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• Silent failures: service disruptions/outages that are not detected by current 
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• New features rolled out, bugs on devices, or combination of both.

2

EPC core core

RAN

Detecting silent failures is challenging!
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• Drops in traffic/usage on network elements do not imply service disruptions:

• Load balancing/maintenance activities.

• Dynamic routing/Self-Organizing Network (SON).
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• Drops in traffic/usage on network elements do not imply service disruptions:

• Load balancing/maintenance activities.

• Dynamic routing/Self-Organizing Network (SON).

• Key Performance metric Indicators (KPI) may not reflect service issues:

• E.g., accessibility KPI looks good even when only a subset of users can access the network.
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A “healthy network” (from a monitoring perspective) does not 
guarantee service experience of users!
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Detecting silent failures is difficult - active service 
monitoring

• Sending test traffic across the network on all service paths.

• Many types of customer devices, applications, huge geographic environment 
to probe.
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Relying on customer feedback
• It takes time for customers to give feedback. 

• Relying on customer feedback is too slow: hours of delay. 

• E.g., failure happens at 16:38 UTC but manifests in customer feedback at 
21:00 UTC, 3.5 hours of delay.
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ABSENCE: usage-based failure detection

• ABSENCE: Passive service monitoring approach - monitor 
usage of users in a passive manner.
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ABSENCE: usage-based failure detection

• ABSENCE: Passive service monitoring approach - monitor 
usage of users in a passive manner.

• Absence of customer usage is a reliable indicator of 
service disruptions in a mobile network.
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ABSENCE’s key ideas

7

Mobile Network
A group of users

Usage

• If failure happens, users are not able to use the network as normal.

• Large number of users cannot use the network leads to a drop in usage.

• Could detect both hard failures (outages) and performance degradations.
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Use anonymized and aggregated Call Detail Record (CDR) collected in real time from an 
U.S. operator.
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Use anonymized and aggregated Call Detail Record (CDR) collected in real time from an 
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Use anonymized and aggregated Call Detail Record (CDR) collected in real time from an 
U.S. operator.



Outline
• Motivation. 

• ABSENCE overview. 

• Is ABSENCE feasible?

• ABSENCE’s challenges. 

• ABSENCE’s event detection. 

• Synthetic workload evaluation. 

• Operational validation.
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Is ABSENCE feasible?

Is usage predictable enough for anomaly detection?
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Is usage predictable enough?
• While individual user usage is not predictable, usage of a large group of 

users is predictable.
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Is usage predictable enough?
• While individual user usage is not predictable, usage of a large group of 

users is predictable.

• For example: 3 weeks of usage overlapped, usage of a small group is less 
predictable than usage of a large group.
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Challenges

• Failures happens to different scopes: geo-area, device makes/models, 
service types.
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• How to make ABSENCE scalable, given a large amount of data in 
the network? 
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How to detect failures with different scopes?
• Group users based on their geographical information: ZIP code area, city, 

state.

• A user could belong to multiple geographical groups in the same time.

• Under each geographical group: further divided to device OS, make.
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Timestamp Usage State City Area OS Make Model

2016/05/10
10:00

5000 Utah Salt Lake City U. Of Utah Android Samsung Galaxy S6

Hierarchical	 attributes Hierarchical	 attributes



Need temporal aggregation to deal with sparse data during 
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• Trend: moving average. 
• Seasonal: average of phasing values. 
• Noise = Time series - Trend - Seasonal
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• If noise is out of the 95th percent Confidence Interval (CI) of noise 
component => anomaly.
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Synthetic workload evaluation
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• 6 months of real CDR from an U.S operator. 
• Synthetically introduce failures: 

• Network failures: remove usage on base stations. 
• Device failures: remove usage on devices.



Parameters and metrics
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• 11,000 failures generated.

• 100 ZIPs, 10 cities. 

• Two popular device types. 

• LTE/Voice. 

• Duration: 1,2,3,6,12 hours. 

• Quiet and busy hours. 

• Impact degree: 0 - 55%.

Parameters Metrics

• Detection rate = detected events/introduced events. 

• Loss ratio = loss until detected/normal usage.

Example of failure scenarios:

• All Android devices in Los Angeles fail. 

• All Iphone5 devices in Downtown Los Angeles fail.

(total usage reduction)/(total normal usage) for a given aggregation

(total usage reduction)/(total normal usage) for a given aggregation



Overall detection rate
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• With the 11,000 introduced failures:  
• ABSENCE detected >96% of failures that have more than 15% of impact. 
• ABSENCE tends to miss events that are <10% of impact.
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Loss ratio of detected failures
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• All detected failures: 
• ~97% of them are detected when <10% of usage is lost (during busy hours).
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Loss Ratio= (usage loss until detection)/(normal usage during the failure period)

Loss Ratio= (usage loss until detection)/(normal usage during the failure period)
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• Motivation. 

• ABSENCE overview. 

• Is ABSENCE feasible? 

• ABSENCE’s challenges. 

• ABSENCE event detection. 

• Synthetic workload evaluation. 

• Operational validation.
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Evaluate against known silent failures 
from the operator
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Evaluate against known silent failures 
from the operator

• 19 silent failure events: not known by the network operator when 
they happened. 

• Detected19/19, 100% true positive.
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Alarm rate and true positive 
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• Use the 19 known events from operator. 

• Alarm rate (m): average number of alarms per day that an operation team needs to handle. 

• Cut-off threshold (n): filter out events that less impactful. 

• Increase cut-off threshold could reduce alarm rate while maintaining true positive rate of 
ABSENCE
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• Use the 19 known events from operator. 

• Alarm rate (m): average number of alarms per day that an operation team needs to handle. 

• Cut-off threshold (n): filter out events that less impactful. 

• Increase cut-off threshold could reduce alarm rate while maintaining true positive rate of 
ABSENCE

100% true positive, 
m alarms per day 
m is small enough

ABSENCE’s alarm rate is reasonable for practical!



Conclusions

• Absence of customer usage is a reliable indicator of 
service disruptions a mobile network. 

• Appropriate grouping users results in predictable usage 
and high fidelity for anomaly detection. 

• Synthetic evaluation and operational validation. 
• Practical in an operational environment.
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Thank you!


