
Spell: Streaming Parsing of System Event Logs
Min Du, Feifei Li

School of Computing, University of Utah
mind@cs.utah.edu, lifeifei@cs.utah.edu

Abstract—System event logs have been frequently used as a
valuable resource in data-driven approaches to enhance system
health and stability. A typical procedure in system log analytics
is to first parse unstructured logs, and then apply data analysis
on the resulting structured data. Previous work on parsing
system event logs focused on offline, batch processing of raw
log files. But increasingly, applications demand online monitoring
and processing. We propose an online streaming method Spell,
which utilizes a longest common subsequence based approach,
to parse system event logs. We show how to dynamically extract
log patterns from incoming logs and how to maintain a set of
discovered message types in streaming fashion. Evaluation results
on large real system logs demonstrate that even compared with
the offline alternatives, Spell shows its superiority in terms of
both efficiency and effectiveness.

I. INTRODUCTION

The increasing complexity of modern computer systems has
become a significant limiting factor in deploying and manag-
ing them. Being able to be alerted and mitigate the problem
right away has become a fundamental requirement in many
systems. As a result, automatically detecting anomalies upon
happening in an online fashion is an appealing solution. Data-
driven methods are heavily employed to understand complex
system behaviors, for example, exploring machine data for
automatic pattern discovery and anomaly detection [1]. System
logs, as a universal data source that contains important infor-
mation such as usage patterns, execution paths, and program
running status, are valuable assets in assisting these data-driven
system analytics, in order to gain insights that are useful to
enhance system health, stability, and usability.

The effectiveness of system log mining has been validated
by recent literature. Logs could be used to detect execution
anomalies [2], [3], [4], monitor network failures [5], or even
find software bugs [6]. Researchers have also used system logs
to discover and diagnose performance problems [7]. Recently
to untangle the interleaved event logs from concurrent systems
has also become a hot topic of research [8].

To alleviate the pain of diving into massive unstructured
log data, in most prior work, the first and foremost step is to
automatically parse the unstructured system logs to structured
data [2], [3], [4], [6]. There have been a substantial study on
how to achieve this, for example, using regular expressions
[8], leveraging the source code [6], or parsing purely based
on system log characteristics using data mining approaches
such as clustering and iterative partitioning [2], [9], [10], [11].
Nevertheless, except the approach that uses regular expressions
which requires domain-specific expert knowledge [8], hence,
does not work for general purpose system log parsing, or the

approach that leverages the source code [12] which is often
unavailable, none of the previous methods could achieve online
parsing in a streaming fashion. Some work claimed “online”
processing, but with the requirement of doing some extensive
offline processing first, and only then matching log entries
with the data structures and patterns identified first through
the offline, batched process [13].

There is also an increasing demand to properly manage and
store system logs [14]. A log management system typically has
a log shipper installed on each node to forward log entries to
a centralized server, which often contains a log parser, a log
indexer, a storage engine and a user interface. In such systems
the default log parser only parses simple schema information
such as timestamp and hostname. The log entry itself is treated
as an unstructured text value. An online structured approach
that could parse the event logs into structured data could make
the logs much easier to query, summarize and aggregate.

Log entries are produced by the “print” statements in a
system program’s source code. As such, we can view a log
entry as a collection of (“message type”, “parameter value”)
pairs. For example, a log printing statement printf(“File %d
finished.”, id); contains a constant message type File finished
and a variable parameter value which is the file id. Hence,
the goal of a structured log parser is to identify the message
type File * finished, where * stands for the place holder for
variables (parameter values).

Contributions. In this paper, we propose Spell, a structured
Streaming Parser for Event Logs using an LCS (longest com-
mon subsequence) based approach. Spell parses unstructured
log messages into structured message types and parameters in
an online streaming fashion. The time complexity to process
each log entry e is close to linear (to the size of e).

With streaming, real-time message type and parameter ex-
traction produced by Spell, not only it provides a concise,
intuitive summary for the end users, but the logs are also
represented by clean structured data to be processed and ana-
lyzed further using advanced data analytics methods by down-
stream analysts. Using two state-of-the-art offline methods to
automatically extract message types and parameters from raw
log files as the competing baseline, our study shows that even
compared with the offline methods, Spell still outperforms
them in terms of both efficiency and effectiveness.

The rest of this paper is organized as follows. Section
II provides the problem formulation and a literature survey.
Section III presents our streaming Spell algorithm and a
number of optimizations. Section IV evaluates our method

using large real system logs. Finally, section V concludes the
paper and section VI is our acknowledgement.

II. PRELIMINARY AND BACKGROUND

A. Problem formulation
System event logs are a universal resource that exists

practically in any system. We use system event logs to denote
the free-text audit trace generated by the system execution
(typically in the /var/log folder). A log message or a log
record/entry refers to one line in the log file, which is produced
by a log printing statement in the source code of a user or
kernel program running on or inside the system.

Our goal is to parse each log entry e into a collection of
message types (and the corresponding parameter values). Here
each message type in e has a one-to-one mapping with a log
printing statement in the source code producing the raw log
entry e. For example, a log printing statement:
printf("Temperature %s exceeds warning threshold\n", tmp);

may produce several log entries such as:
Temperature (41C) exceeds warning threshold

where the parameter value is 41C, and the message type is:
Temperature * exceeds warning threshold.

Formally, a structured log parser is defined as follows:
Definition 1 (Structured Log Parser) Given an ordered set
of log entries (ordered by timestamps), log= {e1, e2, . . . , eL},
that contain m distinct message types produced by m different
log printing statements from p different programs, where the
values of m and p (and the printing statements and the program
source code) are unknown, a structured log parser is to parse
log and produce all message types from those m statements.

A structured log parser is the first and foremost step for most
automatic and smart log mining and data-driven log analytics
solutions, and also a useful and critical step for managing
logs in a log management system. Our objective is to design
a streaming structured log parser such that it makes only one
pass over the log and processes each log entry in an online,
streaming fashion continuously. Without loss of generality, we
assume that the size of each log entry is O(n) words.

B. Related work
Mining interesting patterns from raw system logs has been

an active research field for over a decade. Two major efforts
in this area include generating features from raw logs to apply
various data analytics, e.g. [3], [4], [6], and building execution
models from system logs followed by comparing it with future
system executions, e.g. [2]. There are also efforts in identifying
dependencies from concurrent logs [3], [4], [8].

To achieve effective data-driven log analytics, the first and
foremost process is to turn unstructured logs into structured
data. Xu et al. [6] used the schema from log printing statements
in the original programs’ source code to extract message types.
In [8], the raw logs are parsed using pre-defined, domain-
specific regular expressions. There are efforts to make this pro-
cess more automatic and more accurate. Fu et al. [2] proposed
a method to first cluster log entries using pairwise weighted
edit distance, and then perform recursively splitting. IPLoM
[9], [15] explored several heuristics to iteratively partition

system logs, such as log size and the bipartite relationship
between words in the same log message. LogTree [10] utilized
the format information of raw logs and applied a tree structure
to extract system events from raw logs. LogSig [11] generates
system events from textual log messages by searching the
most representative message signatures. HELO [13] extracts
constants and variables from message bodies, by first using an
offline classification step and then performing online clustering
based on the template set by the first step. HLAer [16] is a
heterogeneous log analysis system which utilizes a hierarchical
clustering approach with pairwise log similarity measures
to assist log formatting. All previous structured log parsing
methods focus on offline batched processing or matching new
log entries with previously offline-extracted message types or
regular expressions (e.g., from source code).

There are also commercial and open source softwares on log
management and analysis. Splunk is a leading log management
system that offers a suite of solutions to find useful information
from machine data. Elastic Stack offers a rich set of open-
sourced tools that could gather logs from distributed nodes,
and then index, store, for user to query/visualize. All these
tools provide interface to parse logs upon their arrival. How-
ever, their parsers are based on regular expressions defined
by end users. The system itself can only parse very simple
and basic structured schema such as timestamp and hostname,
while log messages are treated as unstructured text values.

III. Spell: STREAMING STRUCTURED LOG PARSER

We now present Spell, a streaming structured log parser for
system event logs. Since a basic building block for Spell is a
longest common subsequence (LCS) algorithm, hence, Spell
stands for Streaming structured Parser for Event Logs using
LCS. In what follows, we first review the LCS problem.

A. The LCS problem
Suppose Σ is a universe of alphabets (e.g., a-z, 0-9). Given

any sequence α = {a1, a2, ..., am}, such that ai ∈ Σ for 1 ≤
i ≤ m, a subsequence of α is defined as {ax1 , ax2 , . . . , axk

},
where ∀xi, xi ∈ Z+, and 1 ≤ x1 < x2 < · · · < xk ≤ m. Let
β = {b1, b2, ..., bn} be another sequence such that bj ∈ Σ for
j ∈ [1, n]. A subsequence γ is called a common subsequence
of α and β iff it is a subsequence of each. The longest common
subsequence (LCS) problem for input sequences α and β is to
find longest such γ. For instance, sequence {1, 3, 5, 7, 9} and
sequence {1, 5, 7, 10} yields an LCS of {1, 5, 7}.

We observe that an LCS-based method can be developed
to efficiently and effectively extract message types from raw
system logs. This is a seemingly natural idea, yet has not been
explored by existing literature. Our key observation is that, if
we view the output by a log printing statement (which is a
log entry) as a sequence, in most log printing statements, the
constant that represents a message type often takes a majority
part of the sequence and the parameter values take only a
small portion. If two log entries are produced by the same
log printing statement stat, but only differ by having different
parameter values, the LCS of the two sequences is very likely
to be the constant in the code stat, implying a message type.

LC
S

O
bj

ec
t

LCSseq: Command has completed
successfully

lineIds: {2}
LCSMap

LC
S

O
bj

ec
t

LCSseq: Temperature * exceeds
warning threshold

lineIds: {0, 1}

new log entry: no recent update

...
LCSMap

LC
S

O
bj

ec
t

LCSseq: Temperature * exceeds
warning threshold

lineIds: {0, 1}

LCSMap

LC
S

O
bj

ec
t

LCSseq: Temperature (41C)
exceeds warning threshold

lineIds: {0}

LCSMap

new log entry: Command has completed
successfully

new log entry: Temperature (43C) exceeds
warning threshold

new log entry: Temperature (41C) exceeds
warning threshold

Fig. 1. Basic workflow of Spell.

The merit of using the LCS formulation to parse system
event logs, as compared with the previously mentioned clus-
tering and iterative partitioning methods, is that the LCS
sequence of two log messages is naturally a message type,
which makes streaming log parsing possible.

B. Basic notations and data structure

In a log entry e, we call each word a token. A log entry e
could be parsed to a set of tokens using system defined (or as
user input) delimiters according to the format of the log. In
general common delimiters such as space and equal sign are
sufficient to cover most cases. After tokenization of a log, each
log entry is translated into a “token” sequence, which we will
use to compute the longest common subsequence, i.e., Σ =
{tokens from e1}∩ {tokens from e2} · · · ∩ {tokens from eL}.
Each log entry is assigned a unique line id which is initialized
to 0 and auto-incremented for the arrival of a new log entry.

We create a data structure called LCSObject to hold cur-
rently parsed LCS sequences and the related metadata infor-
mation. We use LCSseq to denote a sequence that’s the LCS
of multiple log messages, which, in our setting, is a candidate
for the message type of those log entries. That said, each
LCSObject contains an LCSseq and a list of line indices called
lineIds that stores the line ids for the corresponding log entries
that lead to this LCSseq. Finally, we store all currently parsed
LCSObjects into a list called LCSMap. When a new log entry
ei arrives, we first compare it with all LCSseq’s in existing
LCSObjects in LCSMap, then based on the results, either
insert the line id i to the lineIds of an existing LCSObject,
or compute a new LCSObject and insert it into LCSMap.

C. Basic workflow

Our algorithm runs in a streaming fashion, as shown in
Figure 1. Initially, the LCSMap list is empty. When a new log
entry ei arrives, it is firstly parsed into a token sequence si
using a set of delimiters. After that, we compare si with the
LCSseq’s from all LCSObjects in the current LCSMap, to see
if si “matches” one of the existing LCSseq’s (hence, line id
i is added to the lineIds of the corresponding LCSObject), or
we need to create a new LCSObject for LCSMap.
Get new LCS. Given a new log sequence s produced by the
tokenization of a new log entry e, we search through LCSMap.
For the ith LCSObject, suppose its LCSseq is qi, we compute
the value `i, which is the length of the LCS(qi, s). While
searching through the LCSMap, we keep the largest `i value
and the index to the corresponding LCSObject. In the end,
if `j = max(`′is) is greater than a threshold τ (by default,
τ = |s|/2, where |s| denotes the length of a sequence s, i.e.,

number of tokens in a log entry e), we consider the LCSseq
qj and the new log sequence s having the same message type.
The intuition is that the LCS of qj and s is the maximum
LCS among all LCSObjects in the LCSMap, and the length
of LCS(qj , s) is at least half the length of s; hence, unless
the total length of parameter values in e is more than half
of its size, which is very unlikely in practice, the length of
LCS(qj , s) is a good indicator whether the log entries in the
jth LCSObject (which share the LCSseq qj) share the same
message type with e or not (which would be LCS(qj , s)).

If there are multiple LCSObjects having the same max `
values, we choose the one with the smallest |qj | value, since
it has a higher set similarity value with s. Then we use
backtracking to generate a new LCS sequence to represent the
message type for all log entries in the jth LCSObject and e.
Note when using backtracking to get the new LCSseq of qj and
s, we mark ‘*’ at the places where the two sequences disagree,
as the place holders for parameters, and consecutive adjacent
‘*’s are merged into one ‘*’. For instance, consider the
following two sequences: s = Command Failed on: node-127 and
qj =Command Failed on: node-235 node-236, LCSseq of the two
would be: Command Failed on: *. Once this is done, we update
the LCSseq of the jth LCSObject from qj to LCS(qj , s), and
add e’s line id to the lineIds of the jth LCSObject.

If none of the existing qi’s shares an LCS with s that is
at least |s|/2 in length, we create a new LCSObject for e in
LCSMap, and set its LCSseq as s itself.

This completes the basic procedures in Spell, and most
standard logs could be successfully parsed using this method.
We further describe how to improve its efficiency.

D. Improvement on efficiency
In this section we show how to achieve nearly optimal time

complexity for most incoming log entries (i.e., linear to |s|,
the number of tokens of a log entry e). In our basic method,
when a new log entry arrives, we’ll need to compute the length
of its LCS with each existing message type. Suppose each log
entry is of size O(n) for some small constant n (i.e., n = |s|),
it takes O(n2) time to compute LCS of a log entry and an
existing message type (using a standard dynamic programming
(DP) formulation). Let m′ be the number of currently parsed
message types in LCSMap. The method in section III-C leads
to a time complexity of O(m′ · n2) for each new log entry.

Note that since the number of possible tokens in a complex
system could be large, we cannot apply techniques that com-
pute LCS or MLCS efficiently by assuming a limited set of
alphabets [17], [18], i.e., by assuming small |Σ| values.

A key observation is that, for a vast majority of new log
entries (over 99.9% in our evaluation), their message types

ROOT

A E

B C D

C D

F

? : A B P C

parameter

Prefix tree of Strs:

Fig. 2. Find the subsequence of σ using Prefix Tree.

are often already present in currently parsed message types
(stored by LCSMap). Hence instead of computing the LCS
between a new log entry and each exiting message type, we
adopt a pre-filtering step to find if its message type already
exists, which reduces to the following problem:

For a new string σ and a set of current strings
strs = {str1, str2, ...strm}, find the longest stri such that
LCS(σ, stri) = stri, and return true if |stri| >= 1

2 |σ|.
In our problem setting, each string is a set of tokens and

we simply view each token as a character.
1) Simple loop approach. A naive method is to simply loop

through strs. For each stri, maintain a pointer pi pointing to
the head of stri, and another pointer pt pointing to the head
of σ. If the characters (or tokens in our case) pointed to by pi
and pt match, advance both pointers; otherwise only advance
pointer pt. When pt has gone to the end of σ, check if pi has
also reached the end of stri. A pruning can be applied which
is to skip stri if its length is less than 1

2 |σ|. The worst time
complexity for this approach is O(m · n).

2) Prefix tree approach. To avoid going through the entire
strs set, we could index stris in strs using a prefix tree, and
prune away many candidates.

An example is shown in Figure 2 where strs = {ABC, ACD,
AD, EF}, and they are indexed by a prefix tree T . Instead of
checking σ against every stri in strs, we first check tree T
and see if there is an existing stri that is a subsequence of
σ. If such a stri is identified, we check if |stri| > 1

2 |σ|).
As shown in Figure 2, suppose σ=ABPC. Then by comparing
each character of σ with each node of T , we could efficiently
prune most branches in T , and mark the characters in σ that
do not match any node in T as parameters. In this case, we
identify ABC as the message type for σ, and P as its parameter.

For most log entries, it is highly likely that their message
type already exists in tree T , so Spell will stop here, and the
time complexity is only O(n). This is optimal, since we have
to go through every token in a new log entry at least once.
However, this approach only guarantees to return a stri if
such stri = LCS(σ, stri) exists. It does not guarantee that the
returned stri is the longest one among all stris that satisfy stri
= LCS(σ, stri). For example, if σ=DAPBC while strs={DA,
ABC}, the prefix tree returns DA instead of ABC.

In practice, we find that although the prefix tree approach
does not guarantee to find the longest message type, its
returned message type is almost identical to the results of
simple loop method. That’s because parameters in each log
record tend to appear near the end. In fact one of the state-of-
art offline methods [2] finds message types by using weighted
edit distance and assigns more weight to the token closer to
end as parameter position. In particular, the evaluation results
show that for the Los Almos HPC log with 433,490 log

records, for each new log entry, the message type returned
by the prefix tree approach (if found), is 100% equal to the
results returned by the simple loop method. But there also
exist cases where the returned message type by prefix tree is
less than 1

2 number of tokens (12 |s|) for a new log entry e
while e’s message type already exists in LCSMap.

That said, the complete pre-filtering step in Spell is, for each
new log entry e, first find its message type using prefix tree,
and if not found, apply the simple loop lookup. In evaluation
section we’ll show that Spell with pre-filtering step produces
almost equally good results for all logs with much less cost.

For log entries (less than 0.1% in our evaluation) that
do not find message types using the pre-filtering step, we
compare the new log entry e with all existing message types
to see if a new message type could be generated. However,
instead of computing LCS between each message type q and
e, we first compute their set similarity score using Jaccard
similarity. Only for those message types that have more than
half common elements (i.e., tokens) with e do we compute
their LCS. Then if their LCS length exceeds 1

2 |s|, we adjust
that message type and prefix tree T accordingly. Otherwise
we simply add e to T and LCSMap as a new message type.

E. Time complexity analysis
Spell ensures that the size of LCSMap increases by one

only when a new message type is identified; otherwise, a new
log entry id is added to an existing LCSObject with an updated
message type. This guarantees that LCSMap size is at most
the number of total message types (which is m) that could
be produced by the corresponding source code, which is a
constant. In section III-D, we’ve shown that for the basic
Spell, the time complexity for each new log entry is O(m·n2),
since the naive DP method to compute LCS is O(n2) for
log entries of size O(n), whereas our backtracking method
is often cheaper and we only do it with a target message type
in LCSMap which has the longest LCS length with respect to
the new log entry if the length exceeds a threshold.

With the pre-filtering step, for each log entry, we’ll first
try to find its message type in prefix tree, then apply simple
loop approach, and only for the small portion that are still
not located, the LCSMap needs to be compared against. For
L log records, suppose the number of log records that fail to
find message types in pre-filtering step is F , and the number
of log records that are returned in simple loop step is I . The
amortized cost for each log record is only O(n+ (I+F)

L ·m ·
n+ F

L ·m ·n
2), where m is the number of message types and

n is the log record length. In our evaluation, (I+F)
L < 0.01

and F
L < 0.001, thus the cost for each log record to find its

message type in Spell is approximately only O(n) in practice.

F. Remarks
Parsing each log message to extract their message type,

though a vital step for many further data analysis, is not an
easy task. It should be noted that no automatic approach is
perfect for all possible logs. For example, even the approach
that extracts log schema from the source code [6] that produces
the corresponding log cannot achieve 100% accuracy.

IV. EVALUATION

In this section, we evaluate the efficiency and effectiveness
of Spell, by comparing it with two popular offline log parsing
algorithms, on 2 real log datasets with different formats. All
experiments were executed on a Linux machine with an 8-core
Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz computer. We’ll
show that Spell not only is able to parse logs in an online
streaming fashion, but also has outperformed the competing
offline methods in terms of both efficiency and effectiveness.

The two offline algorithms to be compared are IPLoM [9],
[15] and a clustering-based log parser [2] which we refer
to as CLP. The idea of IPLoM is to partition the entire
log into multiple clusters, where each cluster represents a
set of log entries printed by the same print statement. The
partition is done using a simple 3-step heuristic: i) partition
by each log record length; ii) partition each cluster by the
token position having least distinct tokens; iii) partition by the
bipartite mapping between tokens in each cluster. It is so far
the most lightweight automatic log parsing algorithm. CLP,
on the other hand, is a frequently used algorithm by multiple
log mining efforts [2], [3], [4]. It also partitions the log into
clusters, while by first clustering using weighted edit distance,
and then repeatedly partitioning until all clusters satisfy the
heuristic - each position either has the same token, or is a
parameter position.

TABLE I
PARAMETERS FOR ALL THREE ALGORITHMS

Spell Value
message type thresh-
old τ

0.5

CLP Value
edit distance weight ν 10
cluster threshold ς 5
private contents
threshold %

4

IPLoM Value
file support threshold 0.01
partition support
threshold

0

lower bound 0.1
upper bound 0.9
cluster goodness
threshold

0.34

Table I shows the default values of key parameters used
for each algorithm. For parameters with recommended values
that were clearly stated in the original papers, such as all
parameters for IPLoM [9], we simply adopt those values.
For others that were not clearly specified, we tested the
corresponding method with different values until we got the
best result (for the same log data) as in the original paper.

We use the supercomputer logs that were commonly used
for evaluation by previous work [9], [13], [15], [16], shown
in table II (count is the total number of log entries).

TABLE II
LOG DATASETS

Log type Count Message type ground truth
Los Alamos HPC log 1 433,490 available online2

BlueGene/L log1 4,747,963 available online3

A. Efficiency of Spell
Figure 3 shows the total runtime of different methods when

log size (the number of log records) grows bigger. Note that
we tested different alternatives of the Spell method:

1CFDR Data, https://www.usenix.org/cfdr-data
2Los Alamos National Lab HPC Log message types, https://web.cs.dal.ca/

∼makanju/iplom/hpc-clusters.txt
3BlueGene/L message types, https://web.cs.dal.ca/∼makanju/iplom/bgl-

clusters.txt

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

log size (×105 , Los Almos)

10-1

100

101

102

103

104

105

ru
n
ti

m
e
 (

se
co

n
d
s)

5 10 15 20 25 30 35 40 45 50

log size (×105 , Blue Gene)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ru
n
ti

m
e
 (

se
co

n
d
s
×1

0
3

)

Spell (naive LCS)

Spell

CLP (fixed threshold)

CLP (auto threshold)

IPLoM

Fig. 3. Efficiency comparison of different methods.
TABLE III

AMORTIZED COST OF EACH MESSAGE TYPE LOOKUP STEP IN Spell
Los Alamos HPC log BlueGene/L log

prefix tree (ms) 0.006 0.011
simple loop (ms) 0.020 0.087
naive LCS (ms) 0.175 0.580

• Spell (naive LCS): compute the LCS using DP between
new log entry and every existing message type.

• Spell: Spell with the pre-filtering step.

Figure 3 left shows the results on Los Almos HPC Log.
Note that runtime is measured by logarithm scale. To parse the
entire log with 433, 490 entries, Spell with naive LCS is about
75 seconds while it’s only 9 seconds with pre-filtering. IPLoM
shows the best efficiency, whereas Spell (with pre-filtering)
is only slightly slower (within seconds). The CLP method
has the worst efficiency (2-4 orders of magnitude slower than
IPLoM and Spell). We tested two variants of CLP: 1) CLP
(auto threshold): it automatically sets the cluster threshold ς
by k-means clustering. When log size is bigger than 100,000,
it’s already too slow to run to completion. 2) CLP (fixed
threshold): it uses a fixed threshold 5 calculated from smaller
log file, which significantly improves the runtime. However
it’s still much slower than other methods. In later experiments
we only use CLP with fixed threshold if applicable.

Figure 3 right shows the results on Blue Gene Log. The
runtime in this figure is measured in normal decimal scale.
We didn’t include CLP in this experiment: even CLP with
fixed threshold is too slow to finish as the Blue Gene log
has nearly 5 million entries. Here the advantage of our pre-
filtering step is clearly demonstrated. In particular, Spell with
pre-filtering has outperformed IPLoM in terms of efficiency.
With prefix tree, when the log size grows much faster than the
number of message types, most log entries will find a match
in prefix tree, and return immediately. Then for the majority
of the rest, the message types could be found using simple
loop approach. Only for a small amount of log records that
are not matched in pre-filtering step, we will compare it with
each existing message type. Noticeably, the runtime of Spell
(naive LCS) increases exponentially. That’s because when log
size grows bigger, more message types also show up, and when
each new log entry comes, it may need to be compared with a
larger number of message types. This result clearly shows the
importance of the pre-filtering step and how it has effectively
mitigated the efficiency issues in the basic Spell method.

The amortized cost for each log entry to find its message
type using different lookup method in the pre-filtering step is
shown in Table III (in milliseconds). Recall that for each log
entry, Spell first tries to find its message type in prefix tree,

TABLE IV
NUMBER (PERCENTAGE) OF LOG ENTRIES RETURNED BY EACH STEP

Los Alamos HPC log BlueGene/L log
prefix tree 397,412 (91.68%) 4,457,719 (93.89%)
simple loop 35,691 (8.23%) 288,254 (6.07%)
naive LCS 387 (0.09%) 1,990 (0.042%)

then simple loop, and finally uses naive LCS if not found in
previous two steps. Table IV shows the number (percentage)
of log entries that are returned in each step, showing that
over 91% could be processed in prefix tree in O(n) time,
and over 99.9% in total could be processed by prefix tree and
simple loop combined. The expensive naive LCS computation
is only applied to less than 0.1% of log entries. Hence much
overhead is reduced by pre-filtering step. We’ll show later that
it provides almost identical results with the costly naive LCS
method.

B. Effectiveness of Spell
In this section we evaluate the effectiveness of Spell. After

parsing, the log file is processed into multiple clusters, where
each cluster represents one message type with the associated
log records (as produced by the corresponding log parsing
method). A parsed message type is considered as correct if
all and only all log records printed by that message type (as
identified through the ground truth) are clustered together. We
run each method, compare the results with the ground truth
generated by matching each log entry with its true message
type from Table II, and calculate the accuracy, which indicates
the total number of log entries that are parsed to correct
message types over the number of total processed log records.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

log size (×105 , Los Almos)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a
cc

u
ra

cy

5 10 15 20 25 30 35 40 45 50

log size (×105 , Blue Gene)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a
cc

u
ra

cy

Spell CLP (fixed threshold) IPLoM

Fig. 4. Effectiveness comparison of different methods.

Figure 4 shows the comparison on supercomputer logs. With
more log entries, number of message types also increases; and
they don’t necessarily show up uniformly over time. Hence, the
effectiveness of a method does not necessarily show a steady
trend as log size grows. We can see that in both charts, Spell
achieves much better accuracy than other methods. IPLoM
accuracy is acceptable in Figure 4 left for Los Almos log, and
becomes terrible in Figure 4 right for Blue Gene log.

Note that the pre-filtering step in Spell may miss an existing
message type t for a new log entry e if LCS(t, s) 6= t
but LCS(t, s)| > |LCS(t′, s)| when there is another existing
message type t′ that satisfies t′=LCS(t′, s), where s is the
token sequence of e. To evaluate such potential degrade to
the effectiveness due to the pre-filtering step, we show a
comparison in Table V. The result shows that Spell with pre-
filtering has achieved an accuracy nearly the same as that using
only naive LCS. This means the pre-filtering step has almost
no downgrade effect on the parsing results though it greatly
reduces the parsing overhead.

TABLE V
COMPARISON OF Spell WITH AND WITHOUT PRE-FILTER

Spell Los Alamos HPC log BlueGene/L log
With pre-
filtering

True message
types found

Accuracy True message
types found

Accuracy

False 55 0.822786 165 0.811798
True 55 0.822786 164 0.811791

V. CONCLUSIONS

We present a streaming structured log parser, Spell, for
parsing large system event logs in streaming fashion. Spell
works perfectly for online system log mining and monitoring.
It is also a great addition to modern log management systems
to provide end-users concise, real-time understanding of the
system states. We propose pre-filtering to improve Spell’s
efficiency. Experiments over real system logs have clearly
demonstrated that Spell has outperformed the state-of-the-art
offline methods in terms of both efficiency and effectiveness.

VI. ACKNOWLEDGMENT

Min Du and Feifei Li were supported in part by grants
NSF CNS-1314945 and NSF IIS-1251019. We wish to thank
all members of the TCloud project and the Flux group for
helpful discussion and valuable feedback.

REFERENCES

[1] M. Du and F. Li, “ATOM: Automated tracking, orchestration and
monitoring of resource usage in infrastructure as a service systems,”
in IEEE BigData, 2015.

[2] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in ICDM, 2009.

[3] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants from
console logs for system problem detection.” in USENIX ATC, 2010.

[4] J.-G. Lou, Q. Fu, S. Yang, J. Li, and B. Wu, “Mining program workflow
from interleaved traces,” in SIGKDD, 2010.

[5] K. Yamanishi and Y. Maruyama, “Dynamic syslog mining for network
failure monitoring,” in SIGKDD, 2005.

[6] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in SOSP, 2009.

[7] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative analysis
of systems logs to diagnose performance problems,” in NSDI, 2012.

[8] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, “Inferring
models of concurrent systems from logs of their behavior with csight,”
in ICSE, 2014.

[9] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering
event logs using iterative partitioning,” in SIGKDD, 2009.

[10] L. Tang and T. Li, “LogTree: A framework for generating system events
from raw textual logs,” in ICDM, 2010.

[11] L. Tang, T. Li, and C.-S. Perng, “LogSig: Generating system events
from raw textual logs,” in CIKM, 2011.

[12] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Online system
problem detection by mining patterns of console logs,” in ICDM, 2009.

[13] A. Gainaru, F. Cappello, S. Trausan-Matu, and B. Kramer, “Event log
mining tool for large scale hpc systems,” in Euro-Par, 2011.

[14] Z. Cao, S. Chen, F. Li, M. Wang, and X. S. Wang, “LogKV: Exploiting
key-value stores for event log processing,” in CIDR, 2013.

[15] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A lightweight
algorithm for message type extraction in system application logs,”
TKDE, 2012.

[16] H. C. Xia Ning, Geoff Jiang and K. Yoshihira, “HLAer: A system
for heterogeneous log analysis,” in SDM Workshop on Heterogeneous
Learning, 2014.

[17] Y. Li, H. Li, T. Duan, S. Wang, Z. Wang, and Y. Cheng, “A real linear
and parallel multiple longest common subsequences (mlcs) algorithm,”
in SIGKDD, 2016.

[18] Y. Li, Y. Wang, Z. Zhang, Y. Wang, D. Ma, and J. Huang., “A novel fast
and memory efficient parallel mlcs algorithm for longer and large-scale
sequences alignments,” in ICDE, 2016.

