
AutoMAP: Diagnose Your Microservice-based Web Applica-
tions Automatically

ABSTRACT
The high complexity and dynamics of the microservice architec-
ture make its application diagnosis extremely challenging. In this
study, we design a novel tool, named AutoMAP, which enables
dynamic generation of service correlations and automated diag-
nosis leveraging multiple types of metrics. In AutoMAP, we pro-
pose the concept of anomaly behavior graph to describe the cor-
relations between services associated with different types of me-
trics. Two binary operations, as well as a similarity function on
behavior graph are defined to help AutoMAP choose appropriate
diagnosis metric in any particular scenario. Following the behav-
ior graph, we design a heuristic investigation algorithm by using
forward, self, and backward random walk, with an objective to
identify the root cause services. To demonstrate the strengths of
AutoMAP, we develop a prototype and evaluate it in both simu-
lated environment and real-work enterprise cloud system. Exper-
imental results clearly indicate that AutoMAP achieves over 90%
precision, which significantly outperforms other selected basel-
ine methods. AutoMAP can be quickly deployed in a variety of
microservice-based systems without any system knowledge. It
also supports introduction of various expert knowledge to imp-
rove accuracy.

KEYWORDS
Microservice architecture; web application; anomaly diagnosis;
root cause; cloud computing

1 INTRODUCTION
The emergence of microservice architecture promotes easier abs-
traction and modularity for implementation, reuse, as well as
independent scaling of web application development [1]. How-
ever, as services and their dependencies are evolving through
continuous refactoring, localizing the sources of anomalies in
large-scale microservice-based web application is more challeng-
ing than ever before [2]. The challenge roots in three aspects:

Dynamic application structure. Due to the various nature
of services, static troubleshooting approaches such as threshold-
ing schemes [3] may fail to obtain reliable model applies for fre-
quently changing situations [4]. As a result, recent works typi-
cally start with a system structure, and then diagnose anomalies
via analyzing patterns following the structure [5][6]. Such struc-
tures, e.g. network topology and service-calling dependencies,
are generally extracted from historical data collected by monitor-
ing different components, such as the log files, audit events and
network data packets. It is time and effort-consuming, even unr-
ealistic in some legacy systems to develop a central running
component to collect such data and generate these structures.

Indirect anomaly propagation. As the component granular-
ity becomes smaller in microservice architecture, services reside
on distributed hosts and containers, their calling process could
be synchronous as direct calling or asynchronous via message
proxy or publish/subscribe component [7]. Therefore, the propa-
gation of anomaly is not bounded by the calling dependency any
more. Figure 1 presents an example where a web application in-
vokes services running on different hosts and containers through
the API gateway. Even anomaly occurs in a microservice that is
not been called, it may affect other services in the same host or
container, and cause the anomaly propagation. Therefore, even if
we know the calling dependency of services, we lack a more dy-
namic diagnosis mechanism due to the existence of indirect fault
propagation.

Multiple types of metric. Algorithm based on single metric
may fail to identify the root cause, as single type of metric is not
enough to characterize the anomalies occur in diverse services
[8]. In addition, the asynchronous calling procedures makes met-
rics often unable to directly reflect the propagation dependency.
When the application is experiencing anomalies, although mod-
ern architectures provide us a wide variety of healthy metrics,
we still lack an automated mechanism that selects them appro-
priately according to the characteristics of involved services.

Consequently, to tackle the anomalies in microservice-based
web applications, operation team has to maintain deep domain
knowledge of the system. It is extremely challenging to keep up-
dating such knowledge, particularly when the architecture evol-
ves quickly through rapid refactoring of new features.

To address these challenges, we aim to develop an automated
diagnostic tool with several capabilities: first, it should be able to
generate anomaly topology automatically without prior knowl-
edge; second, it should be able to characterize services and ano-
malies automatically based on multiple types of metric; third, it
should be able to select appropriate metric to conduct root cause

Figure 1: A simple example of anomaly propagation in
web application built on microservices. The hexagon repr-
esents a service. Red color stands for the root cause, yell-
ow for affected service, arrow for synchronous (solid) or
asynchronous request (dashed).

WWW’20, Apr 2020, Taipei X. XX et al.

2

detection automatically. We present our solution - AutoMAP. In
summary, our contributions include:

1. We propose the concept of Anomaly Behavior Graph. This
graph model depicts the correlation between services when the
anomaly propagates. In order to reveal the nature of service and
anomaly pattern, we define the addition (+) and subtraction (-)
operations on behavior graph, and leverage them to generate the
profile of service and anomaly.

2. We design a similarity function on anomaly profile, and use
it to search the most relevant metric in historical records. An
automated metric-weight learning approach and an investigation
algorithm are proposed. The algorithm leverages forward, self
and backward random walk to identify root cause heuristically.

3. We validate AutoMAP in simulated and real production en-
vironment and compare it with the selected baseline approaches.
Experimental results show that AutoMAP provides over 90%
precision, significantly outperforming other methods. The res-
ults also verify that AutoMAP can optimize itself effectively and
efficiently.

2 RELATED WORK
In this section, we review the related work on root cause detec-
tion in distributed systems. Various research efforts have been
devoted to similar issues such as network traffic analysis [9],
web application anomaly detection [10] and debugging [11], ser-
vice failure detection [28] and prediction [29]. For example, Ger-
tler et al. proposed to detect anomalies by examining monitoring
data of individual component with a thresholding scheme [6].
Wang et al. proposed a bottleneck detection method that corre-
lates throughput and load with a tiered network system model at
fine granularity [7]. However, we find it is difficult to obtain a
reliable threshold for various situations in practice, especially in
dynamic microservice architecture.

Machine learning techniques, such as decision tree [12], clus-
tering [13, 14] and Markov prediction model [15], have also been
leveraged to identify abnormal nodes in networks. There are also
efforts focusing on knowledge discovering based on performance
metrics [13] and network topology [14]. To this end, a central
master node is commonly required to collect records from dis-
tributed monitoring facilities [16]. These records include log files,
audit events, network traffic statistics, and even sensory meas-
urements in physical systems. Most of these solutions need pre-
defined system topology [17] or service calling relationship [16].
As a result, further efforts explore this issue by automatically
discovering system topology [18], and then identify anomalies in
a heuristic way [19]. For instance, a structure called “invariant
graph” [20] is proposed to depict the anomaly propagation to-
pology. Although, links in static network structure represent a
part of the causal relations, the actual relations in microservice
architecture are more dynamic.

Kim et al. [23] implements a real-time metric collection system
and anomaly detection framework, named MonitorRank. It pro-
vides an unsupervised and heuristic way to diagnose root cause
services based on random walking strategy. However, Monitor-
Rank also requires preliminary domain knowledge and service
calling topology of the target system. For microservice-based

systems, obtaining the ground truth calling topology is of high
cost, as it is constantly changing. In view of this, CloudRanger
[30] and Microscope [31] are proposed to reconstruct the topol-
ogy based on the statistical characteristics on metrics, which can
diagnose system anomaly without obtaining a ground truth call-
ing topology.

Another key issue is how to choose appropriate type of metric
in diagnosis. Some works discussed how to deal with multiple
types of metrics [21]. For example, NetMedic is proposed to gen-
erate dependency relationship graph for small enterprise net-
works using fault propagation templates [8]. Similarly, Sherlock
discovers fault-related inference graphs using multi-level metrics
from network monitoring data and system logs [22]. Large-scale
microservice architecture generates high-dimension dependency
relationships that poses greater challenges to find the actual root
causes heuristically and design an adaptive mechanism to find
the best metric combination to reflect the features of different
microservice. To solve this issue, MS-Rank [32] framework pre-
liminarily proposes a self-adaptive mechanism for dynamically
implied-metrics generation and metric-scheme selection based
on historical diagnostic records.

However, we notice that existing algorithms do not analyze
and utilize the historical features of services and anomalies. In
enterprise-level operation and maintenance, two aspects of kno-
wledge play an important role in anomaly diagnosis: experience
of historical diagnosis and the characteristics of different ser-
vices. Therefore, targeting these challenges, the main differences
and advantages of this study include: (i) the concept of behavior
graph and its calculation method to reflect the statistical charac-
teristics of services and anomalies; (ii) quantification of ser-
vice/anomaly and similarity function; (iii) automatic metric se-
lection mechanism for specific anomaly scenario; (iv) real-world
verification on enterprise cloud system.

3 PROBLEM STATEMENT

3.1 Problem Definition
To generalize the problem, we treat microservice-based web app-
lication as a “grey box”, which means we only have several types
of monitoring metrics, without knowing any system knowledge,
such as calling topology and service functionalities.

Table 1: Notations

Notation Definitions

𝐺(𝑉 , 𝐸, 𝑊) Metric-weighted correlation graph with weight matrix 𝑊

𝑣𝑓𝑒, 𝒗𝑟𝑐 Front-end service; set of root cause services

𝐼𝑖, 𝑂𝑖 Set of in and out-neighbor nodes of node 𝑣𝑖

𝑛, 𝑚, ℓ Number of services, types of metrics; incident period length

𝕄, 𝐌 𝕄𝑚 = [𝐌𝑚]𝑛×ℓ, No.𝑚 metric measurement

‖𝑥‖0 Number of non-zero coordinates of 𝑥
ℂ, 𝐂, 𝑐𝑖,𝑗,𝑘 ℂ𝑘 = [𝐂𝑘]𝑛×𝑛, 𝑐𝑖,𝑗,𝑘 = [𝐂𝑘]𝑖,𝑗, correlation of 𝑣𝑖 to 𝑣𝑗 given 𝕄𝑘

𝐏, 𝑝𝑖,𝑗 [𝐏]𝑖,𝑗 = 𝑝𝑖,𝑗, transition probability from service 𝑣𝑖 to 𝑣𝑗

𝛼 Significance in conditional independence tests

𝜌 The strength parameter of backward transition

AutoMAP: Diagnose Your Microservice-based Web Applications Automatically WWW’20, Apr 2020, Taipei

 3

We formalized the problem. Suppose that an anomaly is obse-
rved in a front-end service 𝑣𝑓𝑒 ∈ 𝑉 during the incident period ℓ.
Here, 𝑛 = |𝑉 | and 𝑚 are the number of services and types of
metrics, respectively. We denote the raw metrics as 𝕄, whe-
re |𝕄| = 𝑚, 𝕄𝑚 = [𝐌𝑚]𝑛×ℓ and 𝐌𝑚 records the measurements
of No.𝑚 metric for 𝑛 services during ℓ. Our target is to identify a
set of services 𝒗𝒓𝒄 ⊂ 𝑉 that causes the observed anomaly in 𝑣𝑓𝑒.
Table 1 summarizes the major notations used in this study.

3.2 AutoMAP
To solve this issue, we develop a novel tool, named AutoMAP
(Automated Microservice-based Web Applications Patrol), which
enables dynamic generation of service correlations and autom-
ated diagnosis leveraging multiple types of metrics. Fig. 2 depicts
its framework.

Figure 2: The framework of AutoMAP

AutoMAP collects the details of each microservice request and
status of containers/hosts based on an API proxy. The diagnosis
starts if an anomaly is detected in front-end service. It decom-
poses the root cause detection task into several iterative phases:
P1. Select a sampling interval parameter on raw metrics;
P2. Construct the anomaly behavior graph using multiple

types of metrics;
P3. Extract the profile of anomaly using “+” and “−” opera-

tions on behavior graph;
P4. Conduct heuristic root cause detection algorithm follow-

ing the behavior graph;
P5. Verify the result and calculate the precision;
P6. Update the metric-weight matrix. Repeat P1 to P6 if a

new anomaly occurs.
It is worth mentioning that AutoMAP is an automated tool

which does not require any system knowledge. Even non-expert
users can use it to locate the root cause. For SRE, AutoMAP can
provide them a reference diagnosis result to significantly im-
prove the efficiency of system maintenance. We discuss the ma-
jor tasks of AutoMAP in details in the following sections.

4 METRICS

4.1 Testbed System and Raw Metrics
The testbed system of our tool is a top-ranked cloud platform
(due to the double-blind review requirement, we do not mention
its name in this version). This platform provides hundreds of cat-
egories of microservices. Massive web applications are built on
them, running on millions of machines in multiple cloud centers
around the world, serving over a million users and produce bil-
lion-level API requests every single day.

Table 2: Metrics

Metric Notation Definition

Latency 𝐌𝑙𝑎𝑡 Average latency of service calling

Throughput 𝐌𝑡ℎ𝑟 Average request times per unit time of service

Power 𝐌𝑐𝑜𝑛 Congestion function, 𝑝𝑜𝑤𝑒𝑟 = 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
𝑙𝑎𝑡𝑒𝑛𝑐𝑦 [24]

CPU 𝐌𝑐𝑝𝑢 CPU-usage of the located host

I/O 𝐌𝑖𝑜 I/O count of the located host

Memory 𝐌𝑚𝑒𝑚 Memory consumption % of the located host

Availability 𝐌𝑎𝑣𝑙 Service available %

In this study, we consider 7 types of performance metrics: la-
tency, throughput, power, CPU, I/O, memory and availability. We
use 𝕄 = 𝐌{𝑙𝑎𝑡,𝑡ℎ𝑟,𝑐𝑜𝑛,𝑐𝑝𝑢,𝑖𝑜,𝑚𝑒𝑚,𝑎𝑣𝑙} to denote the records of
these metrics (See Table II). Note that these metrics are chosen
because they are typical and easy-to-obtain from service API re-
quest records. Users can also define and choose any other metric
to characterize particular types of anomalies.

4.2 Sampling Interval
AutoMAP starts from choosing an appropriate sampling interval
on raw metrics. This parameter directly affects the accuracy of
the following diagnosis. If we sample the metric too frequently,
every second for example, it may produce redundant fluctuations
that do not reflect the actual calling dependency. On the contra-
ry, if we aggregate original sampling using a larger interval,
many effective metric changes will be lost, making it fails to cat-
ch the propagation topology. Given this fact, we propose a sam-
pling interval selection algorithm for microservice architecture.
This parameter depends on the characteristics of system. A rea-
sonable selection is the statistical average calling intervals for all
services. In other words, a service is called once on average dur-
ing this interval. Thus, we compute it using a frequency-weigh-
ted average of request interval, that is:

∑ 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑙𝑙𝑖𝑛𝑔 𝑣𝑖
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑐𝑎𝑙𝑙𝑖𝑛𝑔

𝑛
𝑖=1

∗ (𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 𝑐𝑎𝑙𝑙𝑖𝑛𝑔 𝑣𝑖),

where 𝑣𝑖 represents No.𝑖 service of 𝑉 . In real production enviro-
nment, the propagation path is much more complicated as the
anomaly usually affects numerous services directly or indirectly.
In most situations, non-expert lacks a priori knowledge about
the functionalities of services and the calling relationships betw-
een them. Therefore, our work aims to build an automated app-
roach to model the correlations between services using metrics,
to help web application developers and site engineers analyze
the anomaly.

WWW’20, Apr 2020, Taipei X. XX et al.

4

5 BEHAVIOR GRAPH CONSTRUCTION AND
COMPUTATION

5.1 Behavior Graph Construction
As the calling dependencies in microservice architecture are co-
mplex and dynamic, instead of spending a lot of time to analyze
the service-calling topology of a web application, experienced
SRE usually chooses to troubleshoot based on intuition about the
type of anomaly. More specific, they select the most suspected
service based on observation on its metrics and compare to hist-
orical experiences. For example, when many I/O services lose
their responses, a problem may occur in database-related serv-
ices. If the availability of a computational service decreases, its
container maybe unstable and we may further trace to the hard-
ware deficiency of host machine. It can be seen that, the intuitive
knowledge of SRE mainly includes two aspects: experiences from
historical diagnosis and the characteristics of various services.
This section proposes a model named Anomaly Behavior Graph
to extract correlations from metrics and help us discover similar
anomalies in records. It is defined formally as follows:

Anomaly Behavior Graph. 𝐺(𝑉 , 𝐸, 𝑊) is an anomaly be-
havior graph describing the impact correlations between vertices
(i.e. services) in 𝑉 , where 𝐸 is the edge set and 𝑊 is the weight
matrix for edges. Given any service pair 𝑣𝑖 and 𝑣𝑗, 𝑊𝑖,𝑗,𝑘 ∈ [0,1],
∑ 𝑊𝑖,𝑗,𝑘

𝑚
𝑘=1 = 1. We set edge 𝑒𝑖𝑗 ∈ 𝐸 (from 𝑣𝑖 to 𝑣𝑗) to 1 when

∥[𝑊]𝑖,𝑗∥0 > 0 (here ‖𝑥‖0 calculates the number of non-zero coor-
dinates of 𝑥). An edge 𝑣𝑖 → 𝑣𝑗 with a weight 𝑊𝑖,𝑗,𝑘 > 0 indic-
ates that 𝑣𝑖 is impacted by 𝑣𝑗 given 𝐌𝑘 with a confidence 𝑊𝑖,𝑗,𝑘.

In order to obtain a behavior graph, we need to start from a
complete, undirected and fully-weighted graph, gradually rem-
ove the weight of edge and orient the directions of edges using
conditional independence test. This process consists of four steps:

Step 1. Generate a complete, undirected and fully weighted
graph 𝐺(𝑉 , 𝐸, 𝑊), where 𝑊𝑖,𝑗,𝑘 = 1 for ∀𝑖, 𝑗 ∈ [1, 𝑛]
and ∀𝐌𝑘, 𝑘 ∈ [1, 𝑚];

Step 2. For each type of metric 𝐌𝑘, test conditional indep-
endence of any pairs 𝑣𝑖, 𝑣𝑗. Set 𝑊𝑖,𝑗,𝑘 = 0 if condit-
ional independence between 𝑣𝑖 and 𝑣𝑗 is accepted;

Step 3. Remove edge 𝑒𝑖,𝑗 if 𝑊𝑖,𝑗,𝑘 = 0 for ∀𝑘 ∈ [1, 𝑚]. Set
𝑊𝑖,𝑗,𝑘 ← 𝑊𝑖,𝑗,𝑘/||𝑊𝑖,𝑗||0;

Step 4. Orient v-structures and the remaining edges in 𝐺.
For the sake of clarity, we summarize this process in Algori-

thm 1. The result of this algorithm is a weighted-CPDAG (comp-
leted partially directed acyclic graph) describing the correlations
between services 𝑉 characterized by 𝕄. In Step 2 and 3, we test
conditional independence given a significance 𝛼, for any service-
pair recursively. Particularly, we say 𝑣𝑖 and 𝑣𝑗 are conditionally
independent given 𝑣𝑘 if 𝑃(𝑣𝑖 ∩ 𝑣𝑗∣𝑣𝑘) = 𝑃 (𝑣𝑖|𝑣𝑘)𝑃(𝑣𝑗∣𝑣𝑘) when
𝑃 (𝑣𝑘) > 0. It indicates that the occurrence of 𝑣𝑖 and the occur-
rence of 𝑣𝑗 are independent events in their conditional probabil-
ity distribution given 𝑣𝑘. If and only if 𝑣𝑖, 𝑣𝑗 are conditionally
independent given any subset of 𝑆, we call 𝑣𝑖, 𝑣𝑗 are separated
by 𝑆. Let 𝑆(𝑣𝑖, 𝑣𝑗, 𝑘) denote the conditional set that separates 𝑣𝑖
and 𝑣𝑗 given 𝐌𝑘, 𝑎𝑑𝑗(𝐺, 𝑣𝑖, 𝑘) be the set of nodes connected to
𝑣𝑖 in 𝐺 (in other words, any 𝑣𝑗 satisfying 𝑊𝑖,𝑗,𝑘 = 1), we test all
pairs (𝑣𝑖, 𝑣𝑗) for conditional independent using 𝐌𝑘, given any

single node in 𝑎𝑑𝑗(𝐺, 𝑣𝑖, 𝑘)\{𝑣𝑗} or 𝑎𝑑𝑗(𝐺, 𝑣𝑖, 𝑘)\{𝑣𝑖}. If there
exists any service 𝑣𝑞 let (𝑣𝑖, 𝑣𝑗) conditionally independent, we
set 𝑊𝑖,𝑗,𝑘 = 0 (i.e. remove the edge) and insert 𝑣𝑞 into
𝑆(𝑣𝑖, 𝑣𝑗, 𝑘) and 𝑆(𝑣𝑗, 𝑣𝑖, 𝑘). Once all one-step adjacent pairs and
all types of metrics have been tested, a new graph 𝐺 is generated
and we continue in this way by increasing the size of the condi-
tioning set. It stops when all neighborhoods in 𝐺 are smaller
than the size of the conditional set. In this process, 𝛼 ∈ (0,1) is
the threshold for conditional independence test. When 𝛼 is ap-
proaching to 0, the conditional independence hypothesis is easi-
er to be accepted, thus, more edges will be removed from 𝐺. On
the contrary, if we set a larger 𝛼, more edges will be remained.

Algorithm 1. Anomaly Behavior Graph Construction

Input. Metrics 𝕄, Vertex 𝑉 , separation function 𝑆, significance 𝛼
01 new 𝐺(𝑉 , 𝐸, 𝑊),	𝑙𝑒𝑣𝑒𝑙 = 0
02 for ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝑉 if ∣𝑎𝑑𝑗(𝐺, 𝑣𝑖, 𝑘)\{𝑣𝑗}| ≥ 𝑙𝑒𝑣𝑒𝑙
03 for ∀𝒗𝒎 ⊂ 𝑎𝑑𝑗(𝐺, 𝑣𝑖) with |𝑚| = 𝑙𝑒𝑣𝑒𝑙
04 for ∀𝐌𝑘 ∈ 𝕄, 𝑘 ∈ [1, 𝑚]
05 if 𝑣𝑖, 𝑣𝑗 conditionally independent given 𝒗𝒎, 𝛼, 𝐌𝑘
06 set 𝑊𝑖,𝑗,𝑘 = 0
07 insert 𝒗𝒎 into 𝑆(𝑣𝑖, 𝑣𝑗, 𝑘) and 𝑆(𝑣𝑗, 𝑣𝑖, 𝑘)
08 end if
09 end for
10 end for
11 	𝑙𝑒𝑣𝑒𝑙 ← 𝑙𝑒𝑣𝑒𝑙 + 1
12 end for
13 for any 𝑖, 𝑗, 𝑘 let 𝑊𝑖,𝑗,𝑘 ← 𝑊𝑖,𝑗,𝑘/||𝑊𝑖,𝑗||0
14 for ∀𝑣𝑖 − 𝑣𝑗 − 𝑣𝑙 ∈ 𝐺
15 if ∃𝑘 ∈ [1, 𝑚] 𝑠. 𝑡. 𝑣𝑗 ∉ 𝑆(𝑣𝑖, 𝑣𝑙, 𝑘) ∧ 𝑣𝑗 ∉ 𝑆(𝑣𝑙, 𝑣𝑖, 𝑘)
16 orient 𝑣𝑖 − 𝑣𝑗 − 𝑣𝑙 into 𝑣𝑖 → 𝑣𝑗 ← 𝑣𝑙
17 end if
18 end for
19 repeatedly applying Rule 1-3
Output. Reverse any edge direction in 𝐺

Step 4 orients undirected skeleton into behavior graph. To do
this, we search the graph for triple (𝑣𝑖, 𝑣𝑗, 𝑣𝑙) that satisfies 𝑒𝑖,𝑗 =
1, 𝑒𝑗,𝑙 = 1 and 𝑒𝑖,𝑙 = 0. All such triples will be oriented as 𝑣𝑖 →
𝑣𝑗 ← 𝑣𝑙 (called v-structure) if 𝑣𝑗 is neither in 𝑆(𝑣𝑖, 𝑣𝑙, 𝑘) nor in
𝑆(𝑣𝑙, 𝑣𝑖, 𝑘) for ∀𝑘 ∈ [1, 𝑚]. After this, for any remaining undi-
rected edge, we repeatedly apply Rule 1-3 to check whether any
of its two possible directions introduces a new v-structure or di-
rected cycle:

Rule 1. Orient edge 𝑣𝑗 − 𝑣𝑙 as 𝑣𝑗 → 𝑣𝑙, whenever there is a
directed edge 𝑣𝑖 → 𝑣𝑗 such that 𝑣𝑖 and 𝑣𝑙 are not ad-
jacent (otherwise, a new v-structure will be created);

Rule 2. Orient edge 𝑣𝑖 − 𝑣𝑗 as 𝑣𝑖 → 𝑣𝑗, whenever there is a
chain 𝑣𝑖 → 𝑣𝑙 → 𝑣𝑗 (otherwise, a directed cycle will
be created);

Rule 3. Orient edge 𝑣𝑖 − 𝑣𝑗 as 𝑣𝑖 → 𝑣𝑗, whenever there exist
two chains 𝑣𝑖 − 𝑣𝑝 → 𝑣𝑗 and 𝑣𝑖 − 𝑣𝑙 → 𝑣𝑗 such that
𝑣𝑝 and 𝑣𝑙 are not adjacent (otherwise, a new v-struc-
ture or a directed cycle will be created).

AutoMAP: Diagnose Your Microservice-based Web Applications Automatically WWW’20, Apr 2020, Taipei

 5

Algorithm Complexity. The complexity of Algorithm 1 is
bounded by the degree of 𝐺. Let 𝑑 be the maximal degree of any
vertex in 𝐺. In the worst case, the number of conditional inde-
pendence tests is bounded by 𝑚 ∗ 2(𝑛

𝑑) ∑ (𝑛−1
𝑖)𝑑

𝑖=0 . The computa-
tional complexity increases exponentially with 𝑚 and 𝑑. The pr-
ecision and efficiency of this algorithm can be significantly impr-
oved by taking into account domain knowledge. More specifi-
cally, we can remove edge or specify its direction based on the
known service-calling dependencies.

(a) Raw data

(b) Behavior graph Construction

(c) Weight calculation

Figure 3: Example of behavior graph construction

Example. Fig.3 elaborates the details of constructing a demo
behavior graph consisting of four microservices using 𝐌𝑙𝑎𝑡. This
incident is classified as “performance downgrade” by SRE team.
Cloud application users report that Web UI and command-line
interface (CLI) are slow in response. To start the algorithm, we
set 𝑙𝑒𝑣𝑒𝑙 = 0 in G1 and test all the service pairs for their condi-
tional independence. As we find 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 ⊥ 𝐸𝑣𝑒𝑛𝑡|{∅} ,
𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 ⊥ 𝐴𝐼 |{∅}. Therefore, we remove edge 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑-
𝐸𝑣𝑒𝑛𝑡 and 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑-𝐴𝐼 from G1. In G2, we test the inde-
pendence when 𝑙𝑒𝑣𝑒𝑙 = 1 and find 𝐸𝑣𝑒𝑛𝑡 ⊥ 𝐴𝐼|{𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑}.
That is, 𝐸𝑣𝑒𝑛𝑡 is conditionally independent with 𝐴𝐼 given
𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑. Therefore, we insert 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 into 𝑆(𝐸𝑣𝑒𝑛𝑡, 𝐴𝐼)
and remove the edge 𝐸𝑣𝑒𝑛𝑡-𝐴𝐼 . In G3, we find 𝐶𝑜𝑛𝑠𝑜𝑙𝑒 is con-
ditionally independent with 𝐴𝐼 given {𝐸𝑣𝑒𝑛𝑡, 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑} and
remove 𝐶𝑜𝑛𝑠𝑜𝑙𝑒-𝐴𝐼 . The iteration stops when 𝑙𝑒𝑣𝑒𝑙 = 3 because
∣𝑎𝑑𝑗(𝐺, 𝑣𝑖)\{𝑣𝑗}| < 𝑙𝑒𝑣𝑒𝑙, ∀𝑣𝑖 ∈ 𝐺. After this, we obtain a skel-
eton “𝐸𝑣𝑒𝑛𝑡-𝐶𝑜𝑛𝑠𝑜𝑙𝑒-𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑”. In the last step, with the
help of connected v-structures, we orient the skeleton by repeat-
edly rule-checking for any of the edge directions. Finally, we ob-
tain the part of behavior graph using 𝐌𝑙𝑎𝑡 : 𝐸𝑣𝑒𝑛𝑡 →
𝐶𝑜𝑛𝑠𝑜𝑙𝑒 → 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑. Likewise, we find 𝐸𝑣𝑒𝑛𝑡 → 𝐶𝑜𝑛𝑠𝑜𝑙𝑒
using 𝐌𝑖𝑜 , 𝐌𝑚𝑒𝑚 and 𝐌𝑎𝑣𝑙 . Edge 𝐸𝑣𝑒𝑛𝑡 → 𝐶𝑜𝑛𝑠𝑜𝑙𝑒 →

𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 is detected using 𝐌𝑎𝑣𝑙. Therefore, according to the
weight calculation table shown in Fig. 3, the weight of 𝐸𝑣𝑒𝑛𝑡 →
𝐶𝑜𝑛𝑠𝑜𝑙𝑒 is (1

4 , 0, 0, 0, 1
4 , 1

4 , 1
4) , and the weight of 𝐶𝑜𝑛𝑠𝑜𝑙𝑒 →

𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 is (1
2 , 0, 0, 0, 0, 0, 1

2).

5.2 Addition Operation and Service Profile
In this section, we show how AutoMAP analyzes the type of ser-
vices using behavior graph automatically. Recall that our cloud
platform provides over 200 categories of microservices, without
any prior knowledge, it is a challenging task to classify various
services according to their characteristics. A straight-forward
way is using multiple historical observations of metrics in norm-
al status. To this end, we generate dozens of behavior graphs
using normal metrics, and aggregate them to show the characte-
ristics of service. Thus, we define the addition operation on beh-
avior graph:

Addition operation. Addition is a binary operation on beha-
vior graphs, denoted as “+”. Let 𝐺(𝑉 , 𝐸, 𝑊) = 𝐺𝑎(𝑉𝑎, 𝐸𝑎, 𝑊𝑎)
+𝐺𝑏(𝑉𝑏, 𝐸𝑏, 𝑊𝑏), where 𝑉 = 𝑉𝑎 ∪ 𝑉𝑏, 𝐸 = 𝐸𝑎 ∪ 𝐸𝑏 and

[𝑊]𝑖,𝑗,𝑘 = ∥[𝑊𝑎]𝑖,𝑗∥0∗[𝑊𝑎]𝑖,𝑗,𝑘+∥[𝑊𝑏]𝑖,𝑗∥0∗[𝑊𝑏]𝑖,𝑗,𝑘
∥[𝑊𝑎]𝑖,𝑗∥0+∥[𝑊𝑏]𝑖,𝑗∥0

, 𝑖, 𝑗 ∈ [1, 𝑛], 𝑘 ∈ [1, 𝑚].

Given a set of time period 𝒘 = {𝑤1, 𝑤2, ⋯ , 𝑤𝑘}, and a set of be-
havior graph {𝐺1, 𝐺2, ⋯ , 𝐺𝑘} generated using metrics collected
during 𝒘, let 𝔾 = ∑ 𝐺𝑖

𝑘
𝑖=1 for ∀𝑣𝑖 ∈ 𝑉 . We call the average of

all the weight vectors of edges from 𝑣𝑖 to its out-neighbors 𝑂𝑖 as
the profile of 𝑣𝑖. Thus, 𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝑣𝑖) = 𝟏

|𝑂𝑖| ∑ 𝑊𝑖,𝑙𝑙∈𝑂𝑖
. This vec-

tor indicates the feature of 𝑣𝑖’s impact made on others.
In Fig. 4, we present an example to show the details of service

profile generation. In this example, we construct several normal
behavior graphs including four services, and aggregate them by
addition operation. Specifically, in Fig. 4a, we examine all the
directed edge from 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 to its neighbors. By averaging the
weight of edges 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 → {𝐶𝑜𝑛𝑠𝑜𝑙𝑒, 𝐸𝑣𝑒𝑛𝑡, 𝐴𝐼}, we obtain
the service profile vector of 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑, i.e. (0.54, 0, 0.11, 0, 0.08,
0.08, 0.19). It indicates that the impact of 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 on other
services is dominated by latency (𝐌𝑙𝑎𝑡). In other words, latency
is the most significant metric that should be used for investiga-
tion when it is experiencing anomalies. We call the type of met-
ric with highest weight in profile vector as the dominant metric.
Similarly, we find 𝐌𝑐𝑜𝑛 and 𝐌𝑙𝑎𝑡 are the dominant metrics for
service 𝐸𝑣𝑒𝑛𝑡 and 𝐶𝑜𝑛𝑠𝑜𝑙𝑒, respectively (See Fig. 4b and Fig. 4c
for more details).

Furthermore, we classify services in our testbed system into
five typical categories according to their dominant metrics: Rep-
resentational, Computing, Networking, Storage, Environmental
(denoted as R/C/N/S/E in the figures for short). For example, for
representational services, we are generally concerned about their
delays. In our cloud platform, application Dashboard and Cons-
ole are the most common representational services. Similarly,
the performance of storage services is mainly manifested by
their I/O. Table III summarizes five categories of typical service
profile and lists their representative services in our cloud plat-
form. Note that the purpose of this classification is to facilitate
the automated diagnosis of anomalies. Minor inconsistencies be-
tween the classification result and actual service functionalities
will not affect the effectiveness of AutoMAP.

WWW’20, Apr 2020, Taipei X. XX et al.

6

Figure 4: An example of service profile generation

TABLE 3: Typical categories of service profile

Service Profile Dominant Metric Typical Services

Representational 𝐌{𝑙𝑎𝑡,𝑎𝑣𝑙} Dashboard, Console

Computing 𝐌{𝑡ℎ𝑟,𝑐𝑝𝑢} Spark, AI, NLP

Networking 𝐌𝑐𝑜𝑛 Message Hub, IoT center

Storage 𝐌𝑖𝑜 Cloudant, MongoDB, Hbase

Environmental 𝐌𝑚𝑒𝑚 Container, Docker, Kubernetes

5.3 Subtraction Operation and Anomaly Profile
As a matter of fact, in real-world incidents, only a small number
of services contribute to the anomaly propagation. Originally
constructed behavior graph may contain redundant services and
correlations due to a large part of service’s irrelevance with the
anomalies. Considering the fact that service profile only descri-
bes correlations in normal status, we remove these redundant
correlations from the behavior graph. This makes the behavior
graph more tailed to the description of anomalies. To do this, we
define another operation - subtraction, and the concept of ano-
maly profile, to characterize the feature of root anomalies.

Subtraction operation. Subtraction is a operation on beha-
vior graph, denoted as “−”. Let 𝐺(𝑉 , 𝐸, 𝑊) = 𝐺𝑎(𝑉𝑎, 𝐸𝑎, 𝑊𝑎) −
𝐺𝑏(𝑉𝑏, 𝐸𝑏, 𝑊𝑏), where 𝑉 = 𝑉𝑎 ∩ 𝑉𝑏, 𝐸 = 𝐸𝑎 ∩ 𝐸𝑏 and

[𝑊]𝑖,𝑗,𝑘 = {
0 𝑖𝑓 ∥[𝑊𝑎]𝑖,𝑗∥0 ∗ [𝑊𝑎]𝑖,𝑗,𝑘 < ∥[𝑊𝑏]𝑖,𝑗∥0 ∗ [𝑊𝑏]𝑖,𝑗,𝑘

∥[𝑊𝑎]𝑖,𝑗∥0∗[𝑊𝑎]𝑖,𝑗,𝑘−∥[𝑊𝑏]𝑖,𝑗∥0∗[𝑊𝑏]𝑖,𝑗,𝑘
∥[𝑊]𝑖,𝑗∥1∗(∥[𝑊𝑎]𝑖,𝑗∥0+∥[𝑊𝑏]𝑖,𝑗∥0) 𝑒𝑙𝑠𝑒

.

Given a time period set, which contains several time periods
𝒘 = {𝑤1, 𝑤2, ⋯ , 𝑤𝑘}, when the system is under normal status,
and a behavior graph 𝐺𝑎𝑏 obtained from an anomaly dataset, we
subtract behavior graphs generated on 𝒘 from 𝐺𝑎𝑏 . Hence,
𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝐺𝑎𝑏) = 𝐺𝑎𝑏 − ∑ 𝐺𝑖

𝑘
𝑖=1 , where 𝐺𝑖 is generated during

𝑤𝑖. We call the result as anomaly profile. It can better depict the
nature of anomaly, as the sharing elements of the normal corre-
lations from the anomaly behavior graph are removed.

Fig. 5 demonstrates an example of anomaly profile. In Fig. 5,
G1 is a normal behavior graph, where most of the services have

inter-correlations. The anomaly behavior graph (G2) has a lot of
sharing correlations compared to G1. We compute G2−G1 to
remove edges unrelated to the anomaly from G2 (indicated by
dashed arrow lines in G2). The solid red edges in G2 represent
the result of G2−G1, that is, abnormal correlations.

Figure 5: An example of behavior graph subtraction

6 AUTOMATED ROOT CAUSE DETECTION

6.1 Automated Metric Weight Learning
Traditionally, we choose latency to indicate the healthy condit-
ion of a short-term connection service, but it’s not effective for
long-term connection service monitoring. Load features can be
used to indicate the health condition of IO-intensive services, but
not suitable for computational-intensive services like AI and NLP.
This tells that single type of metric cannot be applied to charact-
erize the anomalies occurring in diverse services. In this section,
we discuss how to find the most effective metric (or a combina-
tion of several metrics) for the service-specific anomalies.

In AutoMAP, our basic idea of choosing appropriate diagnosis
metric is drawn from the way of manual troubleshooting by exp-
erienced SRE. That is, if the confirmed root cause in historical
incidents shows high correlation with a front-end service in ter-
ms of certain metric, in similar situations, the candidate root ca-
use service should also have high correlation using the same me-
tric. To this end, AutoMAP introduces a metric weight learning
mechanism based on profile similarity. We define the measure-
ment function for service correlation and result precision:

Service Correlation. If a behavior graph 𝐺(𝑉 , 𝐸, 𝑊) is gen-
erated from 𝕄, let ℂ be the multi-metric correlation matrix for
each service pair 𝑣𝑖, 𝑣𝑗 ∈ 𝑽 , where ℂ𝒌 = [𝐂𝒌]𝒏×𝒏 records the
correlation scores based on 𝕄𝒌. The correlation 𝑐𝑖,𝑗,𝑘 = [𝐂𝒌]𝒊,𝒋
scores the relevance of 𝑣𝑖 to 𝑣𝑗 in terms of 𝕄𝒌. It is defined as

𝑐𝑖,𝑗,𝑘 = [𝐂𝑘]𝑖,𝑗 = ∣
∑ ([𝐌𝑘]𝑖×𝑝−[𝐌𝑘]𝚤̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅)([𝐌𝑘]𝑗×𝑝−[𝐌𝑘]𝚥̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅)𝑤

𝑝=1

√∑ ([𝐌𝑘]𝑖×𝑝−[𝐌𝑘]𝚤̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅)
2𝑤

𝑝=1
√∑ ([𝐌𝑘]𝑗×𝑝−[𝐌𝑘]𝚥̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅)

2𝑤
𝑝=1

∣ .

We calculate the covariance of two metric series divided by
the product of their standard deviations, and use the absolute
value of the result as the score. This score measures the strength
of either positive or negative linear correlation between two ser-
vices. The value of 𝑐𝑖,𝑗,𝑘 is in [0,1]. 𝑐𝑖,𝑗,𝑘 = 1 implies completely
correlation, whereas 𝑐𝑖,𝑗,𝑘 = 0 means that there is no correlation
between them.

Result Precision. In order to quantify the confidence of met-
ric, we introduce a performance measurement to evaluate the
precision of result, denoted as 𝑃 (𝐺), where 𝐺 is the anomaly

AutoMAP: Diagnose Your Microservice-based Web Applications Automatically WWW’20, Apr 2020, Taipei

 7

behavior graph been used. The higher result precision indicates
that the algorithm can identify the root cause more accurately,
resulting in less wrong candidates to investigate. More speci-
fically, given an anomaly behavior graph 𝐺 and metrics 𝕄, let
𝑅𝑛×1 be the candidate results and 𝒗𝑟𝑐 be the root cause services,
the precision score is generally calculated as |𝑅 ∩ 𝒗𝑟𝑐| |𝒗𝑟𝑐|⁄ .

Fig. 6 demonstrates the procedure of automated metric weight
learning in AutoMAP. Given a target anomaly 𝐺𝐴, we search
top-𝑘 similar profiles to 𝐺𝐴 in historical records, and denote the
result as {𝐺1, 𝐺2, ⋯ , 𝐺𝑘}. Therefore, for 𝐺𝐴, the suggested met-
ric weight is calculated by the correlation score of root cause and
front-end service, considering from 𝕄1 to 𝕄𝑚 separately. Let 𝒘
be a 𝑚 × 1 matrix, where 𝑤𝑖 ∈ 𝒘 represents the confidence wei-
ght of 𝕄𝑘 when diagnosing 𝐺. ∑ 𝒘 = 1. Let 𝑣𝑟𝑐, 𝑣𝑓𝑒 denote the
root cause and front-end service, and 𝑐𝑟𝑐,𝑓𝑟,𝑘 be their correlation
score in terms of 𝕄𝑘. We calculate 1𝑘 ∑ 𝑃 (𝐺𝑗)

𝑘
𝑗=1 𝑐𝑟𝑐,𝑓𝑟,𝑖 as the

precision-weighted voting result from {𝐺1, 𝐺2, ⋯ , 𝐺𝑘} for 𝕄𝑘.
We use normalized value as suggested weight of 𝕄𝑘. Particularly,
if there is no historical anomaly profile, we use a default metric
𝐌𝑙𝑎𝑡 to start this process.

Figure 6: Metric weight learning in AutoMAP

6.2 Profile Similarity
In this section, we propose a similarity function to enable the
search for similar anomaly profiles. Traditional measurements
usually compare the distance of graph topology [26]. However,
in AutoMAP, we aim to measure the similarity between profiles
in terms of their root anomaly pattern. Therefore, this function
should be able to measure the similarity of profile’s topology,
service profile and edges in the same time. We define our simi-
larity function as follows:

Profile Similarity. Let 𝑠𝑖𝑚(𝐺𝑖, 𝐺𝑗) be the similarity score of
anomaly profile 𝐺𝑖, 𝐺𝑗, 𝑠𝑖𝑚(𝐺𝑖, 𝐺𝑗) ∈ [0,1]. If 𝑠𝑖𝑚(𝐺𝑖, 𝐺𝑗) = 1,
𝐺𝑖 and 𝐺𝑗 are identical. Otherwise, if 𝑠𝑖𝑚(𝐺𝑖, 𝐺𝑗) = 0, 𝐺𝑖 and
𝐺𝑗 share no common feature. The calculations of similarity bet-
ween 𝐺𝑖 and 𝐺𝑗 consist of four steps:

Step 1. Let 𝐺(𝑉 , 𝐸, 𝑊) be the sharing anomaly profile betw-
een 𝐺𝑖 and 𝐺𝑗, where 𝐺 = (𝐺𝑖 − 𝐺𝑗) + (𝐺𝑗 − 𝐺𝑖);

Step 2. Compute the vertex overlap score, 𝑠𝑖𝑚𝑉𝑂(𝐺𝑖, 𝐺𝑗) =
|𝑉 |

|𝑉𝑖|+∣𝑉𝑗∣ 𝑠𝑖𝑚𝑉 (𝐺𝑖 − 𝐺𝑗, 𝐺𝑗 − 𝐺𝑖), where 𝑠𝑖𝑚𝑉 is the
service profile distance between two graphs;

Step 3. Compute the edge overlap score, 𝑠𝑖𝑚𝐸𝑂(𝐺𝑖, 𝐺𝑗) =
|𝐸|

|𝐸𝑖|+∣𝐸𝑗∣ 𝑠𝑖𝑚𝐸(𝐺𝑖 − 𝐺𝑗, 𝐺𝑗 − 𝐺𝑖), where 𝑠𝑖𝑚𝐸 is the
edge weight distance between two graphs;

Step 4. Compute the overall similarity score, using the har-
monic mean of vertex and edge overlap score:

𝑠𝑖𝑚(𝐺𝑖, 𝐺𝑗) = 2 ∗ 𝑠𝑖𝑚𝑉𝑂(𝐺𝑖,𝐺𝑗)∗𝑠𝑖𝑚𝐸𝑂(𝐺𝑖,𝐺𝑗)
𝑠𝑖𝑚𝑉𝑂(𝐺𝑖,𝐺𝑗)+𝑠𝑖𝑚𝐸𝑂(𝐺𝑖,𝐺𝑗).

In Step 2, we convert services into corresponding profile cate-
gories according to their dominant metric:{(𝐌{𝑙𝑎𝑡,𝑎𝑣𝑙} → 𝐑),
(𝐌{𝑡ℎ𝑟,𝑐𝑝𝑢} → 𝐂), (𝐌𝑐𝑜𝑛 → 𝐍), (𝐌𝑖𝑜 → 𝐒), (𝐌𝑚𝑒𝑚 → 𝐄)} .
The vertex similarity 𝑠𝑖𝑚𝑉 (𝐺𝑖 − 𝐺𝑗, 𝐺𝑗 − 𝐺𝑖) is defined as the
number of same vertexes between 𝐺𝑖 − 𝐺𝑗 and 𝐺𝑗 − 𝐺𝑖. For in-
stance, if 𝐺1 is a correlation sequence R→C→S→E, 𝐺2 is a se-
quence C→C→S→N. We obtain the sharing anomaly profile by
intersecting 𝐺1 − 𝐺2 and 𝐺2 − 𝐺1 , which is C → S. Thus,
𝑠𝑖𝑚𝑉 (𝐺1 − 𝐺2, 𝐺2 − 𝐺1) = 2 . We have 𝑠𝑖𝑚𝑉𝑂(𝐺1, 𝐺2) =

|𝑉 |
|𝑉1|+|𝑉2| 𝑠𝑖𝑚𝑉 (𝐺1 − 𝐺2, 𝐺2 − 𝐺1) = 2

4+4 ∗ 2 = 1
2. In Step 3, we define

𝑠𝑖𝑚𝐸(𝐺1 − 𝐺2, 𝐺2 − 𝐺1) = 𝑑𝑖𝑠𝑡(𝑊𝐺1−Share, 𝑊𝐺2−𝑆ℎ𝑎𝑟𝑒) , where
𝑊𝐺1−𝑆ℎ𝑎𝑟𝑒 and 𝑊𝐺2−𝑆ℎ𝑎𝑟𝑒 represent the weight matrix of sharing
anomaly profile in 𝐺1 and 𝐺2 . Using the same example,
𝑊𝐺1−𝑆ℎ𝑎𝑟𝑒 and 𝑊𝐺2−𝑆ℎ𝑎𝑟𝑒 are the weight vectors of edge C→S in
𝐺1 and 𝐺2, respectively. We calculate 𝑑𝑖𝑠𝑡(𝑊𝐺1−Share, 𝑊𝐺2−𝑆ℎ𝑎𝑟𝑒)
using Euclidean distance of vectors.

6.3 Root Cause Detection
Fig. 7 shows a constructed behavior graph (part) using the same
incident shown in Fig. 3 and Fig. 4. Note that most user-domain
APIs and normal services are removed from this example due to
limited space. In the graph, we see most of the abnormal services
are connected, which means they probably participate in the
propagation. We notice that some of them (i.e. S1, S12 and S27) are
not connected with any other services. Besides, although (S3, S19)
and (S4, S11, S23, S25) are inter-connected, they are isolated from
the front-end service - S18, so they will not be taken into account
in root cause detection. We are curious about it and seek advice
to SRE. They found that these services belong to HTML5-based
WebSocket server and NLP module. They usually have very long
connections and their metrics make no sense in this anomaly. In
other words, they have no correlation with other abnormal ser-
vices. Hence, some irrelevant services can be removed from con-
sideration in behavior graph construction phase.

Our report indicates that the root cause of this incident is that
several event components run out of memory. It then propagates
in the infrastructure and slow down the console, finally freezes
the dashboard. Starting from S18, we observe that a service chain
“18→13→6” represents the causal correlations “R→C→E”.
However, if we strictly follow the directions in behavior graph,
only a small number of services can be confirmed (marked using
bold green line in Fig. 7), while most of other services are out of
the scope of investigation.

The feature of anomaly will change as the hierarchical service
calling and propagation. Thus, it is inaccurate to directly use ser-
vice correlation score to traverse for the root cause (please refer

WWW’20, Apr 2020, Taipei X. XX et al.

8

to our experimental results for TBAC [27] - a typical algorithm
based on hierarchical service correlation). In real production sys-
tems, large amount and highly-diverse microservices make the
diagnosis extremely challenging. Without any automated tools,
SRE team spend 3 hours on average to identify the root cause for
each incident.

Figure 7: Part of the constructed behavior graph for a sam-
ple incident

6.4 Heuristic Random Walk Algorithm
AutoMAP employs a dynamic and heuristic algorithm to identify
the root cause. It simulates our operations in traditional trouble-
shooting. More specifically, we start from the front-end service,
follow the service-calling topology and gradually investigate
each service based on its metric correlation to the anomaly. A
node that is targeted by more investigation paths is more likely
to be the root cause. Based on this intuitive observation, we pro-
pose a random walk algorithm with three types of transitions,
namely forward, self and backward transition.

Forward Transition. Basically, a random visitor walks from
service 𝑣𝑖 to 𝑣𝑗 with probability 𝑝𝑖,𝑗 if 𝑒𝑖𝑗 = 1. According to the
basic idea of root cause diagnosis, the visitor visits 𝑣𝑗 propor-
tionally to its correlation score to 𝑣𝑓𝑒, i.e. 𝑐𝑗,𝑓𝑒,𝑘. We also consi-
der the confidence of all types of metrics. Hence, the forward
transition probability matrix 𝐏 is defined as follows,

[𝐏]𝑖,𝑗 = 𝑝𝑖,𝑗 = ∑ 𝑤𝑘𝑊𝑖,𝑗,𝑘
𝑐𝑗,𝑓𝑒,𝑘

∑ 𝑐𝑙,𝑓𝑒,𝑘𝑙∈𝑂𝑖

𝑚

𝑘=1
, ∀𝑒𝑖𝑗 = 1,

where 𝑂𝑖 is set of out-neighbor nodes of node 𝑣𝑖 in 𝐺𝐴.
Self-Transition. The self-transition encourages the visitor to

stay longer on its currently-visiting service, in case that none of
its in- and out-neighbors show high correlation. Let 𝑝𝑖

𝑠 denote
the self-transition probability for the visiting node 𝑣𝑖. 𝑝𝑖

𝑠 is deter-
mined by the difference of 𝑝𝑖,𝑖 and the maximum transition pro-
bability of in- and out-neighbors of 𝑣𝑖. Hence, we have

 𝑝𝑖
𝑠 = max (0, 𝑝𝑖,𝑖 − max

𝑙∈𝐼𝑖∪𝑂𝑖
𝑝𝑖,𝑙) ,

where 𝐼𝑖 is set of in-neighbor nodes of node 𝑣𝑖 in 𝐺𝐴.
Backward Transition. Another case is that when the visitor

is visiting a particular service with low correlation score, it may
find no way to leave if all its out-neighbor services are of low
correlation to the given anomaly. Hence, we design the backw-
ard transition to resolve this issue, making the random walk

more dynamic. Specifically, let 𝑝𝑖,𝑗
𝑏 be the backward transition

probability from 𝑣𝑖 to 𝑣𝑗 ∈ 𝐼𝑖 in 𝐺𝐴, it is defined as follows,

 𝑝𝑖,𝑗
𝑏 = 𝜌

𝑝𝑖,𝑗

∑ 𝑝𝑖,𝑙𝑙∈𝐼𝑖

 ,

where 𝜌 ∈ [0, 1) is a strength parameter. 𝜌 controls the degree of
faithfulness of the random walk path to the original edge direct-
ions. If we set 𝜌 lower, the visitor is more constrained to the ori-
ginal direction. Conversely, if we set 𝜌 higher, it is more encour-
aged to walk backward when needed.

Random Walk. Given an anomaly behavior graph 𝐺𝐴, the
random walk algorithm starts from 𝑣𝑓𝑒, calculates the probability
of forward, backward and self-transitions, and randomly select
one of them. Services are visited in sequence by the visitor’s ran-
domly choosing the next target among its currently vising node
and its neighbors. We record how many times of each service
being visited and output the list descending as the result. Note
that we conduct the random walk based on original behavior gr-
aph 𝐺𝐴 instead of its anomaly profile (i.e. remove normal corre-
lations from 𝐺𝐴). It increases the probability of detecting more
candidates. We summarize this process in Algorithm 2.

Algorithm 2. Root Cause Detection Algorithm

Input. 𝐺𝐴, 𝑣𝑓𝑒.
01 new transition probability 𝐏 , result array 𝑅[𝑛], 𝑣𝑠 =𝑣𝑓𝑒 ,

𝑣𝑝=𝑣𝑓𝑒
02 repeat 𝑛 rounds
03 𝑣𝑝 ← 𝑣𝑠
04 for each 𝑙 ∈ 𝑂𝑠 calculate 𝑝𝑠,𝑙
05 for each 𝑙 ∈ 𝐼𝑠 calculate 𝑝𝑠,𝑙

𝑏
06 calculate 𝑝𝑠

𝑠, row normalize [𝐏](𝑝,𝑠)
07 𝑣𝑠 ← randomly choose from 𝑂𝑠 ∪ 𝐼𝑠 ∪ {𝑣𝑠}
08 𝑅[𝑠] ← 𝑅[𝑠] + 1
09 end
10 𝑅[𝑛] ← 𝑆𝑜𝑟𝑡(𝑅[𝑛])
Output. 𝑅[𝑛]

7 EXPERIMENTS AND EVALUATIONS

7.1 Dataset and Benchmarks
We use both simulated and real-world production environment
to evaluate AutoMAP. The simulated environment is implem-
ented using a microservice-based system (the project has been
uploaded to GitHub, but due to anonymous review requirements,
we cannot provide the link in this version). It is composed of 16
microservices following a pre-configured topology running in
Docker containers and managed by Zookeeper. In order to simu-
late anomalies, in each round of test, we randomly select one
back-end services and inject fault into it, i.e. shut down the
container or perform DoS (Denial of Service) attacks.

Our real-world datasets consist of 20 incidents occurred in our
cloud platform. These incidents are internally reported, collected
and verified which services are the root cause by SRE team. For
each incident, we have about 15 million metrics, collected during
7200 seconds (1 hour before and 1 hour after the anomaly was

AutoMAP: Diagnose Your Microservice-based Web Applications Automatically WWW’20, Apr 2020, Taipei

 9

detected) from 1732 microservice APIs. This dataset only recor-
ded key system APIs and we removed most user-domain APIs.

Several baseline approaches are selected: TBAC [27], Monitor-
Rank [23], CloudRanger [30], NetMedic [8] and MS-Rank [32].
We use same incidents to run those selected algorithms. For alg-
orithms rely on single-metric: TBAC, MonitorRank and Cloud-
Ranger, we examine their precision in terms of 𝐌𝑙𝑎𝑡 and 𝐌𝑡ℎ𝑟.
For algorithms relying on pre-defined topology, we use behavior
graph constructed on 𝐌𝑙𝑎𝑡 to run them, as the ground truth of
this topology is unrecorded. We compare the algorithms using
top-𝑘 and average top-1 to 𝑘 result (denoted as avg-𝑘) precision.
In each round of test, we choose the avg-5 precision as the score
of different metrics and update the score matrix in AutoMAP.

Our prototype system is implemented using Python and Pcalg
package (https://pypi.org/project/pcalg/). In Algorithm 1, we use
𝜒2-test [25] to determine the conditional independence. The me-
tric sampling interval we used for simulated platform is 2 sec-
onds, and 5 seconds for our real-world cloud system. Experim-
ents are conducted in a workstation with Intel Xeon 2.4GHz CPU,

16GB RAM running 64-bit Windows Server 2008. All experimen-
tal results are obtained by averaging 20 different rounds of tests.

7.2 Experiments and Results Analysis
7.2.1 Root cause identification. The first experiment compares

the precision of selected algorithms, when 𝑘 =1/ 3/ 5, ℓ = 1440.
For AutoMAP and MS-Rank, we record theirs result precision
after 10 rounds of optimization. Fig. 8 summarizes the experim-
ental results using real-world incidents. In general, we see that
AutoMAP outperforms other algorithms in terms of result preci-
sion. Specifically, it has 64.4% result precision in top-1 and 93.9%
in top-5. In terms of other algorithms, the result precision is usu-
ally less than 50% without selecting an appropriate metric. Table
4 summarizes the experimental results obtained from the simu-
lated system, which are similar as those obtained from real-
world incidents. We found that the root cause detection is inac-
curate if it’s only based on correlation score (TBAC). Also, com-
pared to static algorithms (TBAC, NetMedic, MonitorRank, Clo-
udRanger), random walk scheme can identify the root cause with
higher accuracy. Besides, compared with the MS-Rank algorithm,

Figure 8: Top-1, 3, 5 and avg-5 precision of AutoMAP and different algorithms using real-world incidents

Figure 9: Precision of AutoMAP and NetMedic with different rounds of test using real-world incidents

Figure 10: Top-1, 3, 5 and avg-5 precision of AutoMAP with different rounds of test and ℓ, using real-world incidents

TABLE 4: Precision of different algorithms
 in simulated environment

 TBAC Monitor
Rank

Cloud
Ranger

Net
Medic

MS-
Rank*

Auto
MAP*

Top-1
𝐌𝐿𝑎𝑡 23.1% 25.4% 59.4%

22.7% 59.4% 65.7%
𝐌𝑇ℎ𝑟 16.2% 41.9% 40.1%

Top-3
𝐌𝐿𝑎𝑡 45.3% 87.4% 89.5%

37.8% 89.5% 91.2%
𝐌𝑇ℎ𝑟 35.9% 66.3% 68.2%

Top-5
𝐌𝐿𝑎𝑡 61.3% 89.7% 93.3%

54.3% 93.3% 93.5%
𝐌𝑇ℎ𝑟 40.1% 72.1% 73.4%

Avg-5
𝐌𝐿𝑎𝑡 47.0% 73.7% 85.2%

49.7% 85.2% 89.7%
𝐌𝑇ℎ𝑟 43.7% 64.1% 68.8%

* Note: Result after 10 rounds of detection with multiple metrics.

TABLE 5: Avg-5 precision when introducing different domain knowledge
into AutoMAP, using real-world incidents

AutoMAP + Knowledge
ℓ = 1440 ℓ = 200

avg-5 IMP* STD avg-5 IMP* STD
AutoMAP

+API
Link API with same

source 89.9% +0.2% 0.05 61.7% +4.9% 0.29

AutoMAP
-Normal

Remove normal ser-
vices (<5%) 92.6% +3.2% 0.05 58.9% +0.1% 0.21

AutoMAP
+Linked

Add known calling
correlations 90.7% +1.1% 0.04 63.6% +8.2% 0.19

AutoMAP
-Unlinked

Remove edges without
dependencies 91.8% +2.3% 0.04 60.1% +2.2% 0.15

AutoMAP
+Direction

Orient direction of
edges (<5%) 89.7% +0.0% 0.04 62.0% +5.4% 0.15

* Improvement compared to original AutoMAP after 10 rounds of test.

WWW’20, Apr 2020, Taipei X. XX et al.

10

the introduction of anomaly profile in AutoMAP can effectively
improve the result accuracy, especially for top-1 results.

7.2.2 Self-Optimization. In order to verify the effectiveness of
self-optimization mechanism, we examine AutoMAP using mult-
iple rounds of test, and compare its precision with traditional
NetMedic solution from round 1 to 10. The experiment is cond-
ucted when 𝑘 =1/ 3/ 5, ℓ = 1440, using real-world incidents. The
results are illustrated in Fig. 9, which shows that the precision of
AutoMAP increases significantly when we conduct more rounds
of test. For example, the precision increases from 59.7% (𝑘 = 5)
to 93.9% at 10th round. AutoMAP shows significant advantages
over NetMedic. As NetMedic does not support self-optimizing,
so it is unstable in the rapidly changing system architecture.

7.2.3 Algorithm parameter - ℓ. The third experiment evaluates
the impact of different parameters on AutoMAP, i.e., ℓ - incident
period length. We compare the precision of AutoMAP when ℓ is
increased from 700 to 1440 for real-world incidents. When we
input more metrics into AutoMAP, which means parameter ℓ is
set larger, the results show more accurate correlations between
the services, as shown in Fig. 10. It is worth noticing that a small
ℓ results in a significant impact on the precision, e.g., the preci-
sion drops below 40% when ℓ = 700. We further compare the
growth rate of precision with different ℓ. Fig. 10 shows that the
precision increases more quickly when ℓ is higher, as we have
more data to support multi-metric optimization.

 7.2.4 Domain knowledge. This experiment verifies the effect
of domain knowledge. We propose five enhancement methods
using different types of knowledge in AutoMAP (See Table IV).
Our experiment compares the result of these enhanced versions
with the original AutoMAP in the 1st and 10th round. Table V
and Fig. 11 summarize the results obtained from the experiments
ran with real-world incidents. We observe the algorithms enhan-
ced with domain knowledge have different impacts on the origi-
nal AutoMAP. For instance, when ℓ = 200, domain knowledge
can better help to improve the algorithm precision, especially for
the three algorithms that add information to behavior graph
(AutoMAP+API 4.9% improvement, AutoMAP+Linked +8.2%,
AutoMAP+Direction +5.4%). However, when ℓ = 1440, although
the enhanced algorithms can still improve the precision, the de-
rived behavior graph is sufficient to be used for heuristic diagno-
sis. That clearly says, the role of domain knowledge gets weaker
when more sampling data are available.

 7.2.5 Algorithm parameters - 𝛼 and 𝜌. The last experiment
conducted using real-world incidents analyzes the impact of two
important parameters - 𝛼 and 𝜌 (See Fig. 12 and 13). To observe
the impact of 𝛼, we increased it from 0.01 to 0.50, and find the
overall execution time increases linearly (see Fig. 12). Even when
𝛼 = 0.5, it takes less than 4 minutes to process the complete da-
taset. We then developed additional experiments to analyze the
effect of 𝛼 and 𝜌 on precision (see Fig. 13). When we increase 𝛼
from 0.01 to 0.50, and compare the precision under different ℓ,
we find that when the dataset is sparser (for instance, when ℓ =
 200), higher 𝛼 makes the result more precise, because AutoMAP
does not have enough metrics to characterize the correlations.
When we set 𝛼 lower, the number of edges in the behavior gra-
phs may become too few to ensure the accessibility of visitor,
leading to low result precision. Meanwhile, when we use more
metric records to run AutoMAP, the impact of using different 𝛼
is not obvious. As a result, we can choose a relatively small 𝛼,
making the correlation graph more consistent with ground truth.

Lastly, to evaluate the impact of the backward transition pa-
rameter - 𝜌, we set up two environments (𝛼 = 0.01, ℓ = 200 ver-
sus 𝛼 = 0.50, ℓ = 1440) and compare the precision using different
𝜌. As the results indicated in Fig. 14, when 𝜌 is smaller, a higher
𝛼 is needed to ensure that the random walk algorithm has more
paths to be chosen. Besides, the precision is not significantly im-
proved when 𝜌 is set close to 1. Therefore, it is recommended to
choose a moderate backward transition parameter, e.g., 𝜌 =0.2.

8 CONCLUSIONS
This paper presents AutoMAP, a system that enables automated
anomaly diagnosis for microservice-based web applications. Our
experiments conducted in both real-world and simulated envi-
ronment show that AutoMAP outperforms other methods in pre-
cision. It offers fast identification of root cause especially in lar-
ge-scale microservice architecture. AutoMAP treats the micro-
service-based applications as “grey box” and make no assumpt-
ion about pre-knowledge. Therefore, it could fit into most appli-
cation scenarios because it does not require a pre-defined topol-
ogy, given a large part of legacy systems only have basic perfor-
mance monitoring metrics. Besides, it is easy to introduce expert
experiences into AutoMAP. Our future work will be focused on
the application of AutoMAP to other complex systems, such as
social and biological networks.

Figure 11: Avg-5 precision of AutoMAP augmented with different types of knowledge

Figure 12: Time cost when executing
AutoMAP with different 𝜶

Figure 13: Avg-5 precision with
different 𝜶

Figure 14: Avg-5 precision with
different 𝝆

AutoMAP: Diagnose Your Microservice-based Web Applications Automatically WWW’20, Apr 2020, Taipei

 11

REFERENCES
[1] A. Balalaie, A. Heydarnoori, and P. Jamshidi, "Microservices architecture ena-

bles devops: Migration to a cloud-native architecture," IEEE Software, vol. 33,
no. 3, pp. 42-52, 2016.

[2] S. Newman, Building Microservices. " O'Reilly Media, Inc.", 2015.
[3] H. Wu, A. N. Tantawi, and T. Yu, "A self-optimizing workload management

solution for cloud applications," in IEEE 20th International Conference on Web
Services (ICWS), 2013, pp. 483-490: IEEE.

[4] V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A survey," ACM
Comput. Surv., vol. 41, no. 3, pp. 1-58, 2009.

[5] N. V. D. Shahir Daya, et al., "Microservices from Theory to Practice: Creating
Applications in IBM Bluemix Using the Microservices Approach," IBM Red-
books, 2015.

[6] J. Gertler, Fault detection and diagnosis in engineering systems. CRC press, 1998.
[7] Q. Wang et al., "Detecting transient bottlenecks in n-tier applications through

fine-grained analysis," in IEEE 33rd International Conference on Distributed
Computing Systems (ICDCS), 2013, pp. 31-40: IEEE.

[8] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl, "Detail-
ed diagnosis in enterprise networks," ACM SIGCOMM Computer Communi-
cation Review, vol. 39, no. 4, pp. 243-254, 2009.

[9] M. łgorzata Steinder and A. S. Sethi, "A survey of fault localization techniques
in computer networks," Science of computer programming, vol. 53, no. 2, pp. 165
-194, 2004.

[10] J. Lin, P. Chen, and Z. Zheng, "Microscope: Pinpoint Performance Issues with
Causal Graphs in Micro-service Environments," in International Conference on
Service-Oriented Computing, 2018, pp. 3-20: Springer.

[11] X. Zhou, X. Peng, T. Xie, et al., "Fault Analysis and Debugging of Microservice
Systems: Industrial Survey, Benchmark System, and Empirical Study," IEEE
Transactions on Software Engineering, 2018.

[12] T. Ahmed, B. Oreshkin, and M. Coates, "Machine learning approaches to net-
work anomaly detection," in Proceedings of the 2nd USENIX workshop on Tack-
ling computer systems problems with machine learning techniques, 2007, pp. 1-6:
USENIX Association.

[13] Y. Liu, L. Zhang, and Y. Guan, "A distributed data streaming algorithm for net-
work-wide traffic anomaly detection," ACM SIGMETRICS Performance Evalua-
tion Review, vol. 37, no. 2, pp. 81-82, 2009.

[14] R. Jiang, H. Fei, and J. Huan, "Anomaly localization for network data streams
with graph joint sparse PCA," in Proceedings of the 17th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, 2011, pp. 886-894:
ACM.

[15] J. Gao, G. Jiang, H. Chen, and J. Han, "Modeling probabilistic measurement
correlations for problem determination in large-scale distributed systems," in
IEEE International Conference on Distributed Computing Systems (ICDCS), 2009,
pp. 623-630: IEEE.

[16] C. Wang et al., "VScope: middleware for troubleshooting time-sensitive data
center applications," in ACM/IFIP/USENIX International Conference on Distrib-
uted Systems Platforms and Open Distributed Processing, 2012, pp. 121-141: Spri-
nger.

[17] G. Jiang, H. Chen, and K. Yoshihira, "Modeling and tracking of transaction
flow dynamics for fault detection in complex systems," IEEE Transactions on
Dependable and Secure Computing, vol. 3, no. 4, pp. 312-326, 2006.

[18] A. Jalali and S. Sanghavi, "Learning the Dependence Graph of Time Series with
Latent Factors," in Proceedings of the 29th International Conference on Machine
Learning (ICML), 2012, pp. 473-480.

[19] L. Akoglu, H. Tong, and D. Koutra, "Graph based anomaly detection and des-
cription: a survey," Data Mining and Knowledge Discovery, vol. 29, no. 3, pp.
626-688, 2015.

[20] G. Jiang, H. Chen, and K. Yoshihira, "Efficient and scalable algorithms for
inferring likely invariants in distributed systems," IEEE Transactions on know-
ledge and data engineering, vol. 19, no. 11, pp. 1508-1523, 2007.

[21] J. Thalheim et al., "Sieve: actionable insights from monitored metrics in
distributed systems," in Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference, 2017, pp. 14-27: ACM.

[22] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and M. Zhang,
"Towards highly reliable enterprise network services via inference of multi-
level dependencies," in ACM SIGCOMM Computer Communication Review,
2007, vol. 37, no. 4, pp. 13-24: ACM.

[23] M. Kim, R. Sumbaly, and S. Shah, "Root cause detection in a service-oriented
architecture," in ACM SIGMETRICS Performance Evaluation Review, 2013, vol.
41, no. 1, pp. 93-104: ACM.

[24] K. Ramakrishnan and R. Jain, "A binary feedback scheme for congestion avoid-
ance in computer networks," ACM Transactions on Computer Systems (TOCS),
vol. 8, no. 2, pp. 158-181, 1990.

[25] M. Ding, Y. Chen, S. Bressler. Granger causality: basic theory and application
to neuroscience. Handbook of time series analysis: recent theoretical develop-
ments and applications, pp. 437-460, 2006.

[26] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, "Web graph similarity for
anomaly detection," Journal of Internet Services and Applications, vol. 1, no. 1,
pp. 19-30, 2010.

[27] N. Marwede, M. Rohr, A. van Hoorn, and W. Hasselbring, "Automatic failure
diagnosis support in distributed large-scale software systems based on timing
behavior anomaly correlation," in 13th European Conference on Software Maint-
enance and Reengineering, CSMR'09, 2009, pp. 47-58: IEEE.

[28] H. Shan, Y. Chen, H. Liu, Y. Zhang, X. Xiao, X. He, M. Li, and W. Ding, "ϵ-
Diagnosis: Unsupervised and Real-time Diagnosis of Small- window Long-tail
Latency in Large-scale Microservice Platforms," The World Wide Web Confer-
ence (WWW), 2019, pp. 2659-2665: ACM.

[29] Y. Chen, X. Yang, Q. Lin, et al., "Outage Prediction and Diagnosis for Cloud
Service Systems," The World Wide Web Conference (WWW), 2019, pp. 2659-2665:
ACM.

[30] P. Wang, J-M. Xu, M. Ma*, W-L. Lin, D-S. Pan, Y. Wang and P-S. Chen,
"CloudRanger: Root Cause Identification for Cloud Native Systems," in Proc-
eedings of the IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), 2018, pp. 492-502.

[31] J. Lin, P. Chen, and Z. Zheng, "Microscope: Pinpoint Performance Issues with
Causal Graphs in Micro-service Environments," in Proceedings of the Interna-
tional Conference on Service-Oriented Computing (ICSOC), 2018, pp. 3-20: Sprin-
ger.

[32] M. Ma, W-L. Lin, D-S. Pan, P. Wang, "MS-Rank: Multi-Metric and Self-Adap-
tive Root Cause Diagnosis for Microservice Applications," in Proceedings of the
IEEE International Conference on Web Services (ICWS), 2019, pp. 60-67.

