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EPC core core

e Silent fallures: service disruptions/outages that are not detected by current
monitoring systems.

 New features rolled out, bugs on devices, or combination of both.

Detecting silent failures is challenging!
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Detecting silent tailures is difficult - passive
network monitoring

Drops in traffic/usage on network elements do not imply service disruptions:

 |Load balancing/maintenance activities.

* Dynamic routing/Self-Organizing Network (SON).
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Detecting silent tailures is difficult - passive
network monitoring

* Drops in traffic/usage on network elements do not imply service disruptions:

 |Load balancing/maintenance activities.

* Dynamic routing/Self-Organizing Network (SON).

 Key Performance metric Indicators (KPl) may not reflect service issues:

 E.g., accessibility KPI looks good even when only a subset of users can access the network.
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Detecting silent tailures is difficult - passive
network monitoring

 Drops in traffic/usage on network elements do not imply service disruptions:
 |Load balancing/maintenance activities.

c|1-Oraanizindg Network (SON
A “healthy network™ (from a monitoring perspective) does not

guarantee service experience of users!
 E.g., accessibility KPIl looks good even when only a subset of users can access the network.
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monitoring
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Detecting silent tfailures is difficult - active service
monitoring

e Sending test traffic across the network on all service paths.




Detecting silent tfailures is difficult - active service
monitoring

e Sending test traffic across the network on all service paths.

 Many types of customer devices, applications, huge geographic environment
to probe.

RAN

Active monitoring does not scale!




Relying on customer feedback

e |t takes time for customers to give feedback.
* Relying on customer feedback is too slow: hours of delay.

 E£.9., fallure happens at 16:38 UTC but manitests in customer feedback at
21:00 UTC, 3.5 hours of delay.
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ABSENCE: usage-based failure detection

« ABSENCE: Passive service monitoring approach - monitor
usage of users in a passive manner.

 Absence of customer usage is a reliable indicator of
service disruptions in a mobile network.
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ABSENCE's key ideas
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A group of users

* |f fallure happens, users are not able to use the network as normal.
* [Large number of users cannot use the network leads to a drop in usage.

* Could detect both hard failures (outages) and performance degradations.
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ABSENCE overview

Use anonymized and aggregated Call Detail Record (CDR) collected in real time from an
U.S. operator.
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Use anonymized and aggregated Call Detail Record (CDR) collected in real time from an
U.S. operator.

“Expected” usage

Week 3

“Absence” of usage
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- Is ABSENCE feasible?



s ABSENCE feasible?

S usage predictable enough for anomaly detection”
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* While individual user usage is not predictable, usage of a large group of
users Is predictable.
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|S usage predictable enough®

* While individual user usage is not predictable, usage of a large group of
users Is predictable.

o For example: 3 weeks of usage overlapped, usage of a small group is less
predictable than usage of a large group.
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|S usage predictable enough®

* While individual user usage is not predictable, usage of a large group of
users is predictable.

 For example: 3 weeks of usage overlapped, usage of a small group is less
predictable than usage of a large group.
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Yes, usage of a large enough group of users is predictable!
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Outline

- ABSENCE’s challenges.
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Challenges

Failures happens to different scopes: geo-area, device makes/models,
service types.

How to deal with users mobility”?
How to improve predictability of aggregate usage”

How to make ABSENCE scalable, given a large amount of data in
the network®
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Challenges

» [Failures happens to different scopes: geo-area, device makes/models,
service types.
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How to detect failures with different scopes?
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* (Group users based on their geographical information: ZIP code area, city,
state.

* A user could belong to multiple geographical groups in the same time.

* Under each geographical group: further divided to device OS, make.
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How to detect failures with different scopes?

* (Group users based on their geographical information: ZIP code area, city,
state.

* A user could belong to multiple geographical groups in the same time.
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How to detect failures with different scopes?

* (Group users based on their geographical information: ZIP code area, city,
state.

* A user could belong to multiple geographical groups in the same time.

 Under each geographical group: further divided to dewce OS, make.
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Outline

- ABSENCE’s event detection.
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cvent detection algorithm

Usage’s time series
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cvent detection algorithm

=== ¢ Decompose time series: trend,
N seasonal, noise
* Jrend. moving average.
 Seasonal. average of phasing values.
 Noise = Time series - Trend - Seasonal

Usage’s time series




-vent detection algorithm
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cvent detection algorithm

* |f noise is out of the 95th percent Confidence Interval (Cl) of noise

component => anomaly.

Time series
Detected anomalies

Usage’s time series
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Outline

- Synthetic workload evaluation.
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Synthetic workload evaluation

* 6 months of real CDR from an U.S operator.
e Synthetically introduce failures:
* Network failures: remove usage on base stations.

* Device failures: remove usage on devices.
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Parameters and metrics

Parameters Metrics

- 11,000 failures generated. | .
g e Detection rate = detected events/introduced events.

100 ZIPs, 10 cities. | |
e Loss ratio = loss until detected/normal usage.

* [woO popular device types.

* LTE/Noice. Example of failure scenarios:

e Duration: 1,2,3,6,12 hours.

* All Android devices in Los Angeles tall.
e Quiet and busy hours.

* All I[phoneb devices in Downtown Los Angeles tall.
* Impact degree: 0 - 55%.

(total usage reduction)/(total normal usage) for a given aggregation
20
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Overall detection rate
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o With the 11,000 introduced failures:
« ABSENCE detected >96% of failures that have more than 15% of impact.
« ABSENCE tends to miss events that are <10% of impact.
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o With the 11,000 introduced failures:
« ABSENCE detected >96% of failures that have more than 15% of impact.
« ABSENCE tends to miss events that are <10% of impact.
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| 0SS ratio of detected fallures
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Loss Ratio= (usage loss until detection)/(normal usage during the failure period)

* All detected failures:
e ~97% of them are detected when <10% of usage is lost (during busy hours).
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Loss Ratio= (usage loss until detection)/(normal usage during the failure period)

Loss Ratio= (usage loss until detection)/(normal usage during the failure period)


Outline

- Operational validation.
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Evaluate against known silent failures
from the operator



Evaluate against known silent failures
from the operator

* 19 silent failure events: not known by the network operator when
they happened.

- Detected19/19, 100% true positive.
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Alarm rate and true positive

Use the 19 known events from operator.

Alarm rate (m): average number of alarms per day that an operation team needs to handle.

Cut-off threshold (n): filter out events that less impacttul.

Increase cut-off threshold could reduce alarm rate while maintaining true positive rate of
ABSENCE
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Alarm rate (m): average number of alarms per day that an operation team needs to handle.
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Alarm rate and true positive

Use the 19 known events from operator.

Alarm rate (m): average number of alarms per day that an operation team needs to handle.

Cut-off threshold (n): filter out events that less impacttul.

Increase cut-off threshold could reduce alarm rate while maintaining true positive rate of

&% ABSENCE'’s alarm rate is reasonable for practical!
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Conclusions

Absence of customer usage is a reliable indicator of
service disruptions a mobile network.

* Appropriate grouping users results in predictable usage
and high fidelity for anomaly detection.

e Synthetic evaluation and operational validation.

* Practical iIn an operational environment.
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