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ABSTRACT
In the production environment, a large part of microservice failures
are related to the complex and dynamic interactions and runtime
environments, such as those related to multiple instances, environ-
mental configurations, and asynchronous interactions of microser-
vices. Due to the complexity and dynamism of these failures, it
is often hard to reproduce and diagnose them in testing environ-
ments. It is desirable yet still challenging that these failures can be
detected and the faults can be located at runtime of the production
environment to allow developers to resolve them efficiently. To ad-
dress this challenge, in this paper, we propose MEPFL, an approach
of latent error prediction and fault localization for microservice
applications by learning from system trace logs. Based on a set of
features defined on the system trace logs, MEPFL trains prediction
models at both the trace level and the microservice level using the
system trace logs collected from automatic executions of the target
application and its faulty versions produced by fault injection. The
prediction models thus can be used in the production environment
to predict latent errors, faulty microservices, and fault types for
trace instances captured at runtime. We implement MEPFL based
on the infrastructure systems of container orchestrator and service
mesh, and conduct a series of experimental studies with two open-
source microservice applications (one of them being the largest
open-source microservice application to our best knowledge). The
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results indicate that MEPFL can achieve high accuracy in intra-
application prediction of latent errors, faulty microservices, and
fault types, and outperforms a state-of-the-art approach of fail-
ure diagnosis for distributed systems. The results also show that
MEPFL can effectively predict latent errors caused by real-world
fault cases.
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1 INTRODUCTION
Industrial microservice applications have dozens to thousands of
microservices running on hundreds to tens of thousands machines.
In the production environment, microservice applications typically
are fragile [26], often failing due to infrastructure (e.g., network,
hardware) failures or application faults, and it is challenging to
reproduce and diagnose these microservice application failures in
testing environments. Infrastructure failures can be predicted at the
cloud infrastructure layer and handled via infrastructure-level adap-
tations such as the allocation andmigration of virtual machines [32].
Application faults traditionally rely on developers to detect and
fix via code review, testing, and debugging. However, microservice
application faults are complicated due to the complex and dynamic
interactions and runtime environments [61]. A microservice can
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have several to thousands of instances that are dynamically cre-
ated and destroyed according to the scaling requirements. These
instances run with complex environmental configurations such
as memory/CPU limits of microservices and containers [62, 63].
Microservice applications usually have complex invocation chains,
each involving several to dozens of microservice invocations, most
of which are asynchronous. Improper environmental configura-
tions or coordination of microservice instances or asynchronous
interactions may result in failures at runtime.

To allow developers to resolve microservice application failures
efficiently in the production environment, it is desirable and yet
challenging that these microservice application failures can be de-
tected and the faults can be located at runtime of the production
environment, e.g., based on application logs or system logs. Applica-
tion logs record the internal status and events during the execution
of an application. These application logs are produced by logging
statements written by developers in the application. However, ap-
plication logging is often done in an arbitrary and ad hoc manner
and the log messages often contain limited information for failure
diagnosis [56, 57]. On the other hand, some existing approaches
use system logs to detect anomalies or predict failures of cloud-
based systems. These system logs are produced by infrastructure
systems such as operating systems (e.g., CentOS [42]), distributed
file systems (e.g., HDFS [11]), and container orchestrators (e.g.,
Kubernetes [30]). However, these approaches can only uncover
anomalies or failures within the cloud infrastructure such as com-
puting nodes [32] and storage [24].

To address this challenge, in this paper, by learning from system
trace logs, in short as trace logs (a special type of system logs), we
focus on predicting three common types of microservice applica-
tion faults that are specifically relevant to microservice interactions
and runtime environments, i.e., multi-instance faults, configuration
faults, asynchronous interaction faults. According to an existing em-
pirical study [61], almost half of all studied microservice application
faults are of these three types. Different from internal-logic faults,
which are localized often based on analyzing internal states and
logics, these three types of faults are usually relevant to external
characteristics of trace logs such as the number of microservice in-
stances, accesses of global variables/local cache, resource consump-
tion, invocation and execution orders. Recently Pham et al. [40]
propose a failure diagnosis approach for distributed systems. This
approach locates faults by matching similar failure traces produced
using fault injection. This matching-based approach has very lim-
ited generalization ability and cannot support failure recognition.
In contrast, in our work, we extract a set of features that reflect
the dynamic environments and interactions of microservices from
trace logs and train a set of prediction models based on the features.
The prediction models can be used to not only locate the faults but
also recognize the failures by predicting latent errors caused by the
faults.

In particular, in this paper, we propose MEPFL (Microservice
Error Prediction and Fault Localization), a novel approach for latent
error prediction and fault localization of microservice applications
by learning from trace logs. We design MEPFL to predict latent
errors of a microservice application caused by the preceding three
common types of microservice application faults. MEPFL further
predicts the locations (i.e., microservices) and types of the faults.

Figure 1: Basic Concepts
MEPFL combines trace-level and microservice-level prediction. The
trace-level prediction utilizes application-specific context (e.g., mi-
croservices involved in an application) in its feature vectors and
treats a trace instance (which records the process of microservice
invocations for a user request) as a whole during training and pre-
diction. It includes three models to predict latent errors, relevant
microservices, and fault types, respectively. The microservice-level
prediction uses a set of general features for microservices in a
context-free way. It is based on a model to predict what type of
fault the target microservice has. All these preceding models used
in trace-level or microservice-level prediction are defined on a set
of trace log features selected by correlation analysis.

With two open-source microservice applications (Sock Shop [48]
and TrainTicket [36], which is the largest open-source microservice
application to our best knowledge), we conduct a series of experi-
mental studies to evaluate the effectiveness of MEPFL1. The results
show that MEPFL can achieve high recall/precision (0.982/0.998 and
0.896/0.995) and low false positive rate (0.009 and 0.014) in latent
error prediction, high Top-1 accuracy (0.933 and 0.937) in faulty
microservice prediction, and high recall/precision (0.952/0.983 and
0.930/0.986) in fault type prediction. MEPFL substantially outper-
forms Pham et al.’s approach [40] in terms of the accuracy of the
prediction of faulty microservices and fault types. With the increase
of the coverage of trace types in the training data, the overall pre-
diction more and more relies on the trace-level prediction, and the
prediction accuracy substantially increases. To further evaluate
the effectiveness of MEPFL in localizing real-world microservice
application faults, we conduct an experimental study with the fault
cases [10] provided by the TrainTicket benchmark; these fault cases
are replicated from industrial fault cases. The results show that
MEPFL can accurately predict the latent errors caused by these
fault cases with a recall of 0.647-0.983 (0.821 on average) and a
precision of 0.586-0.984 (0.891 on average).

In this paper, we make the following main contributions.
• A set of features and prediction models for predicting latent
errors, faulty microservices, and fault types for microservice
applications based on system trace logs.

• A learning-based approach for latent error prediction and
fault localization of microservice applications based on fault
injection and testing.

• A series of experimental studies with two open-source mi-
croservice benchmarks to evaluate the effectiveness of the
approach.

2 PRELIMINARIES
Our approach is defined based on a series of concepts about mi-
croservice. Figure 1 shows the relationships between these concepts.

1All the data of the studies can be found in our replication package [46].
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Table 1: Fault Cases Reported by Our Previous Work [61]
Fault Type Fault Cases Example
Monolithic F6, F9, F10, F14-

22
F22: a wrong column name included in the constructed
SQL statement

Multi-Instance F8, F11, F12 F12: unexpected output of a microservice when it is in a
special state

Configuration F3, F4, F5, F7 F3: improper configurations of JVM and Docker
Asynchronous
Interaction

F1, F2, F13 F1: asynchronous message delivery that lacks sequence
control

A microservice application includes a set of scenarios and each sce-
nario includes multiple types of user requests (e.g., different clicks
on the same “OK” button on the same web page result in different
user requests of the same user request type). Each user request type
is mapped to a trace type. Each trace instance records the process
of microservice invocations for a user request. The trace type for
the trace instance is the trace type mapped from the type of the
user request. The trace instance includes a series of spans and each
span represents an invocation between two microservice instances
(i.e., a caller and a callee).

For example, the TrainTicket application has a Ticket Reserva-
tion scenario that includes several user request types (i.e., trace
types) such as Query Available Tickets, Confirm Ticket Selection,
and Pay. The trace instances of Confirm Ticket Selection include a
series of microservice invocations, e.g., the Reserve service invokes
the Ticket Info service, Food service, and several other services,
and the Ticket Info service in turn invokes the Price service and
other services.

A recent trend of microservice applications is the introduction of
container orchestrator and service mesh. A container orchestrator
such as Kubernetes (k8s) [30] dynamically schedules and manages a
large number of container instances. In our system implementation,
Kubernetes is used to dynamically deploy microservice applica-
tions and manage microservice instances and their environmental
configurations during the offline training phase. Service mesh [37]
is introduced as a separate layer that handles service-to-service
communication. The most recognized implementation is Istio [25].
Our system implementation uses Istio to manage asynchronous
microservice interactions during offline training and collect trace
logs during both offline training and online prediction.

3 PREDICTION MODELS
3.1 Fault Types
Collected in an industrial survey, our previous work [61] reported
22 representative microservice fault cases (see Table 1). These fault
cases can be categorized into the following four types.

• Monolithic Faults. These faults can cause failures even
when the application is deployed in a monolithic mode, i.e.,
all the microservices are deployed on one node, each mi-
croservice has only one instance, and different microservices
interact synchronously. These faults are usually due to faults
in the internal implementation of microservices and are ir-
relevant to the runtime environments of the application.

• Multi-Instance Faults. These faults are related to the ex-
istence of multiple instances of the same microservice at
runtime. They are often due to lacking coordination among
different instances of the same microservice (e.g., to keep
them in consistent states).

• Configuration Faults. These faults are related to the en-
vironmental configurations of microservices, such as the

resource (e.g., memory and CPU) limits. They are often due
to improper or inconsistent configurations of microservices
and/or their residing environments (e.g., containers and vir-
tual machines (VMs)).

• Asynchronous Interaction Faults. These faults are re-
lated to the asynchronous invocations among microservices
and may cause failures when asynchronous invocations are
executed or returned in an unexpected order. They are often
due to missing or improper coordination of the sequences
of asynchronous invocations.

Themechanisms of monolithic faults are similar to those of faults
in monolithic applications. For example, F22 is a monolithic fault
caused by an incorrect SQL statement. The failures caused by these
faults can be reproduced and debugged on a single machine.

Multi-instance faults are mainly related to inconsistent states
between different instances of the same microservice. For example,
F12 is caused by an inconsistent state of a microservice. When an in-
vocation chain involves two instances of the same service and their
states are different, the request will be denied with an unexpected
output. To fix the fault, the developers can add a synchronization
mechanism for the involved state variable or move it to external
storage (e.g., Redis). Statelessness is a recommended practice for mi-
croservice development. However, many microservice applications
in practice are migrated from legacy monolithic applications, which
are often stateful with state variable definitions (i.e., in-memory
session states) [20]. Due to the difficulty of refactoring, the migra-
tions are often halfway, and stateful microservices are common in
enterprise applications.

Configuration faults are related to the complex environmen-
tal settings of microservices. A microservice is associated with
a series of application-level environmental configurations such
as the configurations of JVM (e.g., max/min heap memory, stack
memory, garbage collection strategy), thread pool, and database
connection pool. A microservice is also associated with a series
of infrastructure-level environmental configurations such as the
configurations of containers (e.g., memory limit, CPU limit, health
check, communication security) and VMs. Reconciling these con-
figurations is a challenging task and often incurs mistakes. For
example, F3 is due to a conflict between the memory limits of JVM
and Docker; this conflict can cause the JVM process to be killed.

Asynchronous interaction faults are usually caused by an unex-
pected order of executing asynchronous microservice invocations.
When a microservice invokes several other microservices asyn-
chronously, the orders of the requests, executions, and responses
of the invoked microservices are uncertain. If the developers have
unrealistic assumptions, e.g., the invoked microservices shall be exe-
cuted and returned in the same order of invocations, the developers
may introduce asynchronous interaction faults into the applica-
tions. For example, F1 lies in an unexpected order of executions
and returning of multiple asynchronously invoked microservices
and can cause an invoked microservice to be in an abnormal status.

Table 1 shows that 12 out of the 22 fault cases (54.5%) are mono-
lithic faults, while the other 10 fault cases (45.5%) are related to
multi-instance, environmental configuration, or asynchronous in-
teraction. Monolithic faults can be found on a single machine by



ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and Chuan He

unit or integration testing, and can be located using traditional tech-
niques of fault localization such as assertions and breakpoints [55].
Therefore, we focus on the other three types of faults in this paper.

3.2 Feature Definition
MEPFL aims to predict whether a latent error has occurred, the
faulty microservice, and the fault type. MEPFL systematically ex-
tracts a set of features from trace instances. Figure 2 shows an
example of trace instance, which starts from a root microservice
R. In the figure, each arrow represents an invocation (i.e., span)
and different subscripts of the same capital letter (e.g., D1 and D2)
represent different invocations of the same microservice (the same
or different instances). For this trace instance, the microservice
features are calculated for each of the 11 microservice invocations
(e.g., R, A1, D1, and D2).

Figure 2: An Example of Trace Instance
Based on the data collected in a previously reported empirical

study [61], we summarize a comprehensive set of microservice fea-
tures from different aspects (i.e., configuration, resource, instance,
and interaction). These features can be extracted from trace logs. A
feature is defined in one of three scopes: “global” indicates that the
feature is a global property of the microservice and is irrelevant to
the current trace instance; “trace” indicates that the feature is an
overall property of the microservice in the current trace instance;
“invocation” indicates that the feature is a property of the current
microservice invocation. For example, for the trace instance shown
in Figure 2, a “global” feature of D1 depends on all the instances
of the microservice D at that time; a “trace” feature of D1 depends
on D1 and D2 in the trace instance; an “invocation” feature of D1
depends on only D1 itself in the trace instance. Table 2 shows a
complete list of the candidate features. Detailed descriptions of the
features can be found in our replication package [46].

Configuration features reflect the environmental configurations
of the microservice instance. Resource features reflect the resource
consumptions (e.g., memory and CPU) of the microservice instance
and its residing node. These features may be relevant to the validity
of microservice configurations. Volume support, which enables the
microservice to access the persistent data of the node, may also be
relevant to multi-instance faults.

Instance features reflect the status of the deployment of the
instances of the microservice and their involvement in the current
trace instance. These features may be relevant to multi-instance
problems.

Interaction features reflect the status of interactions (especially
asynchronous interactions) with other microservices. Among these
features, ET and RSC reflect the status of the current microservice
invocation itself; AIT and CEO reflect the status of asynchronous
invocations to other microservices. For example, for A1 in Figure 2,
the ET and RSC features reflect the execution time and response
code of A1 itself; the AIT and CEO features reflect the status of the
invocations (which are asynchronous invocations) from A1 to D1,
E1, and F1. To provide a unified encoding for different microservices,
we develop the following convention for the AIT and CEO features:

(1) assuming that there are N microservices asynchronously in-
voked by the current microservice, sort the invoked microservices
by the invocation order and number them from 1 to N ; (2) for each
invoked microservice, extract a feature AIT-i (1 ≤ i ≤ N ) for cap-
turing its execution time; (3) for each pair of invoked microservices,
set a feature CEO-i-j (1 ≤ i, j ≤ N ) for capturing whether their
execution order is consistent with their invocation order. For ex-
ample, for A1 in Figure 2, there are 3 AIT features, and AIT-1 for
capturing the execution time of D1; there are 3 CEO features, and
CEO-1-2 for capturing whether the execution order of D1 and E1
is consistent with their invocation order. These features can be
relevant to asynchronous interaction faults.

The preceding features can be used in the microservice-level pre-
diction model. To support trace-level prediction, we further derive
a set of trace-level features for each trace instance by absorbing
the features of each microservice involved in the trace instance. If
a microservice is invoked multiple times in the trace instance, we
treat the feature values of the last invocation as the values of the
corresponding trace-level features. Because the influences of many
faults are cumulative and some other faults terminate traces at the
last invocation, the last invocation of a microservice may provide
the most significant indication for latent errors. For example, for
the trace instance in Figure 2, there are 8 RSC features (i.e., R.RSC,
A.RSC, B.RSC,C .RSC,D.RSC, E.RSC, F .RSC, andG .RSC), each corre-
sponding to an involved microservice; and D.RSC is the RSC value
of D2. These trace-level features incorporate application-specific
context, and thus can better predict latent errors and fault locations
if the models have been trained with trace instances of similar trace
types. In addition to these derived features, we also define 3 trace-
level features that aggregate the execution information of involved
microservices, i.e., TET (the execution time of the current trace
instance), TMN (the number of microservices that are invoked in
the current trace instance), and TIN (the number of microservice
instances that are invoked in the current trace instance).

3.3 Model Design
MEPFL supports four prediction models, which allow us to com-
bine both trace-level and microservice-level prediction. Trace-level
prediction includes latent error prediction, faulty microservice pre-
diction, and fault type prediction, each supported by a prediction
model (i.e., the LE model, FM model, and FT model). Microservice-
level prediction includes a microservice-status prediction model (in
short as an MS model).

Trace-level prediction models are defined on trace-level features.
These models incorporate application-specific microservices and
their interactions in their feature definitions, and thus can utilize
application-specific context in the prediction when similar trace
instances (e.g., trace instances that share common microservices
with the current trace instance) have been included in the train-
ing corpus. The microservice-level prediction model, on the other
hand, is defined on microservice-level features in an application-
independent way, and thus generalizes across different applications.

All the four prediction models are classification models. The
three trace-level models treat the given trace instance as a whole.
The LE model is a binary-classification model that classifies the
trace instance into two classes (with error or not); the FM model
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Table 2: Feature Definition
Category Feature Description Scope

Configuration
ML memory limit of the current microservice relative to the node memory limit Invocation
CL CPU limit of the current microservice relative to the node CPU limit Invocation
VS whether volume support is enabled for the current microservice Global

Resource

MC memory consumption of the current microservice instance relative to its memory limit Invocation
CC CPU consumption of the current microservice instance relative to its CPU limit Invocation
NMC memory consumption of the current node relative to its memory limit Invocation
NCC CPU consumption of the current node relative to its CPU limit Invocation

Instance

IN number of instances for the current microservice in the whole system Global
IIN number of instances (for the current microservice) invoked in the current trace instance Trace
SVA ratio of the shared variables that are accessed in the current invocation Invocation
CA whether the cache is accessed in the current invocation Invocation
SA whether the third-party storage (e.g., database) is accessed in the current invocation Invocation
TN number of threads of the current microservice instance Invocation
LT life time of the current microservice instance since its creation Invocation
NIN number of microservice instances residing in the current node Invocation
NMN number of microservices whose instances reside in the current node Invocation

Interaction

ET execution time of the current microservice invocation Invocation
RSC HTTP response status code of the current microservice invocation Invocation
AIT time of an asynchronous invocation in the current microservice execution Invocation
CEO whether the execution order of a pair of asynchronous invocations is consistent with their invocation order Invocation

is a multi-label classification model that predicts one or multiple
microservices in the trace instance to be faulty; and the FT model
is a multi-label classification model that predicts one or multiple
fault types. The microservice-level model treats the microservices
involved in the given trace instance individually. The MS model is a
single-label classification model that predicts an error status, which
can be one of the three fault types or a special type “No Fault”.

4 APPROACH
Figure 3 provides an overview of MEPFL, which includes an offline
training phase and an online prediction phase. The offline training
phase executes the target microservice application in the testing en-
vironment and trains the prediction models based on the collected
trace logs. To train the models, we need not only trace logs under
successful executions but also trace logs under erroneous execu-
tions. Therefore, we design a series of fault injection strategies to
systematically obtain a series of faulty versions of the application.
We use existing automated test cases to drive the application and its
faulty versions to execute and produce trace logs. These test cases
simulate user requests from the clients (e.g., browsers and mobile
apps) and trigger microservice invocation chains. To ensure the
diversity of traces, an additional control is imposed on the runtime
environment to make the application executed under different set-
tings. We then prepare a training corpus for the prediction models
by collecting and analyzing trace logs from the executions. For each
trace instance, we automatically construct a trace-level training
sample and a set of microservice-level training samples by feature
extraction and error/fault labeling. Based on the training corpus, we
use machine learning techniques (e.g., Random Forests, K-Nearest
Neighbors, Multi-Layer Perceptron) to train three prediction mod-
els that can predict for each trace whether a latent error occurs,
which microservice the fault resides in, and what type of fault it is,
respectively.

The online prediction phase monitors the execution of the ap-
plication in the production environment and predicts latent errors
and fault locations (faulty microservices and fault types). It continu-
ously collects and analyzes trace logs from the running application.
For each trace instance, it extracts features in a similar way to what
has been done in preparing the training corpus, and then uses the
prediction models to predict whether a latent error occurs, which
microservice the fault resides in, and what type of fault it is.

Figure 3: Approach Overview
4.1 Fault Injection
Fault injection produces a series of faulty versions of the target
microservice application by introducing different types of faults
into different parts of the application. For each faulty version, we
inject a specific type of fault into a specific microservice in a semi-
automatic way. We design a fault injection strategy for each type of
fault. Each fault injection strategy is parameterized with the follow-
ing information: (1) a precondition that specifies the conditions to
be met by the location of a microservice where the fault is injected;
(2) a code transformation method that specifies how to gener-
ate a patch to transform a microservice into a faulty one; (3) an
expected failure symptom that specifies the expected symptom
if the injected fault has caused a failure.

We next present details of the parameters for each fault type.
Multi-Instance Faults. The precondition is that the microser-

vice accesses third-party cache databases such as Redis [44]. The
code transformation method is to replace the data accesses to third-
party cache databases with data accesses to global variables or local
cache. Asmulti-instance faults usually cause incorrect data accesses,
the expected failure symptom includes injected failure response,
incorrect output, or various assertion failures or exceptions (e.g.,
null pointer exceptions).

Configuration Faults. Configuration faults are usually related
to consumption of various resources (e.g., memory and CPU) and
irrelevant to the business logics of microservices. Therefore, con-
figuration faults can be injected into any part of any microservice.
The code transformation method is to inject resource-intensive
code into target locations of microservices, e.g., memory-intensive
code that loads a lot of data into memory or computing-intensive
code that includes a lot of iterations. The expected failure symp-
tom includes microservice instance restarted, timeout exception,
or resource-consumption-related exceptions (e.g., out-of-memory
exceptions).

Asynchronous Interaction Faults. The precondition for asyn-
chronous interaction faults is that themicroservice invokesmultiple
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Figure 4: Injection of Asynchronous Interaction Fault
microservices in succession. The code transformation method is to
introduce data dependencies between different microservice invoca-
tions. If the invocations are synchronous, we need to first transform
them into asynchronous ones. The expected failure symptom in-
cludes injected failure response, or various assertion failures or
exceptions (e.g., null-pointer exceptions).

Figure 4 shows an example of injecting an asynchronous inter-
action fault, where the red code is introduced for fault injection.
This example includes two synchronous microservice invocations.
The code transformation changes the invocations to asynchronous
ones using Java CompletableFuture and introduces objects (crList
and coList ) to store the return values. It introduces a data depen-
dency between the two asynchronous invocations via the variable
checkResult . Due to the dependency, the program can enter an un-
expected state if the two invoked microservices are executed in a
different order.

To inject a fault of a specific type into the target application,
we first identify a location (in the application) that satisfies the
precondition and use the code transformation method to introduce
a fault at the location. Then we check whether the resulting faulty
microservice can be successfully compiled and if not we manually
repair the compilation problem. After that, we further verify the
fault injection result by executing the corresponding test cases
multiple times (e.g., 30 times). As the failures caused by these faults
are probabilistic, the fault injection is regarded to be successful if the
expected failure symptom is observed in one of the executions. Each
successfully injected fault is incorporated into the target application
to produce a faulty version.

4.2 Execution Control
The execution controller automatically deploys the target applica-
tion and its faulty versions, executes different application versions
with existing automated test cases, and collects trace logs. For faulty
versions, the controller further manipulates the runtime environ-
ment of the application so that it is executed under different settings,
including different numbers of microservice instances, environmen-
tal configurations, and asynchronous interaction sequences. For
each setting, the controller executes the test cases involving the

faulty microservice for a given number (e.g., 10) of times to get
multiple trace instances under the same setting. The automatic
deployment, execution manipulation, and trace log collection are
implemented based on the infrastructure support of container or-
chestrator and service mesh (see Section 5).

For a faulty version with an injected multi-instance fault, the
controller manipulates the number of instances of the faulty mi-
croservice. The controller executes the faulty microservice with 1 to
a given number (e.g., 10) of instances while the other microservices
running with the default numbers of instances.

For a faulty version with an injected configuration fault, the con-
troller manipulates the environmental configurations (e.g., memory
limit, CPU limit) of the faulty microservice, e.g., with the mem-
ory limit or CPU limit increased from 1% to 10%, while the other
microservices running with default configurations.

For a faulty version with an injected asynchronous interaction
fault, the controller manipulates the execution sequences of asyn-
chronous invocations. The controller causes the microservices that
are asynchronously invoked by the faulty microservice to be ex-
ecuted in different orders. For example, for a microservice A that
asynchronously invokes three microservices B, C , and D in that
order, the controller first forces the invoked microservices to be ex-
ecuted in the same order of invocation (i.e., B,C , D) and then forces
them to be executed in other orders (e.g., D, C , B). As the microser-
vices that are asynchronously invoked by a microservice in a trace
instance are usually not so many (e.g., fewer than 6), the controller
can try different execution orders to achieve certain coverage, e.g.,
covering all the partial orders of any pair of microservices.

During the executions of the application and its faulty versions,
the controller continually collects the trace logs. To provide the
features required by the prediction models, the trace logs record
not only the sequence of the spans (i.e., microservice invocations)
of each trace instance, but also the environmental configurations,
resource consumptions, and number of the instances of the involved
microservices.

4.3 Preparation of Training Corpus
For each trace instance, we generate a trace-level training sample
by extracting trace-level features and labeling its error status, fault
type, and fault location. For each microservice involved in the
trace instance, we generate a microservice-level training sample by
extracting microservice-level features and labeling its fault status.

We extract the features based on the feature definitions given in
Section 3.2. We first extract microservice-level features based on
the spans included in the trace instance, and then aggregate these
microservice-level features into trace-level features.

The error status of a trace instance can be 0 or 1. 0 indicates
that the trace instance has a latent error caused by one of the three
types of faults, and 1 indicates the other cases. Note that the other
cases include that the trace instance has no errors or has other
unknown errors (e.g., errors caused by monolithic faults). We la-
bel the error status of a trace instance as 0 if the following four
conditions are satisfied. First, the result of the trace instance is not
consistent with the expected result in the test case. Second, the
trace instance is produced by a faulty version of the application,
and the faulty microservice is included in the trace instance. Third,
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the trace instance is produced in a faulty setting, i.e., for a multi-
instance fault, the faulty microservice has more than one instance;
for a configuration fault, the faulty microservice runs with resource
limits (e.g., memory or CPU limit); for an asynchronous interaction
fault, the execution order of the microservices asynchronously in-
voked by the faulty microservice is not the same as their invocation
order. Fourth, the error is not caused by monolithic faults. To check
whether the fourth condition is satisfied, we automatically deploy
the same application version in a monolithic environment and run
the same test case; if the test case passes, we conclude that the error
is not caused by monolithic faults.

If the trace error status is 1, we label the error status of the
corresponding trace-level training sample as 1 and the fault status
of each microservice-level training sample to “No Fault”.

If the trace error status is 0, we label the error status of the
corresponding trace-level training sample to 0, its fault type to the
injected fault type, and its fault location to the faulty microservice.
For each microservice-level training sample, we label its fault status
to the injected fault type if it has an injected fault and “No Fault” if
it has no injected fault.

4.4 Training
To select relevant features for the training, we conduct a correlation
analysis between the errors caused by the three types of faults and
the candidate features (see Table 2) based on TrainTicket [36]. For
each trace type, we use the corresponding test cases to run the
original application and its faulty versions with different types of
injected faults 1,000 times. During the process, we manipulate the
running system so that it is executed with different settings (e.g., the
numbers of instances, environmental configurations, and execution
orders of asynchronous invocations).

Table 3 lists the Pearson correlation coefficient [8] between the
errors caused by different types of faults and the candidate features
for five trace types. The complete correlation analysis results can
be found in our replication package [46]. We choose the features
whose correlation coefficients are higher than 0.3 for at least one
fault type and one trace type. Based on the criterion, we select all the
candidate features except VS, SA, LT, NMN and their corresponding
trace-level features for the training.

Before training the prediction models, we follow a standard pro-
cess to preprocess the training data, including imputation, category
encoding, discretization, and feature scaling. Imputation replaces
missing data in the training samples with typical values, i.e., the
means for continuous values and the most frequent values for other
kinds of values. Category encoding transforms categorization val-
ues (e.g., RSC) into integer values from 0 to N -1 (N is the number
of categories of a feature). Discretization transforms continuous
values (e.g., TN) into integer values from 0 to K-1 by dividing the
range of the values into K partitions. Feature scaling normalizes
the ranges of feature values into [0, 1].

We choose the following three machine learning techniques to
train the prediction models.

• Random Forests (RF): an ensemble learning technique for
classification that constructs a multitude of decision trees at
training time and outputs the class that is the mode of the
classes (classification) of the individual trees.

Figure 5: MEPFL Prediction Process
• K-Nearest Neighbors (KNN): a non-parametric classification
technique that determines the class of an object by a plurality
vote of its neighbors.

• Multi-Layer Perceptron (MLP): a feed-forward artificial neu-
ral network model that maps a set of input data onto a set
of appropriate outputs.

To optimize these classification models, we use the grid search
technique to search the hyper-parameter (e.g., “hidden_layer_sizes”
for MLP) space for the best cross-validation score. The technique
exhaustively generates candidates from a grid of parameter val-
ues specified with some initial parameters, and then scans all the
possible combinations to find the best cross-validation score.

4.5 Feature Extraction and Prediction
The online prediction phase includes two steps. The feature ex-
traction step extracts microservice- and trace-level features from
trace logs. The prediction step uses the prediction models to predict
latent errors, fault locations, and types.

Figure 5 shows the prediction process, which combines the trace-
and microservice-level prediction models. Given a trace instance
captured online, MEPFL first uses the LE model to predict whether
the trace instance has latent errors and determines whether trace-
level prediction has the required confidence level (obtained along
with the prediction from the LE model). If the confidence is not
lower than a predefined threshold, MEPFL uses the FM model and
the FT model to predict the faulty microservices and the fault types,
respectively. Otherwise, MEPFL uses the MS model to predict latent
errors, fault locations, and types. Note that the MS model predicts
the fault status of each microservice involved in the given trace in-
stance. If any microservice is predicted to be faulty, MEPFL regards
the trace instance as erroneous and all the faulty microservices
together with their fault types as the results of fault location and
type prediction.

5 IMPLEMENTATION
Our implementation includes four major components: the fault
injector, execution controller, log processor, and predictor.

The fault injector currently supports the fault injection of Java
microservices. It uses JavaParser 3.8 [27] to parse and manipulate
the source code of microservices to implement fault injection. Other
parsers can be introduced in the future to support fault injection of
microservices implemented in other languages.

The execution controller integrates TestNG 6.8 [51] to imple-
ment automated scheduling and execution of test cases. At the
system infrastructure level, the execution controller integrates Ku-
bernetes 1.10 and Istio 1.0 to implement automatic microservice
application deployment, configuration, and runtime manipulation
in the offline training. It uses Kubernetes REST APIs to dynami-
cally deploy microservice applications and manage microservice
instances and their environmental configurations. It customizes the
Istio implementation to control the execution/returning sequences
of synchronous microservice invocations based on its sidecar. Istio
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Table 3: The Pearson Correlation Coefficient of Microservice Level Features and Latent Errors
Trace Types

Features Configuration Resource Instance Interaction
ML CL VS MC CC NMC NCC IN IIN SVA CA SA TN LT NIN NMN ET RSC AIT CEO

Trace Type 1
Instance 0.02 0.12 0.22 0.36 0.12 0.19 0.09 0.83 0.63 0.67 0.78 0.22 0.39 0.05 0.19 0.03 0.58 0.05 0.17 0.23
Config 0.61 0.20 0.11 0.77 0.36 0.46 0.42 0.12 0.03 0.11 0.21 0.25 0.25 0.12 0.15 0.05 0.65 0.43 0.34 0.16

Interaction 0.10 0.22 0.03 0.01 0.18 0.06 0.13 0.07 0.14 0.45 0.12 0.03 0.54 0.16 0.09 0.11 0.70 0.47 0.62 0.79

Trace Type 2
Instance 0.04 0.09 0.27 0.23 0.05 0.23 0.12 0.79 0.46 0.73 0.66 0.06 0.62 0.15 0.12 0.11 0.54 0.46 0.16 0.14
Config 0.23 0.67 0.20 0.33 0.76 0.48 0.25 0.03 0.23 0.22 0.12 0.03 0.34 0.14 0.15 0.04 0.32 0.66 0.45 0.17

Interaction 0.22 0.18 0.13 0.21 0.13 0.02 0.01 0.16 0.11 0.36 0.46 0.18 0.59 0.07 0.63 0.03 0.47 0.21 0.66 0.68

Trace Type 3
Instance 0.03 0.17 0.18 0.15 0.11 0.14 0.02 0.87 0.90 0.56 0.78 0.23 0.17 0.17 0.42 0.14 0.46 0.31 0.10 0.19
Config 0.70 0.13 0.13 0.83 0.46 0.36 0.12 0.02 0.22 0.19 0.09 0.12 0.20 0.02 0.14 0.09 0.33 0.45 0.29 0.21

Interaction 0.01 0.09 0.09 0.15 0.03 0.07 0.10 0.04 0.13 0.23 0.33 0.16 0.13 0.11 0.23 0.03 0.45 0.29 0.79 0.72

Trace Type 4
Instance 0.10 0.10 0.15 0.22 0.04 0.05 0.10 0.69 0.36 0.77 0.66 0.11 0.33 0.01 0.17 0.08 0.28 0.60 0.11 0.23
Config 0.39 0.74 0.19 0.67 0.71 0.49 0.18 0.06 0.33 0.10 0.12 0.24 0.01 0.11 0.23 0.03 0.39 0.17 0.15 0.28

Interaction 0.14 0.21 0.21 0.17 0.11 0.03 0.14 0.11 0.12 0.33 0.43 0.13 0.32 0.09 0.12 0.04 0.50 0.25 0.73 0.47

Trace Type 5
Instance 0.13 0.07 0.07 0.20 0.12 0.11 0.09 0.70 0.87 0.60 0.56 0.24 0.35 0.03 0.33 0.05 0.21 0.19 0.08 0.12
Config 0.60 0.16 0.22 0.71 0.66 0.63 0.24 0.03 0.21 0.14 0.23 0.23 0.09 0.05 0.08 0.15 0.46 0.30 0.47 0.15

Interaction 0.05 0.09 0.03 0.36 0.16 0.15 0.08 0.09 0.26 0.13 0.22 0.12 0.41 0.16 0.06 0.09 0.36 0.61 0.54 0.63

sidecar is a kind of intelligent proxies that mediate and control the
network communication between microservices [25].

The log processor uses Kubernetes and Istio to capture trace
logs. To capture information about variable accesses required by
some features such as SVA and CA, we use JDK to capture the
runtime JVM thread dump and heap dump, and analyze the call
stack and variable values in the dumps. The log processor includes
a pipeline to collect and process trace logs. The pipeline runs a
RESTful service based on Spring Boot 1.5.9 [50] to collect distributed
log data produced by Istio and uses Kafka 2.0.0 [28] to stream the
log data. It then uses Spark 2.3.2 [49] to process the data to produce
training samples and uses HDFS (Hadoop Distributed File System)
2.7 [22] to store the processed data.

We implement the predictor based on scikit-learn [47], a machine
learning library for Python. The threshold of the confidence score
for adopting the trace-level prediction is 70%.

6 EVALUATION
To evaluate the effectiveness of MEPFL, we conduct a series of
experimental studies to answer the following research questions.

• RQ1: How accurate is MEPFL in predicting latent errors,
faulty microservices, and fault types of microservice appli-
cations?

• RQ2: How does the training coverage of trace types influ-
ence the prediction accuracy?

• RQ3: How effective is MEPFL when it is used to predict
latent errors caused by real fault cases?

These studies are based on two open-source microservice ap-
plications: Sock Shop [48] and TrainTicket [36]. Sock Shop is a
small-scale benchmark application that is widely used in microser-
vice research [13, 31, 43]. It has 8 microservices and 10 trace types.
TrainTicket is a medium-scale benchmark application that has been
recently released, having 40 microservices and 86 trace types. It
replicates a variety of faults based on a study of industrial fault
cases in microservice applications. All the studies are conducted
on a private cloud with 20 virtual machines.

6.1 Prediction Accuracy (RQ1)
To answer RQ1, we evaluate the accuracy of MEPFL using a corpus
of trace logs with automatically injected faults. For Sock Shop, we
inject 32 faults (including 10 multi-instance faults, 10 configuration
faults, and 12 asynchronous interaction faults) into 10 trace types.
We obtain 243,606 trace instances by test-driven automatic execu-
tion, 32,643 (13.4%) of which have latent errors. For TrainTicket, we
inject 142 faults (including 46multi-instance faults, 52 configuration

faults, and 44 asynchronous interaction faults) into 86 trace types.
We obtain 1,214,637 trace instances, 211,347 (17.4%) of which have
latent errors. The fault injection process is automated. But when
the injected faults cause compilation failure or the tests fail in unex-
pected ways, developers are required to manually analyze/edit code.
Among the 174 faults injected into the two applications, 71.84%
are injected automatically without human efforts; 28.16% involve
human efforts.

For each application, we randomly divide the trace instances
equally into 5 subsets and perform 5-fold cross-validation to eval-
uate the accuracy. In every cross-validation, we use 4 subsets as
training data and the remaining subset as testing data. For the
prediction of latent errors, we evaluate the recall, precision, and
F1-measure (the harmonic mean of precision and recall) of iden-
tifying trace instances that have latent errors. As the number of
successful trace instances is much larger than that of erroneous
ones, we also evaluate the false positive rate (FPR), i.e., the rate
of error-free traces that are predicted to be erroneous among all
the successful traces. For the prediction of faulty microservices, we
evaluate the Top-k (with k being 1, 3, 5) accuracy of identifying
a faulty microservice from an erroneous trace instance, i.e., the
probability that the faulty microservice is included in the Top-k
prediction results. For the prediction of fault types, we evaluate
the recall, precision, and F1-measure of the predicted fault types of
erroneous trace instances.

To our best knowledge, there are no existing approaches of trace-
log-based error prediction or fault localization for microservice
applications. Therefore, we compare MEPFL with a state-of-the-
art approach [40] for trace-based failure diagnosis in distributed
systems. The approach uses fault injection to populate the database
of failures for a target distributed system and locate the root causes
of reported failures by matching against the failures in the database.
In this study, we use the trace instances in the training data as the
failure database for the approach to identify the faultymicroservices
and fault types. Note that this state-of-the-art approach cannot
identify latent errors, as it assumes that failures can be reported
from the production environment. For MEPFL, we evaluate three
versions, each with a different machine learning technique, i.e.,
MEPFL-RF, MEPFL-KNN, and MEPFL-MLP.

Table 4 shows the accuracy of intra-application error prediction
and fault localization. It can be seen that for both applications
MEPFL achieves very high accuracy in the prediction of latent
errors, faulty microservices, and fault types. In particular, MEPFL-
MLP performs the best. MEPFL-MLP predicts latent errors with a
recall of 0.982 (0.896), a precision of 0.998 (0.995), and a false positive
rate 0.009 (0.014), faulty microservices with a Top-1 accuracy of
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Table 4: Accuracy of Intra-Application Error Prediction and Fault Localization
Methods

Sock Shop TrainTicket
Latent Error Faulty Microservice Fault Type Latent Error Faulty Microservice Fault Type

Recall Precision F1 FPR Top1 Top3 Top5 Recall Precision F1 Recall Precision F1 FPR Top1 Top3 Top5 Recall Precision F1
MEPFL-RF 0.949 0.997 0.973 0.015 0.864 0.943 1.000 0.926 0.863 0.893 0.801 0.979 0.881 0.041 0.924 0.934 0.938 0.862 0.986 0.921
MEPFL-KNN 0.961 0.997 0.978 0.013 0.891 0.965 1.000 0.967 0.925 0.946 0.865 0.993 0.924 0.030 0.923 0.938 0.940 0.892 0.978 0.933
MEPFL-MLP 0.982 0.998 0.990 0.009 0.933 0.972 1.000 0.952 0.983 0.967 0.896 0.995 0.943 0.014 0.937 0.939 0.939 0.930 0.986 0.957

Approach in [40] N/A N/A N/A N/A 0.340 0.748 1.000 0.618 0.375 0.467 N/A N/A N/A N/A 0.117 0.189 0.263 0.614 0.794 0.692

0.933 (0.937), and fault types with a recall of 0.952 (0.930) and a
precision of 0.983 (0.986) for Sock Shop (TrainTicket). The overall
prediction accuracy of Sock Shop is slightly higher than that of
TrainTicket. This result may be explained by the fact that Sock Shop
hasmuch fewermicroservices and trace types. For both applications,
MEPFL substantially outperforms the state-of-the-art approach [40]
in predicting faulty microservices and fault types.

We also evaluate the accuracy of MEPFL for cross-application
latent error prediction and fault localization. In this evaluation, we
use the trace instances of an application (Sock Shop or TrainTicket)
as training data and the trace instances of the other application as
testing data. Note that the state-of-the-art approach [40] cannot
be used for cross-application prediction, as it relies on the trace
instances of the same application for matching. For MEPFL, only
the microservice-level prediction works for this prediction.

Table 5 shows the accuracy of cross-application error prediction
and fault localization. It can be seen that the accuracy is much
lower than that of intra-application prediction. For example, for
MEPFL-MLP, the recall/precision of latent error prediction drop
from 0.982/0.998 and 0.896/0.995 to 0.451/0.562 and 0.461/0.418.
Using TrainTicket data to predict Sock Shop has a higher accuracy
than predicting the other way around. This result may be explained
by the fact that TrainTicket has much more microservices and trace
types than Sock Shop.

6.2 Influence of Trace Type Coverage (RQ2)
Fault injection and trace collection cost time and effort. Therefore,
a practical problem is how to decide whether enough training data
have been collected, i.e., whether the coverage of trace types in the
training data substantially affects the prediction results.

In this evaluation, we use the best machine learning technique for
MEPFL (i.e., MEPFL-MLP) and TrainTicket as the target application
as it is much larger than Sock Shop. We randomly divide the trace
types of TrainTicket into 10 subsets and use a part of the trace
types for training and the others for testing. We start with one
subset for training and gradually increase the number of subsets for
training. For each setting, we calculate the accuracy of latent error
prediction and fault localization along with the rate that trace-level
prediction is adopted (T-Rate), and report the training time (TT)
and prediction time (PT).

Table 6 shows the results of the evaluation. The general trend
is that the prediction accuracy substantially increases with the
increase of trace type coverage. For example, when 40% of the trace
types are covered by the training data, the recall and precision of
latent error prediction, the top-1 accuracy of faulty microservice
prediction, and the recall and precision of fault type prediction are
all higher than 80%. With the increase of trace type coverage, the
overall predictionmore andmore relies on the trace-level prediction.
When the trace type coverage reaches 30%, the trace-level prediction
dominates the overall prediction. When the coverage reaches 90%,
81.3% of the prediction is made by the trace-level prediction. A

possible explanation for the trend is that with the increase of trace
type coverage, it is more likely to find similar trace instances in the
training data. With the increase of trace type coverage, the training
time linearly increases from 8m37s to 35m35s, while the prediction
time keeps stable.

6.3 Effectiveness for Real Fault Cases (RQ3)
The purpose of this evaluation is to assess the effectiveness of
MEPFL for real-world microservice faults. To this end, we eval-
uate the accuracy of MEPFL for the fault cases [10] provided by
the TrainTicket benchmark. These fault cases are replicated from
industrial fault cases by transferring the fault mechanisms from the
original applications to the benchmark application. From 22 fault
cases, we choose the 10 fault cases that belong to the three fault
types for the evaluation.

We use the trace instances produced with injected faults to train
the prediction models using MEPFL-MLP, and apply the models
on the 10 fault cases. For each fault case, we apply the patch into
the application to produce a faulty version and then deploy the
version. Five student volunteers play the role of users and manually
execute the scenarios that may involve the target microservice. For
each execution, we manually check the system logs and execution
results to confirm whether it involves a latent error and whether
the error is caused by the fault case.

We collect all the produced trace instances and apply the pre-
diction models on each trace instance. The evaluation results are
shown in Table 7. For each fault case, we provide the fault type
(Multi-Instance, Configuration, or Asynchronous Interaction), the
numbers of trace instances (#TR) and erroneous ones (#ET), and
the accuracy metrics. It can be seen that MEPFL accurately pre-
dicts the latent errors caused by these fault cases with a recall of
0.647-0.983 (0.821 on average), a precision of 0.586-0.984 (0.891 on
average), and a false positive rate of 0.016-0.042 (0.030 on average),
the faulty microservices with a Top-1 accuracy of 0.291-1.000 (0.788
on average), and the fault type with a recall of 0.676-0.975 (0.828
on average) and a precision of 0.648-0.977 (0.820 on average).

It can be seen that the prediction accuracy for configuration
faults (F3, F4, F5, F7) is lower than the accuracy for multi-instance
faults (F8, F11, F12) and asynchronous interaction faults (F1, F2,
F13). This result may be due to that execution traces are less sensi-
tive to latent errors caused by configuration faults. Multi-instance
faults and asynchronous interaction faults have direct influences on
execution traces, e.g., involved microservice instances, interaction
sequences, or accesses of shared variables and cache. In contrast,
configuration faults are usually related to environmental configu-
rations and resource consumption, and have no direct influences
on execution traces.

6.4 Threats to Validity
There are three major threats to the internal validity of the studies.
The first one lies in the correctness of fault injection and trace
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Table 5: Accuracy of Cross-Application Error Prediction and Fault Localization
Methods

TrainTicket Model Predicting Sock Shop Sock Shop Model Predicting TrainTicket
LE FM FT LE FM FT

Recall Precision F1 FPR Top1 Top3 Top5 Recall Precision F1 Recall Precision F1 FPR Top1 Top3 Top5 Recall Precision F1
MEPFL-RF 0.441 0.510 0.473 0.141 0.316 0.771 1.000 0.394 0.623 0.483 0.410 0.419 0.414 0.189 0.304 0.523 0.662 0.346 0.456 0.394
MEPFL-KNN 0.461 0.530 0.493 0.136 0.326 0.856 1.000 0.400 0.628 0.488 0.415 0.463 0.438 0.160 0.325 0.635 0.737 0.358 0.463 0.404
MEPFL-MLP 0.451 0.562 0.501 0.113 0.335 0.872 1.000 0.415 0.627 0.499 0.461 0.418 0.471 0.169 0.332 0.654 0.799 0.365 0.466 0.409

Table 6: Influence of Trace Type Coverage
Coverage TT PT T-Rate Latent Error Faulty Microservice Fault Type

Recall Precision F1 FPR Top1 Top3 Top5 Recall Precision F1
10% 8min37s 12s 0.329 0.771 0.807 0.789 0.084 0.284 0.626 0.822 0.539 0.665 0.595
20% 11min58s 12s 0.403 0.795 0.846 0.820 0.061 0.299 0.627 0.827 0.676 0.890 0.768
30% 14min15s 12s 0.591 0.824 0.916 0.868 0.062 0.688 0.845 0.931 0.810 0.921 0.862
40% 16min24s 12s 0.655 0.829 0.945 0.884 0.059 0.813 0.905 0.935 0.803 0.960 0.874
50% 19min58s 12s 0.662 0.884 0.951 0.897 0.054 0.873 0.932 0.938 0.856 0.949 0.901
60% 23min39s 12s 0.766 0.858 0.950 0.902 0.044 0.920 0.941 0.944 0.844 0.937 0.888
70% 27min26s 12s 0.797 0.848 0.954 0.898 0.036 0.926 0.943 0.944 0.818 0.976 0.890
80% 30min42s 12s 0.830 0.857 0.958 0.905 0.032 0.907 0.939 0.943 0.851 0.995 0.917
90% 35min35s 12s 0.813 0.879 0.950 0.913 0.030 0.926 0.937 0.944 0.860 0.974 0.914

Table 7: Effectiveness for Real-World Fault Cases
Fault Cases Type #TR #ET LE FM FT

Recall Precision F1 FPR Top1 Top3 Top5 Recall Precision F1
F1 AI 306 61 0.983 0.803 0.884 0.033 0.951 1.000 1.000 0.819 0.655 0.728
F2 AI 322 65 0.738 0.984 0.843 0.031 0.907 1.000 1.000 0.815 0.846 0.830
F3 C 310 48 0.667 0.979 0.793 0.042 0.291 1.000 1.000 0.750 0.771 0.760
F4 C 312 37 0.783 0.918 0.845 0.026 0.486 0.513 1.000 0.918 0.972 0.944
F5 C 328 89 0.685 0.977 0.805 0.034 0.977 0.977 1.000 0.943 0.977 0.960
F7 C 392 34 0.647 0.882 0.746 0.028 0.558 1.000 1.000 0.676 0.823 0.742
F8 MI 343 75 0.960 0.586 0.728 0.041 1.000 1.000 1.000 0.840 0.826 0.833
F11 MI 328 40 0.975 0.875 0.922 0.024 0.875 0.975 0.975 0.975 0.975 0.975
F12 MI 369 37 0.837 0.918 0.876 0.027 0.837 1.000 1.000 0.702 0.648 0.674
F13 AI 322 64 0.937 0.984 0.960 0.016 1.000 1.000 1.000 0.843 0.703 0.767

Average - 333 55 0.821 0.891 0.854 0.030 0.788 0.947 0.998 0.828 0.820 0.824

labeling. The fault injection implemented by automatic code trans-
formation may fail to introduce a fault as expected and the error
status of a trace instance may be incorrectly labeled. The second one
lies in unknown problems within the two benchmark applications.
These problems may cause unexpected errors of the applications,
thus influencing the error status of trace instances. The third one
lies in the uncertainties of automatic deployment and runtime man-
agement.

There are two major threats to the external validity of the studies.
The first one lies in the limitation of two target applications used
in the studies. Sock Shop and TrainTicket are much smaller than
complex industrial microservice applications. The second one lies in
the limitation of the fault cases used in the studies. The TrainTicket
fault cases may be simpler than industrial faults and represent only
a limited part of different types of faults. Thus it is not clear whether
the approach can be effectively applied for much larger industrial
applications and more complex fault cases.

7 RELATEDWORK
Traditional fault localization approaches include slice-based fault
localization (e.g., [3, 4, 6, 7, 55]), spectrum-based fault localiza-
tion (e.g., [2, 18, 21, 23, 29, 38, 45], fault localization based on an-
alyzing program states (e.g., [58–60]), fault localization based on
data mining (e.g., [15, 16, 39]), and model-based fault localization
(e.g. [1, 9, 19, 35]). In recent years, machine learning techniques have
been applied for fault localization in different systems [12, 14, 33, 54].
These approaches focus on traditional programs and thus are not
applicable to microservices. Indeed these approaches can be po-
tentially applied to application faults in microservice applications,
whereas our approach focuses on microservice-specific faults.

Recently, multiple approaches on fault localization for distributed
systems or cloud native systems have been reported. Whittaker
et al. [53] presented an approach that enables the developers to
reason about the causes of events in distributed systems. Leonardo
et al. [34] proposed a lightweight approach of fault localization for
cloud systems. Wang et al. [52] presented an online approach of in-
cremental clustering for fault localization in web applications. Pham

et al. [40] proposed an approach to automating failure diagnosis in
distributed systems by combining fault injection and data analytics.
Compared to our work, the preceding previous approaches are de-
signed for traditional distributed systems or cloud systems, lacking
consideration of complex environmental factors that are essential
in microservice applications, e.g., auto-scaling of the instances of
each service, tremendous asynchronous interactions.

There are previous approaches on fault analysis for cloud sys-
tems by considering the high complexity and dynamism of cloud
computing environments. Lin et al. [32] proposed an approach
for predicting the failure proneness of a node in a cloud service
system based on historical data. Pitakrat et al. [41] proposed an ap-
proach named Hora, which combines component failure predictors
with architectural knowledge, and predicts failures caused by three
representative types of faults: memory leak, system overload, and
sudden node crash. Ahmed et al. [5] proposed a machine learning
approach based on detecting metric correlation stability violations
(CSV) for automated localization of performance faults for data-
center services running under dynamic load conditions. Dean et
al. [17] presented PerfCompass, an online debugging approach for
performance anomaly faults. PerfCompass can quantify whether
a production-run performance anomaly has a global impact or lo-
cal impact. The preceding previous approaches share some similar
ideas as our approach. However, these approaches do not support
latent error prediction and they do not focus on microservices. Al-
though Hora can be applied for microservice applications, it is used
to predict violations of expected QoS levels caused by system level
faults (e.g., memory leak, system overload, and sudden node crash).
In contrast, our approach is tailored to microservices and predicts
latent errors caused by three types of microservice specific faults
in the implementation and configuration of microservices.

8 CONCLUSION
In this paper, we have proposed MEPFL, an approach for latent er-
ror prediction and fault localization of microservice applications by
learning from system trace logs. It supports three types of microser-
vice application faults that are specifically relevant to microservice
interactions and runtime environments, i.e., multi-instance faults,
configuration faults, and asynchronous interaction faults. Based
on a set of features defined on system trace logs, MEPFL trains
prediction models at both the trace level and microservice level
using the system trace logs collected from automatic executions
of the target application and its faulty versions produced by fault
injection. Our experimental studies have demonstrated the effec-
tiveness of MEPFL with two open-source microservice benchmarks
and real-world fault cases.
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