Social Media Anomaly Detection: Challenges and Solutions

Yan Liu¹ Sanjay Chawla²

¹Computer Science Department Viterbi School of Engineering University of Southern California

²Qatar Computing Research Institute and School of Information Technologies The University of Sydney

February 5, 2017

Acknowledgment

Funding agencies: NSF IIS-1134990 and IIS-1254206, DARPA, Australian Research Council, CapialMarkets CRC

Special thanks to:

Rose Yu

Ching-Yung Lin

Aram Galstyan

Hanghang Tong Leman Akoglu

Zhen Wen

WSDM-2017 Tutorial

Zhen Wen

Tutorial Slides and Survey Paper Access

http://www-bcf.usc.edu/~liu32/SMAD.htm

Outline

Lecture 1: Introduction to social media anomaly detectionOverview of anomaly detection

- Types and properties of social media data
- Anomaly detection in network data
- Anomaly detection in temporal data

Lecture 2: Recent advances in social media anomaly detection

What is Anomaly Detection?

Anomaly detection (or outlier detection)

Textbook definition: the identification of items, events or observations which do not conform to an expected pattern or other items in a dataset.

Nice examples:

Generic Algorithm for Anomaly Detection

- $\bullet\,$ Given a data set D, propose a model M(D) which "generates" the data.
- Thus if $o \in D$ then let \hat{o} be prediction from M(D).
- o is anomalous if $||o \hat{o}||$ is large.
- Challenges of anomaly detection: outliers often have disproportional impact on the estimation of ${\cal M}(D)$.

Challenges in Anomaly Detection

The reality is:

You never know what you are looking for. Anomaly detection may be more of "an art" than "the science".

Issues with Existing Approaches

Most existing approaches to anomaly detection suffer from a series of shortcomings:

- Sensitiveness: high false alarm rate
- Interpretation: statistical test results with very limited insights about the detected anomaly
- Scalability: challenging for high-dimensional streaming data

Tutorial Themes

- Special properties of social media anomaly detection:
 - We will provide concrete examples of social media anomaly detection
- State-of-art techniques in anomaly detection:
 - We will address the issues in existing approaches
- Working systems and competitions:
 - We will share practical scenarios and lessons learned

Outline

Lecture 1: Introduction to social media anomaly detection • Overview of anomaly detection

- Types and properties of social media data
- Anomaly detection in network data
- Anomaly detection in temporal data

Lecture 2: Recent advances in social media anomaly detection

Social Media Data Types

Large-scale social media data usually consist of three data types: *structured data, unstructured texts and networks* labeled (sometimes) with temporal or/and spatial tags

Example 1: Bot detection

ROBERT MCMILLAN BUSINESS 11.07.12 6:30 AM

Tim Hwang (PacSocial)

Example 2: Compromised account detection

Example 3: Group Review Spamming

Example 4: Organized Viral Campaign

Example 5: Bullying on Social Media

Categorization of Social Media Anomaly Detection

Based on the anomaly type, we have

- Point anomaly detection
- Group anomaly detection

Based on the input format, we have

- Activity-based: assume individuals are marginally independent
- Graph-based: account for relational information represented by graphs

Based on the temporal factor, we have

- Static information: one snapshot of the social network
- Dynamic information: time series observations of the social network

Challenges in Social Media Anomaly Detection

In addition to the challenges of classical anomaly detection tasks, social media also lead to new challenges:

- Heterogeneous data with rich and complex information
- Beyond the typical iid assumptions
- Very limited labeled examples or benchmark datasets
- Varieties and dynamics in anomalies

Outline

Lecture 1: Introduction to social media anomaly detection

- Overview of anomaly detection
- Types and properties of social media data
- Anomaly detection in network data
- Anomaly detection in temporal data

Lecture 2: Recent advances in social media anomaly detection

Overview of Graph Anomaly Detection

Credits: Akoglu et al, ASONAM Tutorial

Liu & Chawla

Static Plain Graph

- Oddball [Akoglu et al. (2010)]
- Recursive structural features [Henderson et al. (2011)]

- Bipartite graphs: neighborhood formation [Sun et al. (2005)]
- Non-negative residual matrix factorization [Tong and Lin (2011)]
- Anti-social communications [Ding et al. (2012)]

Static Attributed Graph

Substructure and subgraphs

- Minimum Descriptive Length (MDL) [Noble and Cook (2003)]
- MDL and probabilistic measure [Eberle and Holder (2007)]

Community outliers

- Probabilistic models [Gao et al. (2010)]
- PICS: cohesive clusters [Akoglu et al. (2012)]

Dynamic Graph

	Graph Anor	naly Detection
Static gra	Dynamic graph	
Plain	Attributed	Plain
		Distance based
Feature based	Structure based	Feature-distance Shurtura ristance
Recursive features	Suboracto	
		Structure based
Community based	Community based	"phase transition"

Distance based

- Graph distance: weight distance etc [Noble and Cook (2003)]
- ARIMA model [Pincombe (2005)]
- Scan statistics [Park et al. (2008)]

Structure based

- Eigen-space-based events [Idé and Kashima (2004)]
- GraphScope: matrix factorization [Sun et al. (2007)]

Outline

Lecture 1: Introduction to social media anomaly detection

- Overview of anomaly detection
- Types and properties of social media data
- Anomaly detection in network data
- Anomaly detection in temporal data

Lecture 2: Recent advances in social media anomaly detection

Temporal Data Anomaly Detection

Point anomaly detection

- Markov process
 - Bayes one-step Markov [Schonlau et al. (2001)]
 - Hybrid multi-step Markov [Ju and Vardi (2001)]
- Poisson process [Ihler et al. (2006)]
- Compression [Schonlau et al. (2001)]
- Probabilistic suffix tree (PST) [Sun et al. (2006)]
- Temporal dependence [Qiu et al. (2012)]

Temporal Data Anomaly Detection

Group anomaly detection

- Scan statistics [Das et al. (2009); Friedland and Jensen (2007)]
- Density estimation
 - Multinomial genre model (MGM) [Xiong et al. (2011a)]
 - Flexible genre model (FGM) [Xiong et al. (2011b)]
 - Group Latent Anomaly Detection model(GLAD) [Rose et al. (2014)]
 - One class support measure machine (OCSMM) [Muandet and Schölkopf (2013)]

Outline

Lecture 1: Introduction to social media anomaly detection

Lecture 2: Recent advances in social media anomaly detection Point anomaly detection in social media

- Group anomaly detection in social media
- Fake news detection
- Applications and systems

Point Anomaly Detection

Definition

Point anomaly detection aims to detect suspicious individuals, whose behavioral patterns deviate significantly from the general public.

Eg 1: Unusual file access

Eg 2: Abnormal network communication

Outline of Point Anomaly Detection

Activity-based Point Anomaly

Graph-based Point Anomaly

- Static graph
- Dynamic graph

Activity-based Point Anomaly Detection

Statistical hypothesis testing framework:

- Markov process
 - Bayes one-step Markov [Schonlau et al. (2001)]
 - Hybrid multi-step Markov [Ju and Vardi (2001)]
- Poisson process [Ihler et al. (2006)]
- Compression [Schonlau et al. (2001)]
- Probabilistic suffix tree (PST) [Sun et al. (2006)]
- Temporal dependence [Qiu et al. (2012)]

Comments

The activity sequences of each user are modeled under Markov assumption, which may suffer from rapid explosion in the dimension of the parameter space.

Markov Process

Application in detecting masquerades from UNIX commands usage records.

Bayes one-step Markov

Null hypothesis: one-step Markov process, the command of a user at current time relates to his previous command **Alternative hypothesis**: multinomial distribution with Dirichlet prior **Testing statistics**: the Bayes factor

Hybrid multi-step Markov

Null hypothesis: hybrid Markov model Alternative hypothesis: commands are generated from other users Testing statistics: combined statistics of the hybrid Markov model

Probabilistic Suffix Tree (PST)

Application in detecting outliers from a set of alphabetical sequences

Concepts

 $\begin{array}{l} \mathsf{Edge} \to \mathsf{symbol} \text{ in the alphabet} \\ \mathsf{Node} \to \mathsf{string} \\ \mathsf{Node} \ \mathsf{distribution} \to \mathsf{the conditional} \\ \mathsf{probability} \ \mathsf{of} \ \mathsf{seeing} \ \mathsf{a} \ \mathsf{symbol} \ \mathsf{right} \ \mathsf{after} \\ \mathsf{the string} \ \mathsf{label} \end{array}$

Point anomaly detection in social media

Granger Graphical Models

Basic idea: Graphical modeling using the notions of Granger causality and methods of variable selection

Granger Causality: Cause happens prior to its effects [Granger 1969, 1980]. A time series \mathbf{y} is the *Granger* Cause of another time series \mathbf{x} if the past values of \mathbf{y} are helpful in predicting the future values of \mathbf{x} given its own past.

Practically, we perform the following two auto-regressions:

$$x_t = \sum_{l=1}^{L} a_l x_{t-l} \tag{1}$$

$$x_t = \sum_{l=1}^{L} a'_l x_{t-l} + \sum_{l=1}^{L} b'_l y_{t-l},$$
(2)

If Eq. (2) is a significantly better model than Eq. (1) (by statistical significance test), we determine that time series \mathbf{y} Granger causes time series \mathbf{x} .

Granger Graphical Models

Lasso-Granger [Arnold et al, KDD 2007]: Given P time series $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(P)}$ of length T, we can determine the Granger relationships of $\mathbf{x}^{(i)}$ by performing the penalized auto-regression as follows:

$$\min_{\{\mathbf{a}_i\}} \sum_{t=L+1}^{T} \left\| x_t^{(i)} - \sum_{j=1}^{P} \beta_{i,j}^{\top} \mathbf{x}_{t,Lagged}^{(j)} \right\|^2 + \lambda \left\| \beta_i \right\|_1,$$
(3)

where $\mathbf{x}_{t,Lagged}^{(j)} = \begin{bmatrix} x_{t-L}^{(j)}, \dots, x_{t-1}^{(j)} \end{bmatrix}$.

Major advantages

- Variable selection can be efficiently achieved for high-dimensional time series
- Consistency analysis [Arnold et al, KDD 2007; Bahadori and Liu, 2012] Lasso-Granger: P[Error] = $o(c'L \exp(-T^v))$ for some $0 \le v < 1$. Significant test: P[Error] = $o(c'\sqrt{T-L}\exp(-c^2(T-L)/2))$

Learning is possible even when the dimension P is significantly larger than T!

Granger Graphical Models for Anomaly Detection

- Use Granger-lasso on training data: learn the coefficient $\hat{\beta}_{i}^{(a)}$ for each variable x_i using lasso regression;
- Use constrained regression on the test data to learn another sets of coefficients $\hat{\beta_i}^{(b)}$
 - Neighborhood similarity ($\epsilon_0 << \epsilon_1$):

$$\sum_{j \in I_0} |\beta_{i,j}^{(b)}| \le \epsilon_0, \ \sum_{j \in I_1} |\beta_{i,j}^{(b)}| \le \epsilon_1,$$

• Coefficient similarity:

$$\sum_{j} |\beta_{i,j}^{(a)} - \beta_{i,j}^{(b)}| \le \epsilon,$$

Anomaly score: KL-divergence

$$d_i^{\text{ ab}} \equiv \int \mathrm{d}x_i \; p_{(\mathrm{a})}(x_i | \boldsymbol{X}_L^{lagged}) \ln \frac{p_{(\mathrm{a})}(x_i | \boldsymbol{X}_L^{lagged})}{p_{(\mathrm{b})}(x_i | \boldsymbol{X}_L^{lagged})}$$

 $\bullet\,$ Threshold: estimate the score distribution of training data; use 95% quantile as a threshold

Liu & Chawla

Outline of Point Anomaly Detection

Activity-based Point Anomaly

Graph-based Point Anomaly

- Static graph
- Dynamic graph
Static Graph-based Point Anomaly Detection

Represent the relational information by graphs:

- Power law [Akoglu and McGlohon (2009); Akoglu et al. (2010)]
- Random walk [Moonesinghe and Tan (2008); Sun et al. (2005)]
- Hyper-graph [Silva and Willett (2008b,a)]
- Spatial auto-correlation [Sun and Chawla (2004); Chawla and Sun (2006)]

Comments

Consider not only the activity of individual users but also their interactions. Relies on nodes' feature engineering from the graph. Strong assumptions on the graph generating process.

Power Law

Application in detecting anomalous nodes in subgraphs

- Investigates the number of nodes N_i, the total weight W_i and number of edges E_i of the egonet G_i.
- Takes the distance-to-fitting-line as a measure to score the nodes in the graph.

Comments

Fitting of power law and the calculation of anomaly score is computationally efficient, easily fail if the network does not obey the power law.

Hyper-Graph

Definition

A hypergraph is a generalization of a graph in which an edge can connect any number of vertices.

Hyper-Graph

Application in detecting anomalous meetings in very large social networks

- Define $g(\mathbf{x})$ as the probability mass function of the meetings evaluated at a hype-edge \mathbf{x}
- Define the distribution of the meetings as a two-component mixture: $g(\mathbf{x}) = (1 - \pi)f(\mathbf{x}) + \pi\mu(\mathbf{x})$, with $f(\mathbf{x})$ as nominal distribution, $\mu(\mathbf{x})$ as the anomalous distribution, π as the mixture parameter
- $\mu(\mathbf{x})$: uniform distribution, $f(\mathbf{x})$: nonparametric density estimator
- Learn the likelihood of each observation using variational EM algorithm
- Anomalous score: model likelihood

Comments

A concise representation of complex interactions among multiple nodes, only applies to binary relationships where an edge is either present or missing.

Spatial Auto-correlation

Application in detecting spatial outliers, e.g. local anomalous counties from census data

- Spatial neighborhood resembles the neighborhood defined in graph
- **②** Spatial Local Outlier Measure (SLOM): "stretched" distance between the point and its neighbors $\tilde{d}(a)$ and oscillating parameters $\beta(o)$
- **③** Use SLOM as anomalousness score to detect spatial outliers

Comments

SLOM captures the spatial autocorrelation and spatial heteroscedasticity (non-constant variance). Local spatial statistics would suffer from the "curse of dimensionality".

Outline of Point Anomaly Detection

Activity-based Point Anomaly

Graph-based Point Anomaly

- Static graph
- Dynamic graph

Dynamic Graph-based Point Anomaly Detection

Three main categories [Bilgin and Yener (2010)]:

- Time series analysis of graph data
 - ARIMA process (Pincombe, 2005)
 - graph eigenvectors (Idé and Kashima, 2004)
- GraphScope: Minimum description length (MDL) (Sun et al., 2007)
- Window based approaches: scan statistics (Park et al., 2008)

Time Series Analysis

ARMA process (Pincombe, 2005)

- Constructs a time series of changes for each graph topology distance measures
- Ø Modeled each time series with an ARMA process
- Set up a residual threshold for the goodness of model fitting for time series.

Graph eigenvector (Idé and Kashima, 2004)

- O Define a time evolving dependency matrix from graphs
- **2** Extract the principal eigenvector u(t) as the "activity" vector,
- Oefine the typical pattern as a linear combination of the past activity vectors
- Calculates the dissimilarity of the present activity vector from this typical pattern as anomalous score

Liu & Chawla

WSDM-2017 Tutorial

GraphScope: Minimum Description Length

Application in detecting the change points in a stream of graph series.

Concepts

Graph segment: One or more graph snapshots; **Change point measure**: the encoding cost for $\mathcal{G}^{(s)} \bigcup \{G^{(t)}\}$ as c_n and $G^{(t)}$ as c, If $c_n - c_o < c$, the new graph is included in the current segment.

Rationale

Whether it is easier to include a new graph into the current graph segment or to start a new graph segment. If a new graph segment is created, it is treated as a change point.

Minimum Description Length

- Compute the encoding cost of including a new graph into the current graph segment
- Output the encoding cost of starting a new graph segment
- Ompare the two costs and flag change point

Window based approach

Scan statistics

Slide a small window over local regions, computing certain local statistic for each window. The supremum or maximum of these locality statistics is known as the scan statistic.

Scan region: closed kth-order neighborhood of vertex v in graph D = (V, E): $N_k[v; D] = \{w \in V(D) : d(v, w) \le k\}$. where d(v, w) is the minimum directed path length from v to w in D.

Locality statistics: any digraph invariant $\Psi_k(v)$ of the scan region. For instance, the out degree of the digraph can be one such invariant locality statistics.

Comments

An intuitively appealing method to evaluate dynamic graph patterns, need to pre-specify a window width before one looks at the data.

Outline

Lecture 1: Introduction to social media anomaly detection

Lecture 2: Recent advances in social media anomaly detection Point anomaly detection in social media

• Group anomaly detection in social media

- Fake news detection
- Applications and systems

Group Anomaly Detection

Definition

Group anomaly or *"collective anomaly"* detection in social network aims to discover groups of participants that collectively behave anomalously Chandola et al. (2007).

The problem is challenging because

- We do not know beforehand any members of a malicious group;
- The members of anomalous groups may change over time;
- Usually no anomaly can be detected when we examine individual member.

Activity-based Group Anomaly Detection

- Scan statistics [Das et al. (2009)]
- Density estimation
 - Multinomial genre model (MGM) [Xiong et al. (2011a)]
 - Flexible genre model (FGM) [Xiong et al. (2011b)]
 - Group Latent Anomaly Detection model(GLAD) Rose et al. (2014)
 - One class support measure machine (OCSMM) [Muandet and Schölkopf (2013)]

Density Estimation

MGM

Model groups as a mixture of Gaussian distributions with different mixture rates following the paradigm of latent models

FGM

 $\mathsf{Extend}\ \mathsf{MGM}$ to with more flexibility in the generation of topic distributions

GLAD

Infer the group membership and roles of each user automatically

OCSMM

Generalize one-class support vector machine (OCSVM), compute the kernel of Gaussian distributions and apply SVM in a probability measure space.

Multinomial Genre Model (MGM)

Assumptions:

• Groups are *pre-computed*

Algorithm 1 Generative process for MGMM

for m = 1 to M do

- Choose a group type $\{1, \ldots, T\} \ni Y_m \sim \mathcal{M}(\pi)$
- Let the topic distribution $\theta_m \doteq \chi_{Y_m} \in \mathbb{S}^K$.

• Choose N_m , the number of points in the group \mathbf{G}_m . (N_m can be random, e.g. sampled from a Poisson distribution).

for n = 1 to N_m do

• Choose a galaxy type $Z_{m,n} \in \{1,\ldots,K\},$ $Z_{m,n} \sim \mathcal{M}(\theta_m).$

• Generate a galaxy feature $X_{m,n} \in \mathbb{R}^{f}$, $X_{m,n} \sim P(X_{m,n}|\beta, Z_{mn}) = \mathcal{N}(\beta_{Z_{m,n}}^{\mu}, \beta_{Z_{m,n}}^{\Sigma}).$ end for end for

Flexible Genre Model (FGM)

Assumptions:

• Groups are *pre-computed*

Flexible Genre Model (FGM)

• For each group:

Model Parameters

- $\mathcal{M}(\pi)$ Multinomial
- Each genre Dirichlet
- Topic generators $P(.|\nu)$ -Gaussian Inverse Wishart
- Point generators $P(x_n|\beta_k)$ Multivariate Gaussian

Flexible Genre Model (FGM)

Inference and Learning Parameters

- Approximate inference of latent variables (Gibbs Sampling)
- Use samples to learn parameters (Single step Monte Carlo EM)

Anomaly Detection

- Point based anomaly score:
 - Infer the topics $(\{\beta_{m,k}\}_{k=1}^K)$
 - Compute negative log likelihood for all $\beta_{m,k}$ w.r.t. η_k
 - Rationale: If group contains anomalous points then corresponding topics will have low probability under η
- Distribution based anomaly score:
 - Infer the topic distribution θ_m
 - $\bullet\,$ Compute negative log likelihood w.r.t. α
 - Rationale: An anomalous group will be unlikely to be generated from any genre

GLAD: Joint Models for Activity and Networks

Group latent anomaly detection model(GLAD) [Rose et al. (2014)]

Concept of Role:

- Latent component in node features
- ② Similar to an article topic

Modeling Principal: A group is modeled as a mixture of roles, with same of roles but different role mixture rate

Definition of Group Anomaly

Group anomaly has a *role mixture rate* pattern that does not conform to the majority of other groups.

Group Latent Anomaly Detection (GLAD0)

$$\begin{split} \pi_p &\propto \mathsf{Dirichlet}(\alpha), \\ G_p &\propto \mathsf{Multinomial}(\pi_p), \\ R_p &\propto \mathsf{Categorical}(\theta_{G_p}), \\ Z_{p \rightarrow q} &\propto \mathsf{Multinomial}(\pi_p), \\ Z_{p \leftarrow q} &\propto \mathsf{Multinomial}(\pi_p), \\ Y_{p,q} &\propto \mathsf{Bernouli}(B_{Z_{p \rightarrow}, Z_{p \leftarrow q}}), \\ X_p &\propto \mathsf{Multinomial}(\beta_{R_p}) \end{split}$$

- High computational cost
- Loose connection of MMSB and LDA components via the shared group membership

Group Latent Anomaly Detection (GLAD)

A more computationally efficient model design

 $\pi_p \propto \text{Dirichlet}(\alpha), \ G_p \propto \text{Multinomial}(\pi_p), \ R_p \propto \text{Categorical}(\theta_{G_p}), \ Y_{p,q} \propto \text{Bernouli}(B_{G_p,G_q}), \ X_p \propto \text{Multinomial}(\beta_{R_p})$

Dynamic extension of GLAD (d-GLAD)

Temporal evolution of the role mixture rate for each group is modeled as a series of multivariate Gaussian distributions: $\theta_m^t \propto \text{Gaussian}(\theta_m^{t-1}, \sigma)$

Procedure

Calculate Anomaly Score

- GLAD : expected likelihood of role distribution AnomalyScore_{GLAD} $\propto \sum_{p \in G} E_q[p(R_p|\theta)]$
- d-GLAD : change of role mixture rate over time AnomalyScore_{d-GLAD} $\propto \|\theta_m^{t-1} \theta_m^t\|_2$

One Class Support Vector Machines

Kernel Methods

The Red group is an outlier

How do we determine outlier groups ? Clearly Higher-Order Statistics are required. We will use Kernel Mean Embedding (KME) to form Higher-Order Statistics

Smallest enclosing hypersphere problem

• Given a set of point $S = \{x_1, x_2, \dots, x_n\} \in \mathbb{R}^d$. Find the smallest hypersphere that encloses S.

 $\min_{R,c} R^2 \tag{4}$

subject to
$$||x_i - c||_2^2 \le R^2 \quad \forall i = 1, \dots n$$
 (5)

• Standard Approach through Lagrangian multiplier $L(c, R, \lambda) = R^2 + \sum_{i=1}^n \lambda_i [||x_i - c||^2 - R^2]$

• Optimizing L yields: $\sum_{i=1}^{n} \lambda_i = 1$ and $c = \sum_{i=1}^{n} \lambda_i x_i$

۲

Working in Dual Space

- One can work entirely in the dual space.
- In fact, the Lagrangian can be expressed as

$$L(c, R, \lambda) = \sum_{i=1}^{n} \lambda_i \langle x_i, x_i \rangle - \sum_{i,j=1}^{n} \lambda_i \lambda_j \langle x_i, x_j \rangle$$

• Or if we generalize to a positive-semidefinite kernel k then

$$L(c, R, \lambda) = \sum_{i=1}^{n} \lambda_i k(x_i, x_i) - \sum_{i,j=1}^{n} \lambda_i \lambda_j k(x_i, x_j)$$

• Solve the dual optimization problem to estimate λ^* .

Detecting Outliers

• To determine whether a new entity x is an outlier with respect to the set S, test if

$$g(x) = \left\langle x, \sum_{i=1}^{n} \lambda_i x_i \right\rangle - R^2 > 0$$

i.e.,

$$g(x) = \langle x, x \rangle - 2 \sum_{i \in sv} \lambda_i \langle x, x_i \rangle + \sum_{i,j=1}^n \langle x_i, x_j \rangle - R^2 > 0$$

or with a kernel k

$$g(x) = k(x, x) - 2\sum_{i \in sv} \lambda_i k(x, x_i) + \sum_{i,j=1}^n k(x_i, x_j) - R^2 > 0$$

Kernel Mean Embedding for Group Outlier Detection [Muandet et. al.]

- Let P be a group of points $\{x_1, \ldots x_n\}$.
- Let ϕ be the kernel for P, i.e., all matrices of the form $\phi(x_i, x_j)$ are positive semidefinite (non-negative eigenvalues).
- The Hilbert Space associated with ϕ is the closed linear space of $\{\phi(.,x)|x \in \mathbb{R}^d\}$. This is known as the reproducing kernel hilbert space (RKHS).
- The distribution can be represented via the kernel mean in RKHS: $\frac{1}{n} \sum_{i=1}^{n} \phi(., x_i)$.
- For certain ϕ (Gaussian kernel), the mapping is injective one-to-one. Let $P_1 = \{x_1, \ldots, x_{n_1}\}$ and and $P_2 = \{y_1, \ldots, y_{n_2}\}$ are two groups of size n_1 and n_2 then form a dot product between the two groups as

$$\frac{1}{n_1 n_2} \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \phi(x_i, y_j)$$

Static Graph-based Group Anomaly Detection

Graph-based group anomaly detection techniques seek to jointly utilize these observations and detect anomalous groups in a unified framework.

- Minimum description length (MDL) [Chakrabarti (2004); Lin and Chalupsky (2003); Rattigan and Jensen (2005)]
- Anomalous substructure [Noble and Cook (2003); Eberle and Holder (2007)]
- Tensor decomposition [Maruhashi et al. (2011)]

Anomalous Substructure

Given a labeled graph, each node as a label identifying its type

- Start with a list holding 1-vertex substructures for each unique vertex label.
- Odify the list by generating, extending, deleting or inserting vertices and edges.
- Ount the number of occurrences for substructures
- Define a score for a substructure S in a graph G as F₂ = Size(S) · Occurrences(S, G), which is simply the product of the total number of nodes within a substructure and its occurrences.

Tensor Decomposition

Given an M-mode tensor $\mathcal X$ of size $I_1 imes I_2 imes \cdots imes I_M$,

- Performs CP decomposition of the tensor of rank R as $\mathcal{X} \approx \sum_{r=1}^{R} \lambda_r(a_r^{(1)} \times \cdots \otimes a_r^{(M)})$, where $\{a_r^{(i)}\}$ are rank-1 eigenscore vectors.
- Transform the eigenscore vector plot (absolute value of eigenscore vs. attribute index) into the eigenscore histogram (absolute value of eigenscore vs. frequency count)
- Onduct spike detection on the histogram.

Comment

Capture the complex structure in heterogeneous networks. But tensor decomposition problem itself can be NP-hard to solve.

Dynamic Graph-based Group Anomaly Detection

Evolving networks can also provide insights into the temporal changes of groups. Detecting anomalously groups in dynamic graphs is more challenging, as the group structures are not fixed and the unusual patterns in the group can also change.

- Bipartite graph [Friedland and Jensen (2007); Liu et al. (2008)]
- t-partite graph [Xu et al. (2007); Kim and Han (2009)]
- Counting process [Heard et al. (2010)]

Bipartite graph

Application in finding corporate tribes Given bipartite graph $G = (R \bigcup A, E)$, $R = \{r_i\}$: the entity representatives, $A = \{a_j\}$: attributes, E: edges with time annotation.

- $\ensuremath{{\rm O}}$ List the co-worker relationships in the graph for every pair $f_{ij}=(r_i,r_j)$
- 2 Create a new graph H = (R, F), where $F = \{f_{ij}\}$ is annotated with individuals attribute and history information.
- Obtaine a significance score for each edge, which measures the significance or the anomalousness of shared jobs.
- Identify significant edges and computing the significance score c for each of them.
- Pick a threshold d for the scores and prune all the edges f_{ij} for $c_{ij} < d$.
- Flag the connected components in the remaining graph as anomalous groups.

Outline

Lecture 1: Introduction to social media anomaly detection

2 Lecture 2: Recent advances in social media anomaly detection

- Point anomaly detection in social media
- Group anomaly detection in social media
- Fake news detection
- Applications and systems

Fake news

Fake news is interesting

- Misinformation can affect public opinion
 - German government: "We are dealing with a phenomenon of a dimension that we have not seen before"
- Bots pollute with fake activity
- Normal people also participate
 - NYT reported on a college graduate who started writing fake stories for fun and calculated that he earned "about $1,000~{\it an}~{\it hour}~{\it in}~{\it web}~{\it advertising}~{\it revenue}"$

 $\label{eq:https://www.theguardian.com/world/2017/jan/09/germany-investigating-spread-fake-news-online-russia-election \\ https://www.nytimes.com/2017/01/18/us/fake-news-hillary-clinton-cameron-harris \\ \end{tabular}$

https://www.nytimes.com/2017/01/18/us/fake-news-hillary-clinton-cameron-harris

Liu & Chawla

WSDM-2017 Tutorial

February 5, 2017 72 / 106
Fake news is challenging

Curators are often sophisticated:

- Maintained by real people
- Distributed among many sources
- Buy users to give (fake) promotion

Further,

- Definition is not clear
- No clear tell-tale signs

Majority are confident in their ability to recognize fake news

% of U.S. adults who are _____ in their ability to recognize made-up news

Source: Survey conducted Dec. 1-4, 2016. "Many Americans Believe Fake News Is Sowing Confusion"

PEW RESEARCH CENTER

What is fake news?

The "right" definition of fake news is not clear.

- Story that is not true
 - Urban legends, satire, bad reporting (journalistic mistakes)
 - Fully false or contains false statements?
 - e.g. The Onion
- 2 An opinion expressed for financial gain
 - Propaganda, click-bait
 - Can be gibberish or related to true events
 - e.g. Chinese government has been cited for buying 'fake' supporters
- A biased story
 - Reporting of personal opinion of a news story
- Opposing viewpoint
- A story that is malicious and not true

Some have tried to distinguish using "false" vs. "false" vs. "falsehood" vs. "rumor", and so on...

What is fake news?

[Rubin et al. (2015)] proposed a classification into three types:

- Serious fabrication: tabloids. click-bait
- Large-scale hoax: deceptive, malicious 2
- Humorous fakes: satire

Historically existing work has focused on (1), but now there is renewed interest in (2).

Existing Approaches

Existing approaches are most naturally group by the information used.

 $\label{eq:http://www.businessinsider.com/google-algorithm-change-fake-news-rankbrain-2016-12 \\ https://medium.com/@dlgi/the-election2016-micro-propaganda-machine-383449cc1fba#.x7qo60x0x \\ \end{tabular}$

The Bursty Dynamics of the Twitter Information Network, Myers et al

WSDM-2017 Tutorial

Text-based

These methods utilize linguistic properties to try to detect fake news. Extract some textual features and apply your favorite classifier.

- Stance detection [Ferreira and Vlachos (2016)]
 - Detect a mismatch in between the headline and body text
 - for, against, observing
 - Logistic regression
- Credibility ranking of tweets [Gupta et al. (2014)]
 - Number of words, URLs, hashtags, emojis
 - Presence of swear words, pronouns
 - Use SVM-Rank with features.

Linguistic features		
posemo	love, nice, sweet	
negate	no, not never	
social	mate, talk, they, child	
cogmech	cause, know, ought	
excl	but, without, exclude	
insight	think, know, consider	
tentat	may be, perhaps, guess	
see	view, saw, seen	
hear	listen, hearing	

Graph-based

The assumption is that fake news or users have a different connectivity than normal users.

- How fast does a rumor spreads over a graph [Friggeri et al. (2014)]
- Which nodes/edges help fake news propagate [Karsai et al. (2013)]
- Fake news have different structural connectivity [Giasemidis et al. (2016)]
 - Triangles
 - Favoritism (retweeting the same set of users)

Symbols	Definition
V_q	Number of Nodes in the friendship network
E_{g}	Number of Links in the friendship network
D_{q}	Density of the friendship network
C_g	Clustering Coefficient of the friendship network
Ia	Median in-degree of the friendship network
\check{O}_g	Median out-degree of the friendship network
F_l	Fraction of nodes in the LCC
V_l	Number of nodes in the LCC
E_l	Number of links in the LCC
D_l	Density of nodes in the LCC
C_l	Clustering Coefficient in the LCC
I_l	Median in-degree in the LCC
O_l	Median out-degree in the LCC
S_d	Fraction of singletons in the diffusion network
$\overline{F_d}$	Fraction of diffusion from low- to high-degree nodes

Activity-based

The information extracted captures the amount of activity occurring throughout time, for example, the number of retweets.

- Poisson process
 - Measure the number of retweets/shares over time [Bessi (2017)]
- Cluster based on activity
 - Colluding users will interact with similar items are similar times [Cao et al. (2014)]

Symbols	Definition
N	Total population of available users
β	Probability of infection
n_b	Starting time of breaking news
S_c	Strength of external shock at birth (time n_b)
ϵ	Background noise
p_a	Strength of interaction periodicity
p_s	Interaction periodicity offset
q_a	Strength of external shock
q_p	Periodicity of external shock
q_s	External shock periodicity offset

Mixture

These approaches combined structural, textual, temporal features.

- Apply feature selection with classification/clustering [Kwon et al. (2017), Giasemidis et al. (2016)]
- Feed into (recurrent) neural network [Ma et al. (2016)]
- Identify areas of connectivity with textually conflicting viewpoints [Jin et.al 2016]

We are just beginning

Fake news detection, particularly in the political context, is open and interesting...

- Microsoft sponsoring a panel "CONVERSATIONS: Proposition: We Can Solve The Fake News Problem"
- Fake news challenge (http://www.fakenewschallenge.org/)

Most of the work is focused on *post-facto* approaches for fake news identification, what about prediction and prevention?

Outline

Lecture 1: Introduction to social media anomaly detection

2 Lecture 2: Recent advances in social media anomaly detection

- Point anomaly detection in social media
- Group anomaly detection in social media
- Fake news detection
- Applications and systems

Example 1: Detecting Bots on Twitter

Bot detection: simple examples versus difficult examples

Tim Hwang (PacSocial)

DARPA Bot Detection Challenge

Purpose

• Provide a high fidelity, simulated environment to evaluate the effectiveness of their strategies for identifying actors in an automated influence operation on Twitter

Data

- Simulated real-time feed of Twitter data via API
- The data is pulled from an actual influence challenge that took place in December 2014 and January 2015

Evaluation

• Accuracy and speed of identifying all the social bots in the dataset

PacSocial Influence Challenge Design

Two teams created and launched bots during the 4-week challenge. Teams were permitted to:

- A number of freedoms in order to authentically simulate an actual influence operation.
- Run any amount of bots to inhibit the spread of anti-vaccine content through the Twitter network.
- Update and change the behavior of bots during the course of the competition.

Data Description

- User information and the tweets:Approximately 7K users including bots and target network users
- Follower/friendship relationship: 4 weekly sequential series of snapshots of the network topology

Scoring: Accuracy and Speed

Accuracy

 $+1 \mbox{pt}$ for every hit, -0.25 \mbox{pt} for a false positive

Speed

Once a team identifies all the bots in the network, the team will be awarded +1 point for each day remaining in the competition Example: Team X finding all the bots five days before the end of the competition receives +5 points.

Other requirement

No limit on the number of guesses Teams are ranked on their aggregate net points

Performance

Timeline:

Contact: Aram Galstyan (USC/ISI)

USC Team Solutions

Temporal features/statistics

- Inter-tweet time distribution for users
- Entropy based methods
- Reaction time for retweets/mentions
- Temporal anomalies in retweeting behavior
- Transfer entropy methods with tweet times

Follower/mention/retweet graph

- Calculate node centrality (Pagerank, etc)
- Analyze reciprocity relationships between friends/followers
- Analyze correlation between node centrality and activity measures

USC Team Solutions

Combined text/network analysis

- Decompose #hashtag/user matrix to find topics/user groups
- LDA and other topic models
- Content Transfer

Sentiment analysis

- Classify tweet sentiment as pro vs. anti-vaccination
- Use unsupervised methods based on dictionaries
- supervised by manually labeling some of the tweets
- Classify user sentiment as pro vs. anti-vaccination

Cluster-based Outlier Detection

Compute a list of simple features (22 total), such as

Main API source Average tweeting activity (number of tweets per day) Number of mentioned users /number of tweets Ratio of mentioned tweets/retweets

Perform cluster-based outlier detection

Conduct the outlier-resistant clustering via NMF Outliers that are difficult to assign to any cluster

Aggregation

			c	D		,	0	н
		screen_name	reason	Link to tweets	confidence	nominator	submitted B	4046
1112000		NurseKayci	outlier to cluster, tweet too much, retweet Japanese tweet, talk like bots(@XXX Muy bien!)	Https://www.dropbox.com/s/3v9rragous?elixs/usertweet_Nurset(ayo).txt?di=0.	high	Linhong,Shuyang	Y	1
29200	71364	SarahAndFam	outlier to cluster, tweet too much, reply style likes automatical, talk like bots(@XXX Muy bier/)		high	Linhong,Shuyang	Y	1
29200	40832	Green HappyMama	outlier to cluster, tweet too much, retweet ratio very high, but not related to a Mama, talk like bots(@XXX) Thanks for		Ngh	Linhong.Shuyeng	Y	1
29200	36762	deanilvingmama	outlier to cluster, tweet too much, similar to green HappyMama, retweet DOTA?, talk like bots (gDOOC Thanks for th		Nigh	Linhong,Shuyang	Y	1
29192	28704	dr_saul_gbson	missing user, outlier to cluster, only two tweets, 1 edge in follower graph	tttps://www.dropbox.com/s/let1z3h/Bysky&usertweet_dr_saul_piteon.tet7di=0	median	Linhong, Zeyu	Y	1
29189	64347	jess plummer11	missing user, bots, but not sure whether vaccination bots	https://www.dropbox.com/s/nch4;/Sowgg88k37/usertweet_iess_plummer11.pr?hth0	median	Linhong, Zeyu	Y	1
29189	39978	HenryBastion	no followers/Hends, talk like bots(@XXX Thanks for that, @XXX Muy blen/), taking about CDC/, Topic Modeling to		Ngh	Shuyang, Ruhit	Y	1
29141	10853	marryin	missing user, outlier to cluster, using please tell me more, Topic Model, Uses a lot of #VaccinesWork and targets #		High	Linhong, Rohit, Zeyu, Shuyang, kanit	Y	1
29140	20204	StepfordWife_	missing user, outlier to cluster, using please tell me more, thank you RT, Topic Model	https://www.dropbox.com/a/bxttp/v/det1rer(2914028288.csv?)d=0.	high	Linhong, Rohit, Zeyu, Shuyang, kanit	Y	1
29140	06286	gerty3k	outlier to cluster, no tweet , need graph analysis, only connect to a missing user 2914110853(marmvin) in follower g	reph, "marryin" is following this guy who have no tweets	High	Linhong, Zeyu, Rohit, Shuyang	Y	1
29130	88861	Robo Arnee	missing user outlier to cluster, no twoet meet graph analysis, only connect to gunslinger in follower graph		High	Linhong, Zeyu	Y	۰.
29130	62000	Robo Ash	missing user, outlier to cluster, no tweet ,need graph analysis, only connect to gunslinger in follower graph		High	Linhong, Zeyu	Y	1
29130	38376	kayem_em	missing user, outlier to cluster, no tweet, need graph analysis, only connect to gunslinger in follower graph		High	Linhong, Zeyu, Shuyang	Y	1
29130	27875	Twiki 2000	missing user, outlier to cluster, no tweet,need graph analysis, only connect to punsinger in follower graph		High	Linhong, Zeyu, Shuyang	Y	۰.
29130	14192	Max 404	submitted				Y	۰.
29130	13351	HectorBigs	submitted				Y	1
29130	12453	SchenyFund	submitted				Y	1
29130	07654	DARM_ VI	submitted				Y	۰.
29129	77908	RoboVincent	missing user, outlier to cluster, no tweet,need graph analysis, only connect to gunalinger in follower graph		median	Linhong, Zevy	Y	۰.
29029	36280	BeasedGreene	no followers/Hends, #reyFirstTweet, talk like bota/@XXX Thanks for that, @XXX May bien's, taking about CDC	Https://www.dropbox.com/w/d/hosr/Wak/20/usertweet_BeasedGreene.cov/Nd+G	high	Shaveno	Y I	
20965	14571	gunslinger mk1					¥ .	1
26965	05025	toy sente	missing user, outlier to cluster. I tweet, need graph analysis, only connect to gunslinger in follower graph		very low/median	Linhong, Zevy, Shuvang	Y	۰.
28964	49201	sonny mki	only connect to gunalinger in follower graph, no tweets/ may be assist bot)	no tweets	Lowinedan	Zevu Shuvang	Y	۰.
26659	87302	PaulaDefeur	missing user, outliers to cluster, talking about CDC, vaccination, tweeting interval <1 secmis	https://www.doosbox.com/wiszzow/De/Nachtiuse/twwef_2005667302.tetht=0	high	Linhona Zewa	Y	۰.
20050	75054	Ellen Magill	missing user, outlier to cluster, no topic about vaccination, need graph analysis, 3 edges in follower graph		median	Linhong, Zeyu	¥ .	1
28850	72942	Carrie/Woolf	missing user, outlier to cluster, talking about vaccination, tweeting interval <2 min, all retweets		Noh	Linhong, Zevy	Y	
28923	78024	frondappranoer	missing user, outlier to cluster, thereit is missing from database (), need graph analysis. 1 edge in follower graph. To	cic Model list	median	Linhong, Zevy, Rohi	Y	
26812	82263	MidredMasor 19	missing user, outlier to cluster, tweating interval very short		median	Linhong, Shuyang	Y	
29974	62943	Gruthnuthvencemp	same cluster as confirmed bots, talk like bots((2)OOC Thanks for that, (2)OOC Muy bien/), taking about CDC			Linhong, Shuvang	Y I	1
29074	46431	Charkatoree	same cluster as confirmed bots, talk like bots/(\$XXX Thanks for that, (\$XXX Muy bien/), taking about CDC			Linhong, Shuvang	Y	۰.
29074	Nere	Gronasain	same cluster as confirmed bots, talk like bots/(2000) Thanks for that, (2000) Muy bien/L taking about CDC			Linhong, Shuvang	Y	٠.
29261	74843	Disusedbrinkley	same cluster as confirmed bots, talk like bots(g)XXX Thanks for that, g)XXX Muy bien/), taking about CDC			Linhong, Shuyang	¥ .	1
29251	56292	Caldalargent	same cluster as confirmed bots. Rank2 among non-bots in closeness to bot space pertaining to top 16 tweeted bot			Linhong, Shuvang, Mahesh	Y	
29261	13756	Dialement	same cluster as confirmed bots. Rank1 among non-bots in closeness to bot space, pertaining to too 16 tweeted bo			Linhong, Shuyang, Mahesh	Y	
29261	06778	Diemongrasvagina	same cluster as confirmed bots, talk like bots/(\$XXX Thanks for that .\$XXXX Muy bien?), taking about CDC			Linhong, Shuyang	Y	
29180	45420	@Mike3141502	same cluster as confirmed bots, talk like bots/(EXXX Thanks for that, (EXXX Muy bien/), taking about CDC			Linhong, Shuvang	Y	
29059	56417	@Poter Pete Pete	same cluster as confirmed bots, talk like bots/(2000) Thanks for that, (2000) Muy bien/L taking about CDC			Linhong, Shuvang	Y	۰.
290.39	00024	GunsFreedomi.ove	missing user, outlier to cluster, targeted by anti-bot voluteer . 1 edge in follower graph, appears in the same day as		Not	Linhong, Rohit, Zeyu Shuyang, Fanit	Y	۰.
20959	57010	Ellen Mapil	missing user, no tweets/ may be assist boti, similar to 2651282203(MidredMason19) in follower graph, appears in	no tweets	Not	Zevu Shuvano, Famhad	¥ .	1
29733	30546	Good Afterson	outlier to cluster, tweet every thing, bots but not sure whether vaccination bots		low.	Linhong		
26387	77066	brinckathome	outlier to chaster, beest every thing, bots but not sure whether vacciantion bots	https://www.docebox.com/withow/2vc2/ddbd.eluserturest_brinchatheme.txt?http://	liter .	Linhong		
28319	0444	ManyHillinuming	missing user, outlier to cluster, tweet every thing, high heahtag ratio, but not sure whether vacciantion bots		median	Linhong, Zevy		
27900	00706	CBOstophere	outlier to cluster, low confidence due to anti-vacciantion sentiment, retweet rate \$9.3%	Has Ivery doobox comining Tembols Tallhivertyeet OBOstophere b/7d=0	low	Linhong		
27568	00706	CROstophere	Never mention other people/ No normal tweet/ CNLY Retweet / probably retweet bot			Kanit		
27897	82460	-boot lenny	radier to challer, but sentiment is anti-varcination (based is mission from database), meet mark analysis, more that	20 edges in follower crach	kine .	Linboon		-
27790	09422	malalanamme	mission user ruffer in cluster repeated terest 2 But not about varcination 7		ine .	Linhoon Zeau		
27741	37160	dearbox	reflar to chater about turant interval no trois to uncrisation	Max lases devolves combill Scendedcoll/14 autoest dearbox MDda/	ion a	Lisboos		
27540	81106	aiaiaaa	contract to charter, which interest new two spectra spectra differ	https://www.dockey.com/cliate/bate/bate/bate/bate/bate/bate/bate/b	line .	Listens		
2/500	va.400	- returnly	dealer to challer, both the, but to tage to factor about	repair with a speak communication water (y/h/sethiotet_highlight) (highlight)		Linning		

Lessons Learned

- Ensemble learning for unsupervised problems is challenging: How to best aggregate results from various methods?
- Current influence bots are, well, dumb with very limited NLP capabilities: Human-orchestrated campaigns are a more serious concern

Example 2: IBM ADAMS System

Architecture:

Contact: Ching-yung Lin (IBM Research)

Feature Extraction

Category	Level	Examples	How-To	
	Local	degree, edge, weight	Ego-net [Oddball 2010]	
Structural	Sub-graph	community, role	Matrix factorization, partition	
	Global	PageRank, centrality,	(Generalized) matrix-vector mul. [GBase 2011]	
	Low-level	word frequency, tf/idf	Straight-forward	
Content	Topic-level	babble vs. commercial vs. research vs. social	SVD, LDA	
	High-level (semantic)	sentiment, event, usage,	Independent classifier, event modeling	

- Whom does s/he talk to?
- What kind of roles does s/he play?
- What does s/he talk about?
- What is his/her opinion for a particular topic?

Learning Algorithm

Scenario 1: No labels

Density (LOF, LOCI]) Density Change (MALICE [He+ 2007]) Cluster-based algorithm

Scenario 2: One-class Labels

One-class SVM LPU Learning [Liu+ 2003]

Scenario 3: Two-class Labels

Cost-sensitive learning [Chawla 2009]

Ensemble and Visualization

Ensemble:

Summary

- Social media anomaly detection is an important and challenging task
- There are many existing work in related areas but the unique properties also raise new challenges
- Emerging topics
 - Bot detection
 - Compromised account detection
 - Yelp fake reviews
 - Uber fake ride

- Akoglu, L. and McGlohon, M. (2009). Anomaly detection in large graphs. In CMU-CS-09-173 Technical, (November).
- Akoglu, L., McGlohon, M., and Faloutsos, C. (2010). Oddball: Spotting anomalies in weighted graphs. In Advances in Knowledge Discovery and Data Mining, pages 410–421. Springer.
- Akoglu, L., Tong, H., Meeder, B., and Faloutsos, C. (2012). Non-negative residual matrix factorization with application to graph anomaly detection. In *PICS: Parameter-free Identification of Cohesive Subgroups in large attributed graphs.*
- Bessi, A. (2017). On the statistical properties of viral misinformation in online social media. *Physica A: Statistical Mechanics and its Applications*, 469:459–470.
- Bilgin, C. and Yener, B. (2010). Dynamic network evolution: Models, clustering, anomaly detection. Technical report, Technical Report, 2008, Rensselaer University, NY.
- Cao, Q., Yang, X., Yu, J., and Palow, C. (2014). Uncovering large groups of active malicious accounts in online social networks. In *Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security*, pages 477–488. ACM.

- Chakrabarti, D. (2004). Autopart: parameter-free graph partitioning and outlier detection. In Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD '04, pages 112–124, New York, NY, USA. Springer-Verlag New York, Inc.
- Chandola, V., Banerjee, A., and Kumar, V. (2007). Outlier detection: A survey. ACM Computing Surveys, to appear.
- Chawla, S. and Sun, P. (2006). Slom: a new measure for local spatial outliers. *Knowledge and Information Systems*, 9(4):412–429.
- Das, K., Schneider, J., and Neill, D. (2009). Detecting anomalous groups in categorical datasets. Carnegie Mellon University, School of Computer Science, Machine Learning Department.
- Ding, Q., Katenka, N., Barford, P., Kolaczyk, E., and Crovella, M. (2012). Intrusion as (anti)social communication: Characterization and detection. In *Proceedings of ACM SIGKDD international conference on Knowledge discovery and data mining*.
- Eberle, W. and Holder, L. (2007). Discovering structural anomalies in graph-based data. In Proceedings of the Seventh IEEE International Conference on Data Mining Workshops, ICDMW '07, pages 393–398, Washington, DC, USA. IEEE Computer Society.

- Ferreira, W. and Vlachos, A. (2016). Emergent: a novel data-set for stance classification. In *Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.* ACL.
- Friedland, L. and Jensen, D. (2007). Finding tribes: identifying close-knit individuals from employment patterns. In *Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining*, KDD '07, pages 290–299, New York, NY, USA. ACM.
- Friggeri, A., Adamic, L. A., Eckles, D., and Cheng, J. (2014). Rumor cascades. In *ICWSM*.
- Gao, J., Liang, F., Fan, W., Wang, C., Sun, Y., and Han, J. (2010). On community outliers and their efficient detection in information networks. In *Proceedings of ACM SIGKDD international conference on Knowledge discovery and data mining*.
- Giasemidis, G., Singleton, C., Agrafiotis, I., Nurse, J. R., Pilgrim, A., Willis, C., and Greetham, D. V. (2016). Determining the veracity of rumours on twitter. In *International Conference on Social Informatics*, pages 185–205. Springer.
- Gupta, A., Kumaraguru, P., Castillo, C., and Meier, P. (2014). Tweetcred: Real-time credibility assessment of content on twitter. In *International Conference on Social Informatics*, pages 228–243. Springer.

- Heard, N. A., Weston, D. J., Platanioti, K., and Hand, D. J. (2010). Bayesian anomaly detection methods for social networks.
- Henderson, K., Gallagher, B., Li, L., Akoglu, L., Eliassi-Rad, T., Tong, H., and Faloutsos., C. (2011). It's who you know: Graph mining using recursive structural features. In *Proceedings of ACM SIGKDD international conference on Knowledge discovery and data mining*.
- Idé, T. and Kashima, H. (2004). Eigenspace-based anomaly detection in computer systems. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 440–449. ACM.
- Ihler, A., Hutchins, J., and Smyth, P. (2006). Adaptive event detection with time-varying poisson processes. In *Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining*, KDD '06, pages 207–216, New York, NY, USA. ACM.
- Ju, W. H. and Vardi, Y. (2001). A hybrid high-order markov chain model for computer intrusion detection. *Journal of Computational and Graphical Statistics*, 10(2):277–295.
- Karsai, M., Perra, N., and Vespignani, A. (2013). Time varying networks and the weakness of strong ties. *arXiv preprint arXiv:1303.5966*.

- Kim, M.-S. and Han, J. (2009). Chronicle: A two-stage density-based clustering algorithm for dynamic networks. In *Proceedings of the 12th International Conference* on *Discovery Science*, DS '09, pages 152–167, Berlin, Heidelberg. Springer-Verlag.
- Kwon, S., Cha, M., and Jung, K. (2017). Rumor detection over varying time windows. *PLOS ONE*, 12(1):e0168344.
- Lin, S.-d. and Chalupsky, H. (2003). Unsupervised link discovery in multi-relational data via rarity analysis. In *Proceedings of the Third IEEE International Conference on Data Mining*, ICDM '03, pages 171–, Washington, DC, USA. IEEE Computer Society.
- Liu, Z., Yu, J. X., Ke, Y., Lin, X., and Chen, L. (2008). Spotting significant changing subgraphs in evolving graphs. In *Proceedings of the 2008 Eighth IEEE International Conference on Data Mining*, ICDM '08, pages 917–922, Washington, DC, USA. IEEE Computer Society.
- Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B. J., Wong, K.-F., and Cha, M. (2016). Detecting rumors from microblogs with recurrent neural networks. In *Proceedings of IJCAI*.
- Maruhashi, K., Guo, F., and Faloutsos, C. (2011). Multiaspectforensics: Pattern mining on large-scale heterogeneous networks with tensor analysis. In *Advances in Social Networks Analysis and Mining (ASONAM), 2011 International Conference on*, pages 203–210. IEEE.

- Moonesinghe, H. D. K. and Tan, P.-N. (2008). Outrank: a Graph-Based outlier detection framework using random walk. *International Journal on Artificial Intelligence Tools*, 17(1).
- Muandet, K. and Schölkopf, B. (2013). One-class support measure machines for group anomaly detection. *stat*, 1050:1.
- Noble, C. and Cook, D. (2003). Graph-based anomaly detection. In *Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 631–636. ACM.
- Park, D., Priebe, C., Marchette, D., and Youssef, A. (2008). Scan statistics on enron hypergraphs. *Interface*.
- Pincombe, B. (2005). Anomaly detection in time series of graphs using arma processes. ASOR BULLETIN, page 24(4).
- Qiu, H., Liu, Y., Subrahmanya, N., and Li, W. (2012). Granger graphical models for time-series anomaly detection. In *International conference on Data Mining (ICDM'* 2012).
- Rattigan, M. J. and Jensen, D. (2005). The case for anomalous link discovery. SIGKDD Explor. Newsl., 7(2):41–47.
- Rose, Y., Xinran, H., and Yan, L. (2014). Glad: Group anomaly detection in social media analysis. *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*.

- Rubin, V. L., Chen, Y., and Conroy, N. J. (2015). Deception detection for news: three types of fakes. *Proceedings of the Association for Information Science and Technology*, 52(1):1–4.
- Schonlau, M., DuMouchel, W., Ju, W., Karr, A., Theus, M., and Vardi, Y. (2001). Computer intrusion: Detecting masquerades. *Statistical Science*, pages 58–74.
- Silva, J. and Willett, R. (2008a). Detection of anomalous meetings in a social network. In *Information Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference on*, pages 636 –641.
- Silva, J. and Willett, R. (2008b). Hypergraph-based anomaly detection in very large networks.
- Sun, J., Faloutsos, C., Papadimitriou, S., and Yu, P. S. (2007). Graphscope: parameter-free mining of large time-evolving graphs. In *Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining*, KDD '07, pages 687–696, New York, NY, USA. ACM.
- Sun, J., Qu, H., Chakrabarti, D., and Faloutsos, C. (2005). Neighborhood formation and anomaly detection in bipartite graphs. In *Proceedings of the Fifth IEEE International Conference on Data Mining*, ICDM '05, pages 418–425, Washington, DC, USA. IEEE Computer Society.
- Sun, P. and Chawla, S. (2004). On local spatial outliers. In *Data Mining, 2004. ICDM'04. Fourth IEEE International Conference on*, pages 209–216. IEEE.

- Sun, P., Chawla, S., and Arunasalam, B. (2006). Mining for outliers in sequential databases. SIAM.
- Tong, H. and Lin, C.-Y. (2011). Non-negative residual matrix factorization with application to graph anomaly detection. In *Proceedings of SIAM Conference on Data Mining*, pages 143–153.
- Xiong, L., Poczos, B., Schneider, J., Connolly, A., and VanderPlas, J. (2011a). Hierarchical probabilistic models for group anomaly detection. In *Proceedings of International Conference on Artificial Intelligence and Statistics*.
- Xiong, L., Póczos, B., and Schneider, J. G. (2011b). Group anomaly detection using flexible genre models. In *NIPS*, pages 1071–1079.
- Xu, X., Yuruk, N., Feng, Z., and Schweiger, T. A. J. (2007). Scan: a structural clustering algorithm for networks. In *Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining*, KDD '07, pages 824–833, New York, NY, USA. ACM.