxman et al. 2007] as well.

3.8. Event Burst

In this section, we focus on how to detect the event burst in an event sequence. For example, the
arrival of a single event in a sequence is characterized by the rate at which the relevant events happen.
Generally, an event burst is identified based on the high occurrence rate of the events. One intuitive
way to model the random arrival time of events is based on the exponential distribution [Kleinberg
2003]. Let x be the inter-arrival time between event ei and event ej . Then x follows the exponential
distribution with the following density function: f(x) = αe−αx, where α−1 is the expected gap and α

15

is referred to as the rate of event arrivals. Accordingly, the event burst can be modeled by a relatively
larger α.

To make the model clear, only two states q0 and q1 are given in Figure 6, which correspond to the
states with a low rate α0 and a high rate α1 (i.e., α0 ≤ α1), respectively. Intuitively, periods with a low
rate are usually interleaved with periods with a high rate. Thus, let p denote the probability of a state
changing from one to the other. 1− p is the probability of staying in the same state. The events happen
in both states q0 and q1 are organized into an event sequence with respect to temporal information.

This model is also referred to as a two-state model in [Kleinberg 2003]. The two-state model can
be used to generate the sequence of events. The beginning state is q0, where events are emitted at a
low rate and the inter-arrival gaps follow an exponential distribution according to the density function
f0(x) = α0e

−α0x. A state may change to another state with the probability p or stay put with the proba-
bility 1− p. If the current state is q1, then the inter-arrival gaps between events follow the distribution
according to f1(x) = α1e

−α1x.
Suppose that there is a given sequence of n + 1 events, each of which is associated with its times-

tamp. A sequence of inter-arrivals x = (x1, x2, ..., , xn) can be determined by the given event sequence.
According to the Bayesian theory, the possible state sequence q = (qi1 , qi2 , ..., qin) can be inferred by
maximizing the condition probability of the state sequence given the inter-arrival sequence. The con-

ditional probability is shown as P (q|x) = P (q)P (x|q)
Z

, where Z =
∑

q P (q)P (x|q) is the normalizing

constant. P (x|q) can be computed as P (x|q) =
∏n

t=1 fit(xt). Let b denote the number of state transitions
in sequence q. Then P (q) is

P (q) = (
∏

it 6=it+1

p)(
∏

it 6=it+1

(1− p)) = (
p

1− p
)b(1 − p)n. (7)

Therefore, P (q|x) is computed as P (q|x) = 1
Z
(p
1−p

)b(1 − p)n
∏n

t=1 fit(xt). Applying ln on both sides to

maximize the likelihood above is equivalent to minimizing the cost function c(q|x) in

c(q|x) = bln(
1− p

p
) + (

n
∑

t=1

−ln(fit(xt))). (8)

In order to minimize the cost described in the Eq.(8), the intuitive idea is motivated by its two terms.
The first term on the right of Eq.(8) indicates that the sequences with a small number of state changes
are preferred, while the second term shows that the sequences should conform well to the inter-arrival
sequence. In [Kleinberg 2003], the two-state model is extended to an infinite-state model where there
are infinite states and each state has different occurrence rates for events. Based on the infinite-state
model, a hierarchical structure from the pattern of bursts can be extracted.

3.9. Rare Event

In system management applications, it is important to predict infrequent but highly correlated events,
such as an attack on a computer network. However, there are several challenges in the prediction
task. First, since the prediction targets are rare events, only a few subsequences of events are able
to contribute to the prediction problem. Second, because of the categorical features of events, the un-
even inter-arrival times are considered to be another difficulty. Moreover, because of noise the time
recordings can only approximate the true arrival times.

Most prediction methods assume that the data has balanced class distributions. As a consequence, it
is difficult to adopt traditional discriminative analysis methods to differentiate the target rare events
from other frequent events. In [Vilalta and Ma 2002], a new strategy is proposed to improve the effi-
ciency, accuracy and interpretability of rare event prediction. The main idea is to transform the rare
event prediction problem into a search for all frequent event sets preceding target rare events. The
unbalanced distribution problem is overcome by searching for patterns on the rare events exclusively.
The patterns discovered are then combined into a rule-based model for prediction.

The idea of rare event prediction is illustrated in Figure 7. There are six event types. An event
sequence S =< e1, b1, d1, a1, f1, ..., b3, a3, f2 > is presented in the figure. Let Dtarget be the subset of
event types to be predicted, e.g., Dtarget = {F}.

Definition 3.17. Given a set of event types Z and a window size w, if each event type in Z can be
found in a window, then the window is matched by Z. The support of Z is s% if s% of windows with

16

D

A

1 5 10 15 20

Event

Time

B

C

a1 a2 a3

b1 b3b2

c1

d1 d2

e1
E

F

25

f1 f2

w1 w2

target event F

Fig. 7. A fixed window size 6 is given. Predicting rare event F
is transformed to searching for the frequent patterns preceding
event F . (See color insert.)

CPU Usage

System Event

CPU Intensive Program CPU Intensive ProgramDisk Intensive Program Disk Intensive Program

Fig. 8. The CPU usage is continuous time series data, while
the system events are identified when starting different types of
tasks such as disk intensive task and CPU intensive task.

size w preceding target events are matched by Z. Z is frequent if s% is above a predefined minimum
threshold τ .

Definition 3.18. The subset of event types Z has confidence c% if c% of all windows of size w matched
by Z preceding the target event. If the confidence of Z is greater than a predefined threshold, then Z
is accurate.

It is very straightforward to mine the frequent Z. The general idea is to maintain in memory all
events with a window of size w. All the events in a single window are considered to be a transaction.
Thus the original problem is transformed to mining frequent patterns from a transaction database,
where the Apriori [Agrawal et al. 1993] algorithm is applicable.

In order to mine the accurate Z, the basic idea is to count the number of times each of the frequent
event sets occurs outside the time windows preceding target events, denoted by x2. If the support
number of Z is x1, then the confidence is x1

x1+x2
. With the help of confidence, the accurate Z can be

found. The rule-based model is built based on frequent and accurate event type sets. All the sets are
ranked properly and the rule set is chosen from the event type sets [Vilalta and Ma 2002].

3.10. Correlated Pattern between Time Series and Event

Despite the importance of correlation analysis in various real applications such as system management
and advertisement, limited research efforts have been reported in mining the correlations between
two different types of temporal data, that is, the correlation between continuous time series data and
temporal event data. Such types of correlation analysis are common, especially in system management.
A typical example of system management is given in [Luo et al. 2014] to illustrate the importance of
correlation between time series and events in real applications (as shown in Figure 8). There are two
types of temporal data in the example. CPU Usage is continuous time series data describing the burden
on the CPU. CPU Intensive Program and Disk Intensive Program are temporal events describing the
running status of different programs. The CPU usage will increase dramatically when a CPU intensive
program starts. However, the CPU usage does not suffer a significant burden due to the start of the
disk intensive program. Therefore, it is considered that the CPU intensive program is highly correlated
with CPU Usage, while there is no obvious correlation between the disk intensive program and CPU
usage.

In [Luo et al. 2014], a novel approach is proposed to identify the correlation between two types of
temporal data in three aspects: (a) determining the existence of correlation between the time series
and events, (b) finding the time delay of the correlation, (c) identifying the monotonic effect describing
whether the correlation is positive or negative. In order to clearly demonstrate the method to identify
the correlation between two types of temporal data, three terms are defined, as shown in Figure 9.
Given a time window size, the front sub-series is a snippet of time series just before the occurrence of
an event and the length of the snippet is fixed with the time window size. Similarly, the rear sub-series
is a snippet of time series after the occurrence of the event with the same length as the front sub-
series. And a random sub-series is constructed by randomly sampling a snippet of time series with the
same window size length. As a consequence, three sets of sub-series can be obtained, including front
sub-series set F , rear sub-series set R, and random sub-series set Λ.

17

The intuitive idea is that, if there exists a correlation between a time series S and an event type
E, then a corresponding change of the time series S occurs every time when an event E happens.
Therefore, in [Luo et al. 2014] a hypothesis test is applied to verify the correlation statistically.

Given a time series S and an event sequence E, let F be the collection of front sub-series, R be the
collection of rear sub-series, and Λ be the set of random sub-series. Several cases with respect to the
correlation between E and S are listed as follows:

(1) they are correlated and E often occurs after S changes, denoted as S → E, if and only if the
distribution of sub-series in F is statistically different from the one in Λ.

(2) they are correlated and E often occurs before S changes, denoted as E → S, if and only if the
distribution of sub-series in R is statistically different from the one in Λ.

(3) they are correlated if S → E or E → S.

As described above, the correlation analysis problem can be transformed into a multi-variate hy-
pothesis test problem. A nearest-neighbor-based method is proposed in [Luo et al. 2014] to analyze the
correlation between events and time series.

3.11. Pattern Summary

All the event patterns discussed in this chapter are summarized in Table 3.11. Admittedly, there are
some other patterns we do not cover, such as spatial-temporal co-location patterns [Celik et al. 2006;
Ang et al. 2012; Niebles et al. 2008].

Table III. Summary of mining event patterns
Pattern Data Output Description

Sequential Pattern
([Agrawal and Srikant 1995],[Rao and Sammulal 2013],[Srikant and Agrawal 1996],[Irfan and Anoop 2012],[Tan et al. 2005],
[Garofalakis et al. 1999],[Zaki 2001],[Ayres et al. 2002],[Han et al. 2000],[Pei et al. 2000],
[Pei et al. 2001] [Mooney and Roddick 2013],[Chang 2011])

Event
sequences

Frequent event
subsequences, e.g.,
< {A}, {B,C} >.

All the subsequences with occurrence
frequency not less than a given
threshold are discovered. Two categories
of algorithms are presented,
i.e., Apriori-based and
pattern-growth-based algorithms.

Fully Dependent
Pattern([Liang et al. 2002])

An event
database

All the items
in a pattern are
correlated with
each other, e.g.,
{A,B,C} is a fully
dependent pattern
iff any of its
subsets is a fully
dependent pattern.

Hypothesis test is applied
for identifying the correlation
of items in a pattern.

Partially Periodic
Dependent Pattern
([Ma and Hellerstein 2001b])

An event
sequence

Periodic pattern
with period p
and tolerance δ,
e.g., A →[p−δ,p+δ] A.

Periodic patterns are discovered from
a given event sequence, where the
periodic patterns happen on some
segments of the sequence, rather than
on the whole sequence. The partially
periodic dependent pattern is identified
by chi-squared hypothesis test.

Mutually Dependent
Pattern([Ma and Hellerstein 2001a])

An event
sequence

Events in a mutually
dependent pattern
{A,B} depend
on each other, i.e.,
A → B and B → A.

Mutually dependent patterns are
identified if the conditional probabilities
in both directions are greater
than a predefined minimum dependence
threshold.

T-Pattern([Li et al. 2005; Li and Ma 2004])
An event
sequence

Patterns like
A →[τ−δ,τ+δ] B

are discovered, where
τ is the time
interval and δ
is the tolerance.

T-Pattern is defined on
two events, indicating that an
event implies the other
one within a time interval.

Frequent Episode
([Mannila et al. 1995; 1997; Achar et al. 2012; Achar et al. 2013; Patnaik et al. 2012])

An event
sequence

Given window size p,
an episode containing
event pattern is frequent
if its frequency is not
less than a predefined
threshold.

Three types of frequent episodes
include the serial episode,
the parallel episode, and
the composite episode.

Event Burst([Kleinberg 2003; Srirangarajan et al. 2013; Yao et al. 2010; Nguyen et al. 2013])
An event
sequence

Event burst is
defined over a
period [t1, t2]
if the occurrence
frequency of
a given event is high.

The event burst detection
can be used for monitoring
the occurrence of a
significant event automatically.

Rare Event([Vilalta and Ma 2002])
An event
sequence

Given a rare
event T , a
prediction rule
is produced like
{A,B} → E.

An anomaly is typically
a rare event. The
prediction rule can be
used to predict the
anomaly according to historical
events.

Correlation between
Time Series and
Event ([Luo et al. 2014])

An event
sequence
and a
time series

Given a time
series S and an
event E,
patterns like
S → E or
E → S
are produced.

Such patterns are useful
in practice, for example,
the correlation between
CPU usage and running
a computing job.

4. MINING TIME LAGS

4.1. Introduction

As shown in Table IV, the time lag is one of the key features in many temporal patterns. Specifi-
cally, the time lag plays a significant role in identifying the evolving trends of incoming system events
as well as predicting the future system behaviors. Time lag can provide the characterization of the

18

Table IV. Temporal patterns with time lag [Tang et al. 2012]
Temporal Pattern An Example Temporal Dependency with Lag Inter-

val
Mutually dependent pattern [Ma and
Hellerstein 2001a]

{A,B} A →[0,δ] B, B →[0,δ] A

Partially periodic pattern [Ma and
Hellerstein 2001b]

A with periodic p and a given time tolerance δ A →[p−δ,p+δ] A

Frequent episode pattern [Mannila
et al. 1997]

A → B → C with a given time window p A →[0,p] B, B →[0,p] C

Loose temporal pattern [Li and Ma
2004]

B follows by A before time t A →[0,t] B

Stringent temporal pattern [Li and
Ma 2004]

B follows by A about time t with a given time
tolerance δ

A →[t−δ,t+δ] B

front sub-series rear sub-series

Sub-series LengthCPU Usage

CPU Intensive Program
System Event

Fig. 9. The front sub-series is a snippet of time series with a
fixed time window size before the occurrence of an event, while
the rear sub-series is a snippet of time series with the same fixed
time window size after the occurrence of the event.

3 5 7 8 9 13 1715
Timestamp

(Minutes):

Disk_Capacity

Database

A

B B

A A

BB

665

C C CC CApp_Heartbeat C

A

B

5

23

C C C C C C C C CC

11

B

Fig. 10. Lag interval for temporal dependency.

temporal dependencies among events. It also provides temporal information for constructing a fault-
error-failure chain and for performing root cause analysis [Avizienis et al. 2001]. In addition, given
the appropriate time lag, events triggered by a single issue can be correlated. Correlating and merging
those correlated events can help system administrators perform problem diagnosis and incident reso-
lution. Thus, mining time lags of hidden temporal dependencies from sequential data is important in
system management [Zeng et al. 2014b].

In real-world systems, the situation becomes complicated because of the inherent system complexity
coupled with the limitations of data collection. However, the following assumption is typically used
when analyzing the events generated from the monitoring systems: given two correlated events, their
time lag is generally constant with small and neglectable fluctuations [Tang et al. 2012]. Although
such an assumption is useful and applicable in many application scenarios, fluctuations can cause
many problems and should be considered in time lag mining.

It is quite challenging to discover the hidden time lags between correlated and interleaved events
if the randomness of the time lag is taken into consideration. First, given a large-scale collection of
sequential events with fluctuating interleaved temporal dependencies, it is computationally infeasible
to discover the time lag using exhaustive search. Second, the time lags hidden in the sequential data
may oscillate with noises and fluctuations due to the synchronization issues and the limitations of data
collection.

In summary, the aforementioned issues make the time lag mining problem quite challenging. In this
section, both non-parametric methods and parametric methods are presented for discovering the time
lag of temporal dependencies.

4.2. Non-Parametric Method

In previous studies on discovering temporal dependencies, interleaved dependencies were not explicitly
considered [Li et al. 2005; Bouandas and Osmani 2007; Mannila et al. 1997]. For A → B where A and
B are events, it is assumed that the dependency only exists between an item A and its first following
B. However, it is possible that the dependency may exist between an item A with any following B.
As shown in Figure 10, the time lag between two dependent events A and B is from 5 to 6 minutes,
whereas the time lag between two adjacent A’s about 4 minutes. Note that, for each event of type
A’, there exists a dependency between it and the second following B (not the first following B). Thus,
among these dependent events A and B, the dependencies are interleaved. Given two event types, the
numbers of timestamps for both event types and the number of possible time lags are O(n) and O(n2),
respectively. As a result, the number of lag intervals is O(n4). Therefore, the main challenge is how to
find an efficiently way to identify appropriate lag intervals from the O(n4) candidates.

19

Let N denote the number of event types and n denote the number of distinct timestamps. An efficient
algorithm with time complexity O(n2logn) and space complexity O(N) is proposed in [Tang et al. 2012].

4.2.1. Qualified Lag Interval. Let S = x1x2...xN be an event sequence, where i = 1, 2, ..., N , xi is the event
type of the ith event, and t(xi) is the timestamp of xi. Intuitively, if a temporal dependency A →[t1,t2] B

exists in S, then a lot of A’s are followed by some B with a time lag in [t1, t2]. Here, using n[t1,t2] to
represent the observed number of A’s.

A chi-square test based approach is proposed by Ma and Hellerstein [Ma and Hellerstein 2001b] to
determine the minimum required nr. Note that the independence degree is measured by the chi-square
statistic which comparing the expected nr with the observed nr under the independence assumption.
The chi-squared distribution with 1 degree of freedom approximates the null distribution of the statis-
tic. Let χ2

r represent the chi-square statistic for nr. A high χ2
r indicates that the high probability that

observed nr in the given sequence cannot be random. The chi-square statistic is defined as follows:

χ2
r =

(nr − nAPr)
2

nAPr(1− Pr)
, (9)

where nA represents the number of event A in the event sequence S, and Pr represents the probability
of a event B occurring in r from a random sequence. Accordingly, nAPr represents the expected number
of event A that can infer some event B within a time lag r. nAPr(1 − Pr) represents the variance.
We assume the given sequence S has the same sampling rate for B with the random sequence. The
randomness is only for the timestamps of B items. Note that the Poisson process is usually used to
simulate the random sequence. In Poisson process, the probability of an item appearing in an interval
is proportional to the length of the interval [Ross 1996]. Hence, Pr = |r| · nB

T
, where |r| denotes the

length of r, |r| = t2 − t1 + wB , wB denotes the minimum time lag of two adjacent B’s, wB > 0, and
nB denotes the number of B’s in S. The absolute length of the lag interval r is t2 − t1. wB is added
to |r| because without wB when t1 = t2, |r| = 0, Pr is always 0 regardless of how large the nB is.
Consequently, χ2

r would be overestimated. Actually, the timestamps of items are discrete samples, and
wB is the observed sampling period of B. Therefore, the probability of a B occurring in t2 − t1 time
units is equal to the one in t2 − t1 + wB time units.

A confidence level is used to quantify the value of χ2
r. For instance, a 95% confidence level corresponds

to χ2
r = 3.84. According to Eq.(9), the observed nr should satisfy nr >

√

3.84nAPr(1− Pr) + nAPr. In
our scenario, we only consider positive dependencies, thus nr − nAPr > 0. We use support [Agrawal
et al. 1993; Srikant and Agrawal 1996; Ma and Hellerstein 2001b] to guarantee a discovered temporal
dependency fits the entire data sequence. Let suppA(r) (or suppB(r)) be the support of A →r B, which
represents the number of A’s (or B’s). The support satisfies A →r B divided by the total number of
items N . Let minsup be the minimum threshold for both suppA(r) and suppB(r) predefined by the
user [Srikant and Agrawal 1996; Ma and Hellerstein 2001b]. Definition 4.1 gives the definition of the
qualified lag interval which we want to discover.

Definition 4.1. Let A and B be the two item types contained in an item sequence S, χ2
c and minsup

be the two minimum thresholds predefined by the user, a lag interval r = [t1, t2] is qualified if and only
if χ2

r > χ2
c , suppA(r) > minsup, and suppB(r) > minsup.

A straightforward algorithm (i.e., a brute-force algorithm) is developed for discovering all qualified
lag intervals first. Then, STScan and STScan∗ algorithms, which are much more efficient, are pro-
posed in [Tang et al. 2012]. An algorithm, named STScan Algorithm, has been developed for avoiding
scanning the data sequence multiple times. STScan Algorithm based on a sorted table which is a sorted
linked list with a collection of sorted integer arrays. Each entry of the linked list is attached to two
sorted integer arrays.

Given a sequence S, the sorted table is constructed as follows. At first, inserting each time lag be-
tween an A and a B into a red-black tree, which the key of this red-black tree node is the time lag, and
the value is the pair of indices of A and B. After building the tree, the linked list of the sorted table
is created by traversing the tree in ascending order. Assuming that the numbers of A and B in the
sequence S are both O(N), thus the number of t(xj)− t(xi) is O(N2). Creating the red-black tree incurs
time cost O(N2 logN). The time cost of traversing tree is O(N2). Therefore, the overall time cost of the
sorted table creation is O(N2 logN). As mentioned in [Hernandez-Barrera 1996], for two variables X
and Y , O(N2 logN) is the known lower bound of sorting X+Y . Given the linked list with O(N2) entries

20

and O(N) elements for each attached integer array, it has been shown that the actual space cost of a
sorted table is O(N2), which is same as the red-black tree.

4.3. Parametric Method

In this subsection, a parametric method is reviewed to model the randomness of time lags which char-
acterize the temporal dependencies between events [Zeng et al. 2014b]. We use an EM-based approach
to infer the maximal likelihood model of time lags.

Problem Formulation. Given the event space Ω of all possible events, an event sequence S is
defined as ordered finite sequence S =< e1, e2, ..., ei, ..., ek >. Each element ei ∈ S, an instance of an
event, is a tuple ei = (Ei, ti), where event Ei ∈ Ω and ti is a timestamp of one event occurrence.

Let A and B denote two types of events contained in the event space Ω. SA =< (A, a1), ..., (A, am) >
is referred to as a subsequence from S, where ai represents the timestamp of ith event A. SA can be
simplified as a sequence of timestamps, i.e., SA =< a1, ..., am > without explicitly giving event type.
Similarly, SB is denoted as SB =< b1, ..., bn >. The temporal dependency discovery between A and B
can be attained by exploring the temporal relation between SA and SB.

Specifically, if the jth instance of event B can be inferred by the ith instance of event A after a time
lag (µ+ ǫ), then we have

bj = ai + µ+ ǫ. (10)

In Eq.(10), ai and bj are the timestamps of two instances of A and B, respectively. The true time lag µ
describes the temporal relationship between A and B. The noise during data collection is represented
as a random variable ǫ. Because of the existence of noise, the observed time lag between ai and bj is
various. Accordingly, the lag L = µ+ ǫ is a random variable.

Definition 4.2. Let A →L B denote the temporal dependency between A and B, where L is a random
variable. The temporal dependency indicates the occurrence of B is inferred by the occurrence of A with
a time lag L.

The key step of discovering the temporal dependency rule A →L B is to learn the distribution of
random variable L. The distribution of L is ruled by the parameter Θ, which is independent of the
occurrence of A. The combination of the time lag L and the occurrence of A can infer the occurrence of
an event B. Hence, the problem can be reduced to learning the parameter Θ for the distribution of L.
Given sequences SA and SB, one intuitive way to solve this problem is to learn the maximum likelihood
parameter Θ. It can be formally expressed by

Θ̂ = argmax
Θ

P (Θ|SA,SB). (11)

The problem can be solved by using iterative expectation maximization (i.e., EM-based method)
[Bishop et al. 2006].

5. LOG EVENT SUMMARIZATION

Many systems, from computing systems, physical systems, business systems, to social systems, are only
observable through the events they emit. It is well-known that event logs are reliable sources for people
to understand the underlying dynamic system. To learn the behavior of a target dynamic system, one
popular solution is to leverage the pattern mining technique to uncover the hidden temporal patterns
from its logs.

In general, a huge number of events are generated from modern systems. These events describe
the running status and activities of each component, including operational changes, security-related
operations, and system failures, etc. As the size of event logs grow dramatically and the pattern mining
technique tends to return all interesting patterns, the amount of mined patterns would be far beyond
the processing capability of the human beings. Due to this fact, people gradually realized that it is
wise to have a global overview of the observed system before conducting the detailed system analysis,
instead of directly diving into the ocean of the patterns. To meet this need, some research efforts in the
area of event mining have been shifted to event summarization in recent years.

21

5.1. What is Event Summarization?

Event summarization, as its name suggests, is a process to summarize the characteristics (mainly in-
cluding temporal dynamics) of the events within the given system logs. From a functionality perspec-
tive, event summarization is a complementary technique rather than a substitute for event pattern
mining. Compared with the patterns mined from off-the-shelf pattern mining techniques, summarized
results are easier to be understood by the event analysts. The results of event summarization allow
system analysts to obtain an overview of the system running status at a quick glance. According to the
description of Kiernan and Terzi [Kiernan and Terzi 2008], a typical event summarization technique
should have the following properties:

— Brevity and accuracy: The generated summary should be concise compared with the mined patterns
obtained from the same piece of log. Moreover, it should also be able to precisely describe the status
of the target system.

— Hierarchical description: The generated summary should be able to reflect the high level structure
of the events. Besides the high level description, it should also be able to reveal information about
local patterns.

— Parameter free: The parameters of the event summarization algorithm should be as few as possible.
An ideal case is that no extra tuning is needed when event analysts are using the summarization
solution.

5.2. Event Summarization vs. Event Pattern Mining

An obvious distinction between event summarization and event pattern mining is that event summa-
rization is able to generate concise and summarized results compared with event pattern mining. In
fact, besides the aforementioned characteristic, these two types of techniques are different in several
other perspectives. Table V briefly summarizes their differences.

Table V. Distinction between event pattern mining and event summarization

Event Pattern Mining Event Summarization

Functionality Detailed analysis Exploration
Result Representation Concrete patterns and rules Concise representation

Result Granularity High level Low level

5.2.1. Functionality. From a functionality perspective, event summarization is mainly used for explo-
ration and investigation, while event pattern mining is mainly suitable for detailed data analysis. In
practice, the analysis goal is often unclear when the event log is obtained at first. Even experienced an-
alysts don’t know how to correctly analyze the events at the beginning. In this case, a global overview
of the whole log is helpful and useful for analysts to quickly obtain the main idea of the system status.
Event summarization is able to provide a global overview and make suggestions for further analysis.
Based on the summarization results, analysts can have a good understanding of the overall status and
can set up a good analysis plan. Moreover, as event pattern mining typically involves a lot of parameter
tuning, the summarization results can also provide hints and clues on how to set the parameters.

5.2.2. Result Representation. Generally, as shown in Table 3.11, the results of event mining are repre-
sented by various types of patterns or rules. For example, frequent episode mining techniques [Mannila
et al. 1997; Laxman et al. 2004; Yang et al. 2003] are able to discover the event subsequences that fre-
quently appear in an event sequence. Given an event sequence denoted by < (E1, t1), (E2, t2), ... >,
where Ei takes value from a finite event type set E and ti denotes the timestamp when Ei occurs,
the episode mining technique discovers and exhaustively lists all the frequent patterns in the form
of Ei → Ej → Ek. Due to the large number of events and event types in modern computing systems,
this technique can easily generate a large number of patterns or rules. Different variations [Das et al.
1998; Guralnik and Srivastava 1999; Höppner 2001] of the basic episodes mining algorithm can gen-
erate different sets of patterns or rules, but the basic forms of their patterns or rules are the same.

Different from patterns or rules generated by the event mining techniques, the results generated by
event summarization are more concise. Moreover, different event summarization techniques can gener-
ate different representations, such as segmentation models [Kiernan and Terzi 2008; 2009; Pham et al.
2009], hidden Markov models [Peng et al. 2005; Wang et al. 2010], graphs [Aharon et al. 2009], and

22

event relationship networks [Peng et al. 2007; Jiang et al. 2011]. Analysts can freely choose different
representations according to their concrete requirements.

5.2.3. Result Granularity. As mentioned in Section 5.2.1, event summarization acts as a complementary
solution rather than a substitute for pattern mining. In terms of the result granularity, the results of
event summarization are coarser than those provided by pattern mining algorithms. Event summa-
rization algorithms generally only generate results that reflect the high level perspectives about the
event relationships. For example, the summarized results often only tell which groups of events are
correlated with each other and the change in temporal dynamics. On the other hand, the results of
pattern mining usually contain more details, including the list of patterns or rules, the detailed event
relationships, and the concrete parameters describing the relationships.

5.3. Event Summarization vs. Frequent Itemset Summarizati on

5.3.1. Introduction. Frequent itemset summarization is an extension of frequent itemset (pattern) min-
ing. It is proposed to address some of the limitations of frequent itemset mining, including redundancy
and interpretability. Traditional frequent itemset mining can generate a large number of frequent pat-
terns and many of the generated patterns could be redundant. Once the number of discovered patterns
is greater than hundreds, manual investigation becomes infeasible. More advanced patterns, such as
closed frequent patterns [Aggarwal and Han 2014], maximal frequent patterns [Bifet and Gavaldà 2011;
Guns et al. 2013], top-k patterns [Han et al. 2002; Salam and Khayal 2012; Wang et al. 2012], and con-
densed patterns [Pei et al. 2002], have been proposed to make the mining results more compact. How-
ever, these approaches can only partially solve the redundancy problem since the number of generated
patterns can still be very large.

To effectively address the redundancy problem, researchers have developed pattern summarization
methods to summarize the frequent patterns with more condensed formats. In general, two kinds of
models have been proposed to summarize the frequent patterns: the pattern profile [Yan et al. 2005]
and the Markov random field (MRF) [Wang and Parthasarathy 2006].

For pattern-profile-based summarization, the whole set of frequent patterns can be clustered into
K groups of patterns and each group is described by a pattern profile. A pattern profile is essentially
a generalization of a closed frequent pattern. It can be described as a triple < p, φ, ρ >, where p de-
notes the probability distribution vector learned from the dataset, φ denotes the master pattern used
to represent a set of similar patterns in a group, and ρ denotes the support. To conduct the cluster-
ing, the K-means algorithm is used and the similarity between two frequent patterns (each frequent
pattern is represented as a special kind of pattern profile) is measured based on the Kullback-Leibler
divergence [Kullback and Leibler 1951] between their distribution vectors.

MRF-based summarization mainly focuses on using non-derivable frequent itemsets to construct
the MRF as the summary of the whole dataset. The summarization is conducted using a level-wise ap-
proach. Generally, all 1-itemsets are used to build an MRF to infer the supports for all 2-itemsets. Then
the 2-itemsets whose support cannot be inferred are used to update the MRF. The process continues
until all the itemsets are checked. The resulting MRF is a concise summary of the original dataset.

5.3.2. Distinctions. According to the description of frequent itemset summarization, the distinctions
between event summarization and frequent itemset summarization can be summarized as follows.

Summarization Data Objects: Although frequent itemset summarization and event summariza-
tion have similar tasks, they are working on different types of data objects. Frequent itemset sum-
marization techniques focus on summarizing the transaction type data — the itemsets; while event
summarization techniques focus on summarizing temporal datasets. Transaction type data usually do
not have time information, or the time information is not critical or important.

Summarization Perspective: Frequent itemset summarization techniques pay more attention to
presenting summaries that describe the frequent itemsets, while event summarization techniques
pay more attention to generating summaries describing the temporal dynamics of the events. This
is because the time information in an event log is a critical piece of information. Besides the pattern
frequency, people who analyze the event log also pay close attention to the time information in the
summary results.

23

5.4. Category of Event Summarization

Event summarization is a general type of solution to organize and represent the information extracted
from the events. In recent years, several approaches for event summarization approaches have been
developed. Although each solution is distinct from the others, they can be categorized into two types:
summarizing with frequency change and summarizing with temporal dynamics.

5.4.1. Summarizing with Frequency Change. One major direction of event summarization is to provide
a summary of the given event log from the perspective of frequency change. Generally, these methods
leverage the segmentation model to provide a high level overview of the sequence by identifying global
intervals on the whole event sequence. In each segment, the events are summarized by a local model,
in a way similar to clustering. The local model is able to group the event types into a number of clusters,
where the event types in the same cluster have similar frequency and vice versa.

To better illustrate the idea of this approach, Example 5.1 gives an example of the event sequence. In
general, the event sequence can be denoted as S that records the occurrences of events during the time
range [1, n]. Moreover, each event occurrence can be represented in the form (E, t), where E denotes
the event type coming from a set E = {E1, · · · , Em}, and t denotes the time of the occurrence.

Fig. 11. An example event sequence.

Example 5.1. Figure 11 shows an example event sequence consisting of four event types, i.e., E =
{A,B,C,D}. The event sequence records the occurrences of all the event types from time 0 to time 40.
It can be seen that some patterns might exist in this event sequence. For example, events B,C and D
seem to appear sequentially.

One perspective of event summarization is to find an appropriate summary that balances concise-
ness and accuracy. To find an appropriate summary in such a way, Kiernan and Terzi proposed a
method [Kiernan and Terzi 2008] which reduces the event summarization problem to an optimization
problem. In particular, the proposed method solved this problem from the information theory perspec-
tive: the best summary of an event sequence is the one with shortest description length quantified by
the number of bits. The minimum description length (MDL) principle [Barron et al. 1998; Grünwald
et al. 2005; Grünwald 2007] is leveraged to conduct the model (summary) selection by finding a balance
between summary coding length and description accuracy.

Concretely, event summarization in [Kiernan and Terzi 2008] is formulated as follows: Suppose there
is an event sequence S with time range [1, n], and let E = {E1, E2, · · · , Em}. The goal of finding the
best summary is to identify the best segmentation of the event sequence over [1, n], as well as the
best grouping of event types within each segment according to appearance frequency. Such a data
description model is called the segmental grouping model.

Figure 12 illustrates how this method summarizes the event sequence given in Example 5.1. As
shown in Figure 12, the whole sequence has been partitioned into four segments. Moreover, as shown
in Figure 13, the event types are grouped within each segment according to their local frequency.

Other Solutions. Besides the aforementioned solution, several other algorithms are also proposed
to summarize data from the point of frequency change. Wang et al. [Wang et al. 2010] extended the
aforementioned work by adding more inter-segment information to reveal more detail about the system
dynamics hidden in the event sequence.

Fig. 12. Event summarization result produced by the solution
of [Kiernan and Terzi 2008].

Fig. 13. A high level overview of summary.

24

Fig. 14. An example of summarizing events with HMM.

Fig. 15. An example for natural event summarization [Jiang
et al. 2011].

To summarize the event sequence in this way, the following conjectures are made [Wang et al. 2010]:
(1) a system should operate in different states; (2) the system should exhibit stable behavior in each
state; and (3) the transitions between states should have certain regularity.

Based on their conjectures, HMM(hidden Markov model) is leveraged to model the state transitions
of the system given its event sequence. Figure 14 illustrates how this work summarizes the event
sequence in Example 5.1. Assume there are two states obtained from the example event sequence:

— State M1, in which event D occurs the most frequently, events B and C occur the least frequently,
and event A lies in the middle. The first and the third segments belong to this state.

— State M2, in which event A occurs frequently while events B, C, and D occur less frequently. The
second and the fourth segments belong to this state.

Clearly, this kind of summarization result is more understandable and more meaningful, as it re-
veals more interesting insights of the system. Similar to the previous work [Kiernan and Terzi 2008],
the problem of finding the best summary that describes the state transition of the system is also for-
mulated as an optimization problem, and the goal is to find the best segmentation as well as the HMM
that describes the given event sequence with the least amount of information. In short, the amount of
information to describe the event sequence is quantified as the number of bits used to describe the set
of models M and the set of segments I, i.e.,

Q∗(M, I) = Cd + Cs, (12)

Q(M∗, I∗) = argmin
M,I

Q(M, I). (13)

In Eq.(12), each model in M consists a set of m probabilities (Mi = (pi(E1), pi(E2), · · · , pi(Em))). More-
over, Cd denotes the number of bits needed to describe the event occurrences within all segments,
and Cs denotes the number of bits to describe the segments. For the details of the encoding and the
corresponding optimization algorithm, the interested reader can refer to [Wang et al. 2010].

5.4.2. Summarizing with Temporal Dynamics. The state-of-the-art frequency-change-based event sum-
marization solutions are able to reveal the temporal dynamics of the segments, but fail to provide
information about the temporal dynamics among events. As the events are more natural components
than the generated segments (by the summarization algorithms), it is more intuitive to provide an
event-centric description in the summary results.

The frequency-change-based summarization approaches are able to generate a comprehensive sum-
mary from the input event sequence. However, this result as well as the frequency-change-based sum-
marization algorithms have several limitations:

(1) The frequency-change-based approaches focus on generating summaries that only demonstrate the
frequency changes of event types across adjacent segments. However, they often ignore the tempo-
ral information among event types within each segment. Consequently, the temporal dynamics of
event patterns cannot be captured by these approaches.

(2) For all event types, the same number of event patterns are generated by these algorithms with
the same boundaries. Considering different event types may have various underlying generating
mechanisms, the same pattern boundary is unreasonable. Take a distributed system as an ex-

25

ample. In this distributed system, events may come from a large number of nodes that may be
irrelevant to each other. Therefore, requiring a global segmentation would be inappropriate since
many real patterns will be broken. Instead, for different event types, allowing the existence of
different boundaries could help to identify the event pattern and acquire superior summaries.

(3) For system administrators, the above-generated summary is not easy to understand and take ap-
propriate action. This is because system administrators may not have enough mathematical back-
ground to extract useful information from advanced mathematical models.

A new approach natural event summarization (NES), proposed by Jiang et al. in [Jiang et al. 2011],
has been used to address the aforementioned limitations. Utilizing inter-arrival histograms, this ap-
proach captures the temporal relationships among same-type and different-type events at first, subse-
quently, a set of disjoint histograms are used to summarize the input event sequence based on MDL.
Finally, the resulting summary is represented as an event relationship network.

There are multiple advantages of this approach. First, different boundaries for different event types
are allowed using inter-arrival histograms. Therefore, the summary could be more flexible. Second, the
inter-arrival histograms helps to describe two main types of the event patterns: correlation patterns
and periodic patterns. These two patterns are able to capture the majority of the temporal dynamics of
event sequences and are useful for the summary generation. Moreover, the generated summaries can
be used to derive lots of action rules almost directly. To better describe how NES works, Example 5.2
presents an illustrative example.

Example 5.2. Continuing Example 5.1, in which the event sequence contains four event types. Sup-
pose the event types are A “an event created by an antivirus process,” B “the firewall asks for the access
privilege,” C “a port was listed as an exception,” and D “the firewall operation mode has been changed.”
The frequency-change-based event summarization approaches (e.g., [Wang et al. 2010]) segment the
sequence into four segments (see Figure 14). Within each segment, this method groups the event types
based on their occurrence frequency. Moreover, an HMM is leveraged to model the state transition
between the segments.

Figure 15 shows the output summary generated by the NES method according to the example event
sequence in Example 5.1. In this event sequence, the instances of event type C always appear after
event type B during the whole time period. We can also observe that during time period [t1, t2] and
[t3, t6], events with type D also appear after B. Hence, two correlation patterns, B → C and B → D
(associated with the corresponding time periods), can be identified. From the example event sequence,
we can also observe that the events with type A appear regularly throughout the whole time period.
Therefore, all the events with type A can be summarized as only one pattern. Because event type A
represents the antivirus monitoring process event, its stable period indicates that this process works
normally.

5.5. Facilitating the Summarization Tasks

Besides the researchers who are working on proposing concrete event summarization methods, a lot
of other researchers have also been focusing on proposing various other summarization methods [Peng
et al. 2007; Schneider et al. 2010; Aharon et al. 2009; Tatti and Vreeken 2012]. Each of these ap-
proaches defines its own way of summarizing event sequences. A brief summary of these methods is
illustrated in Table 5.5.

Apart from solving the summarization problem from the algorithmic perspective, some efforts [Ex-
pression 2015] have also been made toward providing various event summarization representations.
In fact, there are many different approaches to conduct event summarization for different users with
different purposes. It is inevitable that preprocessing the data and changing the program again and
again, if an analyst wants to acquire an event summary from various perspectives. Clearly, the effi-
ciency of this process is low.

Similar to online analytical processing (OLAP), which is an exploration process for transactional
data, event summarization is also a trial-and-error process for temporal event data. Because there are
repetitive exploration of the events from various perspectives in event summarization, it is necessary to
have an integrated framework to enable users to easily, interactively, and selectively extract, summarize,
and analyze the temporal event data.

26

Table VI. A brief summary of the event summarization methods
Paper Category Description

Peng, Perng & Li, 2007 [Peng et al. 2007]
Temporal
Dynamics

Using a correlation graph ERN to summarize
the correlation between events.

Kiernan & Terzi, 2008 [Kiernan and Terzi 2008]
Frequency

Change

Using segmentation to summarize changes
over time and using the event frequency group to
summarize events within each time period.

Aharon et al., 2009 [Aharon et al. 2009] Other
Clustering the events and using the clusters
as the summary.

Kiernan & Terzi, 2009 [Kiernan and Terzi 2009]
Frequency

Change
Similar to [Kiernan and Terzi 2008], but allowing mismatch
among segments.

Wang et al., 2010 [Wang et al. 2010]
Frequency

Change
Extension of [Kiernan and Terzi 2008]. Using the Markov model
to represent the transition between segments.

Schneider et al., 2010 [Schneider et al. 2010]
Temporal
Dynamics

Using a graph to represent the relations of
AlwaysFollowedBy, AlwaysPrecededBy, and
NeverFollowedBy among events.

Jiang, Perng & Li, 2011 [Jiang et al. 2011]
Temporal
Dynamics

A richer form of [Peng et al. 2007]. Summarizing the events
from the perspective of periodic patterns
and correlation patterns.

Tatti & Vreeken, 2012 [Tatti and Vreeken 2012]
Temporal
Dynamics

Summarizing the events using a set of serial
episodes under the guidance of MDL.

To meet the above requirements, an extensible and flexible event summarization framework called
META, proposed in [Jiang et al. 2014], is used to facilitate multi-resolution summarization and its
associated tasks. The design principles of META include: 1) META should be flexible enough to fit
various real-world scenarios, and 2) META should facilitate summarization task implementation as
far as possible.

In general, META transforms all the event sequences into summarization forest, which is a specif-
ically designed multi-resolution model. The event sequences and the necessary meta-data can be effi-
ciently stored in this model. The summarization forest aims to store and represent the event sequence
in multi-resolution views with a specified precision. On top of the summarization forest, a set of ba-
sic operations is proposed to express summarization tasks. Each basic operation can be viewed as an
atomic operation that directly operates the data. At a higher level, five commonly used event summa-
rization tasks are presented by using the basic operations. These tasks include ad hoc summarization,
event storing, recovering, updating, and merging. By using these event summarization tasks, analysts
can quickly conduct event summarization with little extra effort, and their efficiency can be signifi-
cantly increased.

6. PROBLEM DIAGNOSIS IN SYSTEM MANAGEMENT

Performing a detailed diagnosis for a system issue mainly includes problem identification (i.e., iden-
tifying and detecting the problems), determination (i.e., fault diagnosis and root cause analysis), and
resolution (i.e., providing resolutions). System diagnosis requires a deep understanding about the tar-
get system. In real-world IT infrastructures, many system issues are repeated and the associated
resolutions can be found in the relevant events and tickets resolved in the past. In this section, we
survey several data-driven applications for system diagnosis.

6.1. Introduction

The typical workflow for the IT service provider prescribed by the ITIL specification [url 2015b] involv-
ing problem detection, determination, and resolution is shown in Figure 16. In IT service management,
incident management is one of the most important processes. The aim of it is to resolve the incident
and efficiently restore the provision of services while based on human intervention or monitoring to
detect the malfunction of a component. In terms of problem detection, the monitoring system runs on
the servers, which computes metrics for the performances of hardware and software at regular inter-
vals. The system then compares those metrics with acceptable thresholds called monitoring situations,
and any violation would result in an alert. An event will be emitted by the monitoring if the alert
persists beyond a predefined delay. Events coming from an IT environment are consolidated in an en-
terprise console, which analyzes the monitoring events as well as creates incident tickets in a ticketing
system [Tang et al. 2013b]. The system administrators (sysAdmins) usually use the information con-
tained in the tickets for problem determination and resolution. In the case of the provisioning of the
services, the efficiency of these resources is crucial [Jiang et al. 2012]. The monitoring should minimize
the number of generated false positive alerts since they will bring extra manpower costs in resolving
false positive tickets created from those alerts [Branch et al. 2013; Diao et al. 2014]. Moreover, missed
false negative alerts might bring severe system crashes so we should optimize the monitoring configu-
ration to decline those alerts. In particular, Tang et al. [Tang et al. 2013b] presents several techniques
for optimizing monitoring configuration by eliminating false positive alerts and false negative alerts.

27

The partial automation is usually used by a lot of IT service providers for incident diagnosis and
resolution, with an intertwined operation of the sysAdmins and an automation script. Sometimes the
sysAdmin has limited power to perform a known remediation script, but sometimes a complex root
cause analysis can be completed by the sysAdmin [Zeng et al. 2014b; Fraenkel et al. 2004; Liu et al.
2016]. Removing the sysAdmin from the process entirely, if it is feasible, is helpful to decrease hu-
man error as well as accelerate restoration of service. The change from partially to fully automated
problem remediation would promote service delivery to a new qualitative level where automation is
an independent and complete process, and where it is not fragmented because of the requirement for
adapting to human-driven processes. In this chapter, we mainly focus on reviewing four main types of
data-driven applications from these historical tickets to efficiently improve the performance of system
diagnosis using data mining techniques.

Fig. 16. Problem detection, determination, and resolution.

6.2. System Diagnosis Applications

6.2.1. Ticket Classification:. Because problems and incidents can occur at different levels of the hard-
ware and software stack, one major activity to facilitate system diagnosis is to create leading indicators
(a.k.a., signature or failure codes), which are used to incidents classification which is helpful for root
cause analysis and failure trend monitoring [dos Santos et al. 2011]. Typical example incident cat-
egories include disk usage threshold exceeded, system down, application not available, printer not
printing, and password reset. The incident categories are usually obtained by analyzing the incident
records. The incident records, a.k.a., incident tickets, could store incident details like client name, plat-
form, failure descriptions, severity code, resolution methods, and different timestamps. Many studies
have been conducted in classifying IT management tickets. For example, Zeng et al. [Zeng et al. 2017a]
proposed a hierarchical approach to classify maintenance request tickets for automated dispatch to the
appropriate service delivery personnel. Diao et al. [Diao et al. 2009] proposed a rule-based crowdsourc-
ing approach by combining classification rules with crowdsourcing (i.e., socialize and execute rules
using social networking) for ticket classification.

6.2.2. Ticket Resolution Recommendation. Automatic techniques of recommending relevant histori-
cal tickets with resolutions can significantly improve the efficiency of root cause analysis and incident
ticket resolving. Based on the relevant tickets, IT staff can correlate related system problems that
happened before and perform a deeper system diagnosis. The solutions described in relevant historical
tickets also provide best practices for solving similar issues. Recommendation technique has also been
widely studied in e-commerce and online advertising areas. Existing recommendation algorithms can
be categorized into two types. The first type is learning-based recommendation, in which the algorithm
aims to maximize the rate of user response, such as the user clicks or conversations. The recommen-
dation problem is then naturally formulated as a prediction problem. It utilizes a prediction algorithm
to compute the probability of the user response on each item. Then, it recommends the one having the

28

largest probability. Most prediction algorithms can be utilized in the recommendation, such as naive
Bayes, linear regression, logistic regression, matrix factorization, and multi-arm bandit. [Manning and
Schuetze 1999; Bishop et al. 2006; Zeng et al. 2016]. The second type of recommendation algorithm fo-
cuses on the relevance of items or users, rather than the user response. Lots of algorithms proposed
for promoting products to online users [Bell and Koren 2007; Ding and Li 2005; Koren 2009; Liu et al.
2011] belong to this type. They can be categorized as item-based [Sarwar et al. 2000; Karypis 2001;
Ning and Karypis 2011] and user-based algorithms [Terveen and Hill 2001; Koren 2009; Bell and Ko-
ren 2007; Ding and Li 2005]. Tang et al. [Tang et al. 2013a] and Zhou et al. [Zhou et al. 2016] proposed
item-based recommendation algorithms (where every incident ticket is regarded an item) to assist
system administrators in resolving the incoming incident tickets that are generated by monitoring
systems.

6.2.3. Predicting System Behaviors. Incident tickets have been used in many predictive and classi-
fication tasks in system diagnosis [Gupta et al. 2009; Di Lucca et al. 2002; Kadar et al. 2011; Bozman
and Broderick 2010; Badaloo 2006]. For example, based on simple business rules, it often can be manu-
ally decided that when to modernize which elements of the server HW/SW (hardware/software) stack.
Bogojeska et al. [Bogojeska et al. 2014; Bogojeska et al. 2013], however, alleviated this problem by
supporting the decision process with an automated method. This automated method utilizes the inci-
dent tickets and server attributes and executes as follows. First, it identifies and ranks servers with
problematic behaviors as candidates for modernization. Second, it uses the random forest classifier to
evaluate the impact of multiple modernization actions and discover the most effective ones. Formally,
let S represent the p-dimensional space where the p features are extracted from incident ticket data
(such as tickets volumes and ticket severities) and server configuration information (such as server
family, age, OS family and so on). Then one vector x ∈ S, used as an input for a predictive model M ,
can represents one server. Once trained on the available set of servers, M associates each x with a
probability of being a problematic server, i.e., M(x) ∈ [0, 1]. Thus, the rank of all servers and identifica-
tion of the problematic ones (e.g., those with M(x) > 0.5) can be completed using M(x). Furthermore,
the predictive model can evaluate the impact of various server modernization actions and discover the
most effective ones. Assume a : S×Pa 7→ S is an arbitrary parameterized improvement action. The ac-
tion is represented as a function which associates an input vector x of a server and an action parameter
p ∈ Pa with a vector of the modified server features x̃ = a(x, p). Note that x̃ is obtained after performing
such an improvement action. So x̃ represents x with new features relying on effect of the action. So
the improvement of a parameterized action (a, pa) can be measured by I(a, pa) = M(x) −M(x̃), which
means the difference between the prediction for the server before and after the modification. The ac-
tions that yield high improvements would be selected. Many other problems can also be addressed
using historical incident tickets. Branch et al. [Branch et al. 2014] utilized ticket properties to predict
service delivery efforts. Giurgiu et al. [Giurgiu et al. 2014] presented a comprehensive analysis of labor
efforts and their impact factors to solve incident tickets in data centers according to ticket attribute
value such as ticket severity and ticket failure code (a.k.a ticket class label).

6.2.4. Mining Human Knowledge from Ticket. Two types of tickets are generally exist in service
management. They are monitoring ticket automatically generated from monitoring system and in-
cident ticket created manually. Nevertheless, the resolutions attached to them are both written by
operator to document the steps while troubleshooting a problem. Several recent studies [Potharaju
et al. 2013; Shimpi et al. 2014; Potharaju et al. 2015; Jain and Potharaju 2016] have been carried out
on investigating how to mining such valuable human knowledge for service management from tickets,
although analyzing those tickets to do problem inference is extremely difficult since fixed fields are
often inaccurate or incomplete, and wrote in the format of free-form text in natural language.

Rahul Potharaju et al. [Potharaju et al. 2013] took a practical step towards automatically analyzing
natural language text in network tickets to mine the problems, troubleshooting activities and resolu-
tion actions. Problems denote the entity (e.g., router, database) and its associated state or symptoms
(e.g., crash, reboot) as identified by operator; Activities indicate the steps conducted during trou-
bleshooting such as clean cable, verify hard disk; Actions represent the resolution action(s) performed
on the entity to resolve the problem. Rahul Potharaju et al. [Potharaju et al. 2013] first extract impor-
tant phrases, especially domain-specific, such as “power supply unit” and “load balancer” using statis-
tical NLP techniques. Further filters are applied to those phrases such as Phrase Length/Frequency
Filter, Part-Of-Speech (PoS) Filter and Entropy Filter in which total number of phrases left decreased

29

to a reasonable amount for manual labeling. Second, these domain-specific phrases are then mapped
onto an ontology model that formally represents the relationships between entities and stores them in
a knowledge base in which each phrase is assigned a predefined class and relationships between those
classes are also designated in advance. Given an unstructured text, we can get following output:

The (load balancer) / ReplaceableEntity was (down) / ProblemCondition. We (checked) /
MaintenanceAction the (cables) / ReplaceableEntity. This was due to a (faulty) / Problem-
Condition (power supply unit) / ReplaceableEntity which was later (replaced) / PhysicalAc-
tion.

in which the bold words after slash are the predefined classes associated to phrases in brackets.
Finally, heuristic class patterns existing in one sentence are given to define concepts problems, activ-
ities and actions. For instance, “the load balancer was down” matches the class pattern “[Replaceable
Virtual Maintenance] Entity preceded / succeeded by ProblemCondition” which defines the concept
Problem.

The aforementioned approach is quite effective in helping operators identify valuable knowl-
edge [Potharaju et al. 2013], and can also be extended to build more powerful models such as Fault
Tree Analysis [Ruijters and Stoelinga 2015] (FTA) and Event Relationship Network [Thoenen et al.
2001] (ERN). FTA is one of the most prominent techniques used by a wide range of industrial applica-
tions, in which Fault Tree (FT) is encoded as a graph that models how failures propagate through the
system (i.e., how component failures lead to system failures) [Ruijters and Stoelinga 2015]. An ERN
is a directed acyclic graph and describes the correlation between events triggered by different sys-
tem components, and can be used to support automate problem determination [Thoenen et al. 2001].
In short, the knowledge mined from tickets is able to help effectively construct FTs and ERNs and
facilitate efficient and systematic approaches for service management.

7. CONCLUSION

Modern IT infrastructures are constituted by large scale computing systems including various hard-
ware and software components and often administered by IT service providers. Supporting such com-
plex systems requires a huge amount of domain knowledge and experience. The manpower cost is one
of the major costs for all IT service providers. Service providers often seek automatic or semi-automatic
methodologies of detecting and resolving system issues to improve their service quality and efficiency.
This survey provides several data-driven approaches for improving the quality and efficiency of IT
service and system management. The improvements focus on several important components of the
data-driven framework: event generation, preprocess, system monitoring, off-line analysis (temporal
pattern discovery and summarization), and online analysis.

REFERENCES

2015a. FileZilla: An open-source and free FTP/SFTP solution. http://filezilla-project.org. (2015).

2015b. ITIL. http://www.itil-officialsite.com. (2015).

Avinash Achar, A Ibrahim, and PS Sastry. 2013. Pattern-growth based frequent serial episode discovery. Data & Knowledge
Engineering 87 (2013), 91–108.

Avinash Achar, Srivatsan Laxman, and PS Sastry. 2012. A unified view of the apriori-based algorithms for frequent episode
discovery. Knowledge and Information Systems 31, 2 (2012), 223–250.

Charu C Aggarwal and Jiawei Han. 2014. Frequent Pattern Mining. Springer.

Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association rules between sets of items in large databases.
In ACM SIGMOD Record, Vol. 22. ACM, 207–216.

Rakesh Agrawal and Ramakrishnan Srikant. 1995. Mining sequential patterns. In Data Engineering, 1995. Proceedings of the
Eleventh International Conference on. IEEE, 3–14.

Michal Aharon, Gilad Barash, Ira Cohen, and Eli Mordechai. 2009. One Graph Is Worth a Thousand Logs: Uncovering Hidden
Structures in Massive System Event Logs. In ECML/PKDD. 227–243.

Kai Keng Ang, Zheng Yang Chin, Haihong Zhang, and Cuntai Guan. 2012. Mutual information-based selection of optimal
spatial–temporal patterns for single-trial EEG-based BCIs. Pattern Recognition 45, 6 (2012), 2137–2144.

Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. 2001. Fundamental concepts of dependability. University of New-
castle upon Tyne, Computing Science.

Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. 2002. Sequential pattern mining using a bitmap representation. In
Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 429–435.

Moonish Badaloo. 2006. An examination of server consolidation: trends that can drive efficiencies and help businesses gain a
competitive edge. White paper on IBM Global Services (2006).

30

Andrew Barron, Jorma Rissanen, and Bin Yu. 1998. The minimum description length principle in coding and modeling. Infor-
mation Theory, IEEE Transactions on 44, 6 (1998), 2743–2760.

Robert M. Bell and Yehuda Koren. 2007. Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation
Weights. In Proceedings of IEEE International Conference on Data Mining (ICDM). 43–52.

Albert Bifet and Ricard Gavaldà. 2011. Mining frequent closed trees in evolving data streams. Intelligent Data Analysis 15, 1
(2011), 29–48.

Christopher M Bishop and others. 2006. Pattern Recognition and Machine Learning. Vol. 1. Springer New York.

Jasmina Bogojeska, Ioana Giurgiu, David Lanyi, George Stark, and Dorothea Wiesmann. 2014. Impact of HW and OS type and
currency on server availability derived from problem ticket analysis. In IEEE NOMS 2014), 1–9.

Jasmina Bogojeska, David Lanyi, Ioana Giurgiu, George Stark, and Dorothea Wiesmann. 2013. Classifying server behavior and
predicting impact of modernization actions.. In CNSM 2013. 59–66.

Khellaf Bouandas and Aomar Osmani. 2007. Mining association rules in temporal sequences. In Computational Intelligence and
Data Mining, 2007. CIDM 2007. IEEE Symposium on. IEEE, 610–615.

Jean S Bozman and Katherine Broderick. 2010. Server refresh: Meeting the changing needs of enterprise IT with hard-
ware/software optimization. IDC Whitepaper (2010).

Joel W Branch, Yixin Diao, Emi K Olsson, Larisa Shwartz, and Li Zhang. 2013. Predicting service delivery costs under business
changes. (Aug. 30 2013). US Patent App. 14/015,293.

Joel W. Branch, Yixin Diao, and Larisa Shwartz. 2014. A framework for predicting service delivery efforts using IT
infrastructure-to-incident correlation. In Network Operations and Management Symposium (NOMS). IEEE.

Mete Celik, Shashi Shekhar, James P Rogers, James A Shine, and Jin Soung Yoo. 2006. Mixed-Drove Spatio-Temporal Co-
occurence Pattern Mining: A Summary of Results.. In Proceedings of IEEE International Conference on Data Mining
(ICDM), Vol. 6. 119–128.

Joong Hyuk Chang. 2011. Mining weighted sequential patterns in a sequence database with a time-interval weight. Knowledge-
Based Systems 24, 1 (2011), 1–9.

Gianpaolo Cugola and Alessandro Margara. 2012. Processing flows of information: From data stream to complex event process-
ing. ACM Computing Surveys (CSUR) 44, 3 (2012), 15.

Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and Padhraic Smyth. 1998. Rule Discovery from Time Series..
In KDD, Vol. 98. 16–22.

Otávio M de Carvalho, Eduardo Roloff, and Philippe OA Navaux. 2013. A Survey of the State-of-the-art in Event Processing.
WSPPD13 (2013), 16.

Giuseppe A Di Lucca, Massimiliano Di Penta, and Sara Gradara. 2002. An approach to classify software maintenance requests.
In Proceedings of International Conference on Software Maintenance. IEEE, 93–102.

Yixin Diao, Hani Jamjoom, and David Loewenstern. 2009. Rule-based problem classification in it service management. In Cloud
Computing, 2009. CLOUD’09. IEEE International Conference on. IEEE, 221–228.

Yixin Diao, Linh Lam, Larisa Shwartz, and David Northcutt. 2014. Predicting service delivery cost for non-standard service
level agreements. In Network Operations and Management Symposium (NOMS), 2014 IEEE. IEEE, 1–9.

Yi Ding and Xue Li. 2005. Time weight collaborative filtering. In ACM CIKM. 485–492.

Ricardo Luis dos Santos, Juliano Araujo Wickboldt, Roben Castagna Lunardi, Bruno Lopes Dalmazo, Lisandro Zambenedetti
Granville, Luciano Paschoal Gaspary, Claudio Bartolini, and Marianne Hickey. 2011. A solution for identifying the root
cause of problems in IT change management. In 2011 IEEE Symposium on Integrated Network Management (IM), 586–593.

Rick Durrett. 2010. Probability: Theory and Examples. Cambridge University Press.

Common Event Expression. 2015. Common Event Expression. (2015). http://cee.mitre.org.

Noam A Fraenkel, Guy Goldstein, Ido Sarig, and Refael Haddad. 2004. Root cause analysis of server system performance
degradations. (May 18 2004). US Patent 6,738,933.

Lajos Jenő Fülöp, Gabriella Tóth, Róbert Rácz, János Pánczél, Tamás Gergely, Arpád Beszédes, and Lóránt Farkas. 2010. Survey
on complex event processing and predictive analytics. In Proceedings of the Fifth Balkan Conference in Informatics. 26–31.

Jing Gao, Guofei Jiang, Haifeng Chen, and Jiawei Han. 2009. Modeling Probabilistic Measurement Correlations for Problem
Determination in Large-Scale Distributed Systems. In Proceedings of International Conference on Distributed Computing
Systems (ICDCS). 623–630.

Minos N Garofalakis, Rajeev Rastogi, and Kyuseok Shim. 1999. SPIRIT: Sequential pattern mining with regular expression
constraints. In VLDB, Vol. 99. 7–10.

Ioana Giurgiu, Jasmina Bogojeska, Sergii Nikolaiev, George Stark, and Dorothea Wiesmann. 2014. Analysis of Labor Efforts
and their Impact Factors to Solve Server Incidents in Datacenters. In Cluster, Cloud and Grid Computing (CCGrid), 2014
14th IEEE/ACM International Symposium on. IEEE, 424–433.

Genady Grabarnik, Abdi Salahshour, Balan Subramanian, and Sheng Ma. 2004. Generic adapter logging toolkit. In Proceedings
of First IEEE International Conference on Autonomic Computing(ICAC-04). 308–309.

Peter D Grünwald. 2007. The Minimum Description Length Principle. The MIT Press.

Peter D Grünwald, In Jae Myung, and Mark A Pitt. 2005. Advances in Minimum Description Length: Theory and Applications.
MIT press.

Tias Guns, Siegfried Nijssen, and Luc De Raedt. 2013. k-Pattern set mining under constraints. Knowledge and Data Engineering,
IEEE Transactions on 25, 2 (2013), 402–418.

31

Rajeev Gupta, K Hima Prasad, Laura Luan, Daniela Rosu, and Christopher Ward. 2009. Multi-dimensional knowledge inte-
gration for efficient incident management in a services cloud. In Services Computing, 2009. SCC’09. IEEE International
Conference on. IEEE, 57–64.

Valery Guralnik and Jaideep Srivastava. 1999. Event detection from time series data. In Proceedings of the fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’99). 33–42.

Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar Dayal, and Mei-Chun Hsu. 2000. FreeSpan: frequent
pattern-projected sequential pattern mining. In 2000 ACM SIGKDD. 355–359.

Jiawei Han, Jianyong Wang, Ying Lu, and Petre Tzvetkov. 2002. Mining top-k frequent closed patterns without minimum
support. In Proceedings. 2002 IEEE International Conference on Data Mining. IEEE, 211–218.

Joseph L. Hellerstein, Sheng Ma, and Chang-Shing Perng. 2002a. Discovering Actionable Patterns in Event Data. IBM Systems
Journal 43, 3 (2002), 475–493.

Joseph L. Hellerstein, Sheng Ma, and C-S Perng. 2002b. Discovering actionable patterns in event data. IBM Systems Journal
41, 3 (2002), 475–493.

Antonio Hernandez-Barrera. 1996. Finding an o(n2 logn) Algorithm Is Sometimes Hard. In Proceedings of the 8th Canadian
Conference on Computational Geometry. 289–294.

Frank Höppner. 2001. Discovery of temporal patterns. In Principles of Data Mining and Knowledge Discovery, 192–203.

Paul Horn. 2001. Automatic Computing: IBM’s Prospective on the State of Information Technology.
http://www.research.ibm.com/autonomic. (2001). IBM Corporation.

K Houck, S Calo, and A Finkel. 1995. Towards a practical alarm correlation system. In Integrated Network Management IV.
Springer, 226–237.

Khan Irfan and Jain Anoop. 2012. A Comprehensive Survey on Sequential Pattern Mining. International Journal of Engineering
Research and Technology (2012).

Navendu Jain and Rahul Potharaju. 2016. Problem inference from support tickets. (Jan. 5 2016). US Patent 9,229,800.

Yexi Jiang, Chang-Shing Perng, and Tao Li. 2011. Natural event summarization. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management (CIKM ’11). 765–774.

Yexi Jiang, Chang-Shing Perng, and Tao Li. 2014. META: Multi-resolution Framework for Event Summarization. In SIAM
International Conference on Data Mining.

Yexi Jiang, Chang-Shing Perng, Tao Li, and Rong Chang. 2012. Intelligent cloud capacity management. In Network Operations
and Management Symposium (NOMS), 2012 IEEE. IEEE, 502–505.

Cristina Kadar, Dorothea Wiesmann, Jose Iria, Dirk Husemann, and Mario Lucic. 2011. Automatic classification of change
requests for improved it service quality. In SRII Global Conference (SRII), 2011 Annual. IEEE, 430–439.

George Karypis. 2001. Evaluation of Item-Based Top-N Recommendation Algorithms. In Proceedings of ACM International
Conference on Information and Knowledge Management. 247–254.

Jeffrey O. Kephart and David M. Chess. 2003. The Vision of Autonomic Computing. Computer (2003), 41–50.

Jerry Kiernan and Evimaria Terzi. 2008. Constructing Comprehensive Summaries of Large Event Sequences. In Proceedings of
the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’08). 417–425.

Jerry Kiernan and Evimaria Terzi. 2009. Constructing comprehensive summaries of large event sequences. ACM Trans. Knowl.
Discov. Data 3, 4 (Dec. 2009), 21:1–21:31.

Jon Kleinberg. 2003. Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery 7, 4 (2003), 373–397.

Yehuda Koren. 2009. Collaborative filtering with temporal dynamics. In KDD. 447–456.

Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency. The Annals of Mathematical Statistics (1951),
79–86.

Srivatsan Laxman, PS Sastry, and KP Unnikrishnan. 2007. A fast algorithm for finding frequent episodes in event streams. In
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 410–419.

Srivatsan Laxman, P Shanti Sastry, and KP Unnikrishnan. 2004. Fast algorithms for frequent episode discovery in event
sequences. In Proc. 3rd Workshop on Mining Temporal and Sequential Data.

Tao Li (Ed.). 2015. Event Mining: Algorithms and Applications. CRC Press.

Tao Li, Feng Liang, Sheng Ma, and Wei Peng. 2005. An integrated framework on mining logs files for computing system man-
agement. In ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. 776–781.

Tao Li and Sheng Ma. 2004. Mining temporal patterns without predefined time windows. In Data Mining, 2004. ICDM’04.
Fourth IEEE International Conference on. IEEE, 451–454.

Tao Li and Wei Peng. 2005. A Clustering Model Based on Matrix Approximation with Applications to Cluster System Log Files.
In Proceedings of the 16th European Conference on Machine Learning. 625–632.

Tao Li, Wei Peng, Charles Perng, Sheng Ma, and Haixun Wang. 2010. An Integrated Data-Driven Framework for Computing
System Management. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 40, 1 (Jan. 2010),
90–99.

Feng Liang, Sheng Ma, and Joseph L Hellerstein. 2002. Discovering Fully Dependent Patterns.. In Proceedings of SIAM Inter-
national Conference on Data Mining (SDM). SIAM, 511–527.

Liwei Liu, Nikolay Mehandjiev, and Dong-Ling Xu. 2011. Multi-criteria service recommendation based on user criteria prefer-
ences. In Proceedings of the Fifth ACM Conference on Recommender Systems. 77–84.

Zheng Liu, Tao Li, and Junchang Wang. 2016. A Survey on Event Mining for ICT Network Infrastructure Management. ZTE
Communications 14, 2, 47–55.

32

Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei Zhang, and Zhe Wang. 2014. Correlating events with
time series for incident diagnosis. In 2014 ACM SIGKDD, 1583–1592.

Sheng Ma and Joseph L Hellerstein. 2001a. Mining mutually dependent patterns. In Proceedings IEEE International Conference
on Data Mining(ICDM). IEEE, 409–416.

Sheng Ma and Joseph L Hellerstein. 2001b. Mining partially periodic event patterns with unknown periods. In Data Engineer-
ing, 2001. Proceedings. 17th International Conference on. IEEE, 205–214.

Adetokunbo Makanju, A. Nur Zincir-Heywood, and Evangelos E. Milios. 2009. Clustering Event logs Using Iterative Partition-
ing. In Proceedings of ACM KDD. Paris, France, 1255–1264.

Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo. 1995. Discovering frequent episodes in sequences Extended abstract.
In 1st Conference on Knowledge Discovery and Data Mining, Montreal, CA.

Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo. 1997. Discovery of frequent episodes in event sequences. Data Mining
and Knowledge Discovery 1, 3 (1997), 259–289.

Christopher D. Manning and Hinrich Schuetze. 1999. Foundations of Statistical Natural Language Processing. MIT Press.

Carl H Mooney and John F Roddick. 2013. Sequential pattern mining–approaches and algorithms. ACM Computing Surveys
(CSUR) 45, 2 (2013), 19.

Thin Nguyen, Dinh Phung, Brett Adams, and Svetha Venkatesh. 2013. Event extraction using behaviors of sentiment signals
and burst structure in social media. Knowledge and information systems 37, 2 (2013), 279–304.

Juan Carlos Niebles, Hongcheng Wang, and Li Fei-Fei. 2008. Unsupervised learning of human action categories using spatial-
temporal words. International journal of computer vision 79, 3 (2008), 299–318.

Xia Ning and George Karypis. 2011. SLIM: Sparse Linear Methods for Top-N Recommender Systems. In ICDM. 497–506.

Adam J. Oliner, Alex Aiken, and Jon Stearley. 2008. Alert Detection in System Logs. In Proceedings of IEEE International
Conference on Data Mining(ICDM). 959–964.

Thomas J Owens. 2007. Survey of event processing. Technical Report. DTIC Document.

Debprakash Patnaik, Srivatsan Laxman, Badrish Chandramouli, and Naren Ramakrishnan. 2012. Efficient Episode Mining of
Dynamic Event Streams.. In Proceedings of IEEE International Conference on Data Mining (ICDM). 605–614.

Jian Pei, Guozhu Dong, Wei Zou, and Jiawei Han. 2002. On computing condensed frequent pattern bases. In Proceedings of 2002
IEEE International Conference on Data Mining. IEEE, 378–385.

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar Dayal, and Mei-Chun Hsu. 2001. Prefixs-
pan: Mining sequential patterns efficiently by prefix-projected pattern growth. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE). IEEE Computer Society, 0215–0215.

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, and Hua Zhu. 2000. Mining access patterns efficiently from web logs. In Knowledge
Discovery and Data Mining: Current Issues and New Applications. Springer, 396–407.

Wei Peng, Tao Li, and Sheng Ma. 2005. Mining logs files for data-driven system management. SIGKDD Explor. Newsl. 7, 1 (June
2005), 44–51.

Wei Peng, Charles Perng, Tao Li, and Haixun Wang. 2007. Event summarization for system management. In Proceedings of the
13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). 1028–1032.

Quang-Khai Pham, Guillaume Raschia, Noureddine Mouaddib, Regis Saint-Paul, and Boualem Benatallah. 2009. Time sequence
summarization to scale up chronology-dependent applications. In Proceedings of the 18th ACM Conference on Information
and Knowledge Management (CIKM ’09). 1137–1146.

Rahul Potharaju, Joseph Chan, Luhui Hu, Cristina Nita-Rotaru, Mingshi Wang, Liyuan Zhang, and Navendu Jain. 2015. Con-
fSeer: leveraging customer support knowledge bases for automated misconfiguration detection. Proceedings of the VLDB
Endowment 8, 12 (2015), 1828–1839.

Rahul Potharaju, Navendu Jain, and Cristina Nita-Rotaru. 2013. Juggling the jigsaw: Towards automated problem inference
from network trouble tickets. In Presented as part of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13). 127–141.

V. Chandra Shekhar Rao and P. Sammulal. 2013. Article: Survey on Sequential Pattern Mining Algorithms. International Jour-
nal of Computer Applications 76, 12 (August 2013), 24–31. Full text available.

IBM Market Research. 2003. Autonomic Computing Core Technology Study. (2003).

Sheldon M Ross. 1996. Stochastic Processes. Vol. 2. John Wiley & Sons New York.

Enno Ruijters and Mariëlle Stoelinga. 2015. Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools.
Computer science review 15 (2015), 29–62.

Abdus Salam and M Sikandar Hayat Khayal. 2012. Mining top-k frequent patterns without minimum support threshold. Knowl-
edge and Information Systems 30, 1 (2012), 57–86.

Gerard Salton and Michael McGill. 1984. Introduction to Modern Information Retrieval. McGraw-Hill.

Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T. Riedl. 2000. Application of Dimensionality Reduction in
Recommender System – A Case Study. In ACM WebKDD Workshop.

Sigurd Schneider, Ivan Beschastnikh, Slava Chernyak, Michael D Ernst, and Yuriy Brun. 2010. Synoptic: summarizing system
logs with refinement. Workshop Proceedings on Managing Large-Scale Systems via the Analysis of System Logs and the
Application of Machine Learning Techniques (SLAML) (2010).

Vikrant Shimpi, Maitreya Natu, Vaishali Sadaphal, and Vaishali Kulkarni. 2014. Problem identification by mining trouble
tickets. In Proceedings of the 20th International Conference on Management of Data. Computer Society of India, 76–86.

33

Ramakrishnan Srikant and Rakesh Agrawal. 1996. Mining quantitative association rules in large relational tables. ACM SIG-
MOD Record 25, 2 (1996), 1–12.

Seshan Srirangarajan, Michael Allen, Ami Preis, Mudasser Iqbal, Hock Beng Lim, and Andrew J Whittle. 2013. Wavelet-based
burst event detection and localization in water distribution systems. Journal of Signal Processing Systems 72, 1 (2013),
1–16.

John Stearley. 2004. Towards informatic analysis of Syslogs. In Proceedings of IEEE International Conference on Cluster Com-
puting. San Diego, California, USA, 309–318.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2005. Introduction to Data Mining. Addison Wesley.

Liang Tang and Tao Li. 2010. LogTree: A Framework for Generating System Events from Raw Textual Logs. In Proceedings of
IEEE International Conference on Data Mining (ICDM). 491–500.

Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating System Events from Raw Textual Logs. In Proceedings
of ACM International Conference on Information and Knowledge Management. 785–794.

Liang Tang, Tao Li, and Larisa Shwartz. 2012. Discovering lag intervals for temporal dependencies. In Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 633–641.

Liang Tang, Tao Li, Larisa Shwartz, and Genady Grabarnik. 2013a. Recommending Resolutions for Problems Identified by
Monitoring. In Proceedings of IEEE/IFIP International Symposium on Integrated Network Management. 134–142.

Liang Tang, Tao Li, Larisa Shwartz, Florian Pinel, and Genady Ya Grabarnik. 2013b. An integrated framework for optimizing
automatic monitoring systems in large IT infrastructures. In Proceedings of the 19th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. ACM, 1249–1257.

Nikolaj Tatti and Jilles Vreeken. 2012. The long and the short of it: summarising event sequences with serial episodes. In
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 462–470.

Loren Terveen and Will Hill. 2001. Beyond Recommender Systems: Helping People Help Each Other. In HCI in the New Millen-
nium. 487–509.

David Thoenen, Jim Riosa, and Joseph L Hellerstein. 2001. Event relationship networks: a framework for action oriented anal-
ysis in event management. In Integrated Network Management Proceedings, 2001 IEEE/IFIP International Symposium on.
IEEE, 593–606.

Brad Topol, David Ogle, Donna Pierson, Jim Thoensen, John Sweitzer, Marie Chow, Mary Ann Hoffmann, Pamela Durham, Ric
Telford, Sulabha Sheth, and Thomas Studwell. 2003. Automating problem determination: A first step toward self-healing
computing systems. IBM White Paper. (October 2003).

Ricardo Vilalta and Sheng Ma. 2002. Predicting rare events in temporal domains. In Data Mining, 2002. ICDM 2003. Proceed-
ings. 2002 IEEE International Conference on. IEEE, 474–481.

Chao Wang and Srinivasan Parthasarathy. 2006. Summarizing itemset patterns using probabilistic models. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 730–735.

Peng Wang, Haixun Wang, Majin Liu, and Wei Wang. 2010. An algorithmic approach to event summarization. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of Data (SIGMOD ’10). 183–194.

Peilong Wang, Xuan Yang, Yuanyuan Zhang, and Jiadong Ren. 2012. An Algorithm Based on Temporary Table for Mining Top-k
Closed Frequent Patterns in Data Streams. International Journal of Digital Content Technology & its Applications 6, 20
(2012).

Chris Wrench, Frederic Stahl, Giuseppe Di Fatta, Vidhyalakshmi Karthikeyan, and Detlef D Nauck. 2016. Data Stream Mining
of Event and Complex Event Streams: A Survey of Existing and Future. Enterprise Big Data Engineering, Analytics, and
Management (2016), 24.

Wei Xu, Ling Huang, Armando Fox, David A. Patterson, and Michael I. Jordan. 2008. Mining Console Logs for Large-Scale
System Problem Detection. In SysML.

Xifeng Yan, Hong Cheng, Jiawei Han, and Dong Xin. 2005. Summarizing itemset patterns: a profile-based approach. In Proceed-
ings of the eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. ACM, 314–323.

Jiong Yang, Wei Wang, and Philip S. Yu. 2003. Mining Asynchronous Periodic Patterns in Time Series Data. IEEE Trans. on
Knowl. and Data Eng. 15, 3 (March 2003), 613–628.

Junjie Yao, Bin Cui, Yuxin Huang, and Xin Jin. 2010. Temporal and Social Context Based Burst Detection from Folksonomies..
In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI). 21–27.

Mohammed J Zaki. 2001. SPADE: An efficient algorithm for mining frequent sequences. Machine learning 42, 1-2 (2001), 31–60.

Chunqiu Zeng, Tao Li, Larisa Shwartz, and Genady Ya Grabarnik. 2014a. Knowledge Guided Hierarchical Multi-Label Classi-
fication over Ticket Data. IEEE Trans. Network and Service Management, 2017, in press.

Chunqiu Zeng, Liang Tang, Tao Li, Larisa Shwartz, and Genady Ya. Grabarnik. 2017b. An Integrated Framework for Mining
Temporal Logs from Fluctuating Events. IEEE Trans. Services Computing, 2017, in press.

Chunqiu Zeng, Qing Wang, Shekoofeh Mokhtari, and Tao Li. 2016. Online Context-Aware Recommendation with Time Varying
Multi-Armed Bandit. In 2016 ACM SIGKDD. 2025–2034.

Wubai Zhou, Liang Tang, Chunqiu Zeng, Tao Li, Larisa Shwartz, and Genady Ya. Grabarnik. 2016. Resolution Recommendation
for Event Tickets in Service Management. IEEE Trans. Network and Service Management 13, 4 (2016), 954–967.

34

