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Multiresolution Abnormal Trace Detection Using
Varied-Length n-Grams and Automata
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Abstract—Detection and diagnosis of faults in a large-scale dis-
tributed system is a formidable task. Interest in monitoring and
using traces of user requests for fault detection has been on the rise
recently. In this paper we propose novel fault detection methods
based on abnormal trace detection. One essential problem is how
to represent the large amount of training trace data compactly as
an oracle. Our key contribution is the novel use of varied-length
n-grams and automata to characterize normal traces. A new trace
is compared against the learned automata to determine whether
it is abnormal. We develop algorithms to automatically extract n-
grams and construct multiresolution automata from training data.
Further, both deterministic and multihypothesis algorithms are
proposed for detection. We inspect the trace constraints of real ap-
plication software and verify the existence of long n-grams. Our
approach is tested in a real system with injected faults and achieves
good results in experiments.

Index Terms—Abnormal trace, algorithm, automata, fault de-
tection, large-scale information system, n-gram.

I. INTRODUCTION

THE success of global networking has lead to the wide
use of various Internet services. Online searching, shop-

ping, and transactions are increasingly becoming part of our
daily life. Although users only see a website of Internet services
such as Google.com and eBay.com, the information system be-
hind the scene is a large, dynamic, and distributed system and
could consist of thousands of components including servers,
software, networking devices, storage equipments, etc. While
each of these components is already complex enough by itself,
the dynamic interaction between them introduces another mag-
nitude of complexity. Further, Internet services are expected to
run 24× 7× 365 and maintain over 99.9% uptime. The com-
plexity combined with the uptime requirement is a major system
management challenge.

Fault detection and diagnosis in such a system is a formidable
task. Most current approaches for fault detection and diagnosis
use event correlation [1]. This method collects and correlates
events to locate faults based on known dependency knowledge
between faults and symptoms. In practice, many runtime faults
in an interconnected system are not very well understood. Since
the runtime environments are very diverse, a fault may manifest
itself in different ways. As a result, it is usually difficult to ob-
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tain such fault-symptom dependency knowledge precisely. As
an example of a complex scenario, consider a class of problems
in Internet services that are specific to individual user requests
and not visible in collected events. For instance, the “checkout”
button does not work after a customer spent hours selecting
products from a website. It is possible that this problem affects
only one customer and no one else. Such a problem may force us
to trace how this individual request went through various com-
ponents in the system and use such internal trace information to
locate the fault.

Recently there has been much research activity in collecting
and using traces for performance debugging and fault detection
in distributed systems. Several research groups have developed
tools to collect the traces of user requests. The Berkeley/Stanford
Recovery-Oriented Computing (ROC) group modified the JBoss
middleware to monitor traces in the J2EE platform and devel-
oped two methods to use collected traces for fault detection
and diagnosis [2]. Aguilera et al. [3] developed application-
independent passive tracing approaches in both RPC-style sys-
tems and message-based systems. Their method requires no
modification to applications and middleware and can be widely
used for performance debugging purpose. Magpie [4] uses low-
overhead instrumentation to record fine-grained events gener-
ated by kernel, middleware, and applications. The Magpie re-
quest extraction tool then uses an application-specific event
schema to correlate these events and precisely capture the
control flow of every request. In addition, several commer-
cial software packages, such as HP’s OpenView Transaction
Analyzer [5], have also been developed recently to monitor and
trace transaction flows in distributed J2EE and .NET systems.

While these technologies enable us to monitor and collect
traces in various distributed systems, in this paper we focus on
how to detect faults based on trace analysis. Internet services
receive large number of user requests everyday and along the
time these requests act like “probing and testing” the system in
a brute-force way. A fault or bug inside a system is likely to
affect the traces of some user requests. In this paper, we pro-
pose to use varied-length n-grams and automata to characterize
and represent the normal traces compactly and then use the
learned automata to determine whether a new trace is abnormal
(or acceptable). We develop algorithms to automatically extract
n-grams and build multiresolution automata from training trace
data. Further both deterministic and multihypothesis detection
algorithms are proposed to detect abnormal traces. We inspect
the trace constraints of real application software and verify the
existence of long n-grams. Our approach is applied in a real sys-
tem with injected faults. The experimental results demonstrate
that our approach works very well in fault detection.
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II. ABNORMAL TRACE DETECTION

A trace records a sequence of components traversed in a sys-
tem in response to a user request. The system architecture, func-
tionality, and especially software control flows impose many
constraints on the structure of traces. For example, components
A-B-C-D always show up together and in that particular order
because that is the only path starting from the component A.
Such constraints are useful in fault detection to distinguish nor-
mal and abnormal traces. A fault inside the system is likely to
affect some traces and cause these traces to violate some con-
straints. By detecting the abnormal traces, we expect to localize
the cause of the abnormal traces—the faulty component itself.

If the dependency knowledge between specific faults and their
symptoms is known, a fault can be detected and diagnosed di-
rectly based on its unique symptom. However, it is not realistic
to characterize/model faults precisely in a large, complex, and
dynamic system. Many runtime faults/bugs are not anticipated
or well understood. In addition, we do not have sufficient data
to model the faulty situation accurately because in general run-
time faults are very rare. An alternative is to characterize/model
normal traces rather than the faulty ones because large amount
of trace data from normal operation is available. This normal
model can be used as an oracle to determine whether a new trace
is acceptable or not.

A challenge here is that we do not know how much gen-
eralization capacity this model should have. This problem is
closely related to the VC dimension [6] in learning theory, but
here the trace samples are clearly not independently and iden-
tically distributed as required by the theory. We can only try to
collect as many traces as possible and characterize/model these
“known/seen” normal traces well. For a large system, however, it
is difficult to include every normal trace in the training data. Fur-
ther, both the distribution of “unknown/unseen” normal traces
and the distribution of “faulty” traces affected by various faults
are unknown. In addition, it is also hard to define the “similarity”
metric in a conceptual trace space because it is not clear how
traces are affected by various faults. Two traces that look very
similar in the structure could be thoroughly different with regard
to whether they are normal or faulty. Conversely, two traces that
look thoroughly different could both be normal traces. Thus, we
have few clues about the direction of the trace space in which the
normal model should generalize. Typically, high-generalization
capability would lead to high false negative rates (missed detec-
tions), while low-generalization capability would lead to high
false positive rates (false alarms). This motivates us to develop
multiresolution algorithms for fault detection.

As we try to develop the right model or structure to charac-
terize normal traces, it is necessary to first analyze some basic
properties of traces. A trace includes a list of component names
as well as the sequential order of these components. This com-
ponent sequence order includes both the local-order constraints
between adjacent components and the global-order constraints
between nonconsecutive components. For example, in a trace
ABCDEFG, the constraint that components A and B are consec-
utive is a local-order constraint and constraint that component A
and E are three steps apart is a global-order constraint. We have

Fig. 1. Traces with call-return structure.

Fig. 2. Steps of abnormal trace detection.

to consider how many of such local- and global-order constraints
should be captured by the model.

Depending on the monitoring mechanisms, a trace may or
may not include call-return structure in its sequence. In this
paper, for the trace including call-return structure, calling a
component and returning to a component are considered distinct.
For example, as shown in Fig. 1, calling a component A is
represented by a capital letter “A” and returning to a component
A is represented by a lowercase letter “a.” Without the call-
return structure, both traces are interpreted as the same sequence
ABC. Conversely, with the call-return structure, the traces are
interpreted as two very different sequences: ABCba and ABaCa.
Since our algorithms can be used to analyze the sequences with
both structures, in the following sections we do not distinguish
these two cases.

n-Gram is a commonly used natural language model [7].
It assumes that only the previous n − 1 words in a sentence
have effect on the probabilities for choosing the next word.
In this paper we borrow this term to represent the contiguous
component subsequences of a trace. For example, ABCD and EF
are a 4-gram and a 2-gram, respectively. Automata are used to
connect the n-grams to represent whole traces. Within n-grams,
the components are bound together in that order and both the
local and global-order constraints remain. Between n-grams
in the automata, only the local-order constraints are captured
because of the Markov property of automata. By controlling the
length of n-grams, we can control how many local and global-
order constraints of a trace are represented in the model.

Fig. 2 illustrates the basic steps of our approach. First we
collect traces and our algorithm automatically extracts a series
of varied-length n-grams from the training trace data based on
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frequency checking. These n-grams serve as the basic “genes”
to construct any normal traces and are used as states in the con-
struction of automata. The automata are then built automatically
by linking n-grams to represent whole traces. These steps may
be computationally expensive but can be done offline. A new
trace is compared against the learned automata to determine
whether it is abnormal (or acceptable). This step is fast and is
able to support online detection.

III. n-GRAM EXTRACTION

Theoretically, we can count the frequency of each trace and
construct probabilistic automata to characterize the distribution
of traces. In practice it is difficult to build robust probabilistic
models because it is the highly dynamic user behavior that deter-
mines the distribution of traces. For example, after some items
are on sale, user requests and their traces associated with these
items could suddenly become much more frequent, even though
there is no failure. Although it seems that gross user behav-
ior in high-traffic Internet services is surprisingly predictable,
showing clear diurnal and weekly patterns of behavior, we pre-
fer to build models that do not fundamentally depend on the
accuracy with which this behavior is captured. We rely on the
fact that in spite of its dynamicity, the user behavior does not
change the underlying reachability structure of the automata.
An analogy is that the road network of a city does not change
but the traffic distribution on each road is always changing. In
this paper, we do not use probabilistic models to characterize
how frequently a trace in the automata is visited. Instead we
only consider whether the automata include the trace or not.
The dynamics of user behavior will not affect the validity of our
model and, as shown in our experiments, the reachability model
is still good enough to detect many failures. Therefore, we only
use the unique traces from the training data to extract n-grams,
i.e., any trace only shows up once in our training data. Fre-
quency checking and association rules are applied to determine
which components are more tightly bound together than oth-
ers. A threshold α is introduced to filter out those nonfrequent
component combinations.

Our n-gram extraction algorithm (Algorithm 3.1) is similar to
the classic sequential pattern mining algorithms [8]. Denote the
number of unique traces in the training data as N . Algorithm 3.1
goes forward starting from k = 1. Ck is the set of n-grams with
length n = k, i.e., k-grams. ci

k is the ith k-gram in the set Ck.
f(s) is the number of times the sequence s appears in the set
of the training trace data. Note that f(s) has to be smaller than
both f(ci

k) and f(cj
k) because the child sequence s subsumes

both ci
k and cj

k—the parent sequences. Thus, we have 0 ≤ α ≤ 1
and the inequality f(s) > α · min(f(ci

k), f(cj
k)) implies that if

the longer child sequence s can replace at least α percentage
of one of its parent sequences, it is necessary to introduce the
new sequence s as a (k + 1)-gram. There are several pruning
techniques to reduce the set of n-grams. For example, if f(s)
is equal to f(ci

k), then we know that as long as the sequence
ci
k shows up in the traces, it has to exist as part of the longer

sequence s. Since the longer sequence s has already represented
the subsequence ci

k here, ci
k can be removed from the set Ck.

Fig. 3. Example of extraction process.

The threshold α affects the length of extracted n-grams. As we
will see in the experiments, the longest n-grams become much
shorter as α increases. The traces in a large system are usually
very diverse. As α → 0, the longest n-gram becomes the whole
trace itself. Conversely, as α → 1, the longest n-grams become
the single components, i.e., n = 1. Thus, by controlling α, we
control the length of the extracted n-grams.

Fig. 3 illustrates an example of the extraction process. Assume
that we have three traces: ABCDE, CDEA, and CDEBA, and
the threshold is set to α = 0.6. Numbers in the parentheses are
the number of times that the associated sequence appears in the
traces. At k = 2, the combined sequences marked with “X” do
not pass the threshold and they will not be put into the set C2.
The extraction process ends at k = 3 here and the length of the
longest n-grams is three. If we apply pruning on these n-gram
sets, C, D, and E at k = 1 and CD and DE at k = 2 will be
pruned from the sets because the 3-gram CDE subsumes all of
them with the same frequency number.

The implementation of Algorithm 3.1 is similar to the famous
Apriori algorithm [8]. Assuming that the length of the longest
n-grams is L, this algorithm needs L + 1 data scans. The com-
plexity of the algorithm is linearly dependent on the length of
traces, but is exponentially dependent on the number of com-
ponents [9]. However, in practice this algorithm could converge
quickly, especially if the threshold α is not small.

IV. AUTOMATA CONSTRUCTION

Algorithm 3.1 extracts a series of frequent n-gram sets
Ck with varying length k. These n-grams are the basis for
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Fig. 4. Example of automaton.

subsequent automata construction. Before constructing the au-
tomata, we sort the n-grams with same length (i.e., the n-grams
in the same set) according to their frequency. The determinis-
tic Algorithm 4.1 is then used to disassemble whole traces into
multiple n-grams for automata construction. The length of the
longest n-grams is L and then we have 1 ≤ k ≤ L. E is the
transition matrix of the constructed automaton. Algorithm 4.1
goes backward starting from k = L, following two deterministic
rules to cut the whole trace:

1) Rule 1: For different sets of n-grams, choose the set with
longer n-grams first.

2) Rule 2: For n-grams in the same set, choose the more
frequent one first.

Let us denote the total number of n-grams extracted from Al-
gorithm 3.1 as W , i.e., W =

∑L
k=1 |Ck|, where |Ck| is the size

of the set Ck. With N traces, it is straightforward to see that the
complexity of Algorithm 4.1 is O(WN). Before explaining the
specific cutting process of Algorithm 4.1, it is useful to discuss
the generalization ability that automata introduce to the model.
Based on Algorithm 4.1, all training traces can be precisely rep-
resented by the constructed automata. The bottom line is that the
set of single components C1 is sufficient to construct any trace
seen in the training data. However, the generalization ability of
automata could regard other traces as normal traces. For exam-
ple, for three traces ABCDE, CDEA, and CDEBA used in Fig. 3,
Algorithm 4.1 will build the automaton shown in Fig. 4. Even
if we restrict the sequence to lengths shorter than 6 to remove
infinite loops, many traces such as ABABA and CDEAB are
still regarded as normal ones because of generalization. States

with multiple in and out edges in the automata usually introduce
the opportunity of generalization.

Since not every normal trace is seen and collected in the
training data, a certain capacity of generalization is desirable
to reduce false positives in detection. For example, CDEA is a
normal trace and we know that component A calls component
B. Based on software’s control flow, it is then possible that
CDEAB is also a normal trace. The question is how much
generalization the automata should have in order to achieve
good performance in detection.

As discussed in Section II, in fact we hardly know the an-
swer to this question. Moreover, it is also hard to know the
direction of the trace space in which the automata should gen-
eralize. Therefore, our principle here is to keep the automata’s
representation as tight as possible to restrict the randomness in
generalization. Later we will use the threshold α to control the
generalization capacity of automata. To this end, heuristically,
rule 1 tries to link whole traces with smallest number of n-grams
and edges. In general, more edges in the automata could lead
to more generalization in the trace space. For a trace with fixed
length, rule 1 leads to a greedy optimization in cutting the trace.
For the n-grams with the same length, rule 2 implies that the
more frequent one in the past (unique traces) is more likely to
appear in this individual trace too.

Given a set of traces and a set of n-grams, one alternative is
to find all possible parses of the traces into the given n-grams
to construct automata. However, essentially this approach will
construct an automaton using the set of uni-gram C1 as states,
which subsumes the automata constructed with long n-grams
with regard to possible paths. As we will see in Section IX, this
automaton (roughly equal to the automaton constructed with
α = 1.0) does not maintain the global-order constraints of long
n-grams and has very low detection accuracy in our experiments.
In fact, this automaton is close to software control flow graph
and can be constructed directly by following components in
traces, even without using Algorithm 3.1.

Note that the pruning technique mentioned in Section III
could introduce some problems in constructing the automata.
For example, consider a trace ABCD and two 3-grams ABC
and BCD. Assume that the 4-gram ABCD is not frequent
enough to pass the threshold. While building the automaton to
represent this trace, if we cut at ABC first, then the remaining
part of the trace is D. Now if f(D) = f(CD), D was pruned
earlier and does not exist in the set C1 anymore. In this specific
case, following rules 1 and 2, the existing set of n-grams
is not sufficient to represent the training traces completely.
Therefore, we do not prune the uni-gram set C1 to guarantee
that all training traces can always be precisely represented by
the automata. Note that since Algorithm 4.1 goes backward
starting from k = L, the uni-grams in the set are the last
candidates considered to link whole traces and will not change
the automaton structure much anyway.

V. GENERALIZATION OF AUTOMATA

Not every n-gram is used to construct the automata. Espe-
cially when the threshold α is small, only a small percentage of
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n-grams (long n-grams) is used in the automata. The unused
n-grams are removed from the matrix E. The total number of
extracted n-grams and their distribution could tell us how di-
verse the traces are.

For each fixed threshold α, Algorithm 3.1 generates a series
of varied-length n-grams. For different thresholds, it is clear
that the automata built from these n-grams will be different. As
α → 0, the longest n-gram becomes the whole trace itself and
the automaton will include N states with no edges. These states
are the original N traces in the training data. This automa-
ton has zero generalization ability. If we use this automaton
to distinguish normal and abnormal traces, the detection is an
exact matching process. Conversely, as α → 1, the longest n-
gram becomes the single component and the automaton is close
to the control graph with single components as states. There-
fore, this automaton introduces maximal generalization capac-
ity because the single components cannot be further cut into
smaller units. Given the same training data, as the threshold α
increases, generally the length of n-grams becomes shorter and
the generalization capacity of automata increases. As discussed
in Section II, n-grams keep both global- and local-order con-
straints within their structures. For each state position in the au-
tomata that could introduce generalization, longer n-grams have
more global-order constraints and require a longer subsequence
match before the generalization point. For example, in Fig. 4, the
tri-gram CDE requires any trace traversing this state to follow the
deterministic subsequence C-D-E before next state transition.

Given N traces and a threshold α, we extract n-grams and
construct an automaton based on Algorithms 3.1 and 4.1, re-
spectively. An interesting question is how many unique traces
this automaton can generate. This number is a good metric to
measure the generalization capacity of automata. Unfortunately,
in case of automata with loops, the number or traces is infinite.
An alternative is to count the number of unique traces with
fixed length. Because we use varied-length n-grams in the au-
tomata, each state transition does not add the same length into
the sequence. To this end, we have to introduce hidden states
and augment the transition matrix E. Denote the length of each
n-gram used in the automata as li, where 1 ≤ li ≤ L. Denote
the augmented transition matrix as Ē and the total length of
n-grams used in E as M =

∑
i li. Algorithm 5.1 is the aug-

mentation algorithm.

For each n-gram/state with length li, Algorithm 5.1 intro-
duces li states to the new automaton. f(i) is the state number
for the first component of the n-gram i and e(i) is the state num-
ber for the last component of the n-gram i. Any two contiguous
components within this n-gram contribute a related edge to the
new automaton. If n-gram i has an edge to n-gram j in the
original matrix E, the last component of the n-gram i has an
edge to the first component of the n-gram j in the augmented
automaton. Each state in the augmented automaton represents
only one component. Clearly, the size of Ē is much larger than
that of E.

Now given a fixed trace length, we can compute the number of
traces that the automata can generate based on the dynamic pro-
gramming algorithm [10]. Let It = (I0

t , I1
t , . . . , IM

t )T , where
Ii
t is the number of traces whose length is t and the last state

is i. Here T is matrix transposition. Let Ii
0 = 1 if a trace

could start from the state i and Ii
t = 0 otherwise. Based on

dynamic programming, we can have the following recursive
equations:

Ii
t =

∑

j

Ē[j][i]Ij
t−1 (1)

It = (ĒT )tI0. (2)

Thus, the total number of the traces with length t is ‖It‖1 =∑M
i=1 Ii

t .
Unfortunately, this number includes many duplicate traces

that can be generated by different state sequences in the au-
tomata; it is not the total number of unique traces. As the length
t of traces increases, this number could grow exponentially if
there are loops in the automata. However, in some cases, a trace
must start from certain components and end at certain compo-
nents. It is clear that the augmented automaton is a nondeter-
ministic finite automaton. Given a fixed length t, in general it
is NP-hard to exactly count the number of unique traces that
nondeterministic finite automata could generate [11]. Although
Gore et al. [12] proposed some algorithms to compute this num-
ber approximately, it is not clear whether there exist unbiased
approximation algorithms with small standard deviations.

VI. DETECTION ALGORITHMS

Given the automaton constructed from the training trace data,
the abnormal trace detection process is to determine whether a
new trace is acceptable by this automaton. Both deterministic
and multihypothesis detection algorithms are developed here,
but they have different conditions on “accepting” a trace as a
normal one. Denote the set of n-grams included in the automata
as Ca and the total number of n-grams in Ca as Na; let ci

a ∈ Ca,
for (0 ≤ i ≤ Na) be an individual n-gram in the set Ca. In the
deterministic algorithm, the same rule 1 and rule 2 in Section IV
are used to cut the new trace. The only difference is that the n-
grams are chosen from Ca rather than from Ck(1 ≤ k ≤ L)
in Algorithm 4.1. Algorithm 6.1 is the deterministic algorithm.
Basically the new trace must satisfy the following two conditions
to be classified as a normal trace:
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a) Condition 1: As per rules 1 and 2, the new trace could be
completely cut into the n-grams that belong to Ca.

b) Condition 2: The transitions of these n-grams follow a
path in the automaton.

Algorithm 6.1 basically tries to check whether a new trace
can be interpreted as a specific state sequence in the automaton.
The question is why we have to cut a new trace in this specific
way. Underling the structure of the automaton, essentially the
abnormal trace detection is to run comparison of traces (i.e.,
compares the new trace with the pool of training traces). The
deterministic cutting rules here are just like a hash function to
covert traces to state sequences. Note that the same determin-
istic rules are used in cutting the training traces for automaton
construction as well as the new traces for detection. As a result,
all training traces will be detected as normal traces and the au-
tomaton also allows some strict generalization. An example of
condition violations is shown in Fig. 5.

The multihypothesis detection algorithm is developed to relax
condition 1. The algorithm searches all state sequences and
keeps multiple hypotheses about how to cut the new trace. A
new trace is acceptable as long as there is one state sequence that
could generate this trace. Given a new trace and the automaton,
the challenge is how to efficiently determine whether there exist
such state sequences in the automaton.

In Section V, Algorithm 5.1 builds an augmented automaton
Ē where each state represents only one component. Conversely,

Fig. 5. Example of condition violations.

Fig. 6. Viterbi-like algorithm.

one component could be associated with multiple states. Denote
the number of states in Ē as M and the number of components
as P . When those hidden states are introduced in Algorithm 5.1,
we use an M × P dimension matrix O to record the mapping
relationship between the states and their associated components.
Let O[i][j] = 1 if the state i represents the component j, oth-
erwise let O[i][j] = 0. Therefore, we formulate our problem as
a specific Hidden Markov Model (HMM) [13], where ĒM×M

is the transition matrix and OM×P is the emission matrix. The
elements of the matrix Ē and O are either 1 or 0, which is differ-
ent from the probability specification in classic HMMs. Denote
the length of a new trace T as l. Following the sequential order
(from left to right), denote each individual component that the
trace T went through as T [k], where 0 ≤ k ≤ l, 0 ≤ T [k] ≤ P .
Algorithm 6.2 is the multihypothesis detection algorithm.

Sum is the total number of the state sequences that match the
new trace. As illustrated in [14] and [15], we also have efficient
algorithms to compute out the exact state sequences underling
the new trace. If there is at least one state sequence (Sum > 0)
that could match the trace, the new trace is accepted as a normal
one. Otherwise the new trace is regarded as an abnormal one.

As illustrated in Fig. 6, the key idea behind Algorithm 6.2
is dynamic programming and our algorithm is a Viterbi-like
algorithm. The si(1 ≤ i ≤ M) are the states of the automaton.
Following the sequential order of the new trace, at each step
t = k, at first we check which states are associated with the
component T (k) according to the emission matrix O, and then
check which states at t = k − 1 could transfer to these current
states according to the transition matrix Ē. Finally, we count
the total number of valid state sequences that could end at the
current states.
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Fig. 7. Threshold and detection resolution.

VII. MULTIRESOLUTION DETECTION

As discussed in Section V, given the same training trace
data but different thresholds α, Algorithm 3.1 extracts differ-
ent sets of n-grams and Algorithm 4.1 constructs different au-
tomata. These automata all accept the training traces precisely
but they have different generalization ability. As α → 0, the de-
tection algorithm becomes an exact-matching algorithm. Any
trace unseen in the training data is regarded as an abnormal
trace. Therefore, the learned automata are likely to introduce
high false positive rates in detection. Conversely, as α → 1, the
learned automata have the maximal generalization ability and
the detection algorithm accepts many abnormal traces as nor-
mal ones. The automata are likely to cause high false negative
rates. The threshold α determines a boundary in the trace space
that the detection algorithm uses to separate normal traces from
abnormal ones. Fig. 7 shows a conceptual space that includes
three categories of traces: normal training traces, unseen normal
traces, and unseen faulty traces. In general, as α decreases, the
detection boundary becomes tighter and the detection algorithm
uses a finer resolution to determine whether a trace is abnormal.
As mentioned in Section IV, for a fixed threshold, heuristically
Algorithm 4.1 tries to draw this boundary as tight as possible to
restrict the randomness in generalization.

In practice, it is usually difficult to choose an optimal thresh-
old to balance false positives and false negatives because both
the distribution of unseen normal traces and the distribution
of unseen faulty traces are unknown. To this end, we propose
to construct a series of automata with different thresholds and
apply these automata concurrently or sequentially to support
multiresolution detection. n-gram extraction and automata con-
struction can be done offline so that the computational overhead
of constructing multiple automata should not be a problem. New
traces are compared against a set of automata instead of just one
to generate alerts. The traces detected as abnormal by the au-
tomata with high thresholds are more likely to be true positives
and they should be analyzed first to locate faults. Conversely,
the traces detected as abnormal only by the automata with low
thresholds are more likely to be false positives. As shown in
Fig. 7, the traces detected as abnormal by multiple automata are
likely to be true positives. Therefore, we can rank these abnor-
mal traces according to our confidence in their abnormality.

Although we do not focus on fault diagnosis in this paper,
the result of abnormal trace detection can be used in diagnosis
because our approach already identifies individual faulty traces.
Following the detected traces, we can locate the faulty compo-
nent by trace-component correlation and further narrow down
the suspicious segments of the component based on the context
of the trace. Our experiments demonstrate that many user re-

quests and their traces are not independent. A user request fails
because of a faulty component. This request could change some
internal states of the system and further affect the routine traces
of other requests even though these requests do not go through
the faulty component at all. Therefore, except the real faulty
traces, there are some “noisy” traces that are detected as abnor-
mal but do not go through the faulty component. Clearly, this
increases the difficulty in locating the fault. Our multiresolution
detection could help to remove some of the noise in diagnosis.
We analyze the abnormal traces detected by the automata with
a high threshold first and fix the fault that affects these traces.
Then the “noisy” traces affected by this fault will go away and
we can analyze the remaining abnormal traces detected by the
automata with a lower threshold. Step by step we tighten the
boundary and analyze the differential part of boundaries in di-
agnosis until the problem is fixed.

For a large distributed system, we do not have to choose
one threshold for the whole system. Instead different thresholds
can be chosen for different segments of traces. High threshold
should be chosen for the less important, more reliable segments
such as the segments that have been running for long time and
stable. Low threshold should be chosen for the more important
and less reliable segments. For example, the segments with new
deployed software or equipments, the segments that have a lot
of problems, and the segments that are critical for the service.

VIII. TRACE DIVERSITY: A CASE STUDY

So far we have introduced our approach for abnormal
trace detection. There is one important question that remains:
Are there long n-grams existing in real software and how di-
verse are those traces? If, by nature, software’s traces are very
diverse, we will not have many constraints in trace space and
any detection algorithms based on trace analysis cannot be very
effective. For example, if any component can call another com-
ponent in software, then there are no order constraints and the
trace space is full of randomness. This question motivated use
to have a case study of real application software, Pet Store [16].

Pet Store is a sample application of the J2EE platform devel-
oped by Sun Microsystems. It is a blueprint program written by
Sun to demonstrate how to use the J2EE platform to develop
flexible scalable cross-platform enterprise applications [16]. It
has 27 Enterprise JavaBeans (EJBs), some Java Server Pages
(JSPs), Java Servlets, etc. We use the same monitoring facility
described in [2] to record traces of user requests and the JBoss
middleware is modified to support such functionality. Since the
logged traces include call-return structure, as mentioned in Sec-
tion II, calling a component and returning to a component have
different representations in the trace sequences.

Given a threshold, Algorithm 3.1 extracts a series of frequent
n-grams with varying length. Note that these n-grams are ex-
tracted from unique traces and the threshold implies how often
they are shared by various traces. Thus, the distribution of these
n-grams is a good metric to measure the diversity of traces. For
a fixed threshold, in general if a system has higher percentage
of long n-grams, the system is more deterministic. We collected
most of possible traces from Pet Store by emulating various
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Fig. 8. Number and length of n-grams.

user requests. Algorithm 3.1 is used to extract n-grams with
various thresholds. The pruning technique mentioned in Sec-
tion III is used to remove those n-grams that can be completely
replaced by the longer n-grams and have the same frequency
numbers.

Fig. 8 shows how the total number of n-grams and the length
of longest n-grams quickly decrease as the threshold increases.
As the threshold approaches 1, the total number of n-grams is
close to the number of components. Even for a relatively high
threshold 0.5, there are n-grams as long as 50, which makes us
believe that long n-grams do exist in real software. Because of
the pruning, here α = 0.05 has more n-grams than α = 0. Fig. 9
illustrates the cumulative distribution of varied-length n-grams.
As shown in the figure, for various thresholds, the length of most
n-grams (over 80%) is less than 15. There is a big percentage of
n-grams longer than 5. These long n-grams could impose many
constraints in trace space.

Figs. 10 and 11 show the distribution of n-grams at various
thresholds. When the threshold is low, 2-grams have the biggest
percentage in distribution (around 20%) and there exists a signif-
icant percentage of longer n-grams. As the threshold increases,
uni-grams become dominant, but there still exists some longer
n-grams. For a threshold as high as 0.8, we can see that almost
70% of n-grams are single components. These figures illustrate
that even for small application software like Pet Store, there
exists a significant percentage of long n-grams (longer than 5).
Intuitively we believe that large software is more likely to share
some n-grams (component sequences) than the small one be-
cause reusable components are more attractive and meaningful
in large and complicated software.

IX. DETECTION EXPERIMENTS

Before our detection experiments, Algorithm 4.1 constructs
a series of automata based on the extracted n-grams at different
thresholds. Fig. 12 illustrates the sizes of these automata. If we
compare the number of states with the number of n-grams in

Fig. 9. Cumulative percentage of n-grams.

Fig. 10. n-gram distribution for thresholds t = 0.0–0.3.

Fig. 11. n-gram distribution for thresholds t = 0.5–0.8.
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Fig. 12. Size of automata.

Fig. 8, it is clear that many extracted n-grams are not used in the
automata, especially when the threshold is low. For example,
with the threshold 0.4, around 130 n-grams are extracted from
the training data but only 60 are finally used in the automata. As
the threshold approaches 0, the whole traces become the isolated
states in the automata with no edges at all. It is interesting to
see that the number of edges increases first and then keeps a
relatively constant value. As we expected, the average edge per
state (see the dotted line close to the x axis in Fig. 12) increases
monotonely as the threshold increases. In fact this explains the
growing generalization ability of the automata as the threshold
increases.

In our detection experiments, two types of faults are injected
into the components of the Pet Store software: “null call” and
“expected exception” [17]. After a null call failure is injected
into some component C, any invocation of a method in com-
ponent C results in an immediate return of a null value (i.e.,
calls to other components are not made). The other failure type,
expected exception, is injected into components that contain
methods which declare exceptions. After the expected excep-
tion failure is injected into a component, any invocation of its
methods declaring exceptions will raise the declared exception
immediately (if the method declares many exceptions, an arbi-
trary one is chosen and thrown). Methods in that component,
which do not declare exceptions, are unaffected by this injected
failure. Other kinds of failures could also be injected (e.g., run-
time exceptions, dead-lock, etc.), but typically these errors are
easier to catch with many existing monitoring tools. In contrast,
the two failures that we selected result in more subtle outcome,
do not cause exceptions to be printed on the operator’s console,
and do not crash the application software. At the same time,
these bugs can easily happen in practice due to incomplete, or
incorrect, handling of rare conditions. In fact, we also have in-
jected common software faults such as dead-lock and infinite
loop in our experiments by modifying the source code. Our ap-
proach can detect such kind of faults easily because these faults
affect traces significantly. However, our approach is not able to

Fig. 13. Detection accuracy of Pet Store.

detect some common faults such as memory leaking because
this kind of fault does not affect traces at all. Memory leaking
is a common software bug where a program repeatedly allo-
cates heap memory to an object, but never releases it. This fault
consumes only memory resource, but does not affect the logic
of software directly. Therefore it is not possible to detect such
faults based on trace analysis. In fact, a program with memory
leaking bug could run correctly for a long period of time before
the accumulation of leaked memory causes something bad to
happen.

Both faults are injected to 15 EJB components of Pet Store
resulting in a total of 30 cases. Note that the Pet Store pack-
age includes three applications and we chose only one in
our experiment, which includes 15 EJB components. We ap-
plied Algorithms 6.1 and 6.2 in detection and these two algo-
rithms achieved the same detection results shown in Fig. 13.
Algorithm 6.2 has a much relaxed condition on accepting a
trace and could reduce false positives in large systems where
we may only be able to collect a small part of all traces for train-
ing. Since Pet Store is relatively simple software and the size
of learned automata is small, the opportunity to have multiple
trace hypotheses is low and the two algorithms got the same
detection results. As the threshold is decreased, our approach
can detect most cases. It is interesting to analyze the detection
accuracy in Fig. 13 with the length of the longest n-grams in
Fig. 8. From the threshold 0.5 to 0.6, the detection accuracy
decreases steeply from 26/30 to 13/30 as the length of n-grams
decreases steeply from 50 to 8. When the threshold is higher
than 0.8, both detection accuracy line and n-gram length line
are flat. This unveils an important fact that the constraints of
long n-grams are critical in abnormal trace detection.

When the threshold is higher than 0.5, the abnormal traces
detected by our algorithms are all true faulty traces (that go
through the faulty components), though the detection accuracy is
not very high. However, as the threshold is decreased below 0.5,
the detection accuracy becomes much higher; in 15 cases, our
algorithms detected some other traces as abnormal even though
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these traces did not go through the fault-injected components at
all. At first we thought these traces are false positives. But after
analysis, we found that these traces are affected by the fault even
though they did not go through the fault-injected components.
The traces of different user requests are not independent at
some time. Because of the faulty component, the traces that
went through the faulty component failed and changed some
internal states of the system. Some other traces are affected by
these states even if they do not go through the faulty component.

Therefore, after a fault happens in a system, usually we will
detect a set of abnormal traces that include the traces that go
through the faulty components as well as the traces that are af-
fected by the fault but do not go through the faulty components.
This phenomenon could make the detection process easier but
the diagnosis process much harder. For detection, a set of ab-
normal traces unveil strong “signal” on the existence of faults.
However, for diagnosis, those affected traces become “noise”
because they do not go through the faults at all and these traces’
dependency relationship is unknown. However because the fault
is the root cause of these abnormal traces, we can use the time-
stamp of each trace to locate the true faulty trace. The timestamp
is already logged for each trace. Among all traces detected as
abnormal by our algorithms, the trace with the earliest times-
tamp is most likely to be the real faulty trace because it is the
failure of this trace that triggered others. After we applied this
rule in detection, we have only one false positive in total 30
cases for α ≤ 0.5. For α > 0.5, there is no false positive in our
experiments. Since we collected most of traces in the training
data, the false positive rate is very low in our experiments. For
large software, we believe that the false positive rate could also
be low if training traces are collected for sufficiently long time.

Our approach is compared to the Probabilistic Context-Free
Grammar (PCFG) method implemented in [17]. The PCFG
method uses the tree structure of the request path to synthe-
size a grammar by associating a nonterminal with each com-
ponent, and a grammar production with each occurrence of the
component in a request tree, where the right-hand side of the
production is composed of the immediate children of the node.
Productions are assigned probabilities based on the frequency
of their occurrence in the training data. Each new trace is as-
signed an “anomaly” score based on the deviation from the
expected probability of each production used. Although it is
possible to build PCFGs with more elaborate productions from
the same training traces, our comparison is against this specific
implementation obtained from the ROC project. Fig. 14 shows
the recall and precision curve of our approach as we vary the
threshold α. See PCFG’s recall and precision curves in Fig. 8
of [17]. In general, our approach achieves very good results.
However, since there is no benchmark data, it is hard to say
which method is exclusively better. Note that detection accu-
racy is also dependent on how many traces (among all possible
traces) are collected for training. If we only collect a small part
of traces for training, our detection algorithms could result in
high false positives. In fact, this is a common problem for all
machine learning based approaches. However, since traces are
collected from operational environments, we can take time to
collect sufficiently large number of traces for training.

Fig. 14. Precision and recall.

The situation can become much complicated if many requests
go through the faulty components and interleave together with
the affected traces. With the above rule, we can pick one faulty
trace accurately with the earliest timestamp. But there are many
following faulty traces that could mix up with the affected traces
triggered earlier. Internet services receive many requests and
we can use normal traces to cross validate whether an abnor-
mal trace is a really faulty one. For example, if several normal
traces cover each component of an abnormal trace, this abnormal
trace is likely to be false positive because all of its components
work well in other traces. Meantime, we can also artificially
generate a “probing” request and force it to go through the sus-
picious area to verify whether an abnormal trace is a real faulty
one.

To cross-validate whether our approach works well in other
application software, we also have done detection experiments
with RUBiS software [18]. RUBiS is an auction software
modeled after eBay.com so that it has much different software
architecture compared to the Pet Store software. It is open
source software commonly used to evaluate application design
patterns and application server performance. RUBiS includes
only five EJB components and some number of Java Servlets.
Both “null call” and “expected exception” faults are injected
to these five components so that we have ten different fault
injection cases. In addition, since RUBiS is relatively small
software, we manually analyze the traces collected in our
experiments and find that total 38 traces go through the fault-
injected components in these ten cases. Therefore, we use these
faulty traces as the ground truth in our detection experiments.

Fig. 15 shows the detection result of our experiments with
RUBiS. The detection accuracy increases as the threshold α
decreases. With α = 0.5, all 10 faulty cases can be detected,
but only 20 among the total 38 faulty traces are detected. With
α = 0.2, our approach is able to detect all 38 faulty traces. With
α ≤ 0.5, two traces that do not go through the fault-injected
components are also detected as abnormal traces. As discussed
earlier, later we notice that these traces are affected by the faults
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Fig. 15. Detection accuracy of RUBiS.

though they do not go through the faulty components at all.
Readers can further draw the precision and recall curve based
on these numbers. If we compare Fig. 15 with Fig. 13, it is also
interesting to see that the detection accuracy in both cases in-
creases quickly after the threshold α decreases beyond α = 0.5.

X. RELATED WORK

There is much work about fault detection and diagnosis in
telecommunication network management. Yemini et al. [1] pro-
posed a “Codebook” approach for high speed and robust event
correlation. Chao et al. [19] developed an automated fault di-
agnosis system using hierarchical reasoning and alarm corre-
lation. Recently, Benveniste et al. [20] employed a net un-
folding approach originating from the Petri net research for
distributed fault diagnosis. As we discussed earlier, all these
methods collect and correlate events to locate faults based on
known dependency knowledge between faults and symptoms.
While this knowledge can be derived from network topology
for telecommunication network, it is very difficult to obtain
such kind of knowledge in large and complex information
systems.

Our work is inspired by Berkeley/Stanford ROC group’s suc-
cess in using traces for fault detection [2], [17]. However, while
they focus on developing the whole concept of recovery-oriented
computing, in this paper we are interested in developing specific
machine learning technology to exploit the traces extensively.
Compared to their tree structure and probabilistic model PCFG,
we proposed a thoroughly different structure, varied-length
n-grams and automata, to characterize normal traces. As dis-
cussed in Section III, we believe that it is difficult to build a
robust probabilistic model to reflect dynamic user behaviors.
Instead, our automata model is static as long as the application
software is not modified. All other system changes including
user behavior and load balancing will not invalidate our model,
which enables us to collect sufficiently large number of traces
for training and further reduce false positives. Our approach

also allows us to control the generalization ability of the learned
model to improve detection accuracy. It also works for traces
without call-return structure and could be applied to a wider
domain such as security-related detections.

Anomaly intrusion detection is an active area in computer se-
curity research. Forrest et al. [21] proposed to use fixed-length
n-grams to characterize the system call sequence of normal Unix
processes. The short sequences of system calls are used as a sta-
ble signature in intrusion detection. Michael and Ghosh [22]
proposed two state-based algorithms to characterize the sys-
tem call sequences of programs and used a thoroughly differ-
ent approach to build finite automata for intrusion detection.
They proposed a probabilistic model to calculate the anomaly
score. Both of these approaches use fixed-length n-grams and
keep a moving window (move one system call each time)
to cut the system call sequences. Therefore, two consecutive
n-grams have n − 1 calls overlapped. Based on their experi-
ments, they found that the model with length n = 6 usually
achieves the best performance. Our approach uses a thoroughly
different method to extract varied-length n-grams and construct
automata. Because our approach is used in fault detection rather
than intrusion detection and the collected traces are not system
call sequences, we are not able to compare our approaches with
theirs.

Except PCFG and our automata approach, other methods
such as Crutchfield’s ε-machine [23] can also be used to learn
the causal and dynamical structure underlying traces. Recently,
Shalizi and Crutchfield [24] proposed the Causal-State Splitting
Reconstruction (CSSR) algorithm to estimate an ε-machine
from samples of a process. Theoretically we may employ their
algorithm to statistically learn an ε-machine to characterize
traces. However, the ε-machine is also a probabilistic model
and their algorithm works only under strong mathematical con-
ditions. Additionally their algorithm has large computational
complexity.

XI. CONCLUSION

In this paper, we proposed a new approach to characterize
the normal traces of user requests of Internet services—
varied-length n-grams and automata. We developed automated
algorithms to extract n-grams and construct automata from
training data. New traces are compared against the automata
to determine whether they are abnormal. Both deterministic
algorithm and multihypothesis algorithm are introduced for
abnormal trace detection. We analyzed the generalization
ability of automata and introduced a threshold to support
multiresolution detection. We also did a case study of real
application software to analyze the trace constraints and verified
the existence of long n-grams. Further we tested our algorithms
in a series of detection experiments with fault injected software.
The experimental results demonstrated that our algorithms
could work very well in fault detection.

In future work, we need to further verify the results of our
approach in larger systems, where we may see only small part of
all traces. We also plan to consider the efficiency and scalability
issues of our algorithms.
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