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ABSTRACT
With the rapid growth of cloud service systems and their increasing
complexity, service failures become unavoidable. Outages, which
are critical service failures, could dramatically degrade system avail-
ability and impact user experience. To minimize service downtime
and ensure high system availability, we develop an intelligent out-
age management approach, called AirAlert, which can forecast the
occurrence of outages before they actually happen and diagnose
the root cause after they indeed occur. AirAlert works as a global
watcher for the entire cloud system which collects all alerting sig-
nals, detects dependency among signals and proactively predicts
outages happened anywhere in the whole cloud system. We an-
alyze the relationships between outages and alerting signals by
leveraging Bayesian network and predict outages using a robust
gradient boosting tree based classification method. The proposed
outage management approach is evaluated using the outage dataset
collected from a Microsoft cloud system and the results confirm
the effectiveness of the proposed approach.
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1 INTRODUCTION
A typical cloud system is a system of systems, providing different
services such as networking, storage, computation, security and
management. Cloud providers, such as Microsoft, Amazon, Google,
and IBM, aim at fast delivery of computing resources in a dynami-
cally scalable and virtualized manner [3, 25]. Many cloud services
could be hosted in a cloud system and each service itself is a large
and complex system that consists of many components. Failures
would happen in a complicated system due to frequent updates
of components, changes in operation environment, online repairs,
and mobility of devices, [10, 12, 27]. Failures could dramatically
degrade system availability and lead to bad user experience. To
manage failures, various system monitors and alerting tools are
deployed at different places of a cloud service system to detect if a
service performs well or not.

In cloud systems, outages are critical system failures that can lead
to system unavailability. When an outage is detected, the manage-
ment tool is expected to automatically notify, mitigate, and diagnose
the outage. In literature, there is a large amount of work on pre-
dicting and diagnosing failures in a large and complex system such
as a data center, grid system, and defense system [14, 15, 20, 30].
Such an ability can help prevent potential disasters and minimize
damages caused by system unavailability. However, they only con-
sider a single system and ignore the related systems that could
have an impact on the prediction results. In this work, we are in-
terested in predicting and diagnosing outages of a cloud system.
A typical cloud system contains many sub-systems (i.e., services),
each of which consists of many interconnected components. Each
component has its own monitors that regularly check the runtime
status of the component. Signals from components reflect different
aspects of system health status, such as individual cloud resource,
node/data center traffic volume, response latency, temperature, and
power consumption. While component-level alerting signals are
useful, it is important to have a global watcher for the entire cloud
system which understands the topology, resiliency models and
dependencies of the system. After connecting all the signals, the
global watcher can proactively monitor and correlate service health
issues across the whole system without manually defined rules.

In our work, we propose an intelligent outage management tool,
called AirAlert, as a global watcher of the whole cloud system.
AirAlert collects all alerting signals across the whole cloud system,
and utilizes them to diagnose and predict outages. The outages we

https://doi.org/10.1145/3308558.3313501


try to predict come from two levels: component-level and service-
level. These two concepts are hierarchical, where service-level out-
age consists of various corresponding component-level outages.
The service-level outage prediction can help locate the suspicious
behavior in the general system, also, locating which component is
responsible for the outage can better alleviate the cost of diagnosing
and debugging. To diagnose where outages come from, we adopt a
Bayesian network approach and investigate dependency relation-
ships between signals and outages. We also construct predictive
models to achieve robust outage prediction.

In our work, we are investigating a large-scale Microsoft cloud
system. As there are a large number of altering signals, it is hard to
know beforehand the dependencies among the signals and their rela-
tionships with outages. Therefore, a comprehensive global watcher,
specially designed for diagnosing and alerting failures, is needed.
In our approach, Bayesian network is used to build the signal de-
pendencies from historical failure statistics. For outage prediction,
many algorithms can be used for constructing a prediction model,
such as time-series forecasting method (e.g., auto-regressive mov-
ing average), rule-based methods (e.g., frequent event set mining
[6, 24]), and supervised machine learning methods [8, 17]. However,
traditional methods are not capable of handling outage prediction in
a cloud service system as they ignore interactions among different
system components. There are several challenges in constructing
an effective predictive model. The foremost one is that we have
very imbalanced datasets due to the limited number of outage cases.
Therefore, we apply sampling techniques to preprocess the data
and then use the gradient boosting tree based classification method
for robust model construction.

Our approach has been evaluated using a set of outage data
collected from the Microsoft cloud system over an one year period.
We compare the AirAlert approach against other methods and
obtain good performance in outage prediction. Also, we show that
AirAlert can help outage diagnosis and present several real-world
cases.

The contributions of the paper are as follows:

• We propose an outage prediction and diagnosis approach
for a cloud service system. Our model takes into considera-
tion multiple related services and components in the cloud
system.
• We can infer causal relationships among outages and alerting
signals, which can help us understand where the outage is
from and which components work cooperatively.
• We can predict whether a component or service will have an
outage in the near future, which would potentially help en-
gineering teams alleviate the influence of outages as quickly
as possible.
• We have evaluated the proposed approach using an one-
year outage dataset collected from a Microsoft cloud system,
and the results confirm the effectiveness of the proposed
approach.

The remaining sections of this paper are organized as follows.
Section 2 describes the related work of the study. Section 3 presents
the proposed outage prediction and diagnosis approach and Section
4 describes the experiments. Section 5 concludes our work.

2 RELATEDWORK
Failures occurred in online systems could degrade system perfor-
mance and impact user experience. They are often defined as ‘an
event that occurs when the delivered service deviates from correct
service’ [1]. Traditional work on failure management for online sys-
tems deals with failures after they have happened. Recently, there
are increasing efforts on proactively predicting failures to prevent
potential disasters or minimize damages [20]. For internet service
provider networks, there are intensive work on failure predictions
(e.g., [11, 13, 21, 22]). For example, in [30], switch failures in data
center networks are predicted using signals reflecting switch sys-
tem current status and data containing curated historical hardware
failure cases. Input signals of the predictive model are mostly sys-
tem event logs, such as changes in configuration, interface, device
working mode and operational maintenance. Similarly, in [9], net-
work failures in data centers are predicted using data recording
network errors related to device and link failures. There are also
many studies on investigating the failure characteristics [19, 23, 29]
of high performance computing systems (HPCs). In [18], failures
occurred in a 350-node cluster system is predicted using various
system reliability, availability and service ability (RAS) logs contain-
ing health related events. In [7], a failure prediction framework for
HPCs is designed by exploring correlations among failures and fore-
casting the time-between-failure. In [26], a Bayesian network based
fault diagnosis tool is developed for managing a defense system-
of-systems (SoS), which collects signals from a sensor, network,
command and control systems. Bayesian network is used to find
the root causes of system failures by using the network topology
of the whole SoS. In our work, we use the Bayesian network to
find the relationships among alerting signals and outages of cloud
systems and then we use XGBoost model for prediction.

The work in [10] studies proactive failure management for cloud
systems. It uses Bayesian models and decision trees to proactively
predict failure dynamics. Failures are regarded as abnormal signals
detected by monitors and failure prediction is tackled from an
anomaly detection point of view. Different from their works which
focus on predicting failures based on raw signals, our work uses
the failure signals from monitors (which we call, alerting signals) to
predict critical failures (which we call, outaдes). In current real-time
system, outage prediction is an important issue that bothers many
systems. The reason lies in several aspects: outages are critical
system failures that could lead to severe consequences; outages
occur without a significant alerting signals pattern, which makes it
harder to predict; and the scope of impacting signals is a complex
process to define.

3 PROPOSED APPROACH
In this section, we introduce our proposed approach, which is called
AirAlert. We first give definitions for our task. Then, we introduce
the Bayesian network for generating relationships between alerting
signals and outages as well as the gradient boosting tree classifica-
tion method for outage prediction.

3.1 Definitions
Alerting Signal A single alerting signal Ai can be represented
by Ai = [Ai1,A

i
2, ...,A

i
T ], where each component Ait indicates the



strength of this signal at time t ∈ (1,T ). For all alerting signals, we
denote amultivariate time series of length T asA = [A1,A2, ...,AT ]′
∈ RD×T for all signals, where for each t ∈ {1, 2, ...,T }, and At =
[A1

t ,A
2
t , ...,A

D
t ] ∈ RD represents the observations of all the alerting

signals at time t .
Outage Sequence The outage sequence is a binary time series
of length T as O = (O1,O2, ...,OT ) ∈ R

T , where for each t ∈
{1, 2, ...,T }, Ot ∈ {1, 0} indicating whether an outage happens at
time t or not.
Outage Prediction. Outage prediction at time t is a classification
task. We want to maximize the probability Pr (Ot |At ), which is
predicting accuracy of Ot given the input featureAt . The input
featureAt = [A1

t ,A
2
t , ...,A

m
t ] are them alerting signals used for

prediction, wherem ≤ D.

3.2 Bayesian network for outage diagnosis
A cloud system is an online system of systems, where the occurrence
of an outage is associated with a combination of alerting signals.
For example, if a particular web application encounters an outage,
it is normally resulted from multiple failures occurred in different
services such as networking, hardware and DNS server, rather than
from one single failure of the web application component . To be
more specific, when several alerting signals are observed, the chance
of having an outage depends on all alerting signals. However, it is
hard to enumerate all possible combinations of alerting signals and
determine which set of signals is related to an outage. To better
model the problem, we used a Bayesian network inference method
to detect the relationship between alerting signals and outages.
Here, we use the FCI-algorithm [5] to infer our Bayesian network.
The fundamental idea of FCI algorithm is to build a directed acyclic
graph (DAG), where each node Xi represents an alerting signal
or an outage based on the causal Markov assumption. The FCI
algorithm can be used for the connectivity inference and orientation
determination. In this paper, we use it to generate the connectivity
between the alerting signals and outages rather than infer the
direction.

In our method, the conditional dependence between the alerting
signal and outage given a set of other alerting signals are obtained
by calculating the Pearson correlation. The influence of the con-
ditional signals needs to be regressed out first. Then, the Fisher’s
z-transform is performed as in [5]. For example, given the time
series sequence of an alerting signal Ai and an outage Oi , and the
conditional set only contains the alerting signalAi2 , the correlation
between Ai and Oi given Ai2 is:

r =
cov (Ai |Ai2 ,Oi |Ai2 )

σAi |Ai2σOi |Ai2

=

∑T
t=1 (Ai |i2 − Āi |i2) (Oi |i2 − Ōi |i2)√∑T

t=1 (Ai |i2 − Āi |i2)
2
√∑T

t=1 (Oi |i2 − Ōi |i2)2
.

(1)

Then, Fisher-z transform is used as follows to generate the score
for testing the significance of the correlation value:

z =
1
2

ln(
1 + r
1 − r

). (2)

z is the correlation score for the alerting signal Ai and outage Oi
give Ai2 . The significant test of z is then used to check whether the

independence assumption can be accepted that Ai is independent
of Oi given Ai2 .

The FCI-algorithm is an approximation method to obtain the
network structure by calculating conditional dependence. It adopts
a recursive inference process and uses the Fisher-z conditional
independence test to capture all the independence possibilities
among all alerting signals and outages. A bootstrap method for
stable result generation is used here [16]. After using FCI-algorithm,
the skeleton of the causal network among alerting signals and
outages can be obtained. In our work, the Bayesian network mainly
works as a diagnositic tool to infer the relationship between the
alerting signals and the outage. We can also use it to select the
most relevant features and feed them as the inputs of the outage
prediction model.

3.3 Gradient boosting tree for outage
prediction

In practical online systems, conventionally outage prediction is
performed using rule-based methods [20]. Despite the complex
pattern of outage, each component or service only focuses on their
own alerting signals. For each component or service, engineers will
simply set up a monitor to predict outage by examining whether
the strength of the alerting signal exceeds a certain threshold θ :

P (t ) =



1 ifAt > θ

0 otherwise
, (3)

where At is the observation of alerting signals reported from a
certain component at time t , and the value of θ for each team is
set based on human knowledge. Such rule-based outage prediction
method is normally effective for in-system outages, as this type of
outages only caused by malfunction of a component .

In cloud systems, outages are often caused by cross-service mal-
functions simultaneously. Thus, using a single signal of a compo-
nent or service will not be very effective. As a result, we use the
alerting signals At at time t as the input feature for outage predic-
tion. At a certain time slot t , several alerting signals At will be
collected to predict whether the outage will happen at this time.
To construct a robust predictor, we use the gradient boosting tree
based model (XGBoost) [4]. XGBoost is fundamentally a regression
tree that has the same decision rule as the decision tree model. But
the model ensembles a set of classification and regression trees
(CART). In the CART tree, each node is one of the alerting signals.
The prediction result is the sum of scores predicted by K decision
trees, as:

ŷt =
K∑
k=1

fk (At ), fk ∈ F (4)

where fk (·) is the score from the kth tree, F is the function space
containing all regression trees, and ŷt contains prediction results
at time t . The XGBoost is optimized to achieve the best prediction
results by minimizing the following loss:

L =

T∑
t=1

l (yt , ŷt ) + λ
K∑
k=1

Ω( | | fk | |) (5)

where the first term
∑T
t=1 l (yt , ŷt ) is the summation of cross-entropy

loss measuring whether the classification model and features can



well perform for the prediction task across all timestamp. The sec-
ond term λ

∑K
k=1 Ω( | | fk | |) penalizes the tree boosting parameters

fk in the model as described in [28].

4 EXPERIMENTS
In this section, we carry out extensive experiments using data
collected from six representative services across tens of data centers
over one year period from the Microsoft cloud system. Due to
the privacy policy of Microsoft, we deliberately masked sensitive
data throughout this paper. We first show the results of predicting
outages at component and service levels, where AirAlert has two
predictionmodes: AirAlert Related and AirAlert Full. In the AirAlert
Related mode, only outage dependent signals found in the Bayesian
network are used for prediction, while in the AirAlert Full mode all
signals are used for prediction. Then, we give case studies to show
how our work can help to diagnose outages and find which team
to handle the outage.

4.1 Outage prediction
In this subsection we investigate the performance of predicting the
component-level outages and also the service-level outages. These
experiments aim at investigating the performance of our method
for predicting outages of different complex levels. The component-
level outage is the outage coming from a specific component . As
a service would contain multiple components, the service-level
outage is more complicated and heterogeneous.

4.1.1 Experiment Setups. The investigated component-level out-
ages come from three most representative components: the Storage
Location, Physical Networking and Storage Streaming component.
The service-level outages come from three most representative
services: the Web Application, Cloud Network and the Microsoft
Cloud System Operation Service. We evaluate the method by col-
lecting outages over one year period from tens of data centers. We
acquired data at the time step of one hour and obtained over 8,000
samples in total (24hrs*365days). The period that the data covered
only has a very small number of outages. For evaluation, we choose
the service and component outages that occurred frequently in
the last year (that is why we choose three most representative ser-
vices/components). For other services/components, which rarely
have any outages happened, there is no sufficient data to construct
a predictive model. As we only have a limited number of outages
, classification methods would suffer from the imbalanced data
problem. To better deal with the imbalanced data, the SMOTE [2]
over-sampling strategy is used for generating the training data
from system database so that the positive and negative samples in
the training phase can be balanced.

Given alerting signals across the cloud system,we predict whether
a component or service outage will happen. We use precision, recall
and F1 as the evaluation metrics. Five different outage prediction
methods are compared, which are:

• Simple Spike: This is a rule-based outage prediction method
as described in Equation 3, where the threshold θ is prede-
fined by domain knowledge and could vary across different
components or services . If the strength of the alerting signal
is larger than θ , an outage will happen.

• Support Vector Machine (SVM): SVM is commonly used in
classification problems. In this experiment, all the alerting
signals are served as input features for the SVM classifier
with linear kernel.
• Penalized Logistic Regression (PLR): PLR is commonly used
in feature selection and prediction with the introduction of
sparse constraints. In this experiment, all alerting signals are
used as input features for the PLR model.
• AirAlert Related: It first applies the Bayesian networkmethod
to find the most relevant alerting signals for outage predic-
tion, which are signals in the Bayesian network directly
connected to the outage. Then, we use these selected sig-
nals for outage prediction using the Xgboost classification
method.
• AirAlert Full: It is based on the XGBoost classifier. Different
from ‘AirAlert Related’, this approach uses all alerting signals
as input features.

AirAlert Related and AirAlert Full are two modes of our method.
Users can choose which mode they want to use based on their needs.
When they want to use all signals for prediction, they can choose
the full mode. However, for the dataset with limited number of
samples but large number of signals, full mode would easily return
an overfitted model. Therefore, we provide the AirAlert Related
mode, where only the signals selected by Bayesian network are fed
into the gradient boosting tree model.

4.1.2 Results. The results for the component-level and service-
level prediction are shown in Table 1 and 2 respectively.

Table 1 shows the outage prediction results at the component-
level. Here, we select three most representative and frequently oc-
curred component-level outages for performance evaluation, which
are related to Storage Location, Physical Networking and Storage
Streaming. All five different prediction methods are compared in
terms of precision, recall and F1. We can see that their performance
results are quite similar. Simple spike, which is a straightforward
rule-based outage prediction method, can achieve 100% recall in
some cases for component-level outage prediction. We will later
show its performance in predicting service-level outages, which are
more complex and involving many heterogeneous signals. Unlike
other methods using the whole feature set for prediction, AirAlert
Related only uses the Bayesian network selected features. With
reduced feature set size, the performance can be still maintained.
This observation shows that Bayesian network can help us find the
most representative and dependent alerting signals. Other signals
which are not found to be highly related to outages in the network
would not significantly improve the performance.

Table 2 shows the outage prediction results at the service level.
Again, three most representative and frequently happened outages
are selected, which are from Website Application, Cloud network
and Microsoft Cloud System Operation. Different from the results
in Table 1, we can see that the performance of different prediction
methods varies greatly. Among them, Simple Spike obtains very
low precision and recall. This is because the service-level outage is
more complex than the component-level outage and simple rule-
based method cannot work for complicated cases. The outage from
a single service can be heterogeneous. For example, outages coming



Table 1: Comparison of different methods for component-level outage prediction.

Outage
(Storage Location)

Outage
(Physical Networking)

Outage
(Storage Streaming)

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
Simple Spike 61.65 100.00 76.28 73.71 67.71 70.58 61.52 100.00 76.18

PLR 70.02 92.71 79,78 67.72 83.33 74.72 63.23 91.67 74.84
SVM 65.65 95.83 77.92 63.13 88.54 73.71 58.62 88.64 70.57

AirAlert Related 65.31 100.00 79.01 63.33 98.95 77.25 62.34 100.00 76.80
AirAlert Full 71.11 100.00 83.17 69.07 100.00 81.71 63.75 98.99 77.86

Table 2: Comparison of different methods for service-level outage prediction.

Outage
(Website

Application)

Outage
(Cloud Network)

Outage
(Microsoft Cloud
System Operation)

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
Simple Spike 5.73 11.83 7.72 4.47 67.74 8.39 7.27 29.03 11.63

PLR 61.18 54.17 57.46 26.27 60.52 36.64 20.36 35.17 25.79
SVM 66.41 88.54 75.89 6.89 88.42 12.78 26.90 22.50 24.50

AirAlert Related 92.18 85.63 88.78 62.08 47.65 53.92 72.40 77.96 75.08
AirAlert Full 82.75 76.74 79.63 75.93 67.07 71.22 72.59 50.15 59.32

from the "website application" service may result from network or
hardware failures.

From Table 2 we can further observe that different from Simple
Spike, PLR and SVM, AirAlert Related and AirAlert Full have more
stable results across different outages. This observation tells us that
XGBoost is more robust than others. Consistent with Table 1, the
performance of AirAlert Related using Bayesian network selected
features has similar performance as AirAlet Full, which uses the
whole dataset. More specifically, for the first and the third outage,
using related alerting signals about 10% gain in both precision and
recall can be achieved. With the help of the Bayesian network, not
only the most relevant alerting signals can be identified but also the
most predictive features can be detected. The most relevant signals
are the ones which would directly lead to outages, while the most
predictive features are the ones which contribute to the predictive
model the most.

4.2 Outage diagnosis
4.2.1 Cases for outage diagnosis. As mentioned in the previous
section, Bayesian network can specify the root cause of outages
by calculating the conditional dependence. Here, we would like to
give two examples of Bayesian network results. Fig. 1 and Fig. 2
show component-level and service-level outage diagnosis results,
respectively. In Fig. 1, subplot (a) contains the Bayesian network
for diagnosing relevant alerting signals for the outage called ‘Data
StreamOutage’. In the graph, the studied outage is in red; its directly
linked nodes are in green; and the two-hop neighbours are in blue.
This figure shows that the ‘Storage Streaming component signal’
and the ‘Storage Trouble Guide component signal’ are most relevant
to the occurrence of the ‘Data Stream Outage’. When we look up
records saved in the Microsoft cloud system, we find that engineer
team manually diagnosed the causes of the Data Stream outage
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(a) Bayesian network for ‘Data Stream Outage’.
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Figure 1: Diagnosis results for a component-level outage
named ‘Data Stream Outage’.
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Figure 2: Diagnosis results for a service-level outage named
‘Web Application Outage’.

based on their knowledge. They found that the Storage Streaming
signal is the top first cause, which is consistent with our findings
from Bayesian network. Fig. 1 (b) presents the time-series change
for alerting signals, where there was one ‘Data Stream Outage’
happened at 2:00 PM Aug 3rd. At that time, the related ‘Storage
Streaming signal’ rose significantly, showing the findings in the
Bayesian network are quite reasonable.

In Fig. 2, we show an example of diagnosing a service-level out-
age, called ‘Web Application Service Outage’. Fig. 2 (a) tells us how
the alerting signals are related to this service-level outage. Com-
paring Fig. 2 (a) with Fig. 1 (a), we can see that Fig. 2 (a) has more
interconnected nodes, which indicate that the service-level outage
is more complex than component-level outages and thus has more
relevant alerting signals across the system. The signals that directly
linked to the ‘Website Application Service Outage’ are ‘Storage
testing signal’, ‘Web Application Time Rotation signal’, ‘Network
attacking Management signal’ and ‘Web Application Website Ser-
vicing signal’. From the records of the Microsoft cloud system, The
engineering team has manually identified a large number of Web
Application Service outages that are related to ‘Web Application
Website Servicing’, which matches our results well. In Figure 2
(b), we also show the changes of some alerting signals over time,
where one ‘Web Application Service Outage’ happened at 5:00 AM

April 3rd. At that time, both ‘Web Application Website Servicing
signal’ and ‘Storage testing signal’ had a significant jump, which is
consistent with the observation in Figure 2 (a). These two examples
show that our work on Bayesian network can be a useful outage
diagnosis tool that helps the engineering team locate the root cause
of outages.

4.2.2 Cases for outage assignment. In a real cloud system, deter-
mining which team to handle each outage is a non-trivial task. If we
correctly predict the outage to be the ‘TeamA Outage’, the system
will automatically assign the TeamA team to handle this outage.
Here, we would like to give two examples to show the potential of
using our method to assign outages. In these examples, the cloud
system first wrongly assigns an outage to a team and then reassigns
the outage to the correct team sometime later. However, AirAlert
correctly predicted which part of the cloud would have the outage
and indicated the correct responsible team who should handle it.
There are two instances of the ‘Location Servicing Outage’ hap-
pened on June 7th at 16:00 and July 19th at 16:50, respectively.When
we look at the operation record in the Microsoft cloud system, this
outage was first assigned to the ‘Windows Cloud System Live Site’
team and then transferred to the ‘Location Servicing’ team. If we
use our prediction and diagnosis approach, we find that we can cor-
rectly predict in advance that an outage would happen in ‘Location
Servicing Outage’. From the Bayesian network diagnosis results,
we can find alerting signals related to ‘Location Servicing Outage’.
By investigating the time series changes of those related signals,
we can see that they increased obviously before these two instances
of ‘Location Servicing Outage’.

5 CONCLUSION
In this paper, we studied the outage diagnosis and prediction prob-
lem in cloud systems. We proposed an intelligent outage manage-
ment method called AirAlert. In contrast to the previous work
focusing on dealing with failures in a single service, we work on
outages that would come from many parts of the whole cloud
system, which is a system of systems. AirAlert works as a global
watcher of the cloud system by collecting alerting signals across the
whole system. The dependence relationships among the alerting
signals and outages are discovered based on the Bayesian network
method. AirAlert can diagnose where the outages come from to
help us identify the root causes of outages. For outage prediction,
we use the gradient boosting tree based model and compare the
results from both component-level and service-level outage pre-
dictions. To the best of our knowledge, this is the first work that
uses alerting signals across the whole cloud system to diagnose and
predict outages coming from different levels.
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