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ABSTRACT 
The high complexity and dynamics of the microservice architec-
ture make its application diagnosis extremely challenging. In this 
study, we design a novel tool, named AutoMAP, which enables 
dynamic generation of service correlations and automated diag-
nosis leveraging multiple types of metrics. In AutoMAP, we pro-
pose the concept of anomaly behavior graph to describe the cor-
relations between services associated with different types of me-
trics. Two binary operations, as well as a similarity function on 
behavior graph are defined to help AutoMAP choose appropriate 
diagnosis metric in any particular scenario. Following the behav-
ior graph, we design a heuristic investigation algorithm by using 
forward, self, and backward random walk, with an objective to 
identify the root cause services. To demonstrate the strengths of 
AutoMAP, we develop a prototype and evaluate it in both simu-
lated environment and real-work enterprise cloud system. Exper-
imental results clearly indicate that AutoMAP achieves over 90% 
precision, which significantly outperforms other selected basel-
ine methods. AutoMAP can be quickly deployed in a variety of 
microservice-based systems without any system knowledge. It 
also supports introduction of various expert knowledge to imp-
rove accuracy. 
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1 INTRODUCTION 
The emergence of microservice architecture promotes easier abs-
traction and modularity for implementation, reuse, as well as 
independent scaling of web application development [1]. How-
ever, as services and their dependencies are evolving through 
continuous refactoring, localizing the sources of anomalies in 
large-scale microservice-based web application is more challeng-
ing than ever before [2].  The challenge roots in three aspects: 

Dynamic application structure. Due to the various nature 
of services, static troubleshooting approaches such as threshold-
ing schemes [3] may fail to obtain reliable model applies for fre-
quently changing situations [4]. As a result, recent works typi-
cally start with a system structure, and then diagnose anomalies 
via analyzing patterns following the structure [5][6]. Such struc-
tures, e.g. network topology and service-calling dependencies, 
are generally extracted from historical data collected by monitor-
ing different components, such as the log files, audit events and 
network data packets. It is time and effort-consuming, even unr-
ealistic in some legacy systems to develop a central running 
component to collect such data and generate these structures. 

Indirect anomaly propagation. As the component granular-
ity becomes smaller in microservice architecture, services reside 
on distributed hosts and containers, their calling process could 
be synchronous as direct calling or asynchronous via message 
proxy or publish/subscribe component [7]. Therefore, the propa-
gation of anomaly is not bounded by the calling dependency any 
more. Figure 1 presents an example where a web application in-
vokes services running on different hosts and containers through 
the API gateway. Even anomaly occurs in a microservice that is 
not been called, it may affect other services in the same host or 
container, and cause the anomaly propagation. Therefore, even if 
we know the calling dependency of services, we lack a more dy-
namic diagnosis mechanism due to the existence of indirect fault 
propagation. 

Multiple types of metric. Algorithm based on single metric 
may fail to identify the root cause, as single type of metric is not 
enough to characterize the anomalies occur in diverse services 
[8]. In addition, the asynchronous calling procedures makes met-
rics often unable to directly reflect the propagation dependency. 
When the application is experiencing anomalies, although mod-
ern architectures provide us a wide variety of healthy metrics, 
we still lack an automated mechanism that selects them appro-
priately according to the characteristics of involved services. 

Consequently, to tackle the anomalies in microservice-based 
web applications, operation team has to maintain deep domain 
knowledge of the system. It is extremely challenging to keep up-
dating such knowledge, particularly when the architecture evol-
ves quickly through rapid refactoring of new features.  

To address these challenges, we aim to develop an automated 
diagnostic tool with several capabilities: first, it should be able to 
generate anomaly topology automatically without prior knowl-
edge; second, it should be able to characterize services and ano-
malies automatically based on multiple types of metric; third, it 
should be able to select appropriate metric to conduct root cause 

 

Figure 1: A simple example of anomaly propagation in 
web application built on microservices. The hexagon repr-
esents a service. Red color stands for the root cause, yell-
ow for affected service, arrow for synchronous (solid) or 
asynchronous request (dashed).  
 



WWW’20, Apr 2020, Taipei X. XX et al. 
 

2 

 

detection automatically. We present our solution - AutoMAP. In 
summary, our contributions include: 

1. We propose the concept of Anomaly Behavior Graph. This 
graph model depicts the correlation between services when the 
anomaly propagates. In order to reveal the nature of service and 
anomaly pattern, we define the addition (+) and subtraction (-) 
operations on behavior graph, and leverage them to generate the 
profile of service and anomaly.  

2. We design a similarity function on anomaly profile, and use 
it to search the most relevant metric in historical records. An 
automated metric-weight learning approach and an investigation 
algorithm are proposed. The algorithm leverages forward, self 
and backward random walk to identify root cause heuristically.  

3. We validate AutoMAP in simulated and real production en-
vironment and compare it with the selected baseline approaches. 
Experimental results show that AutoMAP provides over 90% 
precision, significantly outperforming other methods. The res-
ults also verify that AutoMAP can optimize itself effectively and 
efficiently.  

2 RELATED WORK 
In this section, we review the related work on root cause detec-
tion in distributed systems. Various research efforts have been 
devoted to similar issues such as network traffic analysis [9], 
web application anomaly detection [10] and debugging [11], ser-
vice failure detection [28] and prediction [29]. For example, Ger-
tler et al. proposed to detect anomalies by examining monitoring 
data of individual component with a thresholding scheme [6]. 
Wang et al. proposed a bottleneck detection method that corre-
lates throughput and load with a tiered network system model at 
fine granularity [7]. However, we find it is difficult to obtain a 
reliable threshold for various situations in practice, especially in 
dynamic microservice architecture.  

Machine learning techniques, such as decision tree [12], clus-
tering [13, 14] and Markov prediction model [15], have also been 
leveraged to identify abnormal nodes in networks. There are also 
efforts focusing on knowledge discovering based on performance 
metrics [13] and network topology [14]. To this end, a central 
master node is commonly required to collect records from dis-
tributed monitoring facilities [16]. These records include log files, 
audit events, network traffic statistics, and even sensory meas-
urements in physical systems. Most of these solutions need pre-
defined system topology [17] or service calling relationship [16]. 
As a result, further efforts explore this issue by automatically 
discovering system topology [18], and then identify anomalies in 
a heuristic way [19]. For instance, a structure called “invariant 
graph” [20] is proposed to depict the anomaly propagation to-
pology. Although, links in static network structure represent a 
part of the causal relations, the actual relations in microservice 
architecture are more dynamic.  

Kim et al. [23] implements a real-time metric collection system 
and anomaly detection framework, named MonitorRank. It pro-
vides an unsupervised and heuristic way to diagnose root cause 
services based on random walking strategy. However, Monitor-
Rank also requires preliminary domain knowledge and service 
calling topology of the target system. For microservice-based 

systems, obtaining the ground truth calling topology is of high 
cost, as it is constantly changing. In view of this, CloudRanger 
[30] and Microscope [31] are proposed to reconstruct the topol-
ogy based on the statistical characteristics on metrics, which can 
diagnose system anomaly without obtaining a ground truth call-
ing topology. 

Another key issue is how to choose appropriate type of metric 
in diagnosis. Some works discussed how to deal with multiple 
types of metrics [21]. For example, NetMedic is proposed to gen-
erate dependency relationship graph for small enterprise net-
works using fault propagation templates [8]. Similarly, Sherlock 
discovers fault-related inference graphs using multi-level metrics 
from network monitoring data and system logs [22]. Large-scale 
microservice architecture generates high-dimension dependency 
relationships that poses greater challenges to find the actual root 
causes heuristically and design an adaptive mechanism to find 
the best metric combination to reflect the features of different 
microservice. To solve this issue, MS-Rank [32] framework pre-
liminarily proposes a self-adaptive mechanism for dynamically 
implied-metrics generation and metric-scheme selection based 
on historical diagnostic records. 

However, we notice that existing algorithms do not analyze 
and utilize the historical features of services and anomalies. In 
enterprise-level operation and maintenance, two aspects of kno-
wledge play an important role in anomaly diagnosis: experience 
of historical diagnosis and the characteristics of different ser-
vices. Therefore, targeting these challenges, the main differences 
and advantages of this study include: (i) the concept of behavior 
graph and its calculation method to reflect the statistical charac-
teristics of services and anomalies; (ii) quantification of ser-
vice/anomaly and similarity function; (iii) automatic metric se-
lection mechanism for specific anomaly scenario; (iv) real-world 
verification on enterprise cloud system. 

3 PROBLEM STATEMENT 

3.1 Problem Definition 
To generalize the problem, we treat microservice-based web app-
lication as a “grey box”, which means we only have several types 
of monitoring metrics, without knowing any system knowledge, 
such as calling topology and service functionalities.  

Table 1: Notations 

Notation Definitions 

𝐺(𝑉 , 𝐸, 𝑊 ) Metric-weighted correlation graph with weight matrix 𝑊  

𝑣𝑓𝑒, 𝒗𝑟𝑐 Front-end service; set of root cause services 

𝐼𝑖, 𝑂𝑖 Set of in and out-neighbor nodes of node 𝑣𝑖 

𝑛, 𝑚, ℓ Number of services, types of metrics; incident period length 

𝕄, 𝐌 𝕄𝑚 = [𝐌𝑚]𝑛×ℓ, No.𝑚 metric measurement 

‖𝑥‖0 Number of non-zero coordinates of 𝑥 
ℂ, 𝐂, 𝑐𝑖,𝑗,𝑘 ℂ𝑘 = [𝐂𝑘]𝑛×𝑛, 𝑐𝑖,𝑗,𝑘 = [𝐂𝑘]𝑖,𝑗, correlation of 𝑣𝑖 to 𝑣𝑗 given  𝕄𝑘 

𝐏, 𝑝𝑖,𝑗 [𝐏]𝑖,𝑗 = 𝑝𝑖,𝑗, transition probability from service 𝑣𝑖 to 𝑣𝑗 

𝛼 Significance in conditional independence tests 

𝜌 The strength parameter of backward transition 
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We formalized the problem. Suppose that an anomaly is obse-
rved in a front-end service 𝑣𝑓𝑒 ∈ 𝑉  during the incident period ℓ. 
Here, 𝑛 = |𝑉 | and 𝑚 are the number of services and types of 
metrics, respectively. We denote the raw metrics as 𝕄, whe-
re |𝕄| = 𝑚, 𝕄𝑚 = [𝐌𝑚]𝑛×ℓ and 𝐌𝑚 records the measurements 
of No.𝑚 metric for 𝑛 services during ℓ. Our target is to identify a 
set of services 𝒗𝒓𝒄 ⊂ 𝑉  that causes the observed anomaly in 𝑣𝑓𝑒. 
Table 1 summarizes the major notations used in this study. 

3.2 AutoMAP 
To solve this issue, we develop a novel tool, named AutoMAP 
(Automated Microservice-based Web Applications Patrol), which 
enables dynamic generation of service correlations and autom-
ated diagnosis leveraging multiple types of metrics. Fig. 2 depicts 
its framework.  

 

Figure 2: The framework of AutoMAP 

AutoMAP collects the details of each microservice request and 
status of containers/hosts based on an API proxy. The diagnosis 
starts if an anomaly is detected in front-end service. It decom-
poses the root cause detection task into several iterative phases: 
P1. Select a sampling interval parameter on raw metrics; 
P2. Construct the anomaly behavior graph using multiple 

types of metrics; 
P3. Extract the profile of anomaly using “+” and “−” opera-

tions on behavior graph; 
P4. Conduct heuristic root cause detection algorithm follow-

ing the behavior graph; 
P5. Verify the result and calculate the precision; 
P6. Update the metric-weight matrix. Repeat P1 to P6 if a 

new anomaly occurs. 
It is worth mentioning that AutoMAP is an automated tool 

which does not require any system knowledge. Even non-expert 
users can use it to locate the root cause. For SRE, AutoMAP can 
provide them a reference diagnosis result to significantly im-
prove the efficiency of system maintenance. We discuss the ma-
jor tasks of AutoMAP in details in the following sections. 

4 METRICS 

4.1 Testbed System and Raw Metrics 
The testbed system of our tool is a top-ranked cloud platform 
(due to the double-blind review requirement, we do not mention 
its name in this version). This platform provides hundreds of cat-
egories of microservices. Massive web applications are built on 
them, running on millions of machines in multiple cloud centers 
around the world, serving over a million users and produce bil-
lion-level API requests every single day.  

Table 2: Metrics 

Metric Notation Definition 

Latency 𝐌𝑙𝑎𝑡 Average latency of service calling 

Throughput 𝐌𝑡ℎ𝑟 Average request times per unit time of service 

Power 𝐌𝑐𝑜𝑛 Congestion function, 𝑝𝑜𝑤𝑒𝑟 = 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
𝑙𝑎𝑡𝑒𝑛𝑐𝑦  [24] 

CPU 𝐌𝑐𝑝𝑢 CPU-usage of the located host 

I/O 𝐌𝑖𝑜 I/O count of the located host 

Memory 𝐌𝑚𝑒𝑚 Memory consumption % of the located host 

Availability 𝐌𝑎𝑣𝑙 Service available % 

In this study, we consider 7 types of performance metrics: la-
tency, throughput, power, CPU, I/O, memory and availability. We 
use 𝕄 = 𝐌{𝑙𝑎𝑡,𝑡ℎ𝑟,𝑐𝑜𝑛,𝑐𝑝𝑢,𝑖𝑜,𝑚𝑒𝑚,𝑎𝑣𝑙}  to denote the records of 
these metrics (See Table II). Note that these metrics are chosen 
because they are typical and easy-to-obtain from service API re-
quest records. Users can also define and choose any other metric 
to characterize particular types of anomalies. 

4.2 Sampling Interval 
AutoMAP starts from choosing an appropriate sampling interval 
on raw metrics. This parameter directly affects the accuracy of 
the following diagnosis. If we sample the metric too frequently, 
every second for example, it may produce redundant fluctuations 
that do not reflect the actual calling dependency. On the contra-
ry, if we aggregate original sampling using a larger interval, 
many effective metric changes will be lost, making it fails to cat-
ch the propagation topology. Given this fact, we propose a sam-
pling interval selection algorithm for microservice architecture. 
This parameter depends on the characteristics of system. A rea-
sonable selection is the statistical average calling intervals for all 
services. In other words, a service is called once on average dur-
ing this interval. Thus, we compute it using a frequency-weigh-
ted average of request interval, that is:  

∑ 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑙𝑙𝑖𝑛𝑔 𝑣𝑖
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑐𝑎𝑙𝑙𝑖𝑛𝑔

𝑛
𝑖=1

∗ (𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 𝑐𝑎𝑙𝑙𝑖𝑛𝑔 𝑣𝑖),  

where 𝑣𝑖 represents No.𝑖 service of 𝑉 . In real production enviro-
nment, the propagation path is much more complicated as the 
anomaly usually affects numerous services directly or indirectly. 
In most situations, non-expert lacks a priori knowledge about 
the functionalities of services and the calling relationships betw-
een them. Therefore, our work aims to build an automated app-
roach to model the correlations between services using metrics, 
to help web application developers and site engineers analyze 
the anomaly. 



WWW’20, Apr 2020, Taipei X. XX et al. 
 

4 

 

5  BEHAVIOR GRAPH CONSTRUCTION AND 
COMPUTATION 

5.1 Behavior Graph Construction 
As the calling dependencies in microservice architecture are co-
mplex and dynamic, instead of spending a lot of time to analyze 
the service-calling topology of a web application, experienced 
SRE usually chooses to troubleshoot based on intuition about the 
type of anomaly. More specific, they select the most suspected 
service based on observation on its metrics and compare to hist-
orical experiences. For example, when many I/O services lose 
their responses, a problem may occur in database-related serv-
ices. If the availability of a computational service decreases, its 
container maybe unstable and we may further trace to the hard-
ware deficiency of host machine. It can be seen that, the intuitive 
knowledge of SRE mainly includes two aspects: experiences from 
historical diagnosis and the characteristics of various services. 
This section proposes a model named Anomaly Behavior Graph 
to extract correlations from metrics and help us discover similar 
anomalies in records. It is defined formally as follows: 

Anomaly Behavior Graph. 𝐺(𝑉 , 𝐸, 𝑊 )  is an anomaly be-
havior graph describing the impact correlations between vertices 
(i.e. services) in 𝑉 , where 𝐸 is the edge set and 𝑊  is the weight 
matrix for edges. Given any service pair 𝑣𝑖 and 𝑣𝑗, 𝑊𝑖,𝑗,𝑘 ∈ [0,1],
∑ 𝑊𝑖,𝑗,𝑘

𝑚
𝑘=1 = 1. We set edge 𝑒𝑖𝑗 ∈ 𝐸 (from 𝑣𝑖 to 𝑣𝑗) to 1 when 

∥[𝑊 ]𝑖,𝑗∥0 > 0 (here ‖𝑥‖0 calculates the number of non-zero coor-
dinates of 𝑥). An edge 𝑣𝑖 → 𝑣𝑗 with a weight 𝑊𝑖,𝑗,𝑘 > 0 indic-
ates that 𝑣𝑖 is impacted by 𝑣𝑗 given 𝐌𝑘 with a confidence 𝑊𝑖,𝑗,𝑘.  

In order to obtain a behavior graph, we need to start from a 
complete, undirected and fully-weighted graph, gradually rem-
ove the weight of edge and orient the directions of edges using 
conditional independence test. This process consists of four steps: 

Step 1. Generate a complete, undirected and fully weighted 
graph 𝐺(𝑉 , 𝐸, 𝑊 ), where 𝑊𝑖,𝑗,𝑘 = 1 for ∀𝑖, 𝑗 ∈ [1, 𝑛] 
and ∀𝐌𝑘, 𝑘 ∈ [1, 𝑚]; 

Step 2. For each type of metric 𝐌𝑘, test conditional indep-
endence of any pairs 𝑣𝑖, 𝑣𝑗. Set 𝑊𝑖,𝑗,𝑘 = 0 if condit-
ional independence between 𝑣𝑖 and 𝑣𝑗 is accepted; 

Step 3. Remove edge 𝑒𝑖,𝑗  if 𝑊𝑖,𝑗,𝑘 = 0 for ∀𝑘 ∈ [1, 𝑚]. Set 
𝑊𝑖,𝑗,𝑘 ← 𝑊𝑖,𝑗,𝑘/||𝑊𝑖,𝑗||0; 

Step 4. Orient v-structures and the remaining edges in 𝐺. 
For the sake of clarity, we summarize this process in Algori-

thm 1. The result of this algorithm is a weighted-CPDAG (comp-
leted partially directed acyclic graph) describing the correlations 
between services 𝑉  characterized by 𝕄. In Step 2 and 3, we test 
conditional independence given a significance 𝛼, for any service-
pair recursively. Particularly, we say 𝑣𝑖 and 𝑣𝑗 are conditionally 
independent given 𝑣𝑘 if 𝑃(𝑣𝑖 ∩ 𝑣𝑗∣𝑣𝑘) = 𝑃 (𝑣𝑖|𝑣𝑘)𝑃(𝑣𝑗∣𝑣𝑘) when 
𝑃 (𝑣𝑘) > 0. It indicates that the occurrence of 𝑣𝑖 and the occur-
rence of 𝑣𝑗 are independent events in their conditional probabil-
ity distribution given 𝑣𝑘. If and only if 𝑣𝑖, 𝑣𝑗 are conditionally 
independent given any subset of 𝑆, we call 𝑣𝑖, 𝑣𝑗 are separated 
by 𝑆. Let 𝑆(𝑣𝑖, 𝑣𝑗, 𝑘) denote the conditional set that separates 𝑣𝑖 
and 𝑣𝑗 given 𝐌𝑘, 𝑎𝑑𝑗(𝐺, 𝑣𝑖, 𝑘) be the set of nodes connected to 
𝑣𝑖 in 𝐺 (in other words, any 𝑣𝑗 satisfying 𝑊𝑖,𝑗,𝑘 = 1), we test all 
pairs (𝑣𝑖, 𝑣𝑗) for conditional independent using 𝐌𝑘, given any 

single node in 𝑎𝑑𝑗(𝐺, 𝑣𝑖, 𝑘)\{𝑣𝑗} or 𝑎𝑑𝑗(𝐺, 𝑣𝑖, 𝑘)\{𝑣𝑖}. If there 
exists any service 𝑣𝑞 let (𝑣𝑖, 𝑣𝑗) conditionally independent, we 
set 𝑊𝑖,𝑗,𝑘 = 0 (i.e. remove the edge) and insert 𝑣𝑞  into 
𝑆(𝑣𝑖, 𝑣𝑗, 𝑘) and 𝑆(𝑣𝑗, 𝑣𝑖, 𝑘). Once all one-step adjacent pairs and 
all types of metrics have been tested, a new graph 𝐺 is generated 
and we continue in this way by increasing the size of the condi-
tioning set. It stops when all neighborhoods in 𝐺 are smaller 
than the size of the conditional set. In this process, 𝛼 ∈ (0,1) is 
the threshold for conditional independence test. When 𝛼 is ap-
proaching to 0, the conditional independence hypothesis is easi-
er to be accepted, thus, more edges will be removed from 𝐺. On 
the contrary, if we set a larger 𝛼, more edges will be remained. 

Algorithm 1. Anomaly Behavior Graph Construction 

Input. Metrics 𝕄, Vertex 𝑉 , separation function 𝑆, significance 𝛼   
01 new 𝐺(𝑉 , 𝐸, 𝑊 ),	𝑙𝑒𝑣𝑒𝑙 = 0 
02 for ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝑉  if ∣𝑎𝑑𝑗(𝐺, 𝑣𝑖, 𝑘)\{𝑣𝑗}| ≥ 𝑙𝑒𝑣𝑒𝑙  
03     for ∀𝒗𝒎 ⊂ 𝑎𝑑𝑗(𝐺, 𝑣𝑖) with |𝑚| = 𝑙𝑒𝑣𝑒𝑙 
04         for ∀𝐌𝑘 ∈ 𝕄, 𝑘 ∈ [1, 𝑚] 
05             if 𝑣𝑖, 𝑣𝑗 conditionally independent given 𝒗𝒎, 𝛼, 𝐌𝑘 
06                set 𝑊𝑖,𝑗,𝑘 = 0  
07                insert 𝒗𝒎 into 𝑆(𝑣𝑖, 𝑣𝑗, 𝑘) and 𝑆(𝑣𝑗, 𝑣𝑖, 𝑘) 
08             end if 
09         end for 
10     end for 
11    	𝑙𝑒𝑣𝑒𝑙 ← 𝑙𝑒𝑣𝑒𝑙 + 1 
12 end for 
13 for any 𝑖, 𝑗, 𝑘 let 𝑊𝑖,𝑗,𝑘 ← 𝑊𝑖,𝑗,𝑘/||𝑊𝑖,𝑗||0 
14 for ∀𝑣𝑖 − 𝑣𝑗 − 𝑣𝑙 ∈ 𝐺 
15     if ∃𝑘 ∈ [1, 𝑚] 𝑠. 𝑡. 𝑣𝑗 ∉ 𝑆(𝑣𝑖, 𝑣𝑙, 𝑘) ∧ 𝑣𝑗 ∉ 𝑆(𝑣𝑙, 𝑣𝑖, 𝑘) 
16         orient 𝑣𝑖 − 𝑣𝑗 − 𝑣𝑙 into 𝑣𝑖 → 𝑣𝑗 ← 𝑣𝑙  
17     end if 
18 end for 
19 repeatedly applying Rule 1-3 
Output. Reverse any edge direction in 𝐺 

Step 4 orients undirected skeleton into behavior graph. To do 
this, we search the graph for triple (𝑣𝑖, 𝑣𝑗, 𝑣𝑙) that satisfies 𝑒𝑖,𝑗 =
1, 𝑒𝑗,𝑙 = 1 and 𝑒𝑖,𝑙 = 0. All such triples will be oriented as 𝑣𝑖 →
𝑣𝑗 ← 𝑣𝑙 (called v-structure) if 𝑣𝑗 is neither in 𝑆(𝑣𝑖, 𝑣𝑙, 𝑘) nor in 
𝑆(𝑣𝑙, 𝑣𝑖, 𝑘) for ∀𝑘 ∈ [1, 𝑚]. After this, for any remaining undi-
rected edge, we repeatedly apply Rule 1-3 to check whether any 
of its two possible directions introduces a new v-structure or di-
rected cycle: 

Rule 1. Orient edge 𝑣𝑗 − 𝑣𝑙 as 𝑣𝑗 → 𝑣𝑙, whenever there is a 
directed edge 𝑣𝑖 → 𝑣𝑗 such that 𝑣𝑖 and 𝑣𝑙 are not ad-
jacent (otherwise, a new v-structure will be created); 

Rule 2. Orient edge 𝑣𝑖 − 𝑣𝑗 as 𝑣𝑖 → 𝑣𝑗, whenever there is a 
chain 𝑣𝑖 → 𝑣𝑙 → 𝑣𝑗 (otherwise, a directed cycle will 
be created); 

Rule 3. Orient edge 𝑣𝑖 − 𝑣𝑗 as 𝑣𝑖 → 𝑣𝑗, whenever there exist 
two chains 𝑣𝑖 − 𝑣𝑝 → 𝑣𝑗 and 𝑣𝑖 − 𝑣𝑙 → 𝑣𝑗 such that 
𝑣𝑝 and 𝑣𝑙 are not adjacent (otherwise, a new v-struc-
ture or a directed cycle will be created). 
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Algorithm Complexity. The complexity of Algorithm 1 is 
bounded by the degree of 𝐺. Let 𝑑 be the maximal degree of any 
vertex in 𝐺. In the worst case, the number of conditional inde-
pendence tests is bounded by 𝑚 ∗ 2(𝑛

𝑑) ∑ (𝑛−1
𝑖 )𝑑

𝑖=0 . The computa-
tional complexity increases exponentially with 𝑚 and 𝑑. The pr-
ecision and efficiency of this algorithm can be significantly impr-
oved by taking into account domain knowledge. More specifi-
cally, we can remove edge or specify its direction based on the 
known service-calling dependencies. 

 
(a) Raw data 

 
(b) Behavior graph Construction 

 
(c) Weight calculation 

Figure 3: Example of behavior graph construction 

Example. Fig.3 elaborates the details of constructing a demo 
behavior graph consisting of four microservices using 𝐌𝑙𝑎𝑡. This 
incident is classified as “performance downgrade” by SRE team. 
Cloud application users report that Web UI and command-line 
interface (CLI) are slow in response. To start the algorithm, we 
set 𝑙𝑒𝑣𝑒𝑙 = 0 in G1 and test all the service pairs for their condi-
tional independence. As we find 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 ⊥ 𝐸𝑣𝑒𝑛𝑡|{∅} ,
𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 ⊥ 𝐴𝐼 |{∅}. Therefore, we remove edge 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑-
𝐸𝑣𝑒𝑛𝑡 and 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑-𝐴𝐼  from G1. In G2, we test the inde-
pendence when 𝑙𝑒𝑣𝑒𝑙 = 1 and find 𝐸𝑣𝑒𝑛𝑡 ⊥ 𝐴𝐼|{𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑}. 
That is, 𝐸𝑣𝑒𝑛𝑡  is conditionally independent with 𝐴𝐼  given 
𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑. Therefore, we insert 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 into 𝑆(𝐸𝑣𝑒𝑛𝑡, 𝐴𝐼) 
and remove the edge 𝐸𝑣𝑒𝑛𝑡-𝐴𝐼 . In G3, we find 𝐶𝑜𝑛𝑠𝑜𝑙𝑒 is con-
ditionally independent with 𝐴𝐼  given {𝐸𝑣𝑒𝑛𝑡, 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑} and 
remove 𝐶𝑜𝑛𝑠𝑜𝑙𝑒-𝐴𝐼 . The iteration stops when 𝑙𝑒𝑣𝑒𝑙 = 3 because 
∣𝑎𝑑𝑗(𝐺, 𝑣𝑖)\{𝑣𝑗}| < 𝑙𝑒𝑣𝑒𝑙, ∀𝑣𝑖 ∈ 𝐺. After this, we obtain a skel-
eton “𝐸𝑣𝑒𝑛𝑡-𝐶𝑜𝑛𝑠𝑜𝑙𝑒-𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑”. In the last step, with the 
help of connected v-structures, we orient the skeleton by repeat-
edly rule-checking for any of the edge directions. Finally, we ob-
tain the part of behavior graph using 𝐌𝑙𝑎𝑡 : 𝐸𝑣𝑒𝑛𝑡 →
𝐶𝑜𝑛𝑠𝑜𝑙𝑒 → 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑. Likewise, we find 𝐸𝑣𝑒𝑛𝑡 → 𝐶𝑜𝑛𝑠𝑜𝑙𝑒 
using 𝐌𝑖𝑜 ,  𝐌𝑚𝑒𝑚  and 𝐌𝑎𝑣𝑙 . Edge 𝐸𝑣𝑒𝑛𝑡 → 𝐶𝑜𝑛𝑠𝑜𝑙𝑒 →

𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 is detected using 𝐌𝑎𝑣𝑙. Therefore, according to the 
weight calculation table shown in Fig. 3, the weight of 𝐸𝑣𝑒𝑛𝑡 →
𝐶𝑜𝑛𝑠𝑜𝑙𝑒  is (1

4 , 0, 0, 0, 1
4 , 1

4 , 1
4) , and the weight of 𝐶𝑜𝑛𝑠𝑜𝑙𝑒 →

𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 is (1
2 , 0, 0, 0, 0, 0, 1

2).  

5.2 Addition Operation and Service Profile 
In this section, we show how AutoMAP analyzes the type of ser-
vices using behavior graph automatically. Recall that our cloud 
platform provides over 200 categories of microservices, without 
any prior knowledge, it is a challenging task to classify various 
services according to their characteristics. A straight-forward 
way is using multiple historical observations of metrics in norm-
al status. To this end, we generate dozens of behavior graphs 
using normal metrics, and aggregate them to show the characte-
ristics of service. Thus, we define the addition operation on beh-
avior graph: 

Addition operation. Addition is a binary operation on beha-
vior graphs, denoted as “+”. Let 𝐺(𝑉 , 𝐸, 𝑊 ) = 𝐺𝑎(𝑉𝑎, 𝐸𝑎, 𝑊𝑎) 
+𝐺𝑏(𝑉𝑏, 𝐸𝑏, 𝑊𝑏), where 𝑉 = 𝑉𝑎 ∪ 𝑉𝑏, 𝐸 = 𝐸𝑎 ∪ 𝐸𝑏 and 

[𝑊 ]𝑖,𝑗,𝑘 = ∥[𝑊𝑎]𝑖,𝑗∥0∗[𝑊𝑎]𝑖,𝑗,𝑘+∥[𝑊𝑏]𝑖,𝑗∥0∗[𝑊𝑏]𝑖,𝑗,𝑘
∥[𝑊𝑎]𝑖,𝑗∥0+∥[𝑊𝑏]𝑖,𝑗∥0

, 𝑖, 𝑗 ∈ [1, 𝑛], 𝑘 ∈ [1, 𝑚]. 

Given a set of time period 𝒘 = {𝑤1, 𝑤2, ⋯ , 𝑤𝑘}, and a set of be-
havior graph {𝐺1, 𝐺2, ⋯ , 𝐺𝑘} generated using metrics collected 
during 𝒘, let 𝔾 = ∑ 𝐺𝑖

𝑘
𝑖=1  for ∀𝑣𝑖 ∈ 𝑉 . We call the average of 

all the weight vectors of edges from 𝑣𝑖 to its out-neighbors 𝑂𝑖 as 
the profile of 𝑣𝑖. Thus, 𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝑣𝑖) = 𝟏

|𝑂𝑖| ∑ 𝑊𝑖,𝑙𝑙∈𝑂𝑖
. This vec-

tor indicates the feature of 𝑣𝑖’s impact made on others.  
In Fig. 4, we present an example to show the details of service 

profile generation. In this example, we construct several normal 
behavior graphs including four services, and aggregate them by 
addition operation. Specifically, in Fig. 4a, we examine all the 
directed edge from 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 to its neighbors. By averaging the 
weight of edges 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 → {𝐶𝑜𝑛𝑠𝑜𝑙𝑒, 𝐸𝑣𝑒𝑛𝑡, 𝐴𝐼}, we obtain 
the service profile vector of 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑, i.e. (0.54, 0, 0.11, 0, 0.08, 
0.08, 0.19). It indicates that the impact of 𝐷𝑎𝑠ℎ𝑏𝑜𝑎𝑟𝑑 on other 
services is dominated by latency (𝐌𝑙𝑎𝑡). In other words, latency 
is the most significant metric that should be used for investiga-
tion when it is experiencing anomalies. We call the type of met-
ric with highest weight in profile vector as the dominant metric. 
Similarly, we find 𝐌𝑐𝑜𝑛 and 𝐌𝑙𝑎𝑡 are the dominant metrics for 
service 𝐸𝑣𝑒𝑛𝑡 and 𝐶𝑜𝑛𝑠𝑜𝑙𝑒, respectively (See Fig. 4b and Fig. 4c 
for more details). 

Furthermore, we classify services in our testbed system into 
five typical categories according to their dominant metrics: Rep-
resentational, Computing, Networking, Storage, Environmental 
(denoted as R/C/N/S/E in the figures for short). For example, for 
representational services, we are generally concerned about their 
delays. In our cloud platform, application Dashboard and Cons-
ole are the most common representational services. Similarly, 
the performance of storage services is mainly manifested by 
their I/O. Table III summarizes five categories of typical service 
profile and lists their representative services in our cloud plat-
form. Note that the purpose of this classification is to facilitate 
the automated diagnosis of anomalies. Minor inconsistencies be-
tween the classification result and actual service functionalities 
will not affect the effectiveness of AutoMAP. 
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Figure 4: An example of service profile generation 

TABLE 3: Typical categories of service profile 

Service Profile Dominant Metric Typical Services 

Representational 𝐌{𝑙𝑎𝑡,𝑎𝑣𝑙} Dashboard, Console 

Computing 𝐌{𝑡ℎ𝑟,𝑐𝑝𝑢} Spark, AI, NLP 

Networking 𝐌𝑐𝑜𝑛 Message Hub, IoT center 

Storage 𝐌𝑖𝑜 Cloudant, MongoDB, Hbase 

Environmental 𝐌𝑚𝑒𝑚 Container, Docker, Kubernetes 

5.3 Subtraction Operation and Anomaly Profile  
As a matter of fact, in real-world incidents, only a small number 
of services contribute to the anomaly propagation. Originally 
constructed behavior graph may contain redundant services and 
correlations due to a large part of service’s irrelevance with the 
anomalies. Considering the fact that service profile only descri-
bes correlations in normal status, we remove these redundant 
correlations from the behavior graph. This makes the behavior 
graph more tailed to the description of anomalies. To do this, we 
define another operation - subtraction, and the concept of ano-
maly profile, to characterize the feature of root anomalies.  

Subtraction operation. Subtraction is a operation on beha-
vior graph, denoted as “−”. Let 𝐺(𝑉 , 𝐸, 𝑊 ) = 𝐺𝑎(𝑉𝑎, 𝐸𝑎, 𝑊𝑎) −
𝐺𝑏(𝑉𝑏, 𝐸𝑏, 𝑊𝑏), where 𝑉 = 𝑉𝑎 ∩ 𝑉𝑏, 𝐸 = 𝐸𝑎 ∩ 𝐸𝑏 and  

[𝑊 ]𝑖,𝑗,𝑘 = {
0 𝑖𝑓 ∥[𝑊𝑎]𝑖,𝑗∥0 ∗ [𝑊𝑎]𝑖,𝑗,𝑘 < ∥[𝑊𝑏]𝑖,𝑗∥0 ∗ [𝑊𝑏]𝑖,𝑗,𝑘

∥[𝑊𝑎]𝑖,𝑗∥0∗[𝑊𝑎]𝑖,𝑗,𝑘−∥[𝑊𝑏]𝑖,𝑗∥0∗[𝑊𝑏]𝑖,𝑗,𝑘
∥[𝑊 ]𝑖,𝑗∥1∗(∥[𝑊𝑎]𝑖,𝑗∥0+∥[𝑊𝑏]𝑖,𝑗∥0)  𝑒𝑙𝑠𝑒

.  

Given a time period set, which contains several time periods 
𝒘 = {𝑤1, 𝑤2, ⋯ , 𝑤𝑘}, when the system is under normal status, 
and a behavior graph 𝐺𝑎𝑏 obtained from an anomaly dataset, we 
subtract behavior graphs generated on 𝒘  from 𝐺𝑎𝑏 . Hence, 
𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝐺𝑎𝑏) = 𝐺𝑎𝑏 − ∑ 𝐺𝑖

𝑘
𝑖=1 , where 𝐺𝑖 is generated during 

𝑤𝑖. We call the result as anomaly profile. It can better depict the 
nature of anomaly, as the sharing elements of the normal corre-
lations from the anomaly behavior graph are removed.  

Fig. 5 demonstrates an example of anomaly profile. In Fig. 5, 
G1 is a normal behavior graph, where most of the services have 

inter-correlations. The anomaly behavior graph (G2) has a lot of 
sharing correlations compared to G1. We compute G2−G1 to 
remove edges unrelated to the anomaly from G2 (indicated by 
dashed arrow lines in G2). The solid red edges in G2 represent 
the result of G2−G1, that is, abnormal correlations. 

 

Figure 5: An example of behavior graph subtraction 

6  AUTOMATED ROOT CAUSE DETECTION 

6.1 Automated Metric Weight Learning 
Traditionally, we choose latency to indicate the healthy condit-
ion of a short-term connection service, but it’s not effective for 
long-term connection service monitoring. Load features can be 
used to indicate the health condition of IO-intensive services, but 
not suitable for computational-intensive services like AI and NLP. 
This tells that single type of metric cannot be applied to charact-
erize the anomalies occurring in diverse services. In this section, 
we discuss how to find the most effective metric (or a combina-
tion of several metrics) for the service-specific anomalies. 

In AutoMAP, our basic idea of choosing appropriate diagnosis 
metric is drawn from the way of manual troubleshooting by exp-
erienced SRE. That is, if the confirmed root cause in historical 
incidents shows high correlation with a front-end service in ter-
ms of certain metric, in similar situations, the candidate root ca-
use service should also have high correlation using the same me-
tric. To this end, AutoMAP introduces a metric weight learning 
mechanism based on profile similarity. We define the measure-
ment function for service correlation and result precision: 

Service Correlation. If a behavior graph 𝐺(𝑉 , 𝐸, 𝑊 ) is gen-
erated from 𝕄, let ℂ be the multi-metric correlation matrix for 
each service pair 𝑣𝑖, 𝑣𝑗 ∈ 𝑽 , where ℂ𝒌 = [𝐂𝒌]𝒏×𝒏 records the 
correlation scores based on 𝕄𝒌. The correlation 𝑐𝑖,𝑗,𝑘 = [𝐂𝒌]𝒊,𝒋 
scores the relevance of 𝑣𝑖 to 𝑣𝑗 in terms of 𝕄𝒌. It is defined as  

𝑐𝑖,𝑗,𝑘 = [𝐂𝑘]𝑖,𝑗 = ∣
∑ ([𝐌𝑘]𝑖×𝑝−[𝐌𝑘]𝚤̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅)([𝐌𝑘]𝑗×𝑝−[𝐌𝑘]𝚥̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅)𝑤

𝑝=1

√∑ ([𝐌𝑘]𝑖×𝑝−[𝐌𝑘]𝚤̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅)
2𝑤

𝑝=1
√∑ ([𝐌𝑘]𝑗×𝑝−[𝐌𝑘]𝚥̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅)

2𝑤
𝑝=1

∣ . 

We calculate the covariance of two metric series divided by 
the product of their standard deviations, and use the absolute 
value of the result as the score. This score measures the strength 
of either positive or negative linear correlation between two ser-
vices. The value of 𝑐𝑖,𝑗,𝑘 is in [0,1]. 𝑐𝑖,𝑗,𝑘 = 1 implies completely 
correlation, whereas 𝑐𝑖,𝑗,𝑘 = 0 means that there is no correlation 
between them.  

Result Precision. In order to quantify the confidence of met-
ric, we introduce a performance measurement to evaluate the 
precision of result, denoted as 𝑃 (𝐺), where 𝐺 is the anomaly 
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behavior graph been used. The higher result precision indicates 
that the algorithm can identify the root cause more accurately, 
resulting in less wrong candidates to investigate. More speci-
fically, given an anomaly behavior graph 𝐺 and metrics 𝕄, let 
𝑅𝑛×1 be the candidate results and 𝒗𝑟𝑐 be the root cause services, 
the precision score is generally calculated as |𝑅 ∩ 𝒗𝑟𝑐| |𝒗𝑟𝑐|⁄ .  

Fig. 6 demonstrates the procedure of automated metric weight 
learning in AutoMAP. Given a target anomaly 𝐺𝐴, we search 
top-𝑘 similar profiles to 𝐺𝐴 in historical records, and denote the 
result as {𝐺1, 𝐺2, ⋯ , 𝐺𝑘}. Therefore, for 𝐺𝐴, the suggested met-
ric weight is calculated by the correlation score of root cause and 
front-end service, considering from 𝕄1 to 𝕄𝑚 separately. Let 𝒘 
be a 𝑚 × 1 matrix, where 𝑤𝑖 ∈ 𝒘 represents the confidence wei-
ght of 𝕄𝑘 when diagnosing 𝐺. ∑ 𝒘 = 1. Let 𝑣𝑟𝑐, 𝑣𝑓𝑒 denote the 
root cause and front-end service, and 𝑐𝑟𝑐,𝑓𝑟,𝑘 be their correlation 
score in terms of 𝕄𝑘. We calculate 1𝑘 ∑ 𝑃 (𝐺𝑗)

𝑘
𝑗=1 𝑐𝑟𝑐,𝑓𝑟,𝑖 as the 

precision-weighted voting result from {𝐺1, 𝐺2, ⋯ , 𝐺𝑘} for 𝕄𝑘. 
We use normalized value as suggested weight of 𝕄𝑘. Particularly, 
if there is no historical anomaly profile, we use a default metric 
𝐌𝑙𝑎𝑡 to start this process. 

 

Figure 6: Metric weight learning in AutoMAP 

6.2 Profile Similarity 
In this section, we propose a similarity function to enable the 
search for similar anomaly profiles. Traditional measurements 
usually compare the distance of graph topology [26]. However, 
in AutoMAP, we aim to measure the similarity between profiles 
in terms of their root anomaly pattern. Therefore, this function 
should be able to measure the similarity of profile’s topology, 
service profile and edges in the same time. We define our simi-
larity function as follows:  

Profile Similarity. Let 𝑠𝑖𝑚(𝐺𝑖, 𝐺𝑗) be the similarity score of 
anomaly profile 𝐺𝑖, 𝐺𝑗, 𝑠𝑖𝑚(𝐺𝑖, 𝐺𝑗) ∈ [0,1]. If 𝑠𝑖𝑚(𝐺𝑖, 𝐺𝑗) = 1, 
𝐺𝑖 and 𝐺𝑗 are identical. Otherwise, if 𝑠𝑖𝑚(𝐺𝑖, 𝐺𝑗) = 0, 𝐺𝑖 and 
𝐺𝑗 share no common feature. The calculations of similarity bet-
ween 𝐺𝑖 and 𝐺𝑗 consist of four steps: 

Step 1. Let 𝐺(𝑉 , 𝐸, 𝑊 ) be the sharing anomaly profile betw-
een 𝐺𝑖 and 𝐺𝑗, where 𝐺 = (𝐺𝑖 − 𝐺𝑗) + (𝐺𝑗 − 𝐺𝑖); 

Step 2. Compute the vertex overlap score, 𝑠𝑖𝑚𝑉𝑂(𝐺𝑖, 𝐺𝑗) =
|𝑉 |

|𝑉𝑖|+∣𝑉𝑗∣ 𝑠𝑖𝑚𝑉 (𝐺𝑖 − 𝐺𝑗, 𝐺𝑗 − 𝐺𝑖), where 𝑠𝑖𝑚𝑉  is the 
service profile distance between two graphs; 

Step 3. Compute the edge overlap score, 𝑠𝑖𝑚𝐸𝑂(𝐺𝑖, 𝐺𝑗) =
|𝐸|

|𝐸𝑖|+∣𝐸𝑗∣ 𝑠𝑖𝑚𝐸(𝐺𝑖 − 𝐺𝑗, 𝐺𝑗 − 𝐺𝑖), where 𝑠𝑖𝑚𝐸  is the 
edge weight distance between two graphs; 

Step 4. Compute the overall similarity score, using the har-
monic mean of vertex and edge overlap score: 

𝑠𝑖𝑚(𝐺𝑖, 𝐺𝑗) = 2 ∗ 𝑠𝑖𝑚𝑉𝑂(𝐺𝑖,𝐺𝑗)∗𝑠𝑖𝑚𝐸𝑂(𝐺𝑖,𝐺𝑗)
𝑠𝑖𝑚𝑉𝑂(𝐺𝑖,𝐺𝑗)+𝑠𝑖𝑚𝐸𝑂(𝐺𝑖,𝐺𝑗). 

In Step 2, we convert services into corresponding profile cate-
gories according to their dominant metric:{(𝐌{𝑙𝑎𝑡,𝑎𝑣𝑙} → 𝐑),
(𝐌{𝑡ℎ𝑟,𝑐𝑝𝑢} → 𝐂), (𝐌𝑐𝑜𝑛 → 𝐍), (𝐌𝑖𝑜 → 𝐒), (𝐌𝑚𝑒𝑚 → 𝐄)} . 
The vertex similarity 𝑠𝑖𝑚𝑉 (𝐺𝑖 − 𝐺𝑗, 𝐺𝑗 − 𝐺𝑖) is defined as the 
number of same vertexes between 𝐺𝑖 − 𝐺𝑗 and 𝐺𝑗 − 𝐺𝑖. For in-
stance, if 𝐺1 is a correlation sequence R→C→S→E, 𝐺2 is a se-
quence C→C→S→N. We obtain the sharing anomaly profile by 
intersecting 𝐺1 − 𝐺2  and 𝐺2 − 𝐺1 , which is C → S. Thus, 
𝑠𝑖𝑚𝑉 (𝐺1 − 𝐺2, 𝐺2 − 𝐺1) = 2 . We have 𝑠𝑖𝑚𝑉𝑂(𝐺1, 𝐺2) = 

|𝑉 |
|𝑉1|+|𝑉2| 𝑠𝑖𝑚𝑉 (𝐺1 − 𝐺2, 𝐺2 − 𝐺1) = 2

4+4 ∗ 2 = 1
2. In Step 3, we define 

𝑠𝑖𝑚𝐸(𝐺1 − 𝐺2, 𝐺2 − 𝐺1) = 𝑑𝑖𝑠𝑡(𝑊𝐺1−Share, 𝑊𝐺2−𝑆ℎ𝑎𝑟𝑒) , where 
𝑊𝐺1−𝑆ℎ𝑎𝑟𝑒 and 𝑊𝐺2−𝑆ℎ𝑎𝑟𝑒 represent the weight matrix of sharing 
anomaly profile in 𝐺1  and 𝐺2 . Using the same example, 
𝑊𝐺1−𝑆ℎ𝑎𝑟𝑒 and 𝑊𝐺2−𝑆ℎ𝑎𝑟𝑒 are the weight vectors of edge C→S in 
𝐺1 and 𝐺2, respectively. We calculate 𝑑𝑖𝑠𝑡(𝑊𝐺1−Share, 𝑊𝐺2−𝑆ℎ𝑎𝑟𝑒) 
using Euclidean distance of vectors.  

6.3 Root Cause Detection 
Fig. 7 shows a constructed behavior graph (part) using the same 
incident shown in Fig. 3 and Fig. 4. Note that most user-domain 
APIs and normal services are removed from this example due to 
limited space. In the graph, we see most of the abnormal services 
are connected, which means they probably participate in the 
propagation. We notice that some of them (i.e. S1, S12 and S27) are 
not connected with any other services. Besides, although (S3, S19) 
and (S4, S11, S23, S25) are inter-connected, they are isolated from 
the front-end service - S18, so they will not be taken into account 
in root cause detection. We are curious about it and seek advice 
to SRE. They found that these services belong to HTML5-based 
WebSocket server and NLP module. They usually have very long 
connections and their metrics make no sense in this anomaly. In 
other words, they have no correlation with other abnormal ser-
vices. Hence, some irrelevant services can be removed from con-
sideration in behavior graph construction phase.  

Our report indicates that the root cause of this incident is that 
several event components run out of memory. It then propagates 
in the infrastructure and slow down the console, finally freezes 
the dashboard. Starting from S18, we observe that a service chain 
“18→13→6” represents the causal correlations “R→C→E”. 
However, if we strictly follow the directions in behavior graph, 
only a small number of services can be confirmed (marked using 
bold green line in Fig. 7), while most of other services are out of 
the scope of investigation. 

The feature of anomaly will change as the hierarchical service 
calling and propagation. Thus, it is inaccurate to directly use ser-
vice correlation score to traverse for the root cause (please refer 
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to our experimental results for TBAC [27] - a typical algorithm 
based on hierarchical service correlation). In real production sys-
tems, large amount and highly-diverse microservices make the 
diagnosis extremely challenging. Without any automated tools, 
SRE team spend 3 hours on average to identify the root cause for 
each incident. 

 

Figure 7: Part of the constructed behavior graph for a sam-
ple incident 

6.4 Heuristic Random Walk Algorithm 
AutoMAP employs a dynamic and heuristic algorithm to identify 
the root cause. It simulates our operations in traditional trouble-
shooting. More specifically, we start from the front-end service, 
follow the service-calling topology and gradually investigate 
each service based on its metric correlation to the anomaly. A 
node that is targeted by more investigation paths is more likely 
to be the root cause. Based on this intuitive observation, we pro-
pose a random walk algorithm with three types of transitions, 
namely forward, self and backward transition.  

Forward Transition. Basically, a random visitor walks from 
service 𝑣𝑖 to 𝑣𝑗 with probability 𝑝𝑖,𝑗 if 𝑒𝑖𝑗 = 1. According to the 
basic idea of root cause diagnosis, the visitor visits 𝑣𝑗 propor-
tionally to its correlation score to 𝑣𝑓𝑒, i.e. 𝑐𝑗,𝑓𝑒,𝑘. We also consi-
der the confidence of all types of metrics. Hence, the forward 
transition probability matrix 𝐏 is defined as follows, 

[𝐏]𝑖,𝑗 = 𝑝𝑖,𝑗 = ∑ 𝑤𝑘𝑊𝑖,𝑗,𝑘
𝑐𝑗,𝑓𝑒,𝑘

∑ 𝑐𝑙,𝑓𝑒,𝑘𝑙∈𝑂𝑖

𝑚

𝑘=1
, ∀𝑒𝑖𝑗 = 1, 

where 𝑂𝑖 is set of out-neighbor nodes of node 𝑣𝑖 in 𝐺𝐴.  
Self-Transition. The self-transition encourages the visitor to 

stay longer on its currently-visiting service, in case that none of 
its in- and out-neighbors show high correlation. Let 𝑝𝑖

𝑠 denote 
the self-transition probability for the visiting node 𝑣𝑖. 𝑝𝑖

𝑠 is deter-
mined by the difference of 𝑝𝑖,𝑖 and the maximum transition pro-
bability of in- and out-neighbors of 𝑣𝑖. Hence, we have  

        𝑝𝑖
𝑠 = max (0, 𝑝𝑖,𝑖 − max

𝑙∈𝐼𝑖∪𝑂𝑖
𝑝𝑖,𝑙) ,      

where 𝐼𝑖 is set of in-neighbor nodes of node 𝑣𝑖 in 𝐺𝐴. 
Backward Transition. Another case is that when the visitor 

is visiting a particular service with low correlation score, it may 
find no way to leave if all its out-neighbor services are of low 
correlation to the given anomaly. Hence, we design the backw-
ard transition to resolve this issue, making the random walk 

more dynamic. Specifically, let 𝑝𝑖,𝑗
𝑏  be the backward transition 

probability from 𝑣𝑖 to 𝑣𝑗 ∈ 𝐼𝑖 in 𝐺𝐴, it is defined as follows, 

 𝑝𝑖,𝑗
𝑏 = 𝜌

𝑝𝑖,𝑗

∑ 𝑝𝑖,𝑙𝑙∈𝐼𝑖

 , 

where 𝜌 ∈ [0, 1) is a strength parameter. 𝜌 controls the degree of 
faithfulness of the random walk path to the original edge direct-
ions. If we set 𝜌 lower, the visitor is more constrained to the ori-
ginal direction. Conversely, if we set 𝜌 higher, it is more encour-
aged to walk backward when needed. 

Random Walk. Given an anomaly behavior graph 𝐺𝐴, the 
random walk algorithm starts from 𝑣𝑓𝑒, calculates the probability 
of forward, backward and self-transitions, and randomly select 
one of them. Services are visited in sequence by the visitor’s ran-
domly choosing the next target among its currently vising node 
and its neighbors. We record how many times of each service 
being visited and output the list descending as the result. Note 
that we conduct the random walk based on original behavior gr-
aph 𝐺𝐴 instead of its anomaly profile (i.e. remove normal corre-
lations from 𝐺𝐴). It increases the probability of detecting more 
candidates. We summarize this process in Algorithm 2. 

Algorithm 2. Root Cause Detection Algorithm 

Input. 𝐺𝐴, 𝑣𝑓𝑒. 
01 new transition probability 𝐏 , result array 𝑅[𝑛], 𝑣𝑠 =𝑣𝑓𝑒 , 

𝑣𝑝=𝑣𝑓𝑒 
02 repeat 𝑛 rounds 
03     𝑣𝑝 ← 𝑣𝑠 
04     for each  𝑙 ∈ 𝑂𝑠 calculate 𝑝𝑠,𝑙 
05     for each 𝑙 ∈ 𝐼𝑠 calculate 𝑝𝑠,𝑙

𝑏  
06     calculate 𝑝𝑠

𝑠, row normalize [𝐏](𝑝,𝑠) 
07     𝑣𝑠 ← randomly choose from 𝑂𝑠 ∪ 𝐼𝑠 ∪ {𝑣𝑠} 
08     𝑅[𝑠] ← 𝑅[𝑠] + 1 
09 end 
10 𝑅[𝑛] ← 𝑆𝑜𝑟𝑡(𝑅[𝑛]) 
Output. 𝑅[𝑛] 

7  EXPERIMENTS AND EVALUATIONS 

7.1 Dataset and Benchmarks 
We use both simulated and real-world production environment 
to evaluate AutoMAP. The simulated environment is implem-
ented using a microservice-based system (the project has been 
uploaded to GitHub, but due to anonymous review requirements, 
we cannot provide the link in this version). It is composed of 16 
microservices following a pre-configured topology running in 
Docker containers and managed by Zookeeper. In order to simu-
late anomalies, in each round of test, we randomly select one 
back-end services and inject fault into it, i.e. shut down the 
container or perform DoS (Denial of Service) attacks. 

Our real-world datasets consist of 20 incidents occurred in our 
cloud platform. These incidents are internally reported, collected 
and verified which services are the root cause by SRE team. For 
each incident, we have about 15 million metrics, collected during 
7200 seconds (1 hour before and 1 hour after the anomaly was 
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detected) from 1732 microservice APIs. This dataset only recor-
ded key system APIs and we removed most user-domain APIs.  

Several baseline approaches are selected: TBAC [27], Monitor-
Rank [23], CloudRanger [30], NetMedic [8] and MS-Rank [32]. 
We use same incidents to run those selected algorithms. For alg-
orithms rely on single-metric: TBAC, MonitorRank and Cloud-
Ranger, we examine their precision in terms of 𝐌𝑙𝑎𝑡 and 𝐌𝑡ℎ𝑟. 
For algorithms relying on pre-defined topology, we use behavior 
graph constructed on 𝐌𝑙𝑎𝑡 to run them, as the ground truth of 
this topology is unrecorded. We compare the algorithms using 
top-𝑘 and average top-1 to 𝑘 result (denoted as avg-𝑘) precision. 
In each round of test, we choose the avg-5 precision as the score 
of different metrics and update the score matrix in AutoMAP. 

Our prototype system is implemented using Python and Pcalg 
package (https://pypi.org/project/pcalg/). In Algorithm 1, we use 
𝜒2-test [25] to determine the conditional independence. The me-
tric sampling interval we used for simulated platform is 2 sec-
onds, and 5 seconds for our real-world cloud system. Experim-
ents are conducted in a workstation with Intel Xeon 2.4GHz CPU, 

16GB RAM running 64-bit Windows Server 2008. All experimen-
tal results are obtained by averaging 20 different rounds of tests. 

7.2 Experiments and Results Analysis 
7.2.1 Root cause identification. The first experiment compares 

the precision of selected algorithms, when 𝑘 =1/ 3/ 5, ℓ = 1440. 
For AutoMAP and MS-Rank, we record theirs result precision 
after 10 rounds of optimization. Fig. 8 summarizes the experim-
ental results using real-world incidents. In general, we see that 
AutoMAP outperforms other algorithms in terms of result preci-
sion. Specifically, it has 64.4% result precision in top-1 and 93.9% 
in top-5. In terms of other algorithms, the result precision is usu-
ally less than 50% without selecting an appropriate metric. Table 
4 summarizes the experimental results obtained from the simu-
lated system, which are similar as those obtained from real-
world incidents. We found that the root cause detection is inac-
curate if it’s only based on correlation score (TBAC). Also, com-
pared to static algorithms (TBAC, NetMedic, MonitorRank, Clo-
udRanger), random walk scheme can identify the root cause with 
higher accuracy. Besides, compared with the MS-Rank algorithm, 

 

          

Figure 8: Top-1, 3, 5 and avg-5 precision of AutoMAP and different algorithms using real-world incidents 

                   
Figure 9: Precision of AutoMAP and NetMedic with different rounds of test using real-world incidents  

             

Figure 10: Top-1, 3, 5 and avg-5 precision of AutoMAP with different rounds of test and ℓ, using real-world incidents 

TABLE 4: Precision of different algorithms 
 in simulated environment 

 TBAC Monitor 
Rank 

Cloud 
Ranger 

Net 
Medic 

MS-
Rank* 

Auto 
MAP* 

Top-1 
𝐌𝐿𝑎𝑡 23.1% 25.4% 59.4% 

22.7% 59.4% 65.7% 
𝐌𝑇ℎ𝑟 16.2% 41.9% 40.1% 

Top-3 
𝐌𝐿𝑎𝑡 45.3% 87.4% 89.5% 

37.8% 89.5% 91.2% 
𝐌𝑇ℎ𝑟 35.9% 66.3% 68.2% 

Top-5 
𝐌𝐿𝑎𝑡 61.3% 89.7% 93.3% 

54.3% 93.3% 93.5% 
𝐌𝑇ℎ𝑟 40.1% 72.1% 73.4% 

Avg-5 
𝐌𝐿𝑎𝑡 47.0% 73.7% 85.2% 

49.7% 85.2% 89.7% 
𝐌𝑇ℎ𝑟 43.7% 64.1% 68.8% 

* Note: Result after 10 rounds of detection with multiple metrics. 

TABLE 5: Avg-5 precision when introducing different domain knowledge  
into AutoMAP, using real-world incidents 

AutoMAP + Knowledge 
ℓ = 1440 ℓ = 200 

avg-5 IMP* STD avg-5 IMP* STD 
AutoMAP 

+API 
Link API with same 

source 89.9% +0.2% 0.05 61.7% +4.9% 0.29 

AutoMAP 
-Normal 

Remove normal ser-
vices (<5%) 92.6% +3.2% 0.05 58.9% +0.1% 0.21 

AutoMAP 
+Linked 

Add known calling 
correlations 90.7% +1.1% 0.04 63.6% +8.2% 0.19 

AutoMAP 
-Unlinked 

Remove edges without 
dependencies 91.8% +2.3% 0.04 60.1% +2.2% 0.15 

AutoMAP 
+Direction 

Orient direction of 
edges (<5%) 89.7% +0.0% 0.04 62.0% +5.4% 0.15 

* Improvement compared to original AutoMAP after 10 rounds of test. 
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the introduction of anomaly profile in AutoMAP can effectively 
improve the result accuracy, especially for top-1 results. 

7.2.2 Self-Optimization. In order to verify the effectiveness of 
self-optimization mechanism, we examine AutoMAP using mult-
iple rounds of test, and compare its precision with traditional 
NetMedic solution from round 1 to 10. The experiment is cond-
ucted when 𝑘 =1/ 3/ 5, ℓ = 1440, using real-world incidents. The 
results are illustrated in Fig. 9, which shows that the precision of 
AutoMAP increases significantly when we conduct more rounds 
of test. For example, the precision increases from 59.7% (𝑘 = 5) 
to 93.9% at 10th round. AutoMAP shows significant advantages 
over NetMedic. As NetMedic does not support self-optimizing, 
so it is unstable in the rapidly changing system architecture. 

7.2.3  Algorithm parameter - ℓ. The third experiment evaluates 
the impact of different parameters on AutoMAP, i.e., ℓ - incident 
period length. We compare the precision of AutoMAP when ℓ is 
increased from 700 to 1440 for real-world incidents. When we 
input more metrics into AutoMAP, which means parameter ℓ is 
set larger, the results show more accurate correlations between 
the services, as shown in Fig. 10. It is worth noticing that a small 
ℓ results in a significant impact on the precision, e.g., the preci-
sion drops below 40% when ℓ = 700. We further compare the 
growth rate of precision with different ℓ. Fig. 10 shows that the 
precision increases more quickly when ℓ is higher, as we have 
more data to support multi-metric optimization. 

 7.2.4  Domain knowledge. This experiment verifies the effect 
of domain knowledge. We propose five enhancement methods 
using different types of knowledge in AutoMAP (See Table IV). 
Our experiment compares the result of these enhanced versions 
with the original AutoMAP in the 1st and 10th round. Table V 
and Fig. 11 summarize the results obtained from the experiments 
ran with real-world incidents. We observe the algorithms enhan-
ced with domain knowledge have different impacts on the origi-
nal AutoMAP. For instance, when ℓ = 200, domain knowledge 
can better help to improve the algorithm precision, especially for 
the three algorithms that add information to behavior graph 
(AutoMAP+API 4.9% improvement, AutoMAP+Linked +8.2%, 
AutoMAP+Direction +5.4%). However, when ℓ = 1440, although 
the enhanced algorithms can still improve the precision, the de-
rived behavior graph is sufficient to be used for heuristic diagno-
sis. That clearly says, the role of domain knowledge gets weaker 
when more sampling data are available. 

 7.2.5  Algorithm parameters - 𝛼 and 𝜌. The last experiment 
conducted using real-world incidents analyzes the impact of two 
important parameters - 𝛼 and 𝜌 (See Fig. 12 and 13). To observe 
the impact of 𝛼, we increased it from 0.01 to 0.50, and find the 
overall execution time increases linearly (see Fig. 12). Even when 
𝛼 = 0.5, it takes less than 4 minutes to process the complete da-
taset. We then developed additional experiments to analyze the 
effect of 𝛼 and 𝜌 on precision (see Fig. 13). When we increase 𝛼 
from 0.01 to 0.50, and compare the precision under different ℓ, 
we find that when the dataset is sparser (for instance, when ℓ =
 200), higher 𝛼 makes the result more precise, because AutoMAP 
does not have enough metrics to characterize the correlations. 
When we set 𝛼 lower, the number of edges in the behavior gra-
phs may become too few to ensure the accessibility of visitor, 
leading to low result precision. Meanwhile, when we use more 
metric records to run AutoMAP, the impact of using different 𝛼 
is not obvious. As a result, we can choose a relatively small 𝛼, 
making the correlation graph more consistent with ground truth.  

Lastly, to evaluate the impact of the backward transition pa-
rameter - 𝜌, we set up two environments (𝛼 = 0.01, ℓ = 200 ver-
sus 𝛼 = 0.50, ℓ = 1440) and compare the precision using different 
𝜌. As the results indicated in Fig. 14, when 𝜌 is smaller, a higher 
𝛼 is needed to ensure that the random walk algorithm has more 
paths to be chosen. Besides, the precision is not significantly im-
proved when 𝜌 is set close to 1. Therefore, it is recommended to 
choose a moderate backward transition parameter, e.g., 𝜌 =0.2. 

8 CONCLUSIONS 
This paper presents AutoMAP, a system that enables automated 
anomaly diagnosis for microservice-based web applications. Our 
experiments conducted in both real-world and simulated envi-
ronment show that AutoMAP outperforms other methods in pre-
cision. It offers fast identification of root cause especially in lar-
ge-scale microservice architecture. AutoMAP treats the micro-
service-based applications as “grey box” and make no assumpt-
ion about pre-knowledge. Therefore, it could fit into most appli-
cation scenarios because it does not require a pre-defined topol-
ogy, given a large part of legacy systems only have basic perfor-
mance monitoring metrics. Besides, it is easy to introduce expert 
experiences into AutoMAP. Our future work will be focused on 
the application of AutoMAP to other complex systems, such as 
social and biological networks. 

       
Figure 11: Avg-5 precision of AutoMAP augmented with different types of knowledge 

 
Figure 12: Time cost when executing 
AutoMAP with different 𝜶 

 
Figure 13: Avg-5 precision with 
different 𝜶 

 

 
Figure 14: Avg-5 precision with 
different 𝝆 
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