
NetSearch: Googling Large-scale Network
Management Data

Tongqing Qiu∗, Zihui Ge†, Dan Pei‡, Jia Wang†, and Jun (Jim) Xu ∗
∗ College of Computing, Georgia Institute of Technology, Atlanta, GA

†AT&T Labs – Research, Florham Park, NJ
‡ Tsinghua University, Beijing, China

Abstract—In order to ensure the service quality, modern Inter-
net Service Providers (ISPs) invest tremendously on their network
monitoring and measurement infrastructure. Vast amount of
network data, including device logs, alarms, and active/passive
performance measurement across different network protocols and
layers, are collected and stored for analysis. As network measure-
ment grows in scale and sophistication, it becomes increasingly
challenging to effectively “search” for the relevant information
that best support the needs of network operations.

In this paper, we look into techniques that have been widely
applied in the information retrieval and search engine domain
and explore their applicability in network management domain.
We observe that unlike the textural information on the Internet,
network data are typically annotated with time and location
information, which can be further augmented using information
based on network topology, protocol and service dependency. We
design NetSearch, a system that pre-processes various network
data sources on data ingestion, constructs index that matches
both the network spatial hierarchy model and the inherent
timing/textual information contained in the data, and efficiently
retrieves the relevant information that network operators search
for. Through case study, we demonstrate that NetSearch is an
important capability for many critical network management
functions such as complex impact analysis.

I. INTRODUCTION

Large IP networks are designed with the goal of providing
high availability and Quality of Service while keeping the
operational complexity and cost low. Meeting this goal requires
the continuous measurement and monitoring of the network
for detecting events and conditions that may threaten or
compromise it. Towards this end, an Internet Service Provider
(ISP) brings together a large amount of measurement data
from across the network, including device log files, traps and
alarms on different network layers, active or passive service
performance measures, etc. Since manually inspecting these
large data sets is extremely time consuming, they are typically
streamed into a database management system (DBMS) such
as Darkstar [1] and stored for later analysis.

While such a DBMS is intended to serve as a compre-
hensive, one-stop resource to consolidate information from all
network data sources and make the data readily available to
whoever needs it [2], it alone does not usually allow network
operators to effectively retrieve the right data they need for
network troubleshooting and diagnosis purposes. In particular,
it allows for simple queries such as the ones based on the time
window and/or router ID, but often cannot deal with more com-
plicated ones that are used to efficiently identify the anomalies

in the network such as those based on complex relationships
(especially spatial relationships) among different messages1

in the database. Therefore, additional search or information
retrieval tools often need to be built on top of the DBMS
to reduce the time it takes to troubleshoot network events.
Although some specific commercial tools such as Lonix [3]
and NetCool [4] are developed towards this end, they focus
only on a small set of network messages concerning network
faults. Because the syntax and relationships of messages are
hard-coded in these tools to enable automatic parsing and
understanding, they are inflexible in handling updates on the
syntax and/or relationship models.

In this work, we present NetSearch, a search and infor-
mation retrieval tool we have built and experimented on a
tier-1 ISP network that works like a search engine over the
large network measurement and monitoring data sets. However,
its design is quite different from generic Web search engines
because network data have complex relationships among them,
although these relationships can indeed be learned as a part of
network domain knowledge.

To support fast and accurate informational retrievals over
the measurement and monitoring data, we need to parse and
index them properly. Different from web search engines that
deal with natural language documents [5], media types such
as video and audio [6] and graphics [7], NetSearch focuses on
parsing and indexing the measurement messages that describe
network events. It is a very different (and hence nontrivial) task
in two ways. First, each message contains both temporal and
spatial information. The spatial information, in particular, is
diverse and complicated. For instance, some messages describe
the interface related information, while some others describe
the protocol related information. Second, the relationships
among different messages are complicated. In particular, mul-
tiple related measurement messages are typically generated by
one or more related network events. These messages can come
from different protocols (e.g. OSPF, BGP) across different
network layers (e.g. layer-2, layer-3).

We expect that NetSearch will become a very handy
information-retrieval tool for daily network operations. With
NetSearch, network operators can search what they are in-
terested in by describing the temporal and spatial aspects of
network events and obtain the results instantly. NetSearch
can extract the location information even if it is embedded
in the network messages. By modeling the locations as a

1We call a data item in the database as a message. In the rest of this paper,
the terms “data” and “messages” are exchangeably.ISBN 978-3-901882-58-6 c© 2014 IFIP

TABLE I. SYSLOG MESSAGES EXAMPLE

Vendor Message timestamp Router Message-type/error-code Detailed message

V1 2013-07-10 00:00:15 r1 LINEPROTO-5-UPDOWN Line protocol on Interface Serial13/0.10/ 20:0, changed state to down
V1 2013-07-10 00:00:15 r5 LINK-3-UPDOWN Interface Serial2/0.10/2:0, changed state to down
V1 2013-07-10 00:00:15 r8 SYS-1-CPURISINGTHRESHOLD Threshold: Total CPU Utilization(Total/Intr): 95%/1%, Top 3 processes

(Pid/Util): 2/71%, 8/6%, 7/3%

V2 2013-07-10 00:00:23 ra SNMP-WARNING-linkDown Interface 0/0/1 is not operational
V2 2013-07-10 00:00:24 rb SVCMGR-MAJOR-sapPortStateChangeProcessed The status of all affected SAPs on port 1/1/1 has been updated.

tree hierarchy, NetSearch can automatically identify the re-
lationships among different messages even when they are
originating from different data sources. The methodologies
used in NetSearch are generic and therefore can be used in a
wide range of network data sets. More importantly, it enables
complex network management tasks, in which multiple data
sets need to be considered simultaneously.

In summary, we make four major contributions in this
paper:

1) We designed a tool called NetSearch for network
operators to efficiently search all relevant network
messages from different data sources.

2) We developed a systematic methodology to identify
the location information embedded in the messages.
We also formalized the relationship of different loca-
tions in network events.

3) We conducted the large-scale experiments on real
network data collected from one tier-1 ISP network.

4) We demonstrated that NetSearch can significantly
benefit the network management through real case
study.

The rest of the paper is organized as follows. Section II
overviews the syntax and semantics of data sets used in
network management. Section III presents the overview of
NetSearch system. Section IV describes the details of several
key components of this system. Sections V and VI evaluate
NetSearch through large-scale experiments and demonstrate
its usage in case study. We briefly overviews related work in
Section VII and conclude the paper in Section VIII.

II. DATA USED IN NETWORK MANAGEMENT

Many network management functions depend on a rapid
and comprehensive view of the network events including
device logs, traps, alarms, and operation tickets. We first
describe several of the most commonly used network data
sources.

• Logs: router SYSLOG is a classical example of textual
based data source in which tremendous information
regarding the nature of the network condition and
the involved hardware component is embedded in the
descriptive message body. Router config change log,
network care tickets are similar data sources in this
nature.

• Device alarms: most types of networking devices
are capable of self-monitoring against local adversary
conditions, generating traps or alarms once triggered.
Such data typically are well structured and with de-
tailed time and location information. We use Layer-1

SONET alarms as a representative of this type of data
source.

• Output from network measurement systems: network
monitoring systems, either through active measure-
ments (e.g., ping test) or passive (e.g., traffic sniff-
ing) ones, either on the data forwarding plane or on
the control plane (routing), also produce tremendous
information. Their outputs are likely in proprietary
data format and are typically quite “coded”, which are
good for automated processing and not so for human
readability.

We next describe one data source in each category in details
to illustrate the data source diversity that NetSearch faces.

A. Router SYSLOG

Router SYSLOGs are the messages that routers generate to
record the hardware and software conditions observed by them,
such as link and protocol-related state changes (e.g., down or
up), alarming environmental measurements (e.g., high voltage
or temperature), and warning messages (e.g., triggered when
BGP neighbors send more routes than the router is configured
to allow). Although SYSLOG messages are intended primarily
for tracking and debugging router software and hardware
problems, they can be extremely valuable to network operators
in managing networked services and troubleshooting network
incidents.

SYSLOG messages are essentially free-form texts, the
syntax and semantics of which vary among router vendors
and router operating systems. Table I shows a few examples
of SYSLOG messages from two router vendors. We can
observe only a minimal structure in a SYSLOG message: (1)
a timestamp indicating when the message is generated (with
router clocks synchronized through NTP), (2) the identifier of
the router that generates the message, (3) message type, also
known as the error code, indicating the nature of the problem,
and (4) detailed message information generated by the router
OS.

The router identifier (2) is typically the IP address of the
router loopback interface, which is converted into router name
in our system for better human readability. The detailed mes-
sage information (4) is quite ad hoc in nature. They are simply
free-form texts “printf”-ed by router operating systems with
detailed information such as the location, state/status, or mea-
surement readings of an alarming condition embedded in them.
For example, in Table I line 1, the Serial13/0.10/20:0
part indicates the network interface at which the layer-2 line
protocol has been impacted and the down part indicates the
status of the line protocol.

TABLE II. SONET MONITORING MESSAGES EXAMPLE

Message timestamp Port ID Circuit ID Router Interface

2013-07-01 00:00:00 1s-1-1b-3 DHEC 32423 r1 T1 0/1/0:7
2013-07-01 01:00:00 ls-1-1b-1 DHEC 87907 r2 Serial4/0.8/2:0

Router configuration tools usually allow network operators
to specify a severity level for SYSLOG logging. In this study,
we collect SYSLOGs at such “informational” level (usually
the default setting). Depending on the network conditions, the
amount of router SYSLOG messages in an operational network
varies. In the large-scale ISP network (hundreds to thousands
routers) that we study herein, there are typically up to millions
of messages per day.

B. Layer-1 Device Alarms

In a network management system, a wide range of alarms
are generated across different network layers. Different from
higher level alarms, layer-1 (physical) alarms are typical
triggered by hardware failure. In many cases, layer-1 alarms
indicate the root causes of upper layer issues, and therefore, are
considered as one critical measurement data source. Here we
use SONET alarms as the typical example of layer-1 alarms.

Below the IP layer, the ISP uses a Synchronous Optical
Networking (SONET) layer on top of fiber optics, which takes
care of scheduling packets to be transported by way of Time
Division Multiplexing (TDM) and handles rate multiplexing,
traffic grooming, error monitoring and restoration. A number
of alarms from the SONET layer can be recorded and times-
tamped by SONET equipments. Of these alarms, the Section
Loss of Signal (SLOS) is the most critical one and is triggered
when a failure occurs in the optical layer. When a failure
occurs at the optical layer, a SLOS alarm is generated. A
SONET equipment then waits for a small period of time,
before reporting this failure to the IP layer. This is done to
dampen out very short failures that disappear so as to avoid
triggering route re-computation at the IP level [8].

Table II shows a basic example of SONET messages.
Regarding the temporal information, SONET alarms include
the timestamp of the events. Regarding the spatial information,
raw SONET messages only contain port ID and circuit ID
that have been assigned to the end of fiber link. Since our
NetSearch system focuses on the IP layer, we preprocess the
SONET messages at the time of data ingestion to map the
underlying port ID and circuit ID to the associated layer-3
interface(s). Data preprocessing and annotation is an important
step for NetSearch, as doing so greatly improves the readability
for human operators to examine the data. There are also a
number of counter values about the alarmed condition in the
body of the alarm message (not shown in the table), presenting
diagnostic information about the layer 1 issue. In the large-
scale ISP network that we study in the paper, there are typically
tens of thousands of such messages per day.

C. Control Plane Monitors

Besides networking devices, there exists many auxiliary
systems that monitor the traffic flows and control plane
messages. For instance, network operators pay considerable
attention to the performance of the routing infrastructure

TABLE III. OSPF MONITORING MESSAGES EXAMPLE

Message timestamp Event ID Event type Router IP

2013-07-10 00:00:15 604144 Link Down r1 192.168.0.30
2013-07-10 00:00:16 234234 Link Cost Change r2 192.168.0.34
2013-07-10 00:00:16 134323 Router Cost Out r3 -

by continuously monitoring message exchanges of routing
protocols on the control plane [9], [10]. In this paper, we
take Open Shortest Path First (OSPF) measurement data as
one typical example. Other data sources such as BGP updates
monitoring, active measurement based fault and performance
problem detection (e.g., through ping test) would fit well in
NetSearch.

OSPF is an adaptive routing protocol for IP networks.
It uses a link state routing algorithm and operates within a
single autonomous system. Tracking the changes to the OSPF
neighbor states is key for managing an OSPF network. There
are two approaches to do so: relying on SNMP MIBs and traps,
or listening to Link State Advertisements (LSAs). The ISP
uses the architecture in [10] for OSPF monitoring, in which
multiple LSA Reflectors are deployed to capture LSAs from
the network for both real-time and off-line analysis.

Raw LSAs archive is preprocessed and converted into high-
level OSPF monitoring messages. Table III shows an example
of these messages. Each OSPF message has a timestamp
indicating the time when the event is observed by the OSPF
monitor, a unique event ID serving also as a sequence number,
a coded message type describing the nature of the OSPF event,
such as link up/down or link weight change, and some detailed
message information (e.g., the link weight before and after the
event). Regarding the spatial information, each OSPF message
contains the subnet IP address of the link where the event
had taken place (a point-to-point link being a /30 subnet) and
the router ID of the source end of the link to indicates the
direction of the directed link – OSPF cost can be asymmetric.
Or in some cases, if the event pertains to an entire router, e.g.,
when a router is costed out for service (all its outbound links
are set at the maximum link weight), the subnet field is left
empty. In the large-scale ISP network we study in the paper,
there are typically tens of thousands of such messages per day.

D. Remark

We observe that all network messages share some minimal
structure. First, each message describing a network event
contains a timestamp to record the time when the event
has been observed. Second, each message contains a source
equipment ID to generally describe from where the event has
been observed. In an IP centric system, the source equipment
is typically a router. Knowing the source router however is
often not enough to pinpoint the network event. The network
messages do provide more detailed location information. While
the exact location can be easily extracted from well-structured
data sources such as OSPF Monitor and SONET alarms, in
textual based logs, the locations can be embedded in the
message body. NetSearch should extract the detailed location
information from the messages. Moreover, the physical or
logical component at which a network event took place is not
in a flat structure. Some of them are meaningful at the router
level (like CPU utilization in SYSLOG), some are at the IP link

Router Config
Config

Learning
Location
Hierarchy

Indexing

Network Data

User

Query
interpretation

Queries Formatted
Queries Searching Results

Indexing in Background

On Demand Searching

Location
Dictionary

Location
Extraction

Message
Locations

NetSearch DB

Fig. 1. NetSearch Architecture.

level (OSPF messages), and others are at a physical link level
(e.g. Circuit ID in SONET), or a physical port, or a line card
level. Therefore, in order to be able to search a queried spatial
location in all relevant messages which could have various
location types, we need to carefully model the relationships
among different location types.

III. NETSEARCH SYSTEM OVERVIEW

The goal of NetSearch tool is to search through vast volume
of network data and retrieve relevant information in response
to operator’s query. Figure 1 shows the system architecture of
NetSearch. It consists two parts: indexing in background and
on demand searching.

A. Indexing in Background

NetSearch automatically and continuously acquires domain
knowledge such as the detailed location information from raw
messages, and then generates the indices for search purpose.

First, NetSearch learns the location information based
on configuration files (we call this process as configuration
learning). The first role of the location learning is to build a
location “dictionary” for extracting the location part of each
network message. The second role of location learning is to
build the mapping between different locations, e.g., from an
interface name to its IP address, and the hierarchical location
relationship between interfaces, ports and linecards, and net-
work topology such as the interfaces connecting two routers.
These mappings and location relationships enable searching for
relevant messages given a specific location description. We will
discuss the configuration learning in details in Section IV-A.

Second, NetSearch automatically extract the location parts
of messages. One primary method is based on the location dic-
tionary generated by configuration learning process. However,
not all locations appear in the configuration file. Therefore,
we apply other heuristic methods. One complementary method
is based on message context. For example, certain keywords
like “interface” or “port” in the messages may indicate the
location information. Another complementary method is based
on domain knowledge of location string pattern. For example,
an IP address has an obvious string pattern in dot-decimal
notation. Since each individual method cannot achieve the high

extraction accuracy, NetSearch combines these methods in an
appropriate order. We will explain location extraction in details
in Section IV-B.

Finally, we index raw messages into NetSearch database
to serve online queries. More specifically, we divide our in-
dexing into three independent parts: temporal indexing, spatial
indexing and textual indexing. These three parts are the three
key components of network data. The detailed methodology
of indexing is discussed in Section IV-C.

B. On Demand Searching

Using the generated indices, NetSearch takes users’ queries
as input on demand, and output all relevant messages in a two-
step process. The first step is to interpret users’ queries. In
this step, users may input the time window and location they
are interested in. NetSearch allows some flexibility of location
description. For example, users do not need to specify the type
of the location (e.g. interface, linecard). NetSearch is able to
interpret user queries automatically. The methodology of query
interpretation are described in Section IV-D. The second step is
to search all relevant messages. The searching step, especially
location searching, is closely related to the location indexing.
We will present detailed methodologies for location indexing
and location searching together in Section IV-C.

IV. METHODOLOGY

In this section, we discuss several key methodologies used
in NetSearch tool: configuration learning, location extraction,
indexing and searching, and query interpretation. These key
components in the system architecture are shown as squashed
rectangles in Figure 1.

A. Configuration Learning

Each router is individually configured with its own router
configuration file. In this study, we use the configuration files to
generate both location dictionary and location hierarchy. The
router configuration keeps changing as the network evolves
over time. NetSearch system continuously updates the location
dictionary and hierarchy generated based on router configura-
tions.

Path

Router

Slot/Line
Card

Port

Interface

Multilink/
BundleLink

Logical L3
Interface

Physical L3
Interface

Physical Hierarchy
Tree Structure

Logical Hierarchy

One to Many Relationsihp

Fig. 2. Location hierarchy

1) Location Dictionary: We first extract the types of lo-
cations (e.g. interface, IP) and their actual values from the
configuration files. We organize the information as a dictionary
which contains a number of type-value pairs (e.g. Interface
SERIAL2/0.7/11:0, IP 192.168.1.123). Using this location
dictionary, NetSearch can understand the location semantic
in the network data. Consequently, the dictionary is used to
extract location information embedded in network messages
(see in Section IV-B). Moreover, it can also be used to interpret
the location part of users queries (see in Section IV-D).

2) Location Hierarchy: In our previous work [11], we an-
alyzed the relationship among different locations in SYSLOG
as a hierarchical structure. It can be used to model the generic
location hierarchical structure in different data sets, shown in
Figure 2. We classify the basic components in the location
hierarchy into physical hierarchy and logical hierarchy. The
components in the physical hierarchy have a clear hierarchical
structure from top to bottom. The arrow in the figure illustrates
a “one-to-many” relationship. For example, one router has mul-
tiple slots, each slot can have multiple ports and etc. Besides
physical hierarchy, there are some logical components which
can be mapped to some physical components. For example,
one multilink/bundlelink can be mapped to multiple physical
interfaces. After converting the logical components to physical
components, we can construct a simple, clean tree structure of
location hierarchy. Note that such hierarchy structure is vendor
independent. The hierarchy describes the relationship between
different locations. The indexing and searching algorithms in
NetSearch are designed based on this structure.

B. Location Extraction

Extracting the detailed location information from the net-
work message, such as SYSLOG message, is far from a trivial
task. A brute force way is to utilize the message syntax which
is provided in the vendor manuals. However, the message
syntax keeps changing with the development of router software
and hardware implementations, and it is also quite different
across vendors. These complications motivate us to derive a
generic method to extract the locations information from a
network message with minimum requirement of knowledge on
the message syntax. Due to the complexity of message syntax
and structure, we use a hybrid approach by combining of the
following three methods that are based on router configuration,

message context, and domain knowledge. We will first explain
these three methods in details separately, and then explain how
to combine them together.

1) Based on Router Configuration: Recall in Section IV-A1
that we build location dictionary based on router configuration
files. The location dictionary consists of pairs of location type
and its possible values for each network element. To extract
location information from a network message, we match each
word in the message with the possible location values in the
dictionary. If a match is found, we extract it from the message
and consider it as the location of the message.

The advantage of this method is the high accuracy. Since
the configuration file is a reliable data source, the extracted
location dictionary should always be the accurate2. However,
not all locations in the network messages are expressed in the
same form as they are in the router configuration file. For
example, a network message may contain ”slot 2”, while the
simple value “2” is apparently not in configuration dictionary.
Therefore, we need to find other complementary methods to
extract more location information.

2) Based on Message Context: We observe that leading
words following with the concrete value, in many cases, indi-
cate the type of location in a network message. For example,
leading words “Interface” and “slot” in messages “Interface
Multilink1034 change state to down” and “slot 2 failure” give
the indication on the location types and their values of the
network messages. In order to extract location information
based on message context, we pre-define several words as
leading words that indicate the appearance of a location, and
then match the context in each message with these leading
words. This is a simple and lightweight method, without the
help of external data sources. In particular, it is very useful
to identify the locations like “port 2”, which cannot be found
using aforementioned location dictionary based method or later
domain knowledge based method. The disadvantage of this
method is that it may introduce some errors and the selection
of leading words relies on certain domain knowledge.

3) Based on Domain Knowledge: The aforementioned two
methods cannot guarantee to solve the location extraction prob-
lem completely. For example, the location “1/3” in message
“the failure happens on [1/3]” is not able to be extracted by
either of these two methods. Because it is a variation of loca-
tion presentation, which cannot be found using configuration-
based location dictionary. It cannot be identified by context-
based method either since there is lack of leading word in the
message. To extract such kind of locations, we need to know
the location patterns in advance and hard-code these patterns
into location extraction procedure.

4) Our Hybrid Approach: The three methods exhibit dif-
ferent level of dependency on the network domain knowledge
with the configuration based method being the one relying
least on the domain knowledge. Moreover, the configuration
based method is the most reliable one among all three methods.
Given these two observations, in practice, we first use the
configuration based method to extract location. If it fails,
then we apply the context-based method and then domain
knowledge based method.

2This is certainly under the assumption that no location name is ambiguous.
During our evaluation, we didn’t find such cases based on our network data.

C. Indexing and Searching

After extracting the location information from messages,
we index the network messages to serve the searching purpose.
To design an indexing and searching system, we first need to
consider the query requirements. The users of NetSearch are
always interested in network events, that are annotated with
time and space information. Moreover, the users of NetSearch
may need to describe the events with other important informa-
tion (e.g. link down). Therefore, NetSearch indexes messages
based on three aspects of information: time, location, and other
descriptions (optional). Given a query, the NetSearch searches
messages on these three aspects in parallel. The messages that
satisfy conditions on all three aspects are returned as the final
results of the query. Temporal query and other description
query are relatively simple. We can use existing indexing and
searching tools like Zettair [12] to implement. In the rest of
this part, we explain location query in detail.

Upon querying on location, NetSearch finds all relevant
messages to the given location. As discussed in Section IV-A2,
network messages location information naturally forms a tree
structure after mapping the logical locations to physical loca-
tions. Therefore, we define that two locations are relevant if
and only if their positions in the location hierarchy tree are
either the same or one is the other’s ancestor. Accordingly, the
indexing process of location information is to construct the
location hierarchy tree, and the searching process is to find all
relevant nodes that satisfy the given the location expression in
the query.

We use a concrete example (shown in Figure 3) to demon-
strate the indexing and searching process. Initially, we have
a number of messages with message IDs (e.g., 1 - 5) and
location expressions (e.g., 0:1:0) on a router. First, we consider
the router ID as the root of the tree. In order to tag the
messages to proper positions of the tree, we will convert the
expression of location into separated tokens. In this example,
the interface “0/1/0” will be tokenized into three levels 0,
1, and 0, respectively. Note that different vendors may have
different format of interface name, e.g., 0/1/0, or 0:1:0. But
the structure of the hierarchy tree should be the same and the
difference only lies in the delimiters in the location names.
The combination of three level tokens (0,1,0) describes the
hierarchical path from the root (i.e., the router) to a destination
node. We start from the root node and follow this path to reach
the destination node 3. Then the message ID is associated with
that destination node. Figure 3 shows the example after we tag
five messages into the tree. Note that such an indexing process
is continuous with the hierarchy tree being updated and new
messages being tagged.

To search all relevant messages for a given location, we
convert the query location to hierarchy path expression. If
we can find the node by following the hierarchy path, then
relevant messages are the union of messages that associated
with destination node and its descendants. For example, upon
searching for location “0:1”, we find the node where message
4 is tagged as the destination node and return messages 4
and messages 1 and 5 (i.e., the messages that associate with
descendant nodes of the destination node).

3A new node will be created if it does not exist during this process.

Router

0
10

1

0 2

Intert

Msg(1): 0:1:0

Msg(2): 10:0

Msg(3): 10:2:1

Msg(4): 0:1

Msg(5): 0:1:0

0

1

(1,5)
(2)

(3)

(4)

Search

0:1 => (1,4,5)

10 => (2,3)

2 => ()

Fig. 3. The example to search locations

Furthermore, in some cases the queried location does not
specify each level of the hierarchy. For example, the location
“port 0” actually does not specify the location on the first level
of hierarchy. Therefore, to search the query related to “port
0”, we will search all nodes on the first level, then identify the
second level with label 0.

D. Query Interpretation

Upon receiving a query, NetSearch needs to interpret the
query. Recall that a typical query has three parts: time window,
location, and optional description. The format of time window
is well-defined. The optional description is treated as plain
text. The subtle part is the location query.

NetSearch provides certain kind of flexibility of location
query. Users have two choices. First, users can specify the type
of location followed by its value, e.g., “Interface XX”, “Circuit
ID XXX”. Second, if users do not specify the location type,
NetSearch can automatically infer the location type based on
the syntax signatures of the location value in the query.

The location type inference is based on two assumptions.
First, different types of locations have different signatures.
Second, these locations can be found in the location dictionary
that we learned based on configuration files in Section IV-A1.
Given these two assumptions, the problem is reduced to find
the entries in the location dictionary whose values are identical
to the queried location. However, brute force searching on
the dictionary is time consuming because the dictionary is
quite large (e.g., millions of entires). In order to speed up the
searching process, we extract the signatures of the location
dictionary. That is, instead of matching the exact value of
location, we match the signature of each location.

More specifically, we find that signature of a typical
location string can be expressed with the combination of
three categories of characters: digits (D), alphabetic characters
(A), and others (O). This observation is true for different
router vendors. The reason is that the vendors usually use
digits to denote different elements on the same location level
(e.g. slot 1, slot 2), and use alphabets to name the location
(e.g. Interfaces types like Serial, Ethernet), and use the other
special characters to separate different location levels (e.g. five
levels for SERIAL2/0.7/11:0). For this reason, we only record
the categories of each characters as the signature within the
location string. For example, interface “SERIAL2/0.7/11:0”
can be expressed by “AAAAAADODODODDOD”.

TABLE IV. LOCATION EXTRACTION EFFECTIVENESS ON SYSLOG MESSAGES

Data Coverage Error
Config Context Knowledge Hybrid Config Context Knowledge Hybrid

SYSLOG 29.5% 54.6% 43.5% 100% 0% 3.6% 1.3% 1.4%

V. EVALUATION

We use three network measurement data sets (SYSLOG,
OSPF and SONET) to evaluate three key components of
NetSearch – location extraction, indexing and searching, and
query interpretation. All these data sets are collected from a
tier-1 ISP backbone network during one entire recent month.
The network has around a couple of thousands of routers of
multiple vendors. The routers in the network record millions
of SYSLOG messages per day. There are tens of thousands
of SONET and OSPF messages per day as well. Because
routers are of multiple vendors, the formats of SYSLOG
messages differ significantly across router vendors. NetSearch
is designed to be vendor independent and handles message
format variation well.

A. Location Extraction

In order to evaluate the effectiveness of our methods, we
define two metrics as follows. The coverage is defined as the
percentage of messages whose detailed location can be ex-
tracted by our methods. The error is defined as the percentage
of erroneous extractions among all extracted locations.

Table IV shows the effectiveness of location extraction
of router SYSLOG messages, when applying three different
methods separately and simultaneously. Since detailed loca-
tions from SONET and OSPF messages are already presented
in one of message fields, there is no need to extract. Only
SYSLOG data is evaluated in this table. We have several
observations on the results. First, the error value of config-
based method is zero. It indicates that config-based method is
the most reliable method. It is also the reason we choose it
as the very first method in the hybrid approach by combining
three methods. Second, the coverage of each method is limited
(all less than 60%). It implies that no single method can extract
location effectively. Third, the hybrid approach of combining
all three methods can cover almost all messages, and only
yields 1.4% of errors.

B. Indexing and Searching (of Locations)

We focus on evaluating the performance of location index-
ing and searching here, since it is the critical and novel part
of NetSearch. We evaluate the response time of location query
of the combination of three data sets. We randomly select a
number of queries across different levels of hierarchy tree. By
default, the time window of the query is fixed as one day.
Figure 4 shows the average response time (in milliseconds)
with confidence intervals when varying the number of queries.
We find that the total response time increase linearly when
the number of queries increases. On average, it only takes
several seconds to respond to one thousand queries. In other
words, the response time for a single query is on the order of
several milliseconds. More detailed evaluation of indexing and
searching can be found in our technical report [13].

●
●

●

●

●

●

●
●

●

50
00

15
00

0
25

00
0

35
00

0

The number of queries

R
es

po
ns

e
Ti

m
e

(m
s)

●
●

●

●

●

●

●
●

●

1000 3000 5000 7000 9000

Fig. 4. The response time of location query

TABLE V. THE EFFECTIVENESS OF SIGNATURE EXTRACTION

Type # values # Signatures Ratio

Interface 127431 234 1.836e-03
VRF 15379 31 2.016e-03

CIRCUIT 385550 8 2.074e-05

C. Query Interpretation

In Section IV-D, we explained how NetSearch interpret
users’ location query by extracting the signatures of location
within the location dictionary (Note that it is independent from
data sets). Table V shows the number of signatures and the
number of locations extracted based on router configurations
of one day. The ratio in this table is defined as the number
of signatures divided by the number of location values. Here
we demonstrate three location types: interface, VRF 4 and
CIRCUIT 5. We find that signature extraction can greatly
reduce the size of the location dictionary (from 3 to 5 orders
of magnitude). The signatures of location dictionary can be as
small as several megabytes, and hence can be loaded in the
memory to achieve online query interpretation.

VI. APPLICATIONS

In this section, we use one example to demonstrate that
NetSearch can significantly benefit the network operation
tasks. More applications of NetSearch can be found in our
technical report [13]. One primary application of NetSearch
is to assist impact analysis of known network events. For
instance, network operators may want to know the network
wide impact of a link failure or configuration change. Using
NetSearch, we can query by the time window and location of
the event to obtain all related messages across multiple relevant
routers, and analyze the impact based on these messages.

4VRF stands for Virtual Routing and Forwarding. It is a technology that
allows multiple instances of a routing table to co-exist within the same router
at the same time. VRF is a common technique used in VPN environment. The
VRF ID XXX:XXXX is a simple a conceptional name.

5A circuit ID is a company-specific identifier assigned to a data or voice
network between two locations.

TABLE VI. SYSLOG MESSAGES BY GREPPING ROUTER R1 AND PORT 1/1/1

Date Time Message type Detailed messages

2011-03-02 10:02:26 SNMP TRAP LINK DOWN ifIndex 296, ifAdminStatus up(1), ifOperStatus down(2), ifName 1/1/1
2011-03-02 10:02:27 SNMP TRAP LINK UP ifIndex 296, ifAdminStatus up(1), ifOperStatus up(1), ifName 1/1/1 dv

TABLE VII. SONET MESSAGES BY GREPPING ROUTER R1 AND PORT
1/1/1

Timestamp Router Interface Circuit ID

2013-03-02 04:00:00 R1 T1 1/1/1:27.0 DHEC 12345.802
2013-03-02 06:00:00 R1 T1 1/1/1:27.0 DHEC 12345.802
2013-03-02 10:00:00 R1 T1 1/1/1:27.0 DHEC 12345.802

TABLE VIII. INTERFACES AND IP ADDRESS MAPPING. “–” MEANS NO
VALID IP ADDRESS ASSIGNED.

Router Interface IP

R1 T1 1/1/1:27.0 192.168.1.9
R1 T1 1/1/1:2 –
R1 T1 1/1/1:1.0 192.168.1.33
R1 T1 1/1/1:1 –
R1 T1 1/1/1:14 –
R1 T1 1/1/1:2.0 192.168.1.81
R1 T1 1/1/1:14.0 192.168.1.125
R1 T1 1/1/1:27 –
R1 CT3 1/1/1 –

TABLE IX. INTERFACE AND CIRCUIT ID MAPPING

Router Interface Circuit ID

R1 T1 1/1/1:2 DHEC 12345.802
R1 T1 1/1/1:1 DHEC 12345.801
R1 T1 1/1/1:14 DHEC 1234.802
R1 T1 1/1/1:27 DHEC 123456

In a concrete example, the network operator of the tier-
1 ISP noticed that the Port 1/1/1 on router R1 was unstable
during one recent week. To analyze the impact of such an
event without using NetSearch, one can grep the router R1 and
port 1/1/1 on measurement data sets. This is usually the first
thing that the network operator does in performing an impact
analysis. Note that such brute force searching is extremely time
consuming given the sheer message volume within the relative
large time window. It typically takes roughly ten minutes for
SONET data and half an hour for SYSLOG data. Tables VI
and VII show the examples of messages from SYSLOG and
SONET data, respectively. The messages from SONET data
and those from SYSLOG data do not always occur closely on
time. This indicates that they may not be related to each other.
Moreover, these message do not provide a complete picture of
the impact of unstable port 1/1/1 on router R1. To find more
related messages, we need to know all the locations that are
relevant to port 1/1/1. By extracting implicit location mapping
information manually from the configuration file, we find that
there are nine interfaces related to the port 1/1/1, including
a Channelized T3 (CT3) interfaces on the high level, and
eight T1 interfaces. Moreover, we also find that several IP
addresses assigned to these interfaces. The mappings among
router, interfaces and IPs are shown in Table VIII. For some
interfaces, we also find their corresponding circuit ID (shown
in Table IX), which may appear in some related physical layer
messages.

Given location information, we can further grep the related
interfaces, IP addresses and circuit IDs to find more relevant

messages. More specifically, IP addresses can be used to
search in OSPF data sets; Circuit ID can be used to search in
SONET data; all location information can be used to search in
SYSLOG. After the extensive searching, we observe not only
link flap but also BGP session failures in SYSLOG, which
requires a sequence of location mappings that are extremely
challenging to do manually in a short time: from BGP neighbor
IP to a local interface IP then to interface name. We can as
well find some related OSPF monitoring messages given the
corresponding IP addresses. In total, there are over 200 alarm
messages from SONET data, about 100 link flap messages and
60 BGP flap messages from SYSLOG data and 100 messages
from OSPF data.

To briefly summarize our observation of the impact of this
outage event:

• The port is out of order multiple times within the
investigation window.

• Some outages on layer-1 are very short (observed from
SONET), and therefore, have a negligible impact on
the higher layers (no corresponding observations in
SYSLOG).

• Some other layer-1 outages are relatively long. It can
cause the link flap, OSPF updates (observed in OSPF)
and BGP session failures (and thus have an impact on
customers).

So far, we describe the manual way to extract all relevant
messages for a given event of interest. As we mentioned, it is
a time consuming and complicated task. First, the simple grep
cannot get the complete big picture on the event impact. Sec-
ond, the process heavily relies on domain knowledge on net-
work configuration in order to uncover the implicit relationship
and mapping among different locations and network protocols.
Finally, the process may take a long time, e.g., several hours.
In contrast, we can input a single query into NetSearch and
obtain the same set of messages within one minute. Therefore,
NetSearch significantly speeds up and simplifies the network
diagnosis process.

VII. RELATED WORK

Some toolsets have been developed to provide sophisticated
query and data management facilities for network management
purposes [14], [15], [16]. However, these tools fail to consider
the spatial relationship of different data entries and therefore
cannot be directly used for comprehensive searching purpose.

Exploring spatial patterns is extremely important in
database and network areas. Database researchers proposed a
series of data structures and algorithms for efficient spatial
searching [17], [18], [19]. However, they focus on the geo-
graphic or geometric locations, which is different from the spa-
tial model of network events. Recently, networking researchers
pay more attenion to the temporal and spacial patterns in

term of network event descriptions. For example, Wang [20]
proposed a general framework of learning, indexing, and
identifying topological and temporal correlation existing in
network event data. However, topological information they
used is limited on router-level (e.g. neighborhoods of routers).
Our work presents a generic spatial description of network
event locations. In our previous work [11], we developed a
system to automatically group relevant SYSLOG messages
by exploring the temporal and spatial property in SYSLOG
messages. In comparison, our study in this paper focuses on
searching rather than grouping. Moreover, the methodology is
applied to different types of network messages, rather than
restricted to SYSLOGs.

VIII. CONCLUSION

In this paper, we develop a system called NetSearch
that can “google” a wide range of network data. NetSearch
pre-processes various network data sources including device
logs, alarms and outputs from network measurement systems,
constructs indices that match an abstract network spatial hi-
erarchy model and the inherent timing information as well as
the textual information contained in the data, and efficiently
retrieves and effectively presents the relevant information that
network operators search for. We evaluated NetSearch using
real-world network data collected from a large tier-1 ISP
network and demonstrated how NetSearch can be applied on
complex network management tasks such as impact analysis.
We believe NetSearch will become an essential building block
for many network management tools. Applying NetSearch on
more data sets, integrating it into various network management
tools, and using Hadoop to further improve search response
time are among our future work.

REFERENCES

[1] C. R. Kalmanek, Z. Ge, S. Lee, C. Lund, D. Pei, J. Seidel, and J. Y.
Jacobus van der Merwe, “Darkstar: Using exploratory data mining to
raise the bar on network reliability and performance,” in Design of Re-
liable Communication Networks, 2009. DRCN 2009. 7th International
Workshop on. IEEE, 2009, pp. 1–10.

[2] “The data-driven approach to network management: Innovation de-
livered,” http://www.research.att.com/articles/featured stories/2010 05/
201005 networkmain2 article.html.

[3] “Emc lonix website,” http://www.emc.com/products/family/
ionix-family.htm.

[4] “IBM netcool website,” http://www-01.ibm.com/software/tivoli/
welcome/netcool.

[5] B. Yuwono and D. Lee, “Search and ranking algorithms for locating
resources on the World Wide Web,” in ICDE. Published by the IEEE
Computer Society, 1996, p. 164.

[6] S. Rice and S. Bailey, “Searching for sounds: A demonstration of
FindSounds. com and FindSounds Palette,” in Proc. of the International
Computer Music Conference. Citeseer, 2004, pp. 215–218.

[7] J. Lee, “Software learns to tag photos,” Technology Review, vol. 9, 2006.
[8] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. Chuah, Y. Gan-

jali, and C. Diot, “Characterization of failures in an operational IP
backbone network,” IEEE/ACM Transactions on Networking (TON),
vol. 16, no. 4, pp. 749–762, 2008.

[9] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing stability
of popular destinations,” in Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurement, ser. IMW ’02, 2002, pp. 197–202.

[10] A. Shaikh and A. Greenberg, “OSPF monitoring: architecture, design
and deployment experience,” in Proceedings of NSDI. Berkeley,
CA, USA: USENIX Association, 2004, pp. 5–5. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1251175.1251180

[11] T. Qiu, Z. Ge, D. Pei, J. Wang, and J. Xu, “What happened in my
network: mining network events from router syslogs,” in Proceedings
of ACM IMC. ACM, 2010, pp. 472–484.

[12] J. Zobel, H. Williams, F. Scholer, J. Yiannis, S. Heinz, N. Lester,
W. Webber, A. Moffat, and A. Vo, “The zettair search engine,” Search
Engine Group, RMIT University, Melbourne, Australia, 2004.

[13] T. Qiu, Z. Ge, D. Pei, J. Wang, and J. Xu, “Netsearch: Googling large-
scale network management data,” http://www.cc.gatech.edu/∼tongqqiu/
publication/netSearch tech.pdf, Tech. Rep., 2011.

[14] G. Fowler and B. Krishnamurthy, “dss – data stream and scan,” AT&T
Lab – Research, Tech. Rep., 2005.

[15] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, “Gigascope:
A stream database for network applications,” in Proceedings of the
2003 ACM SIGMOD international conference on Management of data.
ACM, 2003, pp. 647–651.

[16] M. Feridun and A. Tanner, “A search engine for systems management,”
in Proceedings of the 12th IEEE/IFIP Network Operations and Man-
agement Symp, 2010, pp. 697–210.

[17] A. Guttman, “R-trees: a dynamic index structure for spatial searching,”
in Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’84, 1984, pp. 47–57.

[18] J. Orenstein, “Spatial query processing in an object-oriented database
system,” in Proceedings of the 1986 ACM SIGMOD international
conference on Management of data. ACM, 1986, pp. 326–336.

[19] H. Six and P. Widmayer, “Spatial searching in geometric databases,” in
Data Engineering, 1988. Proceedings. Fourth International Conference
on. IEEE, 1987, pp. 496–503.

[20] T. Wang, M. Srivatsa, D. Agrawal, and L. Liu, “Spatio-temporal patterns
in network events,” in Proceedings of ACM CoNext, 2010, pp. 3:1–3:12.
[Online]. Available: http://doi.acm.org/10.1145/1921168.1921172

