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Foreword

An oft-repeated adage among telecommunication providers goes, “There are five
things that matter: reliability, reliability, reliability, time to market, and cost. If you
can’t do all five, at least do the first three.”

Yet, designing and operating reliable networks and services is a Herculean task.
Building truly reliable components is unacceptably expensive, forcing us to con-
struct reliable systems out of unreliable components. The resulting systems are
inherently complex, consisting of many different kinds of components running a
variety of different protocols that interact in subtle ways. Inter-networks such as the
Internet span multiple regions of administrative control, from campus and corpo-
rate networks to Internet Service Providers, making good end-to-end performance
a shared responsibility borne by sometimes uncooperative parties. Moreover, these
networks consist not only of routers, but also lower-layer devices such as optical
switches and higher-layer components such as firewalls and proxies. And, these
components are highly configurable, leaving ample room for operator error and
buggy software. As if that were not difficult enough, end users understandably care
about the performance of their higher-level applications, which has a complicated
relationship with the behavior of the underlying network.

Despite these challenges, researchers and practitioners alike have made tremen-
dous strides in improving the reliability of modern networks and services. Their
efforts have laid the groundwork for the Internet to evolve into a worldwide com-
munications infrastructure – one of the most impressive engineering artifacts ever
built. Yet, much of the amassed wisdom of how to design and run reliable networks
has been spread across a variety of papers and presentations in a diverse array of
venues, in tools and best-common practices for managing networks, and sometimes
only in the minds of the many engineers who design networking equipment and
operate large networks.

This brings us to this book, which captures the state-of-the-art for building re-
liable networks and services. Like the topic of reliability itself, the book is broad,
ranging from reliability modeling and planning, to network monitoring and net-
work configuration, to disaster preparedness and reliable applications. A diverse
collection of experts, from both industry and the academe, have come together to
distill the collective wisdom. The book is both grounded in practical challenges and
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vi Foreword

forward looking to put the design and operation of reliable networks on a strong
foundation. As such, the book can help us build more reliable networks and services
today, and face the many challenges of achieving even greater reliability in the
years ahead.

Jennifer Rexford
Princeton University



Preface

Overview

This book arose from a conversation at the Internet Network Management work-
shop (INM) in 2007. INM’07 was subtitled “The Five Nine’s Workshop” because it
focused on raising the availability of Internet services to “Five Nine’s” or 99.999%,
an availability metric traditionally associated with the telephone network. During
our conversation, we talked about and vehemently agreed that there was a need for
a comprehensive book on reliable Internet services and applications – a guide that
would collect in one volume the accumulated wisdom of leading researchers and
practitioners in the field.

Networks and networked application services using the Internet Protocol have
become a critical part of society. Service disruptions can have significant impact
on people’s lives and business. In fact, as the Internet has grown, application re-
quirements have become more demanding. In the early days of the Internet, the
typical applications were nonreal-time applications, where packet retransmission
and application layer retry would hide underlying transient network disruptions.
Today, applications such as online stock trading, online gaming, Voice over IP
(VoIP), and video are much more sensitive to small perturbations in the network.
For example, following one undersea cable failure in the Pacific, AT&T restored
the service on an alternate route, which introduced 5 ms of additional packet delay.
This seemingly small additional delay was sufficient to cause problems for an enter-
prise customer that operated an application between a call center in India and a data
center in Canada. This problem led to subsequent re-engineering of the customer’s
end-to-end connection.

In addition, networked application services have become an increasingly impor-
tant part of people’s lives. The Internet and virtual private networks support many
mission critical business services. Ten years ago, it would have been just an incon-
venience if someone lost their IP service. Today, people and businesses depend on
Internet applications. Online stock trading companies are not in business if peo-
ple cannot implement their trades. The Department of Defense cannot operate their
information-based programs if their information infrastructure is not operating. Call
centers with VoIP services cannot serve their customers without their IP network.

vii



viii Preface

Although we started work on this book with a focus on network reliability, it
should be obvious from the preceding description that it is important to consider
both reliability and performance, and to consider both networks and networked ap-
plication services. Examples of networked applications include email, VoIP, search
engines, ecommerce sites, news sites, or content delivery networks.

Features

This book has a number of features that make it a unique and valuable guide to
reliable Internet services and applications.

Systematic, interdisciplinary approach: Building and operating reliable network
services and applications requires a systematic approach. This book provides
comprehensive, systematic, and interdisciplinary coverage of the important tech-
nical topics, including areas such as networking; performance, and reliability
modeling; network measurement; configuration, fault, and security management;
and software systems. The book provides an introduction to all of the topics,
while at the same time, going into enough depth for interested readers that already
understand the basics.

Specifically, the book is divided into seven parts. Part I provides an introduction
to the challenges of building reliable networks and applications, and presents an
overview of the structure of a large Internet Service Provider (ISP) network. Part II
introduces reliability modeling and network capacity planning. Part III extends the
discussion beyond a single network administrative domain, covering interdomain
reliability and overlay networks. Part IV provides an introduction to an impor-
tant aspect of reliability: configuration management. Part V introduces network
measurements, which provide the underpinning of network management. Part VI
covers network and security management, and disaster preparedness. Part VII de-
scribes techniques for building application services, and provides a comprehensive
overview of capacity and performance engineering for these services. Taken in total,
the book provides a comprehensive introduction to an important topic.

Coverage of pragmatic problems arising in real, operational deployments: Build-
ing and operating reliable networks and applications require an understanding of
the pragmatic challenges that arise in an operational setting. This book is written
by leading practitioners and researchers, and provides a unique perspective on the
subject matter arising from their experience. Several chapters provide valuable “best
practices” to help readers translate ideas into practice.

Content and structure allows reference reading: Although the book can be read
from cover to cover, each chapter is designed to be largely self-contained, allowing
readers to jump to specific topics that they may be interested in. The necessary
overlap across a few of the chapters is minimal.
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Audience

The goal of this book is to present a comprehensive guide to reliable Internet
services and applications in a form that will be of broad interest to educators and
researchers. The material is covered in a level of detail that would be suitable for an
advanced undergraduate or graduate course in computer science. It can be used as
the basis or supplemental material for a one-or-two semester course, providing a
solid grounding in both theory and practice. The book will also be valuable to re-
searchers seeking to understand the challenges faced by service providers and to
identify areas that are ripe for research.

The book is also intended to be useful to practitioners who want to broaden their
understanding of the field, and/or to deepen their knowledge of the fundamentals.
By focusing our attention on a large ISP network and associated application ser-
vices, we consider a problem that is large enough to expose the real challenges
and yet broad enough to expose guidelines and best practices that will be appli-
cable in other domains. For example, though the book does not discuss access or
wireless networks, we believe that the principles and approaches to reliability that
are presented in this book apply to them and are in fact, broadly applicable to any
large network or networked application. We hope that you will find the book to be
informative and useful.

Florham Park, NJ Charles R. Kalmanek
India Sudip Misra
New Haven, CT Y. Richard Yang
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Chapter 1
The Challenges of Building Reliable Networks
and Networked Application Services

Charles R. Kalmanek and Y. Richard Yang

1.1 Introduction

In the decades since the ARPANET interconnected four research labs in 1969
[1], computer networks have become a critical infrastructure supporting our
information-based society. Our dependence on this infrastructure is similar to
our dependence on other basic infrastructures such as the world’s power grids and
the global transportation systems. Failures of the network infrastructure or major
applications running on top of it can have an enormous financial and social cost
with serious consequences to the organizations and consumers that depend on these
services.

Given the importance of this communications and applications infrastructure to
the economy and society as a whole, reliability is a major concern of network and
service providers. After a survey of major network carriers including AT&T, BT,
and NTT, Telemark [7] concludes that, “The three elements which carriers are most
concerned about when deploying communication services are network reliability,
network usability, and network fault processing capabilities. The top three elements
all belong to the reliability category.” Unfortunately, the challenges associated with
running reliable, large-scale networks are not well documented in the research litera-
ture. Moreover, while networking and software-educational curricula provide a good
theoretical foundation, there is little training in the techniques used by experienced
practitioners to address reliability challenges. Another issue is that while traditional
telecommunications vendors gained extensive experience in building reliable soft-
ware, the pace of change has accelerated as the Internet has grown and Internet
system vendors do not meet the level of reliability traditionally associated with “car-
rier grade” systems. Newer vendors accustomed to building consumer software are

C.R. Kalmanek (�)
AT&T Labs, 180 Park Ave., 07932, Florham Park, NJ, USA
e-mail: crk@research.att.com

Y.R. Yang
Yale University, 51 Prospect Street, New Haven, CT, USA
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4 C.R. Kalmanek and Y.R. Yang

entering the service provider market, but they do not have a culture that focuses
on the higher level of required reliability. This places a greater burden on service
providers who integrate their software to help these vendors “raise the bar” on reli-
ability to offer reliable services.

Although we emphasize network reliability in the foregoing section, it is impor-
tant to consider both reliability and performance and to consider both networks and
networked application services. Users are interested in the performance of an end-
to-end service. When a user is unable to access his e-mail, he does not particularly
care whether the network or the application is at fault. Examples of network appli-
cations include e-mail, Voice over IP, search engines, e-commerce sites, news sites,
or content delivery networks.

1.2 Why Is Reliability Hard?

Supporting reliable networks and networked application services involves some of
the most complex engineering and operational challenges that are dealt with in any
industry. Much of this complexity is intentionally transparent to the end users, who
expect things to “just work.” Moreover, the end users are typically not exposed to
the root causes of network or service problems when their service is degraded or
interrupted. As a result, it is natural for end users to assume that network and ser-
vice reliability are not hard. In part, users get this impression because most service
providers and Internet-facing web services operate at very high levels of reliability.
Though it may look easy, this level of reliability is a result of solid engineering and
“constant vigilance.” The best service providers engage in a process of continuous
improvement, similar to the Japanese “Kaizen” philosophy that was popularized by
Deming [2]. In this book, we address the challenges faced by service providers and
the approaches that they use to deliver reliable services to their users. Before delv-
ing into the solution, we ask ourselves, why is it so hard to build highly reliable
networks and networked application services?

We can characterize the difficulty as resulting from three primary causes. The
first challenge is scale and complexity; the second is that the services operate in the
presence of constant change. These challenges are inherent to large-scale networks.
The third challenge is less fundamental but still important. It relates to challenges
with measurement and data.

1.2.1 Scale and Complexity Challenges

Scale and complexity challenges are fundamental to any large network or service
infrastructure. As Steve Bellovin remarked, “Things break. Complex systems break
in complex ways” [8]. In particular, large service provider networks contain hun-
dreds of thousands of network elements distributed around the world, and tens of
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thousands of different models of equipment. These network elements are inter-
connected and must interoperate correctly to offer services to the network users.
Failures in one part of the network can impact other parts of the network. Even if
we consider only the infrastructure needed to provide basic IP connectivity services,
it consists of a vast number of complex building blocks: routers, multiplexers, trans-
mission equipment, servers, systems software, load balancers, storage, firewalls,
application software, etc. At any given point in time, some network elements have
failed, have been taken out of service, or will be operating at a degraded performance
level.

The preceding description only hints at the challenges. Despite the careful en-
gineering and modeling that is done through all stages of the service life cycle, if
we look at the service infrastructure as a system, we note that the system does not
always behave as expected. There are many reasons for this, including:

� Software defects in network elements;
� Inadequate modeling of dependencies;
� Complex software-support systems.

The vast majority of the elements involved in providing a network service contain
software, which can be buggy, particularly when the software function is complex.
If a bug is triggered, a piece of equipment can behave in unexpected ways. Even
though the correct operation of router software is critical to service, we have seen
design flaws in the way that the router-operating system handles resource man-
agement and scheduling, which manifest themselves as latent outages. The history
of the telephone network contains examples of major network outages caused by
software faults, such as the famous “crash” of the AT&T long-distance telephone
network in 1990 [3]. Similarly, the network elements that make up the IP network
infrastructure contain complex control-plane software implementing distributed
protocols that must interoperate properly for the network to work. When compared
to the telephone switching software, control plan software of IP networks changes
more frequently and is far more likely to be subject to undetected software faults.
These faults occasionally result in unexpected behaviors that can lead to outages or
degraded performance.

In a large complex infrastructure, operators do not have a comprehensive model
of all of the dependencies between systems supporting a given service: they rely on
simplifying abstractions such as network layering and administrative separation of
concerns. These abstractions can break down in unexpected ways. For example,
there are complex interactions between network layers, such as the transport and IP
layers, that affect reliability. Consider a link between two routers that is transported
over a SONET ring. Networks are typically designed so that protection switching at
the SONET layer is transparent to the IP layer. However, several years ago, AT&T
experienced problems in the field, whereby a SONET “protection switching event”
triggered a router-software bug that caused several minutes of unexpected customer
downtime. Since the protection switch occurred correctly, the problem did not trig-
ger an alarm and was only uncovered by correlating customer trouble tickets with
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network event data. This cross-layer interaction is an example of the kinds of de-
pendency that can be difficult to anticipate and troubleshoot.

In addition to the scale of the network and the complexity of the network equip-
ment, correct operation depends on the operation of complex software systems that
manage the network and support customer care. Router-configuration files contain a
large number of parameters that must be configured correctly. Incorrect configura-
tion of an access control list can create security vulnerabilities, or alternatively, can
cause traffic to be “blackholed” by blocking legitimate traffic. If there is a mismatch
between the Quality of Service settings on a customer-edge router and those on
the provider-edge router that it connects, some applications may experience perfor-
mance problems under heavy load. An inconsistency between the network inventory
database and the running network can lead to stranded network capacity, service
degradations, network outages, etc. These problems sometimes manifest themselves
weeks or months after the inconsistency appeared – for this reason, they are some-
times referred to as “time bombs.”

1.2.2 Constant Change

The second challenge relates to the fact that any large-scale service infrastructure
undergoes constant change. Maintenance and customer-provisioning activities in
a large global network are ongoing, spanning multiple time zones. On a typical
workday, new customers are being provisioned, service for departing customers is
being turned down, and change orders to change some service characteristic are be-
ing processed for existing customers. Capacity augmentation and traffic grooming,
whereby private-line connections are rearranged to use network resources more ef-
ficiently, take place daily. Routine maintenance activities such as software upgrades
also take place during predefined maintenance “windows.” More complex mainte-
nance activities, such as network migrations, also occur periodically. Examples of
network migration include moving a customer connection from one access router
to another, replacing a backbone router, or consolidating all of a regional network’s
traffic onto a national backbone network in order to retire an older backbone. Re-
placing a backbone router in a service provider network requires careful planning
and execution of a sequence of moves of the “uplinks” from access routers in order
to minimize the amount of traffic that is dropped. Decision-support tools are used to
model the traffic that impinges on all of the affected links at every step of the move
to ensure that links are not congested.

In the midst of these day-to-day changes, network failures can occur at any time.
The network is designed to automatically restore service after a failure. However,
during planned maintenance activities, it is possible that some network capacity
has been removed from service temporarily, potentially leaving the network more
vulnerable to specific failures. Under normal conditions, maintenance to repair the
failed network element is scheduled to occur later at a convenient time, after which
the network traffic may revert back to its original path.
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Finally, in addition to the day-to-day changes of new customers, or the occa-
sional changes that come from major network migrations, there are also architectural
changes. These changes might result from the introduction of new features and
services, or new protocols. An example might be the addition of a new “class of
service” in the backbone. Another example might be turning up support for mul-
ticast services in MPLS-based VPNs. The first example (class of service) involves
configuration changes that may touch every router in the network. The second exam-
ple involves introducing a new architectural element (i.e., a PIM rendezvous point),
enabling a new protocol (i.e., PIM), validating the operation of multicast monitoring
tools, etc. All of these changes would have been tested in the lab prior to the First
Field Application (FFA), which is typically the first time that everything comes to-
gether in an operational network carrying live customer traffic. If there are problems
during the FFA with the new feature that is being deployed, network operations will
execute procedures to gracefully back out of the change until the root cause of the
problem is analyzed and corrected.

1.2.3 Measurement and Data Challenges

The third challenge associated with building reliable networks is associated with
measurement and data. Vendor products deployed by service providers often suffer
from an inadequate implementation of basic telemetry functions that are necessary
to monitor and manage the equipment. In addition, because of the complexity of
the operating environment described earlier, there are many, diverse data sources,
with highly variable data quality. We present two examples. Despite the maturity of
SNMP [4], AT&T has seen an implementation of a commercial SNMP poller that
did not correctly handle the data impacts of router reboots or loss of data in transit.
Ideally, problems like this are discovered in the lab, but occasionally they are not dis-
covered until the equipment is deployed and supporting live service. Data problems
are not limited to network layer equipment: vendor-developed software components
running on servers may not support monitoring agents that export the data neces-
sary to implement a comprehensive performance-monitoring infrastructure. When
these software components are combined in a complex, multitiered application, the
workflow and dependencies among the components may not be fully understood
even by the vendor. When such a system is deployed, even with a well-designed
server instrumentation, it may be difficult to determine exactly which component is
the bottleneck with limited system throughput.

Another issue is that data are often “locked up” in management system “silos.”
This can result from selecting a vendor’s proprietary element-management system.
Typically, proprietary systems are not designed to make data export easy, since the
vendor seeks to lock the service provider into a complete “solution.” Data silos
can also result from internal implementations. These often result from organiza-
tional silos: a management system is specified and built to address a specific set of
functions, without the involvement of subject matter experts from other domains.
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Whatever the cause, the end result is that the data necessary to monitor and manage
the infrastructure may not exist or may be difficult to access by analysts who are
trying to understand the system.

1.3 Toward Network and Service Reliability

The examples in Section 1.2 give only a glimpse into the complex challenges faced
by service providers who seek to provide reliable services. Despite these complex-
ities, the vast majority of users receive good service. How is this achieved? At the
highest level, network and service reliability involve both good engineering design
and good operational practices. These practices are inextricably linked: no matter
how good the operations team is, good operation practices cannot make up for a
poorly thought out design. Likewise, a good design that is implemented or operated
poorly will not result in reliable service.

It should be obvious that reliable services start with good design and engineering.
The service design process relies on extensive domain knowledge and a good un-
derstanding of the business and service-level objectives. Network engineers develop
detailed requirements for each network element in light of the end-to-end objectives
for reliability, availability, and operability. Network elements are selected carefully.
After a detailed paper and lab evaluation, an engineering team selects a specific
product to meet a particular need. Once the product is selected, it enters a change
control process where differences between the requirements and the product’s ca-
pabilities are managed by the service provider in conjunction with the vendor. The
service designers, working closely with test engineers, develop comprehensive en-
gineering rules for each of the network elements, including safe operating limits for
resources such as bandwidth or CPU utilization. Detailed engineering documents
are developed that describe how the network element is to be used, its engineer-
ing limits, etc. Network management requirements for the new network element
are developed in conjunction with operations personnel and delivered to the IT
team responsible for the operations-support systems (OSSs). Before the FFA of the
new element, the element, and OSSs undergo an Operations Readiness Test (ORT),
which verifies that the element and the associated OSSs work as expected, and can
be managed by network operations.

The preceding paragraph gives a brief overview of some of the engineering “best
practices” involved in building a reliable network. In addition, reliability and capac-
ity modeling must be done for the network as a whole. The network architecture
includes the appropriate recovery mechanisms to address potential failures. Relia-
bility modeling tools are used to model the impact on the network of failures in light
of both current and forecast demands. Where possible, the tools model cross-layer
dependencies between IP layer links and the underlying transport or physical layer
network, such as the existence of “shared risk groups” – links or elements that may
be subject to simultaneous failure. By simulating all possible failure scenarios, these
tools allow the network designers to trade off network cost against survivability. The
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network design also includes a comprehensive security design that considers the im-
portant threats to the network and its customers, and implements appropriate access
controls and other security detection and mitigation strategies.

An operations organization is typically responsible for managing the network or
service on a day-to-day basis. The operations team is supported by the operations-
support systems mentioned earlier. These include configuration-management
systems responsible for maintaining network inventory data and configuring the
network elements, and service assurance systems that collect telemetry data from
the network to support fault and performance management functions. The fault
and performance management systems are the “eyes” of the operations team into
the service infrastructure to figure out, in the case of problems, what needs to be
repaired. We can consider fault and performance management systems as involving
the following areas:

� Instrumentation layer;
� Data management layer;
� Management application layer.

We start thinking about the instrumentation layer by asking what telemetry or
measurement data need to be collected to validate that the service is meeting its
service-level objectives (or to troubleshoot problems if it is not). Standardized
router MIB data provide a base level of information, but additional instrumenta-
tion is needed to manage large networks supporting complex applications. Passive
monitoring techniques support collection of data directly from network elements
and dedicated passive monitoring devices, but active monitoring, involving the
injection and monitoring of synthetic traffic, is also required and is commonly
used. Since the correct operation of the IP forwarding layer (data plane) critically
depends on the correct operation of the IP control plane, both data plane and the
control-plane monitoring are important. In software-based application services,
the telemetry frequently does not adequately capture “soft” failure modes, such as
transaction timeouts between devices or errors in software settings and parameters.
Both the servers supporting application software and the applications themselves
need to be instrumented and monitored for both faults and key performance
parameters.

Large service providers typically have a significant number of data sources that
are relevant to service management, and the data management layer needs to be able
to handle large volumes of telemetry and alarm data. As a result, the data-collection
and data-management infrastructure presents challenging systems design problems.
A good design allows data-source-specific collectors to be easily integrated. It also
provides a framework for data normalization, so that common fields such as times-
tamps, router names, etc., can be normalized to a common key during data ingest
so that application developers are spared some of the complexity of understanding
details of the raw data streams. Ideally, the design of the data management layer
supports a common real-time and archival data store that is accessed by a range of
applications.
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The management applications supported on top of the data management layer
support routine operations functions such as fault and performance management,
in addition to supporting more complex analyses. Given the vast quantity of event
data that is generated by the network, the event management system must appro-
priately filter the information that must be acted upon by the operations team to
avoid flooding them with spurious information. The impact of alarm storms (and
the importance of alarm filtering) can be illustrated by the story of Three Mile Is-
land, in which the computer system noted 700 distinct error conditions within the
first minute of the problem, followed by thousands of error reports and updates [5].
The operators were drowning in a sea of information at a time when they needed a
small number of actionable items to work on.

Management applications also enable operations personnel to control the net-
work, including performing routine tasks such as resetting a line card on a router as
well as more complex tasks. Standard tasks are handled through an operations inter-
face to an operations-support system. Ad hoc tasks that involve a complex workflow
may require operations staff to use a scripting language that accesses the network in-
ventory database and sends commands to network elements or element-management
systems. Ideally, the operations-support systems automate most of the routine tasks
to a large extent, audit the results of these tasks, and back them out if there are
problems.

It is useful to note that operations personnel are typically organized in multi-
ple response tiers. The lower tiers of operations staff work on immediate problems,
following established procedures. The tools that they use have constrained func-
tionality, targeted at the functions that they are expected to perform. The highest tier
of operations personnel consists of senior operations staff charged with diagnosing
complex problems in real-time or performing postmortem analysis of complex, un-
resolved problems that occurred in the past. These investigations may take more
time than lower-tier operations staff can afford to spend on a specific problem.
When there are serious problems affecting major customers or the network as a
whole, engineers from the network engineering team are also called upon to as-
sist. In these cases, one or more analysts do exploratory data mining (EDM) using
data exploration tools [6] that support data drill down, statistical data analysis, and
data visualization. Well-designed data exploration tools can make a huge difference
when analysts are faced with the “needle in the haystack” problem – trying to sort
through huge quantities of telemetry data to draw meaningful conclusions. When
analysts uncover the root cause of a particular problem, this information can be
used to eliminate the problem, e.g., by pressing a vendor to fix a software bug, by
repairing a configuration error, etc.

As we mentioned in Section 1.2, a broad goal of both the network designers
and network operations is to maintain and continuously improve network reliability,
availability, and performance, despite the challenges. “Holding the gains” or staying
flat on network performance is insufficient to meet increasingly tight customer and
application requirements. There is evidence that the principles and best practices
presented in this book have results. Figure 1.1 shows measured Defects-per-Million
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Fig. 1.1 Unplanned DPM for AT&T IP Backbone

(DPM) on the AT&T IP Backbone since the AT&T Managed Internet Service was
first offered in 1999. This chart plots the total number of minutes of port outages
during a year (i.e., the number of minutes each customer port was out of service),
divided by the number of port minutes in that year (i.e., the number of ports times the
number of minutes each was in service), times a normalization factor of 1,000,000.
The points are measured data; the smooth curve resembles a classic improvement
curve. Over the first 2 years of the service, DPM was reduced significantly as ven-
dor problems were addressed, architectural improvements were put in place, and
operations processes were matured. Further improvements continue to be achieved.
While DPM is only one of the many fault and performance metrics that must be
tracked and managed, this chart illustrates how good design and good operations
pay off.

The principles that underlie design and operation of reliable networks are also
critical to the design and operation of reliable application services. However, there
are also many differences between these two domains, including wide differences
in the domain knowledge of the typical network engineer and the typical software
developers. The life cycle of reliable software starts with understanding the require-
ments, and involves every step of the development process, including field support
and application monitoring. As in networks, capacity and performance engineering
of application services rely on both modeling and data collection.

This section has described some of the design and network management practices
that are performed by large service providers that run reliable networks and services.
In Section 1.4, we provide an overview of the material that is covered in the book.
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1.4 A Bird’s Eye View of the Book

The book consists of six parts, covering both reliable networks and reliable network
application services.

1.4.1 Part I: Reliable Network Design

Part I introduces the challenges of building reliable networks and services, and pro-
vides background for the rest of the book. Following this chapter, Chapter 2 presents
an overview of the structure of a large ISP backbone network. Since IP network re-
liability is tied intimately to the underlying transport network layers, this chapter
presents an overview of these technologies. Section 2.4 provides an overview of the
IP control plane, and introduces Multi-Protocol Label Switching (MPLS), a routing
and forwarding technology that is used by most large ISPs to support Internet and
Virtual Private Network (VPN) services on a shared backbone network. Section 2.5
introduces network restoration, which allows the network to rapidly recover from
failures. This section provides a performance analysis of the limitations of OSPF
failure detection and recovery to motivate the deployment of MPLS Fast Reroute.
The chapter concludes with a case study of an IP network supporting IPTV services
that links together many of the concepts.

1.4.2 Part II: Reliability Modeling and Network Planning

Part II of the book covers network reliability modeling, and its close cousin, network
planning. Chapter 3 starts with an overview of the main router elements (e.g., routing
processors, line cards, switching fabric, power supply, and cooling system), and their
failure modes. Section 3.2 introduces redundancy mechanisms for router elements,
as they are important for availability modeling. Section 3.3 shows how to compute
the reliability metrics of a single router with and without redundancy mechanisms.
Section 3.4 extends the reliability model from a single router to a large network
of edge routers and presents reliability metrics that consider device heterogeneity.
The chapter also provides an overview of the challenges in measuring end-to-end
availability, which is the focus of Chapter 4.

Chapter 4 provides a theoretical grounding in performance and reliability (per-
formability) modeling in the context of a large-scale network. A fundamental
challenge is that the size of the state space is exponential in the number of network
elements. Section 4.2 presents a hierarchical network model used for performability
modeling. Section 4.3 discusses the performability evaluation problem in general
and presents the state-generation approach. The chapter also introduces the nperf
network performability analyzer, a software package developed at AT&T Labs
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Research. Section 4.4 concludes by presenting two case studies that illustrate the
material of this chapter, the first involving an IPTV distribution network, and the
second dealing with architecture choices for network access.

Chapter 5 focuses on network planning. Since capacity planning depends on
utilization and traffic data, the chapter takes a systems view: since network measure-
ments are of varying quality, the modeling process must be robust to data-quality
problems while giving useful estimates that can be used for planning: “Essentially,
all models are wrong, but some are useful.” This chapter is organized around the
key steps in network planning. Sections 5.2 and 5.3 cover measurements, analysis,
and modeling of network traffic. Section 5.4 covers prediction, including both in-
cremental planning and green-field planning. Section 5.5 presents optimal network
planning. Section 5.6 covers robust planning.

1.4.3 Part III: Interdomain Reliability and Overlay Networks

Part III extends beyond the design of a large backbone network to interdomain
and overlay networks. Chapter 6 provides an overview of interdomain routing.
Section 6.3 highlights the limitations of the BGP routing protocol. For example,
the protocol design does not guarantee that routing will converge to a stable route.
Section 6.4 presents measurement results that quantify the impact of interdomain
routing impairments on end-to-end path performance. Section 6.5 presents a de-
tailed overview of the existing solutions to achieve reliable interdomain routing,
and Section 6.6 points out possible future research directions.

Overlay networks are discussed in Chapter 7 as a way of providing end-to-end
reliability at the application or service layer. The overlay topology can be tailored to
application requirements; overlay routing may choose application-specific policies;
and overlay networks can emulate functionality not supported by the underlying
network. This chapter surveys overlay applications with a focus on how they are
used to increase network resilience. The chapter considers how overlay networks
can make a distributed application more resilient to flash crowds, to component
failures and churn, network failures and congestion, and to denial-of-service attacks.

1.4.4 Part IV: Configuration Management

Network design is just one part of building a reliable network or service infrastruc-
ture; configuration management is another critical function. Part IV discusses this
topic.

Chapter 8 discusses network configuration management, presenting a high-level
view of the software system involved in managing a large network of routers in sup-
port of carrier class services. Section 8.2 reviews key concepts to structure the types
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of data items that the system must deal with. Section 8.3 describes the subcompo-
nents of the system and the requirements of each subcomponent. This section also
discusses two approaches that are commonly used for router configuration – policy-
based and template-based, and highlights the different requirements associated with
provisioning consumer and enterprise services. Section 8.4 gives an overview of
one of the key challenges in designing a configuration-management system, which
is handling changes. Finally, the chapter presents a step-by-step overview of the
subscriber provisioning process.

While a well-designed configuration-management system does configuration au-
diting, Chapter 9 looks at auditing from a different perspective, describing the need
for bottom-up, network-wide configuration validation. Section 9.2 provides a case
study of the challenges of configuring a multi-organization “collaboration network,”
the types of vulnerabilities caused by configuration errors, the reasons these arise,
and the benefits derived from using a configuration validation system. Section 9.3
abstracts from experience and proposes a reference design of a validation system.
Section 9.4 discusses the IPAssure system and the design choices it has made to re-
alize this design. Section 9.5 surveys related technologies for realizing this design.
Section 9.6 discusses the experience with using IPAssure to assist a US government
agency with compliance with FISMA requirements.

1.4.5 Part V: Network Measurement

While measurement was not a priority in the original design of the Internet, the com-
plexity of networks, traffic, and the protocols that mediate them now require detailed
measurements to manage the network, to verify that performance meets the required
goals, and to diagnose performance degradations when they occur. Part V covers
network measurement, with a focus on reliability and performance monitoring.

Chapter 10 covers data plane measurements. Sections 10.2–10.5 describe a spec-
trum of passive traffic measurement methods that are currently employed in provider
networks, and also describe some newer approaches that have been proposed or may
even be deployed in the medium term. Section 10.6 covers active measurement tools.
Sections 10.7–10.8 review IP performance metrics and their usage in service-level
agreements. Section 10.9 presents multiple approaches to deploy active measure-
ment systems.

The control plane in an IP network controls the overall flow of traffic in the net-
work, and is critical to its operation. Chapter 11 covers control-plane measurements.
Section 11.2 gives an overview of the key protocols that make up the “unicast” con-
trol plane (OSPF and BGP) describes how they are monitored, and surveys key
applications of the measurement data. Section 11.3 presents the additional chal-
lenges that arise in performing multicast monitoring.
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1.4.6 Part VI: Network and Security Management,
and Disaster Preparedness

Chapter 12 focuses on the network management systems and the tasks involved
in supporting the day-to-day operations of an IP network. The goal of network
operations is to keep the network up and running, and performing at or above
designed levels of service performance. Section 12.2 covers fault and performance
management – detecting, troubleshooting, and repairing network faults and perfor-
mance impairments. Section 12.3 examines how process automation is incorporated
in fault and performance management to automate many of the tasks that were orig-
inally executed by humans. Process automation is the key ingredient that enables
a relatively small Operations group to manage a rapidly expanding number of net-
work elements, customer ports, and complexity. Section 12.4 discusses tracking and
managing network availability and performance over time, looking across larger
numbers of network events to identify opportunities for performance improvements.
Section 12.5 then focuses on planned maintenance. The chapter also presents areas
for innovation and a set of best practices.

Chapter 13 presents a service provider’s view of network security. Section 13.2
provides an exposition of the network security threats and their causes. A fundamen-
tal concern is that in the area of network security, the economic balance is heavily
skewed in favor of bad actors. Section 13.3 presents a framework for network secu-
rity, including the means of detecting security incidents. Section 13.4 deals with the
importance of developing good network security intelligence. Section 13.5 presents
a number of operational network security systems used for the detection and miti-
gation of security threats. Finally, Section 13.6 summarizes important insights and
then briefly considers important new and developing directions and concerns in net-
work security as an indication of where resources should be focused both tactically
and strategically.

Chapter 14 discusses disaster preparedness as the critical factor that determines
an operator’s ability to recover from a network disaster. For network operators to
effectively recover from a disaster, a significant investment must be made to prepare
before the disaster occurs, so that network operations are prepared to act quickly
and efficiently. This chapter describes the creation, exercise, and management of
disaster recovery plans. With good disaster preparedness, disaster recovery becomes
the disciplined management of the execution of disaster recovery plans.

1.4.7 Part VII: Reliable Application Services

Large-scale networks exist to connect users to applications. Part VII expands the
scope of the book to the software and servers that support network applications.

Chapter 15 presents an approach to the design and development of reliable net-
work application software. This chapter presents the entire life cycle of what it
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takes to build reliable network applications, including software development pro-
cess, requirements development, architecture, design and implementation, testing
methodology, support, and reporting. This chapter also discusses techniques that
aid in troubleshooting failed systems as well as techniques that tend to minimize
the duration of a failure. The chapter presents best practices for building reliable
network applications.

Chapter 16 provides a comprehensive overview of capacity and performance
engineering (C/PE), which is especially critical to the successful deployment of a
networked service platform. At the highest level, the goal is to ensure that the ser-
vice meets all performance and reliability requirements in the most cost-effective
manner, where “cost” encompasses such areas as hardware/software resources, de-
livery schedule, and scalability. The chapter uses e-mail as an illustrating example.
Section 16.4 covers the architecture assessment phase of the C/PE process, including
the flow of critical transactions. Section 16.5 covers the workload/metric assess-
ment phase, including the workload placed on platform elements and the service-
level performance/reliability metrics that the platform must meet. Sections 16.6
and 16.7 develop analytic models to predict how a proposed platform will handle
the workload while meeting the requirements (reliability/ availability assessment
and capacity/performance assessment). Sections 16.8 and 16.9 develop engineering
guidelines to size the platform initially (scalability assessment) and to maintain ser-
vice capacity, performance, and reliability post deployment (capacity/performance
management). Best practices of C/PE are given at the end of the chapter.

1.5 Conclusion

With our society’s increasing dependence on networks and networked application
services, the importance of reliability and performance engineering has never been
greater. Unfortunately, large-scale networks and services present significant chal-
lenges: scale and complexity, the need for correct operation in the presence of
constant change, as well as measurement and data challenges. Addressing these
challenges requires good design and sound operational practices. Network and
service engineers start with a firm understanding of the design objectives, the tech-
nology, and the operational environment for the service; follow a comprehensive
service design process; and develop capacity and performance engineering models.
Network and service management rely on a well-thought out measurement design,
a data collection and storage infrastructure, and a suite of management tools and ap-
plications. When done right, the end result is a network or service that works well.
As customers and applications become more demanding, this “raises the bar” for
reliability and performance, ensuring that this field will continue to provide oppor-
tunities for research and improvements in practice.
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Chapter 2
Structural Overview of ISP Networks

Robert D. Doverspike, K.K. Ramakrishnan, and Chris Chase

2.1 Introduction

An Internet Service Provider (ISP) is a telecommunications company that offers its
customers access to the Internet. This chapter specifically covers the design of a
large Tier 1 ISP that provides services to both residential and enterprise customers.
Our primary focus is on a large IP backbone network in the continental USA, though
similarities arise in smaller networks operated by telecommunication providers in
other parts of the world. This chapter is principally motivated by the observation that
in large carrier networks, the IP backbone is not a self-contained entity; it co-exists
with numerous access and transport networks operated by the same or other ser-
vice providers. In fact, how the IP backbone interacts with its neighboring networks
and the transport layers is fundamental to understanding its structure, operation, and
planning. This chapter is a hands-on description of the practical structure and imple-
mentation of IP backbone networks. Our goal is complicated by the complexity of
the different network layers, each of which has its own nomenclature and concepts.
Therefore, one of our first tasks is to define the nomenclature we will use, classi-
fying the network into layers and segments. Once this partitioning is accomplished,
we identify where the IP backbone fits and describe its key surrounding layers and
networks.

This chapter is motivated by three aspects of the design of large IP networks.
The first aspect is that the design of an IP backbone is strongly influenced by
the details of the underlying network layers. We will illustrate how the evolution
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of customer access through the metro network has influenced the design of the
backbone. We also show how the evolution of the Dense Wavelength-Division
Multiplexing (DWDM) layer has influenced core backbone design.

The second aspect presents the use of Multiprotocol Label Switching (MPLS) in
large ISP networks. The separation of routing and forwarding provided by MPLS
allows carriers to support Virtual Private Networks (VPNs) and Traffic Engineering
(TE) on their backbones much more simply than with traditional IP forwarding.

The third aspect is how network outages manifest in multiple network layers and
how the network layers are designed to respond to such disruptions, usually through
a set of processes called network restoration. This is of prime importance because
a major objective of large ISPs is to provide a known level of quality of service to
its customers through Service Level Agreements (SLAs). Network disruptions occur
from two major sources: failure of network components and maintenance activity.
Network restoration is accomplished through preplanned network design processes
and real-time network control processes, as provided by an Interior Gateway Pro-
tocol (IGP) such as Open Shortest Path First (OSPF). We present an overview
of OSPF reconvergence and the factors that affect its performance. As customers
and applications place more stringent requirements on restoration performance in
large ISPs, the assessment of OSPF reconvergence motivates the use of MPLS Fast
Reroute (FRR).

Beyond the motivations described above, the concepts defined in this chapter lay
useful groundwork for the succeeding chapters. Section 2.2 provides a structural
basis by providing a high-level picture of the network layers and segments of a
typical, large nationwide terrestrial carrier. It also provides nomenclature and tech-
nical background about the equipment and network structure of some of the layers
that have the largest impact on the IP backbone. Section 2.3 provides more details
about the architecture, network topology, and operation of the IP backbone (the IP
layer) and how it interacts with the key network layers identified in Section 2.2.
Section 2.4 discusses routing and control protocols and their application in the IP
backbone, such as MPLS. The background and concepts introduced in Sections 2.2–
2.4 are utilized in Section 2.5, where we describe network restoration and planning.
Finally, Section 2.6 describes a “case study” of an IPTV backbone. This section
unifies many of the concepts presented in the earlier sections and how they come
together to allow network operators to meet their network performance objectives.
Section 2.7 provides a summary, followed by a reference list, and a glossary of
acronyms and key terms.

2.2 The IP Backbone Network in Its Broader Network Context

2.2.1 Background and Nomenclature

From the standpoint of large telecommunication carriers, the USA and most large
countries are organized into metropolitan areas, which are colloquially referred to as
metros. Large intrametro carriers place their transmission and switching equipment
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in buildings called Central Offices (COs). Business and residential customers typ-
ically obtain telecommunication services by connecting to a designated first CO
called a serving central office. This connection occurs over a feeder network that
extends from the CO toward the customer plus a local loop (or last mile) segment
that connects from the last equipment node of the feeder network to the customer
premise. Equipment in the feeder network is usually housed in above-ground huts,
on poles, or in vaults. The feeder and last-mile segments usually consist of copper,
optical fiber, coaxial cable, or some combination thereof. Coaxial cable is typical
to a cable company, also called a Multiple System Operator (MSO). While we will
not discuss metro networks in detail in this chapter, it is important to discuss their
aspects that affect the IP backbone. However, the metro networks we describe coin-
cide mostly with those carriers whose origins are from large telephone companies
(sometimes called “Telcos”).

Almost all central offices today are interconnected by optical fiber. Once a cus-
tomer’s data or voice enters the serving central office, if it is destined outside that
serving central office, it is routed to other central offices in the same metro area. If
the service is bound for another metro, it is routed to one or more gateway COs.
If it is bound for another country, it eventually routes to an international gateway.
A metro gateway CO is often called a Point of Presence (POP). While POPs were
originally defined for telephone service, they have evolved to serve as intermetro
gateways for almost all telecommunication services. Large intermetro carriers have
one or more POPs in every large city.

Given this background, we now employ some visualization aids. Networks are
organized into network layers, which we depict vertically with two network graphs
vertically stacked on top of one another in Fig. 2.1. Each of the network layers
can be considered to be an overlay network with respect to the network below.

Metro 1

Metro 3

Metro 4

Metro 5

Metro 2

Inter-metro
network 

Fig. 2.1 Conceptual network layers and segmentation
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We can further organize these layers into access, metro, and core network seg-
ments. Figure 2.1 shows the core segment connected to multiple metro segments.
Each metro segment represents the network layers of the equipment located in
the central offices of a given metropolitan area. The access segment represents the
feeder network and loop network associated with a given metro segment. The core
segment represents the equipment in the POPs and network structures that connect
them for intermetro transport and switching.

In this chapter, we focus on the ISP backbone network, which is primarily
associated with the core segment. We refer only briefly to access architectures
and will discuss portions of the metro segment to the extent to which they in-
teract and connect to the core segment. Also, in this chapter we will not discuss
broader telecommunication contexts, such as international networks (including un-
dersea links), satellite, and wireless networks. More detail on the various network
segments and their network layers and a historical description of how they arose can
be found in [11].

Unfortunately, there is a wide variety of terminology used in the industry, which
presents a challenge for this chapter because of our broad scope. Some of the termi-
nology is local to an organization, application, or network layer and, thus, when used
in a broader context can be confused with other applications or layers. Within the
context of network-layering descriptions, we will use the term IP layer. However,
we use the term “IP backbone” interchangeably with “IP layer” in the context of the
core network segment. The terms Local Area Network (LAN), Metropolitan Area
Network (MAN), and Wide Area Network (WAN) are also sometimes used and cor-
relate roughly with the access, metro, and core segments defined earlier; however,
LAN, MAN, and WAN are usually applied only in the context of packet-based net-
works. Therefore, in this chapter, we will use the terms access, metro, and core, since
they apply to a broader context of different network technologies and layers. Other
common terms for the various layers within the core segment are long-distance and
long-haul networks.

2.2.2 Simple Graphical Model of Network Layers

The following simple graph-oriented model is helpful when modeling routing and
network design algorithms, to understand how network layers interact and, in partic-
ular, how to classify and analyze the impact of potential network disruptions. This
model applies to most connection-oriented networks and, thus, will apply to some
higher-layer protocols that sit on top of the IP layer. The IP layer itself is connec-
tionless and does not fit exactly in this model. However, this model is particularly
helpful to understand how lower network layers and neighboring network layers
interact.

In the layered model, a network layer consists of nodes, links (also called edges),
and connections. The nodes represent types of switches or cross-connect equip-
ment that exchange data in either digital or analog form via the links that connect
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them. Note that at the lowest layer (such as fiber) nodes represent equipment, such
as fiber-optic patch panels, in which connections are switched manually by cross-
connecting fiber patch cords from one interface to another. Links can be modeled
as directed (unidirectional) or undirected (bidirectional). Connections are cross-
connected (or switched) by the nodes onto the links, and thus form paths over the
nodes and links of the graph. Note that the term connection often has different names
at different layers and segments. For example, in most telecommunication carriers,
a connection (or portions thereof ) is called a circuit in many of the lower net-
work layers, often referred to as transport layers. Connections can be point-to-point
(unidirectional or bidirectional), point-to-multipoint or, more rarely, multipoint-to-
multipoint. Generally, connections arise from two sources. First, telecommunication
services can arise “horizontally” (relative to our conceptual picture of Fig. 2.1) from
a neighboring network segment. Second, connections in a given layer can origi-
nate from edges of a higher-layer network layer. In this way, each layer provides
a connection “service” for the layer immediately above it to provide connectiv-
ity. Sometimes, a “client/server” model is referenced, such as the User-Network
Interface (UNI) model [29] of the Optical Internetworking Forum (OIF), wherein
the links of higher-layer networks are “clients” and the connections of lower-layer
networks are “servers”. For example, see G.7713.2 [19] for more discussion of con-
nection management in lower-layer transport networks.

Recall that the technology layers we define are differentiated by the nodes,
which represent actual switching or cross-connect equipment, rather than more ab-
stract entities, such as protocols within each of these technology layers that can
create multiple protocol sublayers. An early manifestation of protocol layering is
the OSI model developed by the ISO standards organization [37] and the result-
ing classification of packet layering, such as Layer 1, Layer 2, Layer 3, which
subsequently emerged in the industry. Although these layering definitions can be
somewhat strained in usage, the industry generally associates IP with Layer 3 and
MPLS or Ethernet VLANS with Layer 2 (which will be described later in the chap-
ter). Layer 1, or the Physical Layer (PHY layer) of the OSI stack, covers multiple
technology layers that we will cover in the next section.

We illustrate this graphical network-layering model in Fig. 2.2, which depicts
two layers. Note that for simplicity, we depict the edges in Fig. 2.2 as undirected.
The cross-connect equipment represented by the nodes of Layer U (“upper layer”)
connect to their counterpart nodes in Layer L (“lower layer”) by interlayer links,
depicted as lightly dashed vertical lines. While this model has no specific geograph-
ical correlation, we note that the switching or cross-connect equipment represented
in Layer U usually are colocated in the same buildings/locations (central offices in
carrier networks) as their lower-layer counterparts in Layer L. In such represen-
tations, the interlayer links are called intra-office links. The links of Layer U are
transported as connections in lower Layer L. For example, Fig. 2.2 highlights a link
between nodes 1 and 6 of layer U . This link is transported via a connection between
nodes 1 and 6 of Layer L. The path of this connection is shown through nodes (1, 2,
3, 4, 5, 6) at Layer L.
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Fig. 2.2 Example of network layering

Another example is given by the link between nodes 3 and 5 of Layer U . This
routes over nodes (3, 4, 5) in Layer L. As this layered model illustrates, the concept
of a “link” is a logical construct, even in lower “physical layer(s)”. Along these
lines, we identify some interesting observations in Fig. 2.2:

1. There are more nodes in Layer L than in Layer U .
2. When viewed as separate abstract graphs, the degree of logical connectivity in

Layer L is less than that for Layer U . For example, there are at the most three
edge-diverse paths between nodes 1 and 6 in layer U . However, there are at the
most, only two edge-diverse paths between the corresponding pair of nodes in
Layer L.

3. When we project the links of Layer U onto their connection paths in Layer L;

we see some overlap. For example, the two logical links highlighted in Layer U

overlap on links (3, 4) and (4, 5) of Layer L.

These observations generalize to the network layers associated with the IP backbone
and affect how network layers are designed and how network failures at various lay-
ers affect higher-layer networks. The second observation says that while the logical
topology of an upper-layer network, such as the IP layer, looks like it has many
alternate paths to accommodate network disruptions, this can be deceiving unless
one incorporates the lower-layer dependencies. For example, if link 3–4 of Layer
L fails, then both links 1–6 and 3–5 of Layer U fail. Put more generally, failures
of links of lower-layer networks usually cause multiple link failures in higher-layer
networks. Specific examples will be described in Section 2.3.2.



2 Structural Overview of ISP Networks 25

2.2.3 Snapshot of Today’s Core Network Layers

Figure 2.3 provides a representation of the set of services that might be provided by
a large US-based carrier, and how these services map onto different network layers
in the core segment. This figure is borrowed from [11] and depicts a mixture of
legacy network layers (i.e., older technologies slowly being phased out) and current
or emerging network layers. For a connection-oriented network layer (call it layer
L), demand for connections comes from two sources: (1) links of higher network
layers that route over layer L and (2) demand for telecommunications services pro-
vided by layer L but which originate outside layer L’s network segment. The second
source of demand is depicted by rounded rectangles in Fig. 2.3. Note that Fig. 2.3
is a significant simplification of reality; however, it does capture most predominant
layers and principal interlayer relationships relevant to our objectives. Note that an
important observation in Fig. 2.3 is that links of a given layer can be spread over
multiple lower layers including “skipping” over intermediate lower layers.

Before we describe these layers, we provide some preliminary background on
Time Division Multiplexing (TDM), whose signals are often used to transport links
of the IP layer. Table 2.1 summarizes the most common TDM transmission rates.
The Synchronous Optical Network (SONET) digital-signal standard [35], pioneered
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Table 2.1 Time division multiplexing (TDM) digital hierarchy (partial list)

Approximate rate DS-n Plesiosynchronous SONET SDH OTN wrapper

64 Kb/s DS-0 E0
1.5 Mb/s DS-1
2.0 Mb/s E-1
34 Mb/s E-3
45 Mb/s DS-3
51.84 Mb/s STS-1 VC-3
155.5 Mb/s OC-3 STM-1
622 Mb/s OC-12 STM-3
2.5 Gb/s OC-48 STM-16 ODU-1
10 Gb/s OC-192 STM-48 ODU-2
40 Gb/s OC-768 STM-192 ODU-3
100 Gb/s ODU-4

Kb/s D kilobits per second; Mb/s D megabits per second; Gb/s D gigabits per second.
OTN line rates are higher than payload. ODU-2 includes 10 GigE and ODU-3 includes 40 GigE
(under development). ODU-4 only includes 100 GigE

by Bellcore (now Telcordia) in the early 1990s, is shown in the fourth column
of Table 2.1. SONET is the existing higher-rate digital-signal hierarchy of North
America. Synchronous Digital Hierarchy (SDH) is a similar digital-signal standard
later pioneered by the International Telecommunication Union (ITU-T) and adopted
by most of the rest of the world. The DS-n column represents the North American
pre-SONET digital-signal rates, most of which originated in the Bell System. The
Plesiosynchronous column represents the pre-SDH rates used mostly in Europe.
However, after nearly 30 years, both DS-n and Plesiosynchronous are still quite
abundant and their related private-line services are still sold actively. Finally, in the
last column, we show the more recent Optical Transport Network (OTN) signals,
also standardized by the ITU-T [18]. Development of the OTN signal standards
were originally motivated by the need for a more robust standard to achieve very
high bit rates in DWDM technologies; for example, it was needed to incorporate
and standardize various bit-error recovery techniques, such as Forward Error Cor-
rection (FEC). As such, the OTN rates were originally termed “digital wrappers” to
contain high rate SONET, SDH, or Ethernet signals, plus provide the extra fault no-
tification information needed to reliably transport the high rates. Although there are
many protocol layers in OTN, we just show the Optical channel Data Unit (ODU)
rates in Table 2.1. To minimize confusion, in the rest of this chapter, we will mostly
give examples in terms of DS-n and SONET rates.

Referring back to the layered network model of the previous section, Table 2.2
gives some examples of the nodes, links, and connections in Fig. 2.3. We only list
those layers that have relevance to the IP layer. We will briefly describe these layers
in the following sections.
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Table 2.2 Examples of nodes, links, and connections for network layers of Fig. 2.3

Core layer Typical node Typical link Typical connection

IP Router SONET OC-n, 1/10
gigabit Ethernet,
ODU-n

IP is connection-less

Ethernet Ethernet switch or
router with
Ethernet
functionality

1/10 Gigabit Ethernet
or rate-limited
Ethernet private
line

Ethernet can refer to both
connection-less and
connection-oriented
services

Asynchronous
transfer
mode (ATM)

ATM switch SONET OC-12/48 Permanent virtual circuit
(PVC), Switched virtual
circuit (SVC)

W-DCS Wideband digital
cross-connect
system (DCS)

SONET STS-1
(channelized)

DS1

SONET Ring SONET add-drop
multiplexer
(ADM)

SONET OC-48/192 SONET STS-n, DS-3

IOS Intelligent optical
switch (IOS) or
broadband digital
cross-connect
system (DCS)

SONET OC-48/192 SONET STS-n

DWDM Point-to-point
DWDM terminal
or reconfigurable
optical add-drop
multiplexer
(ROADM)

DWDM signal SONET, SDN, or 1/10/100
gigabit Ethernet

Fiber Fiber patch panel or
cross-connect

Fiber optic strand DWDM signal or SONET,
SDH, or Ethernet signal

2.2.4 Fiber Layer

The commercial intercity fiber layer of the USA is privately owned by multiple
carriers. In addition to owning fiber, carriers lease bundles of fiber from one an-
other using various long-term Indefeasible Right of Use (IROU) contracts to cover
needed connectivity in their networks. Fiber networks differ significantly between
metro and rural areas. In particular, in carrier metro networks, optical fiber cables are
usually placed inside PVC pipes, which are in turn placed inside concrete conduits.
Additionally, fiber for core networks is often corouted in conduit or along rights-
of-way with metro fiber. Generally, in metro areas, optical cables are routed and
spliced between central offices. In the central office, most carriers prefer to connect
the fibers to a fiber patch panel. Equipment that use (or will eventually use) the in-
teroffice fibers are also cross-connected into the patch panels. This gives the carrier
flexibility to connect equipment by simply connecting fiber patch cords on the patch
panels. Rural areas differ in that there are often long distances between central of-
fices and, as such, intermediate huts are used to splice fibers and place equipment,
such as optical amplifiers.
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2.2.5 DWDM Layer

Although many varieties of DWDM systems exist, we show a simplified view of
a (one-way) point-to-point DWDM system in Fig. 2.4. Here, Optical Transponders
(OTs) are Optical-Electrical-to-Optical (O-E-O) converters that input optical digital
signals from routers, switches, or other transmission equipment using a receive de-
vice, such as a photodiode, on the add/drop side of the OT. The input signal has a
standard intra-office wavelength, denoted by �0. The OT converts the signal to elec-
trical form. Various other physical layer protocols may be applied at this point, such
as incorporating various handshaking called Link Management Protocols (LMPs)
between the transmitting equipment and the receiving OT. A transponder is in clear
channel mode if it does not change the transport protocols of the signal that it
receives and essentially remains invisible to the equipment connecting to it. For
example, Gigabit Ethernet (GigE) protocols from some routers or switches some-
times incorporate signaling messages to the far-end switch in the interframe gaps. If
clear channel transmission is employed by the OT, such messages will be preserved
as they are routed over the DWDM layer.

After conversion to electrical form, the signal is retransmitted using a laser on
the network or line-side of the OT. However, typical of traditional point-to-point
systems, the wavelength of the laser is fixed to correspond to the wavelength as-
signed to a specific channel of the DWDM system, �k . The output light pulses from
multiple OTs at different wavelengths are then multiplexed into a single fiber by
sending them through an optical multiplexer, such as an Arrayed Waveguide Grating
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Fig. 2.4 Simplified view of point-to-point DWDM system
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(AWG) or similar device. If the distance between the DWDM terminals is suffi-
ciently long, optical amplifiers are used to boost the power of the signal. However,
power balancing among the DWDM channels is a major concern of the design of the
DWDM system, as are other potential optical impairments. These topics are beyond
the scope of this chapter. On the right side of Fig. 2.4, typically, the same (or similar)
optical multiplexer is used in reverse, in which case, it becomes an optical demul-
tiplexer. The OTs on the right side (the receive direction of the DWDM system)
basically work in reverse to the transmit direction described above, by receiving the
specific interoffice wavelength, �k , converting to electrical, and then using a laser
to generate the intra-office wavelength, �0.

Carrier-based DWDM systems are usually deployed in bidirectional configura-
tions. To see this, the reader can visually reproduce the entire system in Fig. 2.4 and
then flip it (mirror it) right to left. The multiplexed DWDM signal in the opposite
direction is transmitted over a separate fiber. Therefore, even though the electronics
and lasers of the one-way DWDM system in the reverse direction operate separately
from the shown direction, they are coupled operationally. For example, the two fiber
ports (receive and transmit) of the OT are usually deployed on the same line card
and arranged next to one another.

Optical amplification is used to extend the distance between terminals of a
DWDM system. However, multiple systems are required to traverse the continen-
tal USA. Connections can be established between different point-to-point DWDM
systems in an intermediate CO via an intermediate-regenerator OT (not pictured in
Fig. 2.4). An intermediate-regenerator OT has the same effect on a signal as back-
to-back OTs. Since the signal does not have to be cross-connected elsewhere in
the intermediate central office, cost savings can be achieved by omitting the in-
termediate lasers and receivers of back-to-back OTs. However, we note that most
core DWDM networks have many vintages of point-to-point systems from different
equipment suppliers. Typically, an intermediate-regenerator OT can only be used to
connect between DWDM systems of the same equipment supplier.

A difficulty with deploying point-to-point DWDM systems is that in central
offices that interface multiple fiber spans (i.e., the node in the fiber layer has degree
>2), all connections demultiplex in that office and pass through OTs. OTs are typi-
cally expensive and it is advantageous to avoid their deployment where possible.
A better solution is the Reconfigurable Optical Add-Drop Multiplexer (ROADM).
We show a simplified diagram of a ROADM in Fig. 2.5. The ROADM allows for
multiple interoffice fibers to connect to the DWDM system. Appropriately, it is of-
ten called a multidegree ROADM or n-degree ROADM. As Fig. 2.5 illustrates, the
ROADM is able to optically (i.e., without use of OTs) cross-connect channel k

(transmitting at wavelength �k) arriving on one fiber to channel k (wavelength �k)
outgoing on another fiber. Note that the same wavelength must be used on the two
fibers. This is called the wavelength continuity constraint. The ROADM can also be
configured to terminate (or “drop”) a connection at that location, in which case it
is cross-connected to an OT to connect to routers, switches, or transmission equip-
ment. A “dropped” connection is illustrated by �2 on the second fiber from the top
on the left in Fig. 2.5 and an “added” connection is illustrated by �n on the bottom
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fiber on the left. As with the point-to-point DWDM system, optical properties of the
system impose distance (also called reach) constraints.

Many transmission technologies, including optical amplification, are used to
extend the distance between the optical add/drop points of a DWDM system.
Today, this separation is designed to be about 1,500 km for a long-distance DWDM
system, as a trade-off between cost and the all-optical distance for a US-wide
network. Longer connections have to regenerate their signals, usually with an
intermediate-regenerator OT. As with point-to-point DWDM systems, connections
crossing ROADMS from different equipment suppliers usually must add/drop and
connect through OTs.

We illustrate a representative ROADM layer for the continental USA in Fig. 2.6.
The links represent fiber spans between ROADMS. As described above, to route
a connection over the network of Fig. 2.6 may require points of regeneration. We
also note, though, that today’s core transport carriers usually have many vintages
of DWDM technology and, thus, there may be several ROADM networks from dif-
ferent equipment suppliers, plus several point-to-point DWDM networks. All this
complexity must be managed when routing higher-layer links, such as those of the
IP backbone, over the DWDM layer.

We finish this introduction of the DWDM layer with a few observations. While
most large carriers have DWDM technology covering their core networks, this
is not generally true in the metro segment. The metro segment typically con-
sists of a mixture of DWDM spans and fiber spans (i.e., spans with no DWDM).
If fact, in metro areas usually only a fraction of central office fiber spans have
DWDM technology routed over them. This affects how customers interface to the
IP backbone network for higher-rate interfaces. Finally, we note that while most
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Fig. 2.6 Example of ROADM Layer topology

of the connections for the core DWDM layer arise from links of the IP layer,
many of the connections come from what many colloquially call “wavelength ser-
vices” (denoted by the rounded rectangle in Fig. 2.3). These come from high-rate
private-line connections emanating from outside the core DWDM layer. Exam-
ples are links between switches of large enterprise customers that are connected
by leased-line services.

2.2.6 TDM Cross-Connect Layers

In this section, we will briefly describe the TDM cross-connect layers. TDM
cross-connect equipment can be basically categorized into two common types: a
SONET/SDH Add-Drop Multiplexer (ADM) or a Digital Cross-Connect System
(DCS). Consistent with our earlier remark about the use of terminology, the latter
often goes by a variety of colloquial or outmoded model names of equipment sup-
pliers, such as DCS-3/1, DCS-3/3, DACS, and DSX. A TDM cross-connect device
interfaces multiple high-rate digital signals, each of which uses time division multi-
plexing to break the signal into lower-rate channels. These channels carry lower-rate
TDM connections and the TDM cross-connect device cross-connects the lower-rate
signals among the channels of the different high-rate signals. Typically, an ADM
only interfaces two high-rate signals, while a DCS interfaces many. However, over
time these distinctions have blurred. Telcordia classified DCSs into three layers:
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a narrowband DCS (N-DCS) cross-connects at the DS-0 rate, a wideband-DCS
(W-DCS) cross-connects at the DS-1 rate, and a broadband-DCS (B-DCS) cross-
connects at the DS-3 rate or higher. ADMs are usually deployed in SONET/SDH
self-healing rings. The IOS and SONET Ring layers are shown in Fig. 2.3, encir-
cled by the (broader) ellipse that represents the TDM cross-connect devices. More
details on these technologies can be found in [11]. Self-healing rings and DCSs will
be relevant when we illustrate how services access the wide-area ISP network layer
later in this chapter.

Despite the word “optical” in its name, an Intelligent Optical Switch (IOS) is
a type of B-DCS. Examples can be found in [6, 34]. The major differentiator of
the IOS over older B-DCS models is its advanced control plane. An IOS network
can route connection requests under distributed control, usually instigated by the
source node. This requires mechanisms for distributing topology updates and in-
ternodal messaging to set up connections. Furthermore, an IOS usually can restore
failed connections by automatically rerouting them around failed links. More detail
is given when we discuss restoration methods.

Many of the connections for the core TDM-cross-connect layers (ring layers,
DCS layers, IOS layer) come from higher layers of the core network. For example,
many connections of the IOS layer are links between W-DCSs, ATM networks, or
lower-rate portions of IP layer networks. However, much of their demand for con-
nections comes from subwavelength private-line services, shown by the rounded
rectangle in Fig. 2.3. A portion of this private-line demand is in the form of
Ethernet Private Line (EPL) services. These services usually represent links be-
tween Ethernet switches or routers of large enterprise customers. For example, the
Gigabit Ethernet signal from an enterprise customer’s switch is transported over the
metro network and then interfaces an Ethernet card either residing on the IOS itself
or on an ADM that interfaces directly onto the IOS. The Ethernet card encapsu-
lates the Ethernet frames inside concatenated n � STS-1 signals that are transported
over the IOS layer. The customer can choose the rate of transport, and hence the
value of n he/she wishes to purchase. The ADM Ethernet card polices the incoming
Ethernet frames to the transport rate of n � STS-1.

2.2.7 IP Layer

The nodes of the IP layer shown in Fig. 2.3 represent routers that transport pack-
ets among metro area segments. IP generally define pairwise adjacencies between
ports of the routers. In the IP backbone, these adjacencies are typically configured
over SONET, SDH, or Ethernet, or OTN interfaces on the routers. As described
above, these links are then transported as connections over the interoffice lower-
layer networks shown in Fig. 2.3. Note that different links can be carried in different
lower-layer networks. For example, lower-rate links may be carried over the TDM
cross-connect layers (IOS or SONET Ring), while higher-rate links may be carried
directly over the DWDM layer, thus “skipping” the TDM cross-connect layers. We
will describe the IP layer in more detail in subsequent sections.
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2.2.8 Ethernet Layer

The Ethernet layer in Fig. 2.3 refers to several applications of Ethernet technology.
For example, Ethernet supports a number of physical layer standards that can be
used for Layer 1 transport. Ethernet also refers to connection-oriented Layer 2 pseu-
dowire services [16] and connection-less transparent LAN services. For example,
intra-office links between routers often use an Ethernet physical layer riding on
optical fiber.

An important application of Ethernet today is providing wide-area Layer 2 Vir-
tual Private Network (VPN) services for enterprise customers. Although many
variations exist, these services generally support enterprise customers that have
Ethernet LANs at multiple locations and need to interconnect their LANs within
a metro area or across the wide area. Most large carriers provide these services as
an overlay on their IP layer, and hence, why we show the layered design in Fig. 2.3.
Prior to the ability to provide such services over the IP layer, Ethernet private lines
were supported by TDM cross-connect layers (i.e., Ethernet frames encapsulated
over Layer 1 TDM private lines as described in Section 2.2.6). However, analogous
to why wide-area Frame Relay displaced wide-area DS-0 private lines in the 1990s,
wide-area packet networks are often more efficient than private lines to connect
LANs of enterprise customers.

The principal approach that intermetro carriers use to provide wide-area Eth-
ernet private network services is Virtual Private LAN Service (VPLS) [24, 25]. In
this approach, carriers provide such Ethernet services with routers augmented with
appropriate Ethernet capabilities. The reason for this approach is to provide the ro-
bust carrier-grade network capabilities provided by routers. With wide-area VPLS,
the enterprise customer is connected via the metro network to the edge routers on
the edge of the core IP layer. We describe how the metro network connects to the
core IP layer network in the next section. The VPLS architecture is described in
more detail in Section 2.4.2 when we describe MPLS.

We conclude this section with the comment that standards organizations and in-
dustry forums (e.g., IEEE, IETF, and Metro Ethernet Forum) have explored the
use of Ethernet switches with upgraded carrier-grade network control protocols
rather than using routers as nodes in the IP layer. For example, see Provider Back-
bone Transport (PBT) [27] and Provider Backbone Bridge – Traffic Engineering
(PBB-TE) [15]. However, most large ISPs are deploying MPLS-based solutions.
Therefore, we concentrate on the layering architecture shown in Fig. 2.3 in the re-
mainder of this chapter.

2.2.9 Miscellaneous/Legacy Layers

For completeness, we depict other “legacy” network layers with dashed ovals
in Fig. 2.3. These technologies have been around for decades in most carrier-
based core networks. They include network layers whose nodes represent ATM
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switches, Frame-Relay switches, DCS-3/3s (a B-DCS that cross-connects DS3s),
Voice-switches (DS-0 circuit switches), and pre-SONET ADMs. Most of these lay-
ers are not material to the spirit of this chapter and we do not discuss them here.

2.3 Structure of Today’s Core IP Layer

2.3.1 Hierarchical Structure and Topology

In this chapter, we further break the IP layer into Access Routers (ARs) and
Backbone Routers (BRs). Customer equipment homes to access routers, which in
turn home onto backbone routers. An AR is either colocated with its backbone
routers or not; the latter is called a Remote Access Router (RAR). Of course, there are
alternate terminologies. For example, the IETF defines similar concepts to customer
equipment, access routers, and backbone routers with its definitions, respectively,
of Customer-Edge (CE) equipment, Provider-Edge (PE) routers, and Provider (P)
routers. A simplified picture of a typical central office containing both ARs and BRs
is shown in Fig. 2.7. Access routers are dual-homed to two backbone routers to en-
able higher levels of service availability. The links between routers in the same office
are typically Ethernet links over intra-office fiber. While we show only two ARs in
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Fig. 2.8 Example of IP layer switching hierarchy

Fig. 2.7, note that typically there are many ARs in large offices. Also, due to scaling
and sizing limitations, there may be more than two backbone routers or switches per
central office used to further aggregate AR traffic before it enters the BRs.

Moreover, we show a remote access router that homes to one of the BRs.
Figure 2.8 illustrates this homing arrangement in a broader network example, where
small circles represent ARs, diamonds represent RARs, and large squares repre-
sent BRs. Note that remote ARs are homed to BRs in different offices. Homing
remote ARs to BRs in different central offices raises network availability. However,
a stronger motivation for doing this is that RAR–BR links are usually routed over
the DWDM layer, which generally does not offer automatic restoration, and so the
dual-homing serves two purposes: (1) protect against BR failure or maintenance
activity and (2) protect against failure or maintenance of a RAR–BR link.

While the homing scheme described here is typical of large ISPs, other variations
exist. For example, there are dual-homing architectures where (nonremote) ARs
are homed to a BR colocated in the same central office and then a second BR in
a different central office. While this latter architecture provides a slightly higher
level of network availability against broader central office failure, it can be more
costly owing to the need to transport the second AR–BR link. However, the latter
architecture allows more load balancing across BRs because of the extra flexibility
in homing ARs.
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Improved load balancing can offer other advantages, including lower BR costs.
Also, for ISPs with many scattered locations, but less total traffic, this latter
architecture may be more cost-effective than colocating two BRs in each BR-office.

The right side of Fig. 2.7 also shows the metro/access network-layer clouds
to connect customer equipment to the ARs. In particular, we illustrate DS1 customer
interfaces. The left side of Fig. 2.7 also shows the lower-layer DWDM clouds to
connect the interoffice links between BRs. We will expand these clouds in the next
sections.

The reasons for segregating the IP topology into access and backbone routers are
manifold:

� Access routers aggregate lower-rate interfaces from various customers or other
carriers. This function requires significant equipment footprint and processor re-
sources for customer-related protocols. As a result, major central offices consist
of many access routers to accommodate the low-rate customer interfaces. With-
out the aggregation function of the backbone router, each such office would be a
myriad of tie links between access routers and interoffice links.

� Access routers are often segregated by different services or functions. For
example, general residential ISP service can be segregated from high-priority
enterprise private VPN service. As another example, some access routers are
sometimes segregated to be peering points with other carriers.

� Backbone routers are primarily designed to be IP-transport switches equipped
only with the highest speed interfaces. This segregation allows the backbone
routers to be optimally configured for interoffice IP forwarding and transport.

2.3.2 Interoffice Topology

Figure 2.9 expands the core lower ROADM Layer cloud of Fig. 2.7. It shows ports
of interoffice links between BRs connecting to ports on ROADMs. These links are
transported as connections in the ROADM network. For example, today these links
go up to 40 gigabits per second (Gb/s) or SONET OC-768. These connections are
routed optically through intermediate ROADMs and regenerated where needed, as
described in Section 2.2.5. Also, we note that the link between the remote ARs and
BRs route over the same ROADM network, although the rate of this RAR–BR link
may be at lower rate, such as 10 Gb/s. Figure 2.10 shows a network-wide example of
the IP layer interoffice topology. There are some network-layering principles illus-
trated in Fig. 2.10 that we will describe. First, if we compare the IP layer topology
of Fig. 2.8 with that of the DWDM layer (ROADM layer) of Fig. 2.10, we note that
there is more connectivity in the IP layer graph than the DWDM layer. The reason
for this is the existence of what many IP layer planners call express links. If we
examine the link labeled “direct link” between Seattle and Portland, we find that
when we route this link over the DWDM layer topology, there are no intermediate
ROADMs. In fact, there are two types of direct links. The first type connects through
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no intermediate ROADMs, as illustrated by the Seattle–Portland link. The second
type connects through intermediate ROADMS, but encounters no BRs in those in-
termediate central offices, as illustrated by the Seattle–Chicago link.

In contrast, if we examine the express link between Portland and Salt Lake City,
we find that any path in the DWDM layer connecting the routers in that city pair
bypasses routers in at least one of its intermediate central offices. Express links
are primarily placed to minimize network costs. For example, it is more efficient
to place express links between well-chosen router pairs with high network traffic
(enough to raise the link utilization above a threshold level); otherwise the traffic
will traverse through multiple routers. Router interfaces can be the most-expensive
single component in a multilayered ISP network; therefore, costs can usually be
minimized by optimal placement of express links.

It is also important to consider the impact of network layering on network re-
liability. Referring to the generic layering example of Fig. 2.2, we note that the
placement of express links can cause a single DWDM link to be shared by differ-
ent IP layer links. This gives rise to complex network disruption scenarios, which
must be modeled using sophisticated network survivability modeling tools. This is
covered in more detail in Section 2.5.3.

Returning to Fig. 2.10, we also note the use of aggregate links. Aggregate links
also go by other names, such as bundled links and composite links. An aggregate
link bundles multiple physical links between a pair of routers into a single virtual
link from the point of view of the routers. For example, an aggregate link could be
composed of five OC-192 (or 10 GigE) links. Such an aggregate link would appear
as one link with 50 Gb/s of capacity between the two routers. Generally, aggregate
links are implemented by a load-balancing algorithm that transparently switches
packets among the individual links. Usually, to reduce jitter or packet reordering,
packets of a given IP flow are routed over the same component link. The main ad-
vantage of aggregate links is that as IP networks grow large, they tend to contain
many lower-speed links between a pair of routers. It simplifies routing and topology
protocols to aggregate all these links into one. If one of the component links of
an aggregate link fails, the aggregate link remains up; consequently, the number of
topology updates due to failure is reduced and network rerouting (called reconver-
gence) is less frequent. Network operators seek to achieve network stability, and
therefore shy away from many network reconvergence events; aggregate links result
in less network reconvergence events.

On the downside, if only one link of a (multiple link) aggregate link fails, the
aggregate link remains “up”, but with reduced capacity. Since many network routing
protocols are capacity in-sensitive, packet congestion could occur over the aggregate
link. To avoid this situation, router software is designed with capacity thresholds for
aggregate links that the network operator can set. If the aggregate capacity falls
below the threshold, the entire aggregate link is taken out of service. While the
network “loses” the capacity of the surviving links in the bundle when the aggregate
link is taken out of service, the alternative is potentially significant packet loss due
to congestion on the remaining links.
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2.3.3 Interface with Metro Network Segment

Figure 2.11 is a blowup of the clouds on the right side of Fig. 2.7. It provides a
simplified example of how three business ISP customers gain access to the IP back-
bone. These could be enterprise customers with multiple branches who subscribe
to a VPN service. Each access method consists of a DS1 link encapsulating IP
packets that is transported across the metro segment. In carrier vernacular, using
packet/TDM links to access the IP backbone is often called TDM backhaul. We do
not show the inner details of the metro network here. Detailed examples can be
found in [11]. Even suppressing the details of the complex metro network, the TDM
backhaul is clearly a complicated architecture. To aid his/her understanding, we
suggest the reader to refer back to the TDM hierarchy shown in Table 2.1.

The customer’s DS-1 (which carries encapsulated IP packets) interfaces to a
low-speed multiplexer located in the customer building, such as a small SONET
ADM. This ADM typically serves as one node of a SONET ring (usually a 2-node
ring). Each link of the ring is routed over diverse fiber, usually at OC-3 or OC-12
rate. Eventually, the DS-1 is routed to a SONET OC-48 or OC-192 ring that has
one of its ADMs in the POP. The DS-1 is transported inside an STS-1 signal that
is divided into 28 time slots called channels (a channelized STS-1), as specified by
the SONET standard. The ADM routes all the SONET STS-1s carrying DS-1 traf-
fic bound for the core carrier to a metro W-DCS. Note that there are often multiple
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core carriers in a POP, and hence, the metro W-DCS cross-connects all the DS-1s
destined for a given core carrier into channelized STS-1s and hands them off to the
core W-DCS(s) of that core carrier. However, note that this handoff does not occur
directly between the two W-DCSs, but rather passes through a higher-rate B-DCS,
in this case the Intelligent Optical Switch (IOS) introduced in Section 2.2.6. The
IOS cross-connects most of the STS-1s (multiplexed into OC-n interfaces) in a cen-
tral office. Also, notice that the IOS is fronted with Multi-Service Platforms (MSPs).
An MSP is basically an advanced form of SONET ADM that gathers many types of
lower-speed TDM interfaces and multiplexes them up to OC-48 or OC-192 for the
IOS. It usually also has Ethernet interfaces that encapsulate IP packets into TDM
signals (e.g., for Ethernet private line discussed earlier). The purpose of such a con-
figuration is to minimize the cost and scale of the IOS by avoiding using its interface
bay capacity for low-speed interfaces.

Finally, the core W-DCS cross-connects the DS1s destined for the access routers
in the central office onto channelized STS-1s. Again, these STS-1s are routed to the
AR via the IOS and its MSPs. The DS-1s finally reach a channelized SONET card
on the AR (typically OC-12). This card on the AR de-multiplexes the DS-1s from
the STS-1, de-encapsulates the packets, and creates a virtual interface for each of
our three example customer access links in Fig. 2.11. The channelized SONET card
is colloquially called a CHOC card (CHannelized OC-n).

Note that the core and metro carriers depicted in Fig. 2.11 may be parts of the
same corporation. However, this complex architecture arose from the decomposition
of long-distance and local carriers that was dictated by US courts and the Federal
Communications Commission (FCC) at the breakup of the Bell System in 1984.
It persists to this day.

If we reexamine the above TDM metro access descriptions, we find that there
are many restoration mechanisms, such as dual homing of the ARs to the BRs and
SONET rings in the metro network. However, there is one salient point of potential
failure. If an AR customer-facing line card or entire AR fails or is taken out of ser-
vice for maintenance in Fig. 2.11, then the customer’s service is also down. Carriers
offer service options to protect against this. The most common provide two TDM
backhaul connections to the customer’s equipment, often called Customer Premise
Equipment (CPE), each of which terminates on a different access router. This archi-
tecture significantly raises the availability of the service, but does incur additional
cost. An example of such a service is given in [1].

To retain accuracy, we make a final technical comment on the example of
Fig. 2.11. Although we show direct fiber connections between the various TDM and
packet equipment, in fact, most of these usually occur via a fiber patch panel. This
enables a craftsperson to connect the equipment via a simple (and well-organized)
patch chord or cross-connect. This minimizes expense, simplifies complex wiring,
and expedites provisioning work orders in the CO.

Figure 2.12 depicts how customers access the AR via emerging metro packet
network layers instead of TDM. Here, instead of the traditional TDM network,
the customer accesses the packet core via Ethernet. The most salient difference is
the substantially simplified architecture. Although many different types of services
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are possible, we describe two fundamental types of Ethernet service: Ethernet
virtual circuits and Ethernet VPLS. Most enterprise customers will use both types
of services.

There are three basic types of connectivity for Ethernet virtual circuits: (1) in-
trametro, (2) ISP access via establishment of Ethernet virtual circuits between
the customer location and IP backbone, and (3) intermetro. Since our main focus
is the core IP backbone, we discuss the latter two varieties. For ISP access, in the
example of Fig. 2.12, the customer’s CPE interfaces the metro network via Fast
Ethernet (FE) or GigE into a small Ethernet switch placed by the metro carrier
called Network Terminating Equipment (NTE). The NTE is the packet analog of the
small ADM in the TDM access model in Fig. 2.11. For most metro Ethernet ser-
vices, the customer can usually choose which policed access rate he/she wishes to
purchase in increments of 1 Mb/s or similar. For example, he/she may wish 100 Mb/s
for his/her Committed Information Rate (CIR) and various options for his/her Ex-
cess Information Rate (EIR). The EIR options control how his bandwidth bursts are
handled/shared when they exceed his CIR. The metro packet networks uses Vir-
tual Local Area Network (VLAN) identifiers [14] and pseudowires or MPLS LSPs
to route the customer’s Ethernet virtual circuit to the metro Ethernet switch/router
in the POP, as shown in Fig. 2.12. VLANs can also be used to segregate a particu-
lar customer’s services, such as the two fundamental services (VPLS vs Internet
access) described here. The metro Ethernet switch/router has high-speed links
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(such as 10 Gb/s) to the core Ethernet switch/router. However, the core Ethernet
switch/router is fundamentally an access router, but with the needed features and
configurations needed to provide Ethernet and VPLS, and thus homes to backbone
routers as any other access router. Thus, the customer’s virtual circuit is mapped to
a virtual port on the core AR/Ethernet-Switch and from that point onward is treated
similarly as the TDM DS-1 virtual port in Fig. 2.11. If an intermetro Ethernet virtual
circuit is needed, then an appropriate pseudowire or tunnel can be created between
the ARs in different metros. Such a service can eventually substitute for traditional
private-line service as metro packet networks are deployed.

The second basic type of Ethernet service type is generally provided through
the VPLS model described in Section 2.2.8. For example, the customer might
have two LANs in metro-1, one LAN in metro-2 and another LAN in metro-3.
Wide-area VPLS interconnects these LANs into a large transparent LAN. This is
achieved using pseudowires (tunnels) between the ARs in metros-1, 2, and 3. Since
the core access router has a dual role as access router and Ethernet VPLS switch, it
has the abilities to route customer Ethernet frames among pseudowires among the
remote access routers.

Besides enterprise Ethernet services, connection of cellular base stations to the IP
backbone network is another important application of Ethernet metro access. Until
recently, this was achieved by installing DS-1s from cell sites to circuit switches in
Mobile Telephone Switching Offices (MTSOs) to provide voice service. However,
with the advent and rapid growth of cellular services based on 3G or 4G technology,
there is a growing need for high-speed packet-based transport from cell sites to the
IP backbone. The metro Ethernet structure for this is similar to that of the enterprise
customer access shown in Fig. 2.12. The major differences occur in the equipment
at the cell site, the equipment at the MTSO, and then how this equipment connects
to the access router/Ethernet switch of the IP backbone.

2.4 Routing and Control in ISP Networks

2.4.1 IP Network Routing

The IP/MPLS routing protocols are an essential part of the architecture of the IP
backbone, and are key to achieving network reliability. This section introduces these
control protocols.

An Interior Gateway Protocol (IGP) disseminates routing and topology infor-
mation within an Autonomous System (AS). A large ISP will typically segment its
IP network into multiple autonomous systems. In addition, an ISP’s network in-
terconnects with its customers and with other ISPs. The Border Gateway Protocol
(BGP) is used to exchange global reachability information with ASs operated by
the same ISP, by different ISPs, and by customers. In addition, IP multicast is be-
coming more widely deployed in ISP networks, using one of several variants of the
Protocol-Independent Multicast (PIM) routing protocol.



2 Structural Overview of ISP Networks 43

2.4.1.1 Routing with Interior Gateway Protocols

As described earlier, Interior Gateway Protocols are used to disseminate routing
and topology information within an AS. Since IGPs disseminate information about
topology changes, they play a critical role in network restoration after a link or node
failure. Because of the importance of restoration to the theme of this chapter, we
discuss this further in Section 2.5.2.

The two types of IGPs are distance vector and link-state protocols. In link-state
routing [32], each router in the AS maintains a view of the entire AS topology
using a Shortest Path First (SPF) algorithm. Since link-state routing protocols such
as Open Shortest Path First (OSPF) [26] and Intermediate System–Intermediate
System (IS–IS) [30] are the most commonly used IGPs among large ISPs, we will
not discuss distance vector protocols further. For the purposes of this chapter, which
focuses on network restoration, the functionality of OSPF and IS–IS are similar.
We will use OSPF to illustrate how IGPs handle failure detection and recovery.

The view of network topology maintained by OSPF is conceptually a directed
graph. Each router represents a vertex in the topology graph and each link be-
tween neighboring routers represents a unidirectional edge. Each link also has an
associated weight (also called cost) that is administratively assigned in the config-
uration file of the router. Using the weighted topology graph, each router computes
a shortest path tree (SPT) with itself as the root, and applies the results to build its
forwarding table. This assures that packets are forwarded along the shortest paths in
terms of link weights to their destinations [26]. We will refer to the computation of
the shortest path tree as an SPF computation, and the resultant tree as an SPF tree.

As illustrated in Fig. 2.13, the OSPF topology may be divided into areas, typ-
ically resulting in a two-level hierarchy. Area 0, known as the “backbone area”,
resides at the top level of the hierarchy and provides connectivity to the nonback-
bone areas (numbered 1, 2, etc.). OSPF typically assigns a link to exactly one area.
Links may be in multiple areas, and multi-area links are addressed in more detail in
Chapter 11 (Measurements of Control Plane Reliability and Performance by Aman
Shaikh and Lee Breslau). Routers that have links to multiple areas are called border
routers. For example, routers E, F and I are border routers in Fig. 2.13. Every router
maintains its own copy of the topology graph for each area to which it is connected.
The router performs an SPF computation on the topology graph for each area and
thereby knows how to reach nodes in all the areas to which it connects. To improve
scalability, OSPF was designed so that routers do not need to learn the entire topol-
ogy of remote areas. Instead, routers only need to learn the total weight of the path
from one or more area border routers to each node in the remote area. Thus, after
computing the SPF tree for the area it is in, the router knows which border router to
use as an intermediate node for reaching each remote node.

Every router running OSPF is responsible for describing its local connectivity in
a Link-State Advertisement (LSA). These LSAs are flooded reliably to other routers
in the network, which allows them to build their local view of the topology. The
flooding is made reliable by each router acknowledging the receipt of every LSA it
receives from its neighbors. The flooding is hop-by-hop and hence does not depend
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on routing. The set of LSAs in a router’s memory is called a Link-State Database
(LSDB) and conceptually forms the topology graph for the router.

OSPF uses several types of LSAs for describing different parts of topology. Every
router describes links to all its neighbor routers in a given area in a Router LSA.
Router LSAs are flooded only within an area and thus are said to have an area-level
flooding scope. Thus, a border router originates a separate Router LSA for every
area to which it is connected. Border routers summarize information about one area
and distribute this information to adjacent areas by originating Summary LSAs. It
is through Summary LSAs that other routers learn about nodes in the remote areas.
Summary LSAs have an area-level flooding scope like Router LSAs. OSPF also al-
lows routing information to be imported from other routing protocols, such as BGP.
The router that imports routing information from other protocols into OSPF is called
an AS Border Router (ASBR). Routers A and B are ASBRs in Fig. 2.13. An ASBR
originates External LSAs to describe the external routing information. The External
LSAs are flooded in the entire AS irrespective of area boundaries, and hence have
an AS-level flooding scope. While the capability exists to import external routing
information from protocols such as BGP, the number of such routes that may be
imported may be very large. As a result, this can lead to overheads both in com-
munication (flooding the external LSAs) as well as computation (SPF computation
scales with the number of routes). As a consequence of the scalability problems they
pose, the importing of external routes is rarely utilized.

Two routers that are neighbor routers have link-level connectivity between each
other. Neighbor routers form an adjacency so that they can exchange routing
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information with each other. OSPF allows a link between the neighbor routers to be
used for forwarding only if these routers have the same view of the topology, i.e.,
the same link-state database. This ensures that forwarding data packets over the link
does not create loops. Thus, two neighbors have to make sure that their link-state
databases are synchronized, and they do so by exchanging parts of their link-state
databases when they establish an adjacency. The adjacency between a pair of routers
is said to be “full” once they have synchronized their link-state databases. While
sending LSAs to a neighbor, a router bundles them together into a Link-State Up-
date packet. We will re-examine the OSPF reconvergence process in more detail
when we discuss network disruptions in Section 2.5.2.1.

Although elegant and simple, basic OSPF is insensitive to network capacity and
routes packets hop-by-hop along the SPF tree. As mentioned in Section 2.3.2, this
has some potential shortcomings when applied to aggregate links. While aggregate-
link capacity thresholds can be tuned to minimize this potentially negative effect,
a better approach may be to use capacity-sensitive routing protocols, often called
Traffic Engineering (TE) protocols, such as OSPF-TE [21]. Alternatively, one may
use routing protocols with a greater degree of routing control, such as MPLS-based
protocols. Traffic Engineering and MPLS are discussed later in this chapter.

2.4.1.2 Border Gateway Protocol

The Border Gateway Protocol is used to exchange routing information between
autonomous systems, for example, between ISPs or between an ISP and its large
enterprise customers. When BGP is used between ASs, it is referred to as Exterior
BGP (eBGP). When BGP is used within an AS to distribute external reachability
information, it is referred to as Interior BGP (iBGP). This section provides a brief
summary of BGP. It is covered in much greater detail in Chapters 6 and 11.

BGP is a connection-oriented protocol that uses TCP for reliable delivery.
A router advertises Network Layer Reachability Information (NLRI) consisting of
an IP address prefix, a prefix length, a BGP next hop, along with path attributes, to
its BGP peer. Packets matching the route will be forwarded toward the BGP next
hop. Each route announcement can also have various attributes that can affect how
the peer will prioritize its selection of the best route to use in its routing table. One
example is the AS PATH attribute which is a list of ASes through which the route
has been relayed.

Withdrawal messages are sent to remove NLRI that are no longer valid. For ex-
ample in Fig. 2.14,AjZ denotes an advertisement of NLRI for IP prefixz, and Wjs,r
denotes that routes s and r are being withdrawn and should be removed from the
routing table. If an attribute of the route changes, the originating router announces it
again, replacing the previous announcement. Because BGP is connection-oriented,
there are no refreshes or reflooding of routes during the lifetime of the BGP con-
nection, which makes BGP simpler than a protocol like OSPF. However, like OPSF,
BGP has various timers affecting behavior like hold-offs on route installation and
route advertisement.
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BGP maintains tables referred to as Routing Information Bases (RIBs) containing
BGP routes and their attributes. The Loc-RIB table contains the router’s definitive
view of external routing information. Besides routes that enter the RIB from BGP
itself, routes enter the RIB via distribution from other sources, such as static or di-
rectly connected routes or routing protocols such as OSPF. While the notion of a
“route” in BGP originally meant an IPv4 prefix, with the standardization of Multi-
protocol BGP (MP-BGP) it can represent other kinds of reachability information,
referred to as address families. For example, a BGP route can be an IPv6 prefix or
an IPv4 prefix within a VPN.

External routes advertised in BGP must be distributed to every router in an AS.
The hop-by-hop forwarding nature of IP requires that a packet address be looked
up and matched against a route at each router hop. Because the address information
may match external networks that are only known in BGP, every router must have
the BGP information. However, we describe later how MPLS removes the need for
every interior router to have external BGP route state.

Within an AS, the BGP next hop will be the IP address of the exit router or exit
link from the AS through which the packet must route and BGP is used by the exit
router to distribute the routes throughout the AS. To avoid creating a full mesh of
iBGP sessions among the edge and interior routers, BGP can use a hierarchy of
Route Reflectors (RR). Figure 2.15 illustrates how BGP connections are constructed
using a Route Reflector.

BGP routes may have their attributes manipulated when received and before
sending to peers, according to policy design decisions of the operator. Of the BGP
routes received by a BGP router, BGP first determines the validity of a route (e.g., is
the BGP next hop reachable) and then chooses the best route among valid duplicates
with different paths. The best route is decided by a hierarchy of tiebreakers among
route attributes such as IGP metric to the next hop and BGP path attributes such as
AS PATH length. The best route is then relayed to all peers except the originating
one. One variation of this relay behavior is that any route received from an iBGP
peer on a nonroute reflector is not relayed to any other iBGP peer.
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2.4.1.3 Protocol-Independent Multicast

IP Multicast is very efficient when a source sends data to multiple receivers.
By using multicast at the network layer, a packet traverses a link only once, and
therefore the network bandwidth is utilized optimally. In addition, the processing at
routers (forwarding load) as well as at the end-hosts (discarding unwanted packets)
is reduced. Multicast applications generally use UDP as the underlying transport
protocol, since there is no unique context for the feedback received from the var-
ious receivers for congestion control purposes. We provide a brief overview of IP
Multicast in this section. It is covered in greater detail in Chapter 11.

IP Multicast uses group addresses from the Class “D” address space (in the
context of IPv4). The range of IP addresses that are used for IP Multicast group
addresses is 224.0.0.0 to 239.255.255.255. When a source sends a packet to an IP
Multicast group, all the receivers that have joined that group receive it. The typi-
cal protocol used between the end-hosts and routers is Internet Group Management
Protocol (IGMP). Receivers (end-hosts) announce their presence ( join a multicast
group) by sending an IGMP report to join a group. From the first router, the indi-
cation of the intent of an end-host to join the multicast group is forwarded through
routers upwards along the shortest path to the root of the multicast tree. The root
for an IP Multicast tree can be a source in a source-based distribution tree, or it
may be a “rendezvous point” when the tree is a shared distribution tree. The routing
protocol used in conjunction with IP multicast is called Protocol-Independent Mul-
ticast (PIM). PIM has variants of the routing protocol used to form the multicast
tree to forward traffic from a source (or sources) to the receivers. A router forwards
a multicast packet only if it was received on the upstream interface to the source
or to a rendezvous point (in a shared tree). Thus, a packet sent by a source follows
the distribution tree. To avoid loops, if a packet arrives on an interface that is not
on the shortest path toward the source of rendezvous point, the packet is discarded
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(and thus not forwarded). This is called Reverse Path Forwarding (RPF), a critical
aspect of multicast routing. RPF avoids loops by not forwarding duplicate packets.
PIM relies on the SPT created by the traditional routing protocols such as OSPF to
find the path back to the multicast source using RPF.

IP Multicast uses soft-state to keep the multicast forwarding state at the routers
in the network. There are two broad approaches for maintaining multicast state. The
first is termed PIM-Dense Mode, wherein traffic is first flooded throughout the net-
work, and the tree is “pruned” back along branches where the traffic is not wanted.
The underlying assumption is that there are multicast receivers for this group at
most locations, and hence flooding is appropriate. The flood and prune behavior is
repeated, in principle, once every 3 min. However, this results in considerable over-
head (as the traffic would be flooded until it is pruned back) each time. Every router
also ends up keeping state for the multicast group. To avoid this, the router down-
stream of a source periodically sends a “state refresh” message that is propagated
hop-by-hop down the tree. When a router receives the state refresh message on the
RPF interface, it refreshes the prune state, so that it does not forward traffic received
subsequently, until a receiver joins downstream on an interface.

While PIM-Dense Mode is desirable in certain situations (e.g., when receivers are
likely to exist downstream of each of the routers – densely populated groups – hence
the name), PIM-Sparse Mode (PIM-SM) is more appropriate for wide-scale deploy-
ment of IP multicast for both densely and sparsely populated groups. With PIM-SM,
traffic is sent only where it is requested, and receivers are required to explicitly join
a multicast group to receive traffic. While PIM-SM uses both a shared tree (with a
rendezvous point, to allow for multiple senders) as well as a per-source tree, we de-
scribe a particular mode, PIM-Source Specific Multicast (PIM-SSM), which is more
commonly used for IPTV distribution. More details regarding PIM-SM, including
PIM using a shared tree, is described in Chapter 11. PIM-SSM is adopted when the
end-hosts know exactly which source and group, typically denoted (S,G), to join
to receive the multicast transmissions from that source. In fact, by requiring that re-
ceivers signal the combination of source and group to join, different sources could
share the same group address and not interfere with each other. Using PIM-SSM,
a receiver transmits an IGMP join message for the (S,G) and the first hop router
sends a (S,G)join message directly along the shortest path toward the source.
The shortest path tree is rooted at the source.

One of the key properties of IP Multicast is that the multicast routing operates
somewhat independently of the IGP routing. Changes to the network topology are
reflected in the unicast routing using updates that operate on short-time scales (e.g.,
transmission of LSAs in OSPF reflect a link or node failure immediately). However,
IP Multicast routing reflects the changed topology only when the multicast state
is refreshed. For example, with PIM-SSM, the updated topology is reflected only
when the join is issued periodically (which can be up to a minute or more) by the
receiver to refresh the state. We will examine the consequence of this for wide-area
IPTV distribution later in this chapter.



2 Structural Overview of ISP Networks 49

2.4.2 Multiprotocol Label Switching

2.4.2.1 Overview of MPLS

Multiprotocol Label Switching (MPLS) is a technology developed in the late 1990s
that added new capabilities and services to IP networks. It was the culmination of
various IP switching technology efforts such as multiprotocol over ATM, Ipsilon’s
IP Switching, and Cisco’s tag switching [7,20]. The key benefits provided by MPLS
to an ISP network are:

1. Separation of routing (the selection of paths through the network) from forward-
ing/switching via IP address header lookup

2. An abstract hierarchy of aggregation

To understand these concepts, we first consider how normal IP routing in an ISP net-
work functions. In an IP network without MPLS, there is a topology hierarchy with
edge and backbone routers. There is also a routing hierarchy with BGP carrying ex-
ternal reachability information and an IGP like OSPF carrying internal reachability
information. BGP carries the information about which exit router (BGP next hop)
is used to reach external address space. OSPF picks the paths across the network
between the edges (see Fig. 2.16). It is important to note that every OSPF router
knows the complete path to reach all the edges. The internal paths that OSPF picks
and the exit routers from BGP are determined before the first packet is forwarded.
The connection-less and hop-by-hop forwarding behavior of IP routing requires that
every router have this internal and external routing information present.
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PE PE
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Fig. 2.16 Traditional IP routing with external routes distributed throughout backbone
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Consider the example in Fig. 2.16, where a packet enters on the left with
address A.1 destined to the external network A on the upper right. When the
first packet arrives, the receiving provider edge router (PE) looks up the destination
IP address. From BGP, it learns that the exit router for that address is the upper
right PE. From OSPF, the path to reach that exit PE is determined. Even though the
ingress PE knows the complete path to reach the exit PE, it simply forwards the
packet to the next-hop backbone router, labeled as a P-router (P) in the figure.
The backbone router then repeats the process: using the packet IP address, it deter-
mines the exit from BGP and the path to the exit from OSPF to forward the packet
to the next-hop BR. The process repeats again until the packet reaches the exit PE.

The repeated lookup of the packet destination to find the external exit and internal
path appears to be unnecessary. The lookup operation itself is not expensive, but the
issue is the unnecessary state and binding information that must be carried inside
the network. The ingress router knows the path to reach the exit. If the packet could
somehow be bound to the path itself, then the successive next-hop routers would
only need to know the path for the packet and not its actual destination. This is what
MPLS accomplishes.

Consider Fig. 2.17 where MPLS sets up an end-to-end Label Switched Path (LSP)
by assigning labels to the interior paths to reach exits in the network. The LSP
might look like the one shown in Fig. 2.18. The backbone routers are now called
Label Switch Routers (LSR). Via MPLS signaling protocols, the LSR knows how
to forward a packet carrying an incoming label for an LSP to an outgoing interface
and outgoing label; this is called a “swap” operation. The PE router also acts as an
LSR, but is usually at the head (start) or end (tail) of the LSP where, respectively,
the initial label is “pushed” onto the data or “popped” (removed) from the data.
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Fig. 2.17 Routing with MPLS creates Label Switched Paths (LSP) for routes across the network
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Fig. 2.18 Within an LSP, labels are assigned at each hop by the downstream router

In the example of Fig. 2.17, external BGP routing information such as routes to
network A is only needed in the edges of the network. The interior LSRs only need
to know the interior path among the edges as determined by OSPF. When the packet
with address A.1 arrives at the ingress PE, the same lookup operation is done as
previously: the egress PE is determined from BGP and the interior path to reach the
egress is found from OSPF. But this time the packet is given a label for the LSP
matching the OSPF path to the egress. The internal LSRs now forward the packet
hop-by-hop based on the labels alone. At the exit PE, the label is removed and the
packet is forwarded toward its external destination.

In this example, the binding of a packet to paths through the network is only
done once – at the entrance to the network. The assignment of a packet to a path
through the network is separated from the actual forwarding of the packet through
the network (this is the first benefit that was identified above). Further, a hierarchy
of forwarding information is created: the external routes are only kept at the edge of
the network while the interior routers only know about interior paths. At the ingress
router all received packets needing to exit the same point of the network receive the
same label and follow the same LSP.

MPLS takes these concepts and generalizes them further. For example, the LSP to
the exit router could be chosen differently from the IGP shortest path. IPv4 provides
a method for explicit path forwarding in the IP header, but it is very inefficient.
With MPLS, explicit routing becomes very efficient and is the primary tool for traffic
engineering in IP backbones. In the previous example, if an interior link was heavily
utilized, the operator may desire to divert some traffic around that link by taking a
longer path as shown in Fig. 2.19. Normal IP shortest path forwarding does not allow
for this kind of traffic placement.

The forwarding hierarchy can be used to create provider-based VPNs. This is
illustrated in Fig. 2.20. Virtual private routing contexts are created at the PEs, one
per customer VPN. The core of the network does not need to maintain state infor-
mation about individual VPN routes. The same LSPs for reaching the exits of the
network are used, but there are additional labels assigned for separating the differ-
ent VPN states.
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In summary, the advantages to the IP backbone of decoupling of routing and
forwarding are:

� It achieves efficient explicit routing.
� Interior routers do not need any external reachability information.
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� Packet header information is only processed at head of LSP (e.g., edges of the
network).

� It is easy to implement nested or hierarchical identification (such as with VPNs).

2.4.2.2 Internet Route Free Core

The ability of MPLS to remove the external BGP information plus Layer 3 address
lookup from the interior of the IP backbone is sometimes referred to as an Internet
Route Free Core. The “interior” of the IP backbone starts at the left-side (BR-side)
port of the access routers in Fig. 2.7. Some of the advantages of Internet Route Free
Core include:

� Traffic engineering using BGP is much easier.
� Route reflectors no longer need to be in the forwarding plane, and thus can be

dedicated to IP layer control plane functions or even placed on a server separate
from the routers.

� Denial of Service (DoS) attacks and security holes are better controlled because
BGP routing decisions only occur at the edges of the IP backbone.

� Enterprise VPN and other priority services can be better isolated from the “Public
Internet”.

We provide more clarification for the last advantage. Many enterprise customers,
such as financial companies or government agencies, are concerned about mixing
their priority traffic with that of the public Internet. Of course, all packets are mixed
on links between backbone routers; however, VPN traffic can be functionally segre-
gated via LSPs. In particular, since denial of service attacks from the compromised
hosts on the public Internet rely on reachability from the Internet, the private MPLS
VPN address space isolates VPN customers from this threat. Further, enterprise pre-
mium VPN customers are sometimes clustered onto access routers dedicated to the
VPN service. Furthermore, higher performance (such as packet loss or latency) for
premium VPN services can be provided by implementing priority queueing or pro-
viding them bandwidth-sensitive LSPs (discussed later). A similar approach can be
used to provide other performance-sensitive services, such as Voice-over-IP (VoIP).

2.4.2.3 Protocol Basics

MPLS encapsulates IP packets in an MPLS header consisting of one or more MPLS
labels, known as a label stack. Figure 2.21 shows the most commonly used MPLS
encapsulation type. The first 20 bits are the actual numerical label. There are three
bits for inband signaling of class of service type, followed by and End-of-Stack bit
(described later) and a time-to-live field, which serves the same function as an IP
packet time-to-live field.

MPLS encapsulation does not define a framing mechanism to determine the
beginning and end of packets; it relies on existing underlying link-layer technologies.
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Layer 2 Header | PID MPLS Label 1 MPLS Label 2 MPLS Label n Layer 3 Packet…

Label (20bits)    |  CoS (3 bits)   |   Stack (1 bit)    |    TTL (8 bits) 

Fig. 2.21 Generic MPLS encapsulation and header fields

Existing protocols such as Ethernet, Point-to-Point Protocol (PPP), ATM, and
Frame Relay have been given new protocol IDs or new link-layer control fields to
allow them to directly encapsulate MPLS-labeled packets.

Also, MPLS does not have a protocol ID field to indicate the type of packet
encapsulated, such as IPv4, IPv6, Ethernet, etc. Instead, the protocol type of the
encapsulated packet is implied by the label and communicated by the signaling pro-
tocol when the label is allocated.

MPLS defines the notion of a Forwarding Equivalence Class (FEC) (not to be
confused with Forward Error Correction (FEC) in lower network layers defined ear-
lier). All packets with the same forwarding requirements, such as path and priority
queuing treatment, can belong to the same FEC. Each FEC is assigned a label. Many
FEC types have been defined by the MPLS standards: IPv4 unicast route, VPN IPv4
unicast route, IPv6 unicast route, Frame Relay permanent virtual circuit, ATM vir-
tual circuit, Ethernet VLAN, etc.

Labels can be stacked, with the number of stacked labels indicated by the end-
of-stack bit. This allows hierarchical nesting of FECs, which permits VPNs, traffic
engineering, and hierarchical routing to be created simultaneously in the same
network. Consider the previous VPN example where a label may represent the inte-
rior path to reach an exit and an inner label may represent a VPN context.

MPLS is entitled “multiprotocol” because it can be carried over almost any
transport as mentioned above, ironically even IP itself, and because it can carry
the payload for many different packet types – all the FEC types mentioned above.

Signaling of MPLS FECs and their associated label among routers and switches
can be done using many different protocols. A new protocol, the Label Distri-
bution Protocol (LDP), was defined specifically for MPLS signaling. However,
existing protocols have also been extended to signal FECs and labels: Resource
Reservation Protocol (RSVP) [3] and BGP, for example.

2.4.2.4 IP Traffic Engineering and MPLS

The purpose of IP traffic engineering is to enable efficient use of backbone capac-
ity. That is, both to ensure that links and routers in the network are not congested
and that they are not underutilized. Traffic engineering may also mean ensuring that
certain performance parameters such as latency or minimum bandwidth are met.
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To understand how MPLS traffic engineering plays a role in ISP networks, we first
explain the generic problem to be solved – the multicommodity flow problem – and
howitwastraditionallysolved inIPnetworksversushowMPLScansolve theproblem.

Consider an abstract network topology with traffic demands among nodes.
There are:

Demands d.i; j / from node i to j

Constraints – link capacity b.i; j / between nodes
Link costs C.i; j /

Path p.k/ or route for each demand

The traffic engineering problem is to find paths for the demands that fit the link
constraints. The problem can be specified at different levels of difficulty:

1. Find any feasible solution, regardless of the path costs.
2. Find a solution that minimizes the costs for the paths.
3. Find a feasible or a minimum cost solution after deleting one or more nodes

and/or links.

Traffic Engineering an IP Network

In an IP network, the capacities represent link bandwidths between routers and the
costs might represent delay across the links. Sometimes, we only want to find a
feasible solution, such as in a multicast IPTV service. Sometimes, we want to min-
imize the maximum path delay, such as in a Voice-over-IP service. And sometimes,
we want to ensure a design that is survivable (meaning it is still feasible to carry the
traffic) for any single- or dual-link failure.

Consider how a normal ISP without traffic engineering might try to solve the
problem. The tools available on a normal IP network are:

� Metric manipulation, i.e., pick OSPF weights to create a feasible solution.
� Simple topology or link augmentation: this tends to overengineer the network

and restrict the possible topology.
� Source or policy route using the IPv4 header option or router-based source routes.

Source routes are very inefficient resulting in tremendously lower router capacity
and they are not robust, making the network very difficult to operate.

Figure 2.22 illustrates a network with a set of demands and an example of the way
that particular demands might be routed using OSPF. Although the network has
sufficient total capacity to carry the demands, it is not possible to find a feasible
solution (with no congested links) by only setting OSPF weights. A small ISP facing
this situation without technology like MPLS would probably resort to installing
more link capacity on the A-D-C node path.

The generic solution to an arbitrary traffic engineering problem requires speci-
fying the explicit route (path) for each demand. This is a complex problem that can
take an indeterminate time to solve. But there are other approaches that can solve
a large subset of problems. One suboptimal approach is Constraint-based Shortest
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Path First (CSPF). CSPF has been implemented in networks with ATM Private
Network-to-Network Interface (P-NNI) and IP MPLS. For currently defined MPLS
protocols, the constraints can be bandwidths per class of service for each link. Also,
links can be assigned a set of binary values, which can be used to include or exclude
the links from routing a given demand.

CSPF is implemented in a distributed fashion where all nodes have a full
knowledge of network resource allocation. Then, each node routes its demands
independently by:

1. Pruning the network to only feasible paths
2. Pick the shortest of the feasible paths on the pruned network

Although CSPF routing is suboptimal when compared with a theoretical multi-
commodity flow solution, it is a reasonable compromise to solving many traffic
engineering problems in which the nodes route their demands independently of each
other. For more complex situations where CSPF is inadequate, network planners
must use explicit paths computed by an offline system. The next section discusses
explicit routing in more detail.

Traffic Engineering Using MPLS

The main problems with traffic engineering an IP backbone with only a Layer 3
IGP routing protocol (such as OSPF) are (1) lack of knowledge of resource alloca-
tion and (2) no efficient explicit routing. The previous example of Fig. 2.22 shows
how OPSF would route all demands onto a link that does not have the necessary ca-
pacity. Another example problem is when a direct link is needed for a small demand
between nodes to meet certain delay requirements. But OSPF cannot prevent other
traffic demands from routing over this smaller link and causing congestion. MPLS
solves this with extensions to OSPF (OSPF-TE) [21] to provide resource allocation
knowledge and RSVP-TE [2] for efficient signaling of explicit routes to use those
resources.

See Fig. 2.23 for a simple example of how an explicit path is created. RSVP-TE
can create an explicit hop-by-hop path in the PATHmessage downstream. The PATH
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message can request resources such as bandwidth. The return message is an RESV,
which contains the label that the upstream node should use at each link hop. In
this example, a traffic-engineered LSP is created along path A-B-C for 0.4 Mb/s.
These LSPs are referred to as traffic engineering tunnels. Tunnels can be created
and differentiated for many purposes (including restoration to be defined in later
sections). But in general, primary (service route) tunnels can be considered as a
routing mechanism for all packets of a given FEC between a given pair of routers or
router interfaces. Using this machinery, Fig. 2.24 illustrates how MPLS-TE can be
used to solve the capacity overload problem in the network shown in Fig. 2.22.

The explicit path used in RSVP-TE signaling can be computed by an offline
system and automatically configured in the edge routers or the routers themselves
can compute the path. In the latter case, the edge routers must be configured with
the IP prefixes and their associated bandwidth reservations that are to be traffic-
engineered to other edges of the network. Because the routers do this without
knowledge of other demands being routed in the network, the routers must receive
periodic updates about bandwidth allocations in the network.
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OSPF-TE provides a set of extensions to OSPF to advertise traffic engineering
resources in the network. For example, bandwidth resources per class of service can
be allocated to a link. Also, a link can be assigned binary attributes, which can be
used for excluding or including a link for routing an LSP. These resources are adver-
tised in an opaque LSA via OSPF link-state flooding and are updated dynamically
as allocations change. Given the knowledge of link attributes in the topology and the
set of demands, the router performs an online CSPF to calculate the explicit paths.
The path outputs of the CSPF are given to RSVP-TE to signal in the network. As TE
tunnels are created in the network, the link resources change, i.e., available band-
width is reduced on a link after a tunnel is allocated using RSVP-TE. Periodically,
OSPF-TE will advertise the changes to the link attributes so that all routers can have
an updated view of the network.

2.4.2.5 VPNs with MPLS

Figure 2.20 illustrates the key concept in how MPLS is used to create VPN services.
VPN services here refer to carrier-based VPN services, specifically the ability of the
service provider to create private network services on top of a shared infrastructure.
For the purposes of this text, VPNs are of two basic types: a Layer 3 IP routed VPN
or a Layer 2 switched VPN. Generalized MPLS (GMPLS) [19] can also be used for
creating Layer 1 VPNs, which will not be discussed here.

A Layer 3 IP VPN service looks to customers of the VPN as if the provider
built a router backbone for their own use – like having their own private ISP. VPN
standards define the PE routers, CE routers, and backbone P-routers interconnecting
the PEs. Although the packets share (are mixed over) the ISP’s IP layer links, routing
information and packets from different VPNs are virtually isolated from each other.

A Layer 2 VPN provides either point-to-point connection services or multi-
point Ethernet switching services. Point-to-point connections can be used to support
end-to-end services such as Frame Relay permanent virtual circuits, ATM virtual
circuits, point-to-point Ethernet circuits (i.e., with no Media Access Control (MAC)
learning or broadcasting) and even a circuit emulation over packet service. In-
terworking between connection-oriented services, such as Frame Relay to ATM
interworking, is also defined. This kind of service is sometimes called a Virtual
Private Wire Service (VPWS).

Layer 2 VPN multipoint Ethernet switching services support a traditional Trans-
parent LAN over a wide-area network called Virtual Private LAN Service (VPLS)
[24, 25].

Layer 3 VPNs over MPLS

As mentioned previously, Layer 3 VPNs maintain a separate virtual routing context
for each VPN on the PE routers at the edge of the network. External CEs connect to
the virtual routing context on a PE that belongs to a customer’s VPN.
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Layer 3 VPNs implemented using MPLS are often referred to as BGP MPLS
VPNs because of the important role BGP has in the implementation. BGP is used
to carry VPN routes between the edges of the network. BGP keeps the potentially
overlapping VPN address spaces unique by prepending onto the routes a route dis-
tinguisher (RD) that is unique to each VPN. The RD + VPN IPv4 prefix combination
creates a new unique address space carried by BGP, sometimes called the VPNv4
address space.

VPN routes flow from one virtual routing instance into other virtual routing in-
stances on PEs in the network using a BGP attribute called a Route Target (RT). An
RT is an address configured by the ISP to identify all virtual routing instances that
belong to a VPN. RTs constrain the distribution of VPN routes among the edges of
the network so that the VPN routes are only received by the virtual routing instances
belonging to the intended (targeted) VPN.

We note that RDs and RTs are only used in the BGP control plane – they are
not values that are somehow applied to user packets themselves. Rather, for every
advertised VPNv4 route, BGP also carries a label assignment that is unique to a
particular virtual router on the advertising PE.

Every VPN packet that is forwarded across the network receives two labels at
the ingress PE: an inner label associated with the advertised VPNv4 route and an
outer label associated with the LSP to reach the egress advertising PE (dictated by
the BGP next-hop address). See Fig. 2.25 for a simplified example. In this example,

LSR3

LSR1
LSR2

PE1
PE2

Route Z

L1|L4|Z| packet

CE1

CE2LNK2 data:
  vr1
vr1:
   RT1, RD1
  table:
  Rt Z → L4,CE2,LNK2

LSP

LNK1 data:
  vr1
vr1:
  RT1, RD1
  table:
  Rt Z → L4, PE2
  PE2  → L1, LSR1
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L1→L2

Fig. 2.25 In this VPN example, a virtual routing context (vr1) in the PEs contains the VPN label
and routing information such as route target (RT1) and route distinguisher (RD1), attached CE
interfaces, and next-hop lookup and label binding. VPN traffic is transported using a label stack of
VPN label and interior route label
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there is a VPN advertising a route Z, which enters the receiving virtual router (vr1)
and is distributed by BGP to other PE virtual routers using RTs. A packet enter-
ing the VPN destined toward Z is looked up in the virtual routing instance, where
the two labels are found – the outer label to reach the egress PE and the inner label
for the egress virtual routing instance.

Layer 2 VPNs over MPLS

The implementation of Layer 2 VPNs over MPLS is similar to Layer 3 VPNs.
Because there is no IP routing in the VPN service, there is instead a virtual
switching context created on the edge PEs to isolate different VPNs. These virtual
switching contexts keep the address spaces of the edge services from conflicting
with each other across different VPNs.

Layer 2 VPNs use a two-label stack approach that is similar to Layer 3 VPNs.
Reaching an egress PE from an ingress PE is done using the same network interior
LSPs that the Layer 3 VPN service would use. And then, there is an inner label
associated with either the VPWS or VPLS context at the egress PE. This inner label
can be signaled using either LDP or BGP. The inner label and the packet encapsula-
tion comprise a pseudowire, as defined in the PWE3 standards [16]. The pseudowire
connects an ingress PE to an egress PE switching context and is identified by the
inner label. The VPWS service represents a single point-to-point connection, so
there will only be a single pseudowire setup in each direction. For VPLS however,
carriers typically set up a full mesh of pseudowires/LSPs among all PEs belonging
to that VPLS.

Forwarding for a VPWS is straightforward: the CE connection is associated
with the appropriate pseudowires in each direction when provisioned. For VPLS,
forwarding is determined by the VPLS forwarding table entry for the destination
Ethernet MAC address. Populating the forwarding table is based on source MAC
address learning. The forwarding table records the inbound interface on which a
source MAC was seen. If the destination MAC is not in the table, then the packet
is flooded to all interfaces attached to the VPLS. Flooding of unknown destination
MACs and broadcast MACs follows some special rules within a VPLS. All PEs
within a backbone are assumed to be full mesh connected with pseudowires. So,
packets received from the backbone are not flooded again into the backbone, but are
only flooded onto CE interfaces. On the other hand, packets from a CE to be flooded
are sent to all attached CE interfaces and all pseudowire interfaces toward the other
backbone PEs.

There is also a VPLS variation called Hierarchical VPLS to constrain the
potential explosion of mesh point-to-point LSPs needed among the PE routers.
This might happen with a PE that acts like a spoke with a single pseudowire at-
tached to a core of meshed PEs. In this model, a flooding packet received at a
mesh connected PE from a spoke PE pseudowire is sent to all attached CEs and
pseudowires. In such a model, the PE interconnectivity must be guaranteed to be
loop-free or a spanning tree protocol may be run among the PEs for that VPLS.
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2.5 Network Restoration and Planning

The design of an IP backbone is driven by the traffic demands that need to be
supported, and network availability objectives. The network design tools model the
traffic carried over the backbone links not only in a normal “sunny day” scenario,
but also in the presence of network disruptions.

Many carriers offer Service Level Agreements (SLAs). SLAs will vary across
different types of services. For example, SLAs for private-line services are quite
different from those for packet services. SLAs also usually differ among different
types of packet services. The SLAs for general Internet, VPN, and IPTV services
will generally differ. A packet-based SLA might be expressed in terms of Quality
of Service (QoS) metrics:For example, the SLA for a premium IP service may cover
up to three QoS metrics: latency, jitter, and packet loss. An example of the latter is
“averaged over time period Y , the customer will receive at least X% of his/her
packets transmitted.” Some of these packet services may be further differentiated by
offering different levels of service, also called Class of Service (CoS).

To provide its needed SLAs, an ISP establishes internal network objec-
tives. Network availability is a key internal metric used to control packet loss.
Furthermore, network availability is also sometimes used as the key QoS metric for
private-line services. Network availability is often stated colloquially in “9s”. For
example, “four nines” of availability means the service is available at least 0.9999
of the time. Stated in the contra-positive, the service should not be down more than
0.0001 of the time (approximately 50 min per year). Given its prime importance,
we will concentrate on network availability in the remainder of this section.

The single largest factors in designing and operating the IP backbone such that
it achieves its target network availability are modeling its potential network disrup-
tions and the response of the network to those disruptions. Network disruptions most
typically are caused by network failures and maintenance activities. Maintenance
activities include upgrading of equipment software, replacement of equipment, and
reconfiguration of network topologies or line cards. Because of the complex layer-
ing and segmentation of networks surrounding the IP backbone and because of the
variety and vintage of equipment that accumulates over the years, network planners,
architects, network operators, and engineers spend considerable effort to maintain
network availability. In this section, we will briefly describe the types of restoration
methods we find at the various network layers. Then, we will describe how network
disruptions affect the IP backbone, the types of restoration methods used to handle
them, and finally how the network is designed to meet the needed availability.

Table 2.3 summarizes typical restoration methods used in some of today’s
network core layers that are most relevant to the IP backbone. See [11] for de-
scriptions of restoration methods used in other layers shown in Fig. 2.3. In the next
sections, we will describe the rows of this table. Note that the table is approximate
and does not apply universally to all telecommunication carriers.
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Table 2.3 Example of core-segment restoration methods

Network layer
Restoration method(s) against network failures
that originate at that layer or lower layers

Exemplary
restoration
time scale

Fiber No automatic rerouting Hours (manual)
DWDM 1) Manual 1) Hours (manual)

2) 1 C 1 restoration (also called dedicated
protection)

2) 3–20 ms

SONET Ring Bidirectional Line-Switched Rings (BLSR) 50–100 ms
IOS (DCS) Distributed path-based mesh restoration Sub-second to seconds
W-DCS No automatic rerouting Hours
IP backbone 1) IGP reconfiguration 1) 10–60 s

2) MPLS Fast Reroute (FRR) 2) 50–100 ms

2.5.1 Restoration in Non-IP Layers

2.5.1.1 Fiber Layer

As we described earlier, in most central offices today, optical interfaces on switching
or transport equipment connect to fiber patch panels. Some carriers have installed
an automated fiber patch panel, also called a Fiber Cross-Connect (FXC), which
has the ability for an operator to remotely control the cross-connects. Some
of the enabling technologies include physical crossbars using optical collome-
ters and Micro-Electro-Mechanical Systems (MEMS). A good overview of these
technologies can be found in [12]. When disruptions occur to the fiber layer, most
commonly from construction activity, network operators can reroute around the
failed fiber by using a patch panel to cross-connect the equipment onto undam-
aged fibers. This may require coordination of cross-connects at intermediate central
offices to patch a path through alternate COs if an entire cable is damaged. Of
course, this typically is a slow manual process, as reflected in Table 2.3 and so
higher-layer restoration is usually utilized for disruptions to the fiber layer.

2.5.1.2 DWDM Layer

Some readers may be surprised to learn that carriers have deployed few (if any)
automatic restoration methods in their DWDM layers (neither metro nor core
segment). The one type of restoration occasionally deployed is one-by-one (1:1)
or one-plus-one (1 C 1) tail-end protection switching, which switches at the end-
points of the DWDM layer connection. With 1C1 switching, the signal is duplicated
and transmitted across two (usually) diversely routed connections. The path of the
connection during the nonfailure state is usually called the working path (also called
the primary or service path); the path of the connection during the failure state is
called the restoration path (also called protection path or backup path). The receiver
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consists of a simple detector and switch that detects failure of the signal on the
working path (more technically, detects performance errors such as average BER
threshold crossings) and switches to the restoration path upon alarm. Once adequate
signal performance is again achieved on the signal along the working path (including
a time-out threshold to avoid link “flapping”), it switches back to the working path.
In 1:1 protection switching, there is no duplication of signal, and thus the restora-
tion connection can be used for other transport in nonfailure states. The transmitted
signal is switched to the restoration path upon detection of failure of the service path
and/or notification from the far end.

Technically speaking, in ROADM or Point-to-point DWDM systems, 1 C 1
or 1:1 protection switching is usually implemented electronically via the optical
transponders. Consequently, these methods can be implemented at other transport
layers, such as DCS, IOS, and SONET. The major advantage of 1 C 1 or 1:1 meth-
ods is that they can trigger in as little as 3–20 ms. However, because these methods
require restoration paths that are dedicated (one-for-one) for each working con-
nection, the resulting restoration capacity cannot be shared among other working
connections for potential failures. Furthermore, the restoration paths are diversely
routed and are often much longer than their working paths. Consequently, 1 C1 and
1:1 protection switching tend to be the costliest forms of restoration.

2.5.1.3 SONET Ring Layer

The two most common types of deployed SONET or SDH self-healing ring
technology are Unidirectional Path Switched Ring (UPSR-2F) and Bidirectional
Line-Switched Ring (BLSR-2F). The “2F ” stands for “2-Fibers”. For simplicity, we
will limit our discussion to SONET rings, but there is a very direct analogy for SDH
rings. However, note that ADM-ADM ring links are sometimes transported over a
lower DWDM layer, thus forming a “connection” that is routed over channels of
DWDM systems, instead of direct fiber. Although there is no inherent topographical
orientation in a ring, many people conceptually visualize each node of a SONET
self-healing ring as an ADM with an east bidirectional OC-n interface (i.e., a trans-
mit port and a receive port) and a west OC-n interface. Typically, n D 48 or 192.
An STS-k SONET-Layer connection enters at an add/drop port of an ADM, routes
around the ring on k STS-1 channels of the ADM–ADM links and exits the ring
at an add/drop port of another ADM. The UPSR is the simplest of the devices and
works similarly to the 1 C 1 tail-end switch described in Section 2.5.1.2, except
that each direction of transmission of a connection routes counterclockwise on the
“outer” fiber around the ring (west direction) and therefore an STS-k connection
used the same k STS-1 channels on all links around the ring. At each add/drop
transmit port, the signal is duplicated in the opposite direction on the “inner” fiber.
The selector responds to a failure as described above.

The BLSR-2F partitions the bidirectional channels of its East and West high-
speed links in half. The first half is used for working (nonfailure) state, and
the second half is reserved for restoration. When a failure to a link occurs,
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the surrounding ADMs loop back that portion of the connection paths onto the
restoration channels around the opposite direction of the ring. The UPSR has
very rapid restoration, but suffers the dedicated-capacity condition described in
Section 2.5.1.2; as a consequence, today UPSRs are now confined mostly to the
metro network, in particular to the portion closest to the customer, often extend-
ing into the feeder network. Because BLSR signaling is used to advertise failures
among ADMs and real-time intermediate cross-connections have to be made, a
BLSR restores more slowly than a UPSR. However, the BLSR is capable of having
multiple connections share restoration channels over nonsimultaneous potential
network failures, and is thus almost always deployed in the middle of the metro
network or parts of the core network. Rings are described in more detail in [11].

2.5.1.4 IOS Layer

The typical equipment that comprise today’s IOS layer use distributed control
to provision (set-up) connections. Here, links of the IOS network (SONET bidi-
rectional OC-n interfaces) are assigned routing weights. When a connection is
provisioned over the STS-1 channels of an IOS network, its source node (IOS) com-
putes its working path (usually along a minimum-weight path) plus also computes
its restoration path that is diversely routed from the working path. After the con-
nection is set up along its working path, the restoration path is stored for future
use. The nodes communicate the state of the network connectivity via topology
update messages transmitted over the SONET overhead on the links between the
nodes. When a failure occurs, the nodes flood advertisement messages to all nodes
indicating the topology change. The source node for each affected connection then
instigates the restoration process for its failed connections by sending connection re-
quest messages along the links of the (precalculated) restoration path, seeking spare
STS-1 channels to reroute its connections. Various handshaking among nodes of
the restoration paths are implemented to complete the rerouting of the connections.
Note that in contrast to the dedicated and ring methods, the restoration channels are
not prededicated to specific connections and, therefore, connections from a varied
set of source/destination pairs can potentially use them. Such a method is called
shared restoration because a given spare channel can be used by different connec-
tions across nonsimultaneous failures. Shared mesh restoration is generally more
capacity-efficient than SONET rings in mesh networks (i.e., networks with average
connectivity greater than 2).

We now delve a little more into IOS restoration to make a key point that will
become relevant to the IP backbone, as well. The example in Fig. 2.2 shows two
higher-layer connections routing over the same lower-layer link. In light of the dis-
cussion above about the restoration path being diverse from the working path in the
IOS layer, the astute reader may ask “diverse relative to what?” The answer is that,
in general, the path should be diverse all the way down through the DWDM and
Fiber Layers. This requires that the IOS links contain information about how they
share these lower-layer links. Often, this is accomplished via a mechanism called
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“bundle groups”. That is, a bundle group is created for each lower-layer link, but
is expressed as a group of IOS links that share (i.e., route over) that link. Diverse
restoration paths can be discovered by avoiding IOS links that belong to the same
bundle group of a link on the working path. Of course, the equipment in the IOS-
Layer cannot “see” its lower layers, and consequently has no idea how to define
and create the bundle groups. Therefore, bundle groups are provisioned in the IOSs
using an Operations Support System (OSS) that contains a database describing the
mapping of IOS links to lower-layer networks. This particular example illustrates
the importance of understanding network layering; else we will not have a reliable
method to plan and engineer the network to meet the availability objective. This
point will be equally important to the IP backbone. A set of bundled links is also
referred to as a Shared Risk Link Group (SRLG) in the telecommunications industry,
since it refers to a group of links that are subject to a shared risk of disruption.

2.5.1.5 W-DCS Layer and Ethernet Layer

There are few restoration methods provided at the W-DCS layer itself. This is be-
cause most disruptions to a W-DCS link occurs from a disruption of (1) a W-DCS
line card or (2) a component in a lower layer of which the link routes. Disruptions of
type (1) are usually handled by providing 1:1 restorable intra-office links between
the W-DCS and TDM node (IOS or ADM). Disruptions of type (2) are restored
by the lower TDM layers. This only leaves failure or maintenance of the W-DCS
itself as an unrestorable network disruption. However, a W-DCS is much less so-
phisticated than a router and less subject to failure.

Restoration of Layer 2 VPNs in an IP/MPLS backbone is discussed in
Section 2.5.2. We note here that restoration in enterprise Ethernet networks is typi-
cally based on the Rapid Spanning Tree Protocol (RSTP). When enterprise Ethernet
VPNs are connected over the IP backbone (such as VPLS), an enterprise customer
who employs routing methods such as RSTP expects it to work in the extended net-
work. By encapsulating the customer’s Ethernet frames inside pseudowires ensures
that the client’s RTSP control packets are transported transparently across the wide
area. For example, a client VPN may choose to restore local link disruptions by
routing across other central offices or even distant metros. Since all this appears as
one virtual network to the customer, such applications may be useful.

2.5.2 IP Backbone

There are two main restoration methods we describe for the IP layer: IGP reconfig-
uration and MPLS Fast Reroute (FRR).
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2.5.2.1 OSPF Failure Detection and Reconvergence

In a formal sense, the IGP reconvergence process responds to topology changes.
Such topology changes are usually caused by four types of events:

1. Maintenance of an IP layer component
2. Maintenance of a lower-layer network component
3. Failure of an IP layer component (such as a router line card or common

component)
4. Failure of a lower-layer network component (such as a link)

When network operations staff perform planned maintenance on an IP layer link,
it is typical to raise the OSPF administrative weight of the link to ensure that all
traffic is diverted from the link (this is often referred to as “costing out” the link).
In the second case, most carriers have a maintenance procedure where organizations
that manage the lower-layer networks schedule their daily maintenance events and
inform the IP layer operations organization. The IP layer operations organization
responds by costing out all the affected links before the lower-layer maintenance
event is started.

In the first two cases (planned maintenance activity), the speed of the reconver-
gence process is usually not an issue. This is because the act of changing an IGP
routing weight on a link causes LSAs to be issued. During the process of updating
the link status and recomputation of the SPF tree, the affected links remain in service
(i.e., “up”). Therefore, once the IGP reconfiguration process has settled, the routers
can redirect packets to their new paths. While there may be a transient impact dur-
ing the “costing out” period, in terms of transient loops and packet loss, the service
impact is kept to a minimum by using this costing out technique to remove a link
from the topology for performing maintenance.

In the last two cases (failures), once the affected links go down, packets may be
lost or delayed until the reconvergence process completes. Such a disruption may
be unacceptable to delay or loss-sensitive applications. This motivates us to examine
how to reduce the time required for OSPF to converge from unexpected outages.
This is the focus of the remainder of this section.

While most large IP backbones route over lower layers, such as DWDM, those do
not provide restoration. Layer 1 failure detection is a key component of the IP layer
restoration process. A key component of the overall failure recovery time in OSPF-
based networks is the failure detection time. However, lower-layer failure detection
mechanisms sometimes do not coordinate well with higher-layer mechanisms and
do not detect disruptions that originate in the IP layer control plane. As a result,
OSPF routers periodically exchange Hello messages to detect the loss of a link
adjacency with a neighbor.

If a router does not receive a Hello message from its neighbor within a
RouterDeadInterval, it assumes that the link to its neighbor has failed, or the
neighbor router itself is down, and generates a new LSA to reflect the changed topol-
ogy. All such LSAs generated by the routers affected by the failure are flooded
throughout the network. This causes the routers in the network to redo the SPF
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calculation and update the next-hop information in their respective forwarding
tables. Thus, the time required to recover from a failure consists of: (1) the fail-
ure detection time, (2) LSA flooding time, (3) the time to complete the new SPF
calculations and update the forwarding tables.

To avoid a false indication that an adjacency is down because of congestion re-
lated loss of Hello messages, the RouterDeadInterval is usually set to be four
times the HelloInterval – the interval between successive Hello messages sent
by a router to its neighbor. With the RFC suggested default values for these timers
(HelloInterval value of 10 s and RouterDeadInterval value of 40 s), the
failure detection time can take anywhere between 30 and 40 s. LSA flooding times
consist of propagation delay and additional pacing delays inserted by the router.
These pacing delays serve to rate-limit the frequency with which LSUpdate pack-
ets are sent on an interface. Once a router receives a new LSA, it schedules an SPF
calculation. Since the SPF calculation using Dijkstra’s algorithm (see e.g., [8]) con-
stitutes a significant processing load, a router typically waits for additional LSAs to
arrive for a time interval corresponding to spfDelay (typically 5 s) before doing
the SPF calculation on a batch of LSAs. Moreover, routers place a limit on the fre-
quency of SPF calculations (governed by a spfHoldTime, typically 10 s, between
successive SPF calculations), which can introduce further delays.

From the description above, it is clear that reducing the HelloInterval
can substantially reduce the Hello protocol’s failure detection time. However,
there is a limit to which the HelloInterval can be safely reduced. As the
HelloInterval becomes smaller, there is an increased chance that network
congestion will lead to loss of several consecutive Hello messages and thereby
cause a false alarm that an adjacency between routers is lost, even though the routers
and the link between them are functioning. The LSAs generated because of a false
alarm will lead to new SPF calculations by all the routers in the network. This
false alarm would soon be corrected by a successful Hello exchange between the
affected routers, which then causes a new set of LSAs to be generated and possibly
new path calculations by the routers in the network. Thus, false alarms cause an
unnecessary processing load on routers and sometimes lead to temporary changes
in the path taken by network traffic. If false alarms are frequent, routers have to
spend considerable time doing unnecessary LSA processing and SPF calculations,
which may significantly delay important tasks such as Hello processing, thereby
leading to more false alarms.

False alarms can also be generated if a Hello message gets queued behind a
burst of LSAs and thus cannot be processed in time. The possibility of such an event
increases with the reduction of the RouterDeadInterval. Large LSA bursts
can be caused by a number of factors such as simultaneous refresh of a large num-
ber of LSAs or several routers going down/coming up simultaneously. Choudhury
[5] studies this issue and observes that reducing the HelloInterval lowers the
threshold (in terms of number of LSAs) at which an LSA burst will lead to genera-
tion of false alarms. However, the probability of LSA bursts leading to false alarms
is shown to be quite low.
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Since the loss and/or delayed processing of Hello messages can result in false
alarms, there have been proposals to give such packets prioritized treatment at the
router interface as well as in the CPU processing queue [5]. An additional option
is to consider the receipt of any OSPF packet (e.g., an LSA) from a neighbor as an
indication of the good health of the router’s adjacency with the neighbor. This pro-
vision can help avoid false loss of adjacency in the scenarios where Hello packets
get dropped because of congestion, caused by a large LSA burst, on the link between
two routers. Such mechanisms may help mitigate the false alarm problem signifi-
cantly. However, it will take some time before these mechanisms are standardized
and widely deployed.

It is useful to make a realistic assessment regarding how small the
HelloInterval can be, to achieve faster detection and recovery from network
failures while limiting the occurrence of false alarms. We summarize below the key
results from [13]. This assessment was done via simulations on the network topolo-
gies of commercial ISPs using a detailed implementation of the OSPF protocol in
the NS2 simulator. The work models all the important OSPF protocol features as
well as various standard and vendor-introduced delays in the functioning of the
protocol. These are shown in Table 2.4.

Goyal [13] observes that with the current default settings of the OSPF param-
eters, the network takes several tens of seconds before recovering from a failure.
Since the main component in this delay is the time required to detect a failure using
the Hello protocol, Goyal [13] examines the impact of lower HelloInterval
values on failure detection and recovery times.

Table 2.5 shows typical results for failure detection and recovery times after a
router failure. As expected, the failure detection time is within the range of three
to four times the value of HelloInterval. Once a neighbor detects the router
failure, it generates a new LSA about 0.5 s after the failure detection. The new LSA
is flooded throughout the network and will lead to scheduling of an SPF calculation
5 s (spfDelay) after the LSA receipt. This is done to allow one SPF calculation
to take care of several new LSAs. Once the SPF calculation is done, the router
takes about 200 ms more to update the forwarding table. After including the LSA
propagation and pacing delays, one can expect the failure recovery to take place
about 6 s after the ‘earliest’ failure detection by a neighbor router.

Notice that many entries in Table 2.5 show the recovery to take place much
sooner than 6 s after failure detection. This is partly an artifact of the simulation
because the failure detection times reported by the simulator are the “latest” ones
rather than the “earliest”. In one interesting case (seed 2, HelloInterval 0.75 s),
the failure recovery takes place about 2 s after the ‘latest’ failure detection. This hap-
pens because the SPF calculation scheduled by an earlier false alarm takes care of
the LSAs generated because of router failure. There are also many cases in which
failure recovery takes place more than 6 s after failure detection (notice entries
for HelloInterval 0.25 s, seeds 1 and 3). Failure recovery can be delayed be-
cause of several factors. The SPF calculation frequency of the routers is limited by
spfHoldTime (typically 10 s), which can delay the new SPF calculation in re-
sponse to the router failure. The delay caused by spfDelay is also a contribution.
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Table 2.4 Various delays affecting the operation of OSPF protocol

Standard configurable delays
RxmtInterval The time delay before an un-acked LSA is retransmitted.

Usually 5 s.
HelloInterval The time delay between successive Hello packets.

Usually 10 s.
RouterDeadInterval The time delay since the last Hello before a neighbor is

declared to be down. Usually four times the
HelloInterval.

Vendor-introduced configurable delays
Pacing delay The minimum delay enforced between two successive

Link-State Update packets sent down an interface.
Observed to be 33 ms. Not always configurable.

spfDelay The delay between the shortest path calculation and the first
topology change that triggered the calculation. Used to
avoid frequent shortest path calculations. Usually 5 s.

spfHoldTime The minimum delay between successive shortest path
calculations. Usually 10 s.

Standard fixed delays
LSRefreshTime The maximum time interval before an LSA needs to be

reflooded. Set to 30 min.
MinLSInterval The minimum time interval before an LSA can be

reflooded. Set to 5 s.
MinLSArrival The minimum time interval that should elapse before a new

instance of an LSA can be accepted. Set to 1 s.

Router-specific delays
Route install delay The delay between the shortest path calculation and update

of forwarding table. Observed to be 0.2 s.
LSA generation delay The delay before the generation of an LSA after all the

conditions for the LSA generation have been met.
Observed to be around 0.5 s.

LSA processing delay The time required to process an LSA including the time
required to process the Link-State Update packet before
forwarding the LSA to the OSPF process. Observed to
be less than 1 ms.

SPF calculation delay The time required to do shortest path calculation. Observed
to be 0.00000247x2C 0.000978 s on Cisco 3600 series
routers; x being the number of nodes in the topology.

Finally, the routers with a low degree of connectivity may not get the LSAs in the
first try because of loss due to congestion. Such routers may have to wait for 5 s
(RxmtInterval) for the LSAs to be retransmitted.

The results in Table 2.5 show that a smaller value of HelloInterval speeds
up the failure detection but is not effective in reducing the failure recovery times
beyond a limit because of other delays like spfDelay, spfHoldTime, and
RxmtInterval. Failure recovery times improve as the HelloInterval re-
duces down to about 0.5 s. Beyond that, as a result of more false alarms, we find
that the recovery times actually go up. While it may be possible to further speed up
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Table 2.5 Failure detection time and failure recovery time for a router failure
with different HelloInterval values

Hello interval (s)
Seed 1 Seed 2 Seed 3
FDT (s) FRT (s) FDT (s) FRT (s) FDT (s) FRT (s)

10 32:08 36:60 39:84 46:37 33:02 38:07

2 7:82 11:68 7:63 12:18 7:79 12:02

1 3:81 9:02 3:80 8:31 3:84 10:11

0.75 2:63 7:84 2:97 5:08 2:81 7:82

0.5 1:88 6:98 1:82 6:89 1:79 6:85

0.25 0:95 10:24 0:84 6:08 0:99 13:41

the failure recovery by reducing the values of these delays, eliminating such delays
altogether is not prudent. Eliminating spfDelay and spfHoldTime will result
in potentially additional SPF calculations in a router in response to a single fail-
ure (or false alarm) as the different LSAs generated because of the failure arrive
one after the other at the router. The resulting overload on the router CPUs may
have serious consequences for routing stability, especially when there are several
simultaneous changes in the network topology. Failure recovery below the range of
1–5 s is difficult with OSPF.

In summary, OSPF recovery time can be lowered by reducing the value of
HelloInterval. However, too small a value of HelloInterval will lead
to many false alarms in the network, which cause unnecessary routing changes
and may lead to routing instability. The optimal value for the HelloInterval
that will lead to fast failure recovery in the network, while keeping the false
alarm occurrence within acceptable limits for a network, is strongly influenced
by the expected congestion levels and the number of links in the topology. While
the HelloInterval can be much lower than current default value of tens of
seconds, it is not advisable to reduce it to the millisecond range because of po-
tential false alarms. Further, it is difficult to prescribe a single HelloInterval
value that will perform optimally in all cases. The network operator needs to set the
HelloInterval conservatively taking into account both the expected congestion
as well as the number of links in the network topology.

2.5.2.2 MPLS Fast Reroute

MPLS Fast Reroute (FRR) was designed to improve restoration performance using
the additional protocol layer provided by MPLS LSPs [17]. Primary and alternate
(backup) LSPs are established. Fast rerouting over the alternate paths after a net-
work disruption is achieved using preestablished router forwarding table entries.
Equipment suppliers have developed many flavors of FRR, some of which are not
totally compliant with standardized MPLS FRR. This section provides an overview
of the basic concept.

There are two basic varieties of backup path restoration in MPLS FRR, called
next-hop and next-next-hop. The next-hop approach identifies a unidirectional link
to be protected and a backup (or bypass) unidirectional LSP that routes around the
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Fig. 2.26 Example of Fast Reroute backup paths

link if it fails. The protected link can be a router–router link adjacency or even
another layer of LSP tunnel itself. The backup LSP routes over alternate links. The
top graph in Fig. 2.26 illustrates a next-hop backup path for the potential failure of
a given link (designated with an “X”). For now ignore the top path labeled “MPLS
secondary LSP tunnel”, which will be discussed later. With the next-next-hop ap-
proach, the primary entities to protect are two-link working paths. The backup path
is an alternate path over different links and routers than the protected entity. In gen-
eral, a next-hop path is constructed to restore against individual link failures while
next-next-hop paths are constructed to restore against both individual link failures
and node failures. The trade-off is that next-hop paths are simpler to implement
because all flows routing over the link can be rerouted similarly, whereas next-next-
hop requires more LSPs and routing combinations. This is illustrated in the lower
example of Fig. 2.26, wherein the first router along the path carries flows that ter-
minate on different second hop routers, and therefore must create multiple backup
LSPs that originate at that node.

We will briefly describe an implementation of the next-hop approach to FRR.
A primary end-to-end path is chosen by RSVP. This path is characterized by the
Forwarding Equivalence Class (FEC) discussed earlier and reflects packets that are
to be corouted and have similar CoS queuing treatment and ability to be restored
with FRR. Often, a mesh of fully connected end-to-end LSPs between the backbone
routers (BRs) is created.
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As discussed in earlier sections, an LSP is identified in forwarding tables by
mappings of pairs of label and interface: (In-Label, In-Interface)! (Out-Label,
Out-Interface). An end-to-end LSP is provisioned (set up) by choosing and pop-
ulating these entries at each intermediate router along the path by a protocol such
as RSVP-TE. For the source router of the LSP, the “In-Label” variable is equivalent
to the FEC. As a packet hops along routers, the labels are replaced according to
the mapping until it reaches the destination router, in which case, the MPLS shim
headers are popped and packets are placed on the final output port. With next-hop,
facility-based FRR, a backup (or bypass) LSP is set up for each link. For example,
consider a precalculated backup path to protect a link between routers A and B,
say (A-1, B-1), where A-1 is the transmit interface at router A, B-1 is the receive
interface at router B, and L-1 is the MPLS label for the path over this link. The
forwarding table entries are of form (L-i, A-k) ! (L-1, A-1) at router A and (L-1,
B-1) ! (L-j, B-s) at router B. When this link fails, a Layer 1 alarm is generated
and forwarded to the router controller or line card at A and B. For packets arriving
at router A, mapping entries in the forwarding table with the Out-Interface D A-1
have another (outer) layer of label pushed on the MPLS stack to coincide with the
backup path. This action is preloaded into the forwarding table and triggered by the
alarm. Forwarding continues along the routers of this backup LSP by processing the
outer layer labels as with any MPLS packet. The backup path ends at router B and,
therefore, when the packets arrive at router B, their highest (exterior) layer label is
popped. Then, from the point of view of router B, after the outer label is popped,
the MPLS header is left with (In-Label, In-Interface) D (L-1, B-1) and therefore
the packets continue their journey beyond router B just as they would if link (A-1,
B-1) were up. In this way, all LSPs that route over the particular link are rerouted
(hence the term “facility based”). Various other specifications can be made to segre-
gate the backup path to be pushed on given classes of LSPs, for example to provide
restoration for some IP CoSs rather than others.

Another common implementation of next-hop FRR defines 1-hop pseudowires
for each key link. Each pseudowire has defined a primary LSP and backup LSP
(a capability found in most routers). If the link fails, a similar alarm mechanism
causes the pseudowire to reroute over the backup LSP. When the primary LSP is
again declared up, the pseudowire switches back to the primary path. An advantage
of this method is that the pseudowire appears as a link to the IGP routing algorithm.
Weights can be used to control how packets route over it or the underlying Layer
1 link. Section 2.6 illustrates this method for an IPTV backbone network.

MPLS FRR has been demonstrated to work very rapidly (less than 100 ms) in
response to single-link (IP layer PHY link) failures by many vendors and carriers.
Most FRR implementations behave similarly during the small interval immediately
after the failure and before IGP reconvergence. However, implementations differ
in what happens after IGP reconvergence. We describe two main approaches in
the context of next-hop FRR here. In the first approach, the backup LSP stays in
place until the link goes back into service and IGP reconverges back to its non-
failure state. This is most common when a separate LSP or pseudowire is associated
with each link in next-hop FRR. In this case, the link-LSP is rerouted onto its backup
LSP and stays that way until the primary LSP is repaired.
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In the second approach, FRR provides rapid restoration and then, after a short
settling period, the network recomputes its paths [4]. Here, each primary end-to-
end LSP is recomputed during the first IGP reconfiguration process after the failure.
Since the IGP knows about the failed link(s), it reroutes the primary end-to-end
LSPs around them and the backup LSPs become moot. This is illustrated in the
three potential paths in the topmost diagram of Fig. 2.26. The IP flow routes along
the primary LSP during the nonfailure state. Then, the given link fails and the path
of the flow over the failed link deviates along the backup LSP, as shown by the lower
dashed line. After the first IGP reconfiguration process, the end-to-end LSP path is
recomputed, illustrated by the topmost dashed line.

When a failed component is repaired or a maintenance procedure is completed,
the disrupted links are put back into service. The process to return the network
to its nonfailure state is often called normalization. During the normalization pro-
cess, LSAs are broadcast by the IGP and the forwarding tables are recalculated.
The normalization process is often controlled by an MPLS route mechanism/timer.
A similar procedure would occur for next-next hop.

The reason for the second approach is that while FRR enables rapid restoration,
because these paths are segmental “patches” to the primary paths, the alternate route
is often long and capacity-inefficient. With the first approach, IP flows continue rout-
ing over the backup paths until the repair is completed and alarms clear, which may
span hours or days. Another reason is that if multiple link failures occur, then some
of the backup FRR paths may fail; some response is needed to address this situation.
These limitations of the first approach were early key inhibitors to implementation
of FRR in large ISPs.

The key to implementing this second FRR strategy is that the switch from FRR
backup paths to new end-to-end paths is hitless (i.e., negligible packet loss), else
we may suffer three hits from each single failure (the failure itself, the process to
reroute the end-to-end paths immediately after the failure, and then the process to
revert to the original paths after repair). If the alternate end-to-end LSPs are presetup
and the forwarding table changes implemented efficiently for most routers (often us-
ing pointers), this process is essentially hitless for most IP unicast (point-to-point)
applications. However, we note that today’s multicast does not typically enjoy hit-
less switchover to the new forwarding table because most multicast trees are usually
built via join and prune request messages issued backwards (upstream) from the
destination nodes. However, it is expected that different implementations of multi-
cast will fix this problem in the future. We discuss this again in Section 2.6 and refer
the reader to [36] for more discussion of hitless multicast.

For the network design phase of implementing FRR, for next-hop FRR, each link
(say L) along the primary path needs a predefined a backup path whose routing is
diverse in lower layers. That is, the paths of all lower-layer connections that support
the links of the backup path are disjoint from the path of the lower-layer connec-
tion for link L. The key is in predefining the backup tunnels. While next-next-hop
paths can be also used to restore against single-link failures, the network becomes
more complex to design if there is a high degree of lower-layer link overlap. More
generally, the major difficulty for the FRR approach is defining the backup LSPs so
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that the service paths can be rerouted, given a predefined set of lower-layer failures.
Furthermore, when multiple lower-layer failures occur and MPLS backup paths fail,
FRR does not work and the network must revert to the slower primary path recalcu-
lation approach (described in method 2 above).

2.5.3 Failures Across Multiple Layers

Now that the reader is armed with background on network layering and restoration
methods, we are poised to delve deeper into the factors and carrier decision variables
that shape the availability of the IP backbone.

Let us briefly revisit Fig. 2.9, which gives a simple example of the core ROADM
Layer Diagram. Consider a backbone router (BR) in central office B with a link to
one of the backbone routers in central office A. Furthermore, consider the remote
access router (RAR) that is homed to the backbone router in office A. However,
let us add a twist wherein the link between the RAR and BR routes over the IOS
layer instead of directly onto the ROADM (DWDM layer) as pictured in Fig. 2.9.
This can occur for RAR–BR links with lower bandwidth. This modification will
illustrate more of the potential failure modes. In particular, we have constructed this
simple example to illustrate several key points:

� Computing an estimate of the availability of the IP backbone involves analysis
of many network layers.

� Network disruptions can originate from many different sources within each layer.
� Some lower layers may provide restoration and others do not; how does this

affect the IP backbone?

Figure 2.27 gives examples of the types of individual component disruptions (“down
events”) that might cause links to fail in this network example, but still only shows a
few of the many disruptions that can originate at these layers. As one can see, this is
a four-layer example; and, some of the layers are skipped. Note that for simplicity,
we illustrate point-to-point DWDM systems at the DWDM layer; however, the con-
cepts apply equally well for ROADMs. Some readers perhaps may think that the
main source of network failures is fiber cuts and, therefore, the entire area of multi-
layer restoration can be reduced to analyzing fiber cuts. However, this oversimplifies
the problem. For example, an amplifier failure can often be as disruptive as a fiber
cable cut and will likely result in the failure of multiple IP layer links. Furthermore,
amplifier failures are more frequent. Let us examine the effect of some of the failures
illustrated in Fig. 2.27.

IOS interface failure: The IOS network has restoration capability, as described
in earlier sections. Consequently, the IOS layer reroutes its failed SONET STS-n
connection that supports the RAR–BR link onto its restoration path. In this case,
once the SONET alarms are detected by the two routers (the RAR and BR), they
take the link out of service and generate appropriate LSAs to the correct IGP
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Fig. 2.27 Example of components disruptions (failure or maintenance activity) at multiple layers

administrative areas or control domains to announce the topology change. Assum-
ing that the IOS-layer restoration is successful, the AR–BR link comes back after a
short time (as specified in the IOS layer of Table 2.3) and the SONET alarm clears.
After perhaps, an appropriate time-out on the routers to avoid link flapping, the link
is brought back up by the router and the topology change is announced via LSAs.
We note that in a typical AR/BR homing architecture, the LSAs from an AR–BR
link are only announced in subareas and so do not affect unaffected ARs or BRs.

Fiber cut: In the core network, the probability of a fiber cut is roughly propor-
tional to its length. They are less frequent than many of the other failures, but highly
disruptive, where usually many simultaneous IP layer links fail because of the con-
centration of capacity enabled by DWDM.

Optical Transponder: OT failure is the most common of the failures shown in
Fig. 2.27. However, a single OT failure only affects individual IP backbone links.
Some of the more significant problems with OT failures are (1) performance degra-
dation, where bit errors occasionally trip BER threshold crossing alerts and (2) there
is a nonnegligible probability of multiple failures in the network, in which an OT
fails while another major failure is in progress or vice versa.

DWDM terminal or amplifier: Amplifier failure is usually the most disruptive of
failures because of its impact (multiple wavelengths) and sheer quantity, often
placed every 50–100 miles, depending on the vintage and bit rate of the wave-
lengths of the DWDM equipment. Failure of the DWDM terminal equipment not
associated with amplifiers and OTs is less probable because of the increased use of
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passive (nonelectrical or powered) components. Note that in Fig. 2.27, for the OT,
fiber cut, and amplifier failure, the affected connections at their respective layers are
unrestored. Thus, the IP layer must reroute around its lost link capacity.

Intra-office fiber: These disruptions usually occur from maintenance, reconfigu-
ration, and provisioning activity in the central office. This has been minimized
over the years due to the use of fiber patch panels; however, when significant net-
work capacity expansion or reconfiguration occurs, especially for the deployment of
new technologies, architectures, or services, downtime from these class of failures
typically spikes. However, it is typical to lump the intra-office fiber disruptions into
the downtime for a linecard or port and model them as one unit.

Router: These network disruptions include failure of router line cards, failure of
router common equipment, and maintenance or upgrade of all or parts of the router.
Note that for these disruptions that originate at the IP layer, no lower-layer restora-
tion method can help because rerouting the associated connections at the lower
layers will not bring the affected link back up. However, in the dual-homing AR–BR
architecture, all the ARs that home to the affected router can alternatively reroute
through the mate BR.

The method of rerouting the AR traffic to the surviving AR–BR links differs
per carrier. Usually, IGP reconfiguration is used. However, this can be unaccept-
ably slow for some high-priority services, as evidenced by Table 2.3. Therefore,
other faster techniques are sometimes used, such as Ethernet link load balancing or
MPLS FRR.

We generalize some simple observations on multilayer restoration illustrated by
Fig. 2.27 and its subsequent discussion:

1. Because of the use of express links, a single network failure or disruption at a
lower layer usually results in multiple link failures at higher layers.

2. Failures that originate at an upper layer cannot be restored at a lower layer.
3. To meet most ISP network availability objectives, some form of restoration (even

if rudimentary) must be provided in upper layers.

2.5.4 IP Backbone Network Design

Network design is covered in more detail in Chapter 5. However, to tie together the
concepts of network layering, network failure modeling, and restoration, we provide
a brief description of IP network design here to illustrate its importance in meeting
network availability targets. In this section, we give a brief description about how
these factors are accommodated in the network design. To illustrate this, we de-
scribe a very simplified network design (or network planning) process as follows.
This process would occur every planning period or whenever major changes to the
network occur:
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1. Derive a traffic matrix.
2. Input the existing IP backbone topology and compute any needed changes. That

is, determine the homing of AR locations to the BR locations and determine
which BR pairs are allowed to have links placed between them.

3. Determine the routing of BR–BR links over the lower-layer networks (e.g.,
DWDM, IOS, fiber).

4. Route the traffic matrix over the topology and size the links. This results in an
estimate of network cost across all the needed layers.

5. Resize the links by finding their maximum needed capacity over all possible
events in the Failure Set, which models potential network disruptions (both
component failures and maintenance activity). This step simulates each failure
event, determining which IP layer link or nodes fail after lower-layer restoration,
if it exists, is applied and determining the capacity needed after traffic is rerouted
using IP layer restoration.

6. Re-optimize the topology by going back to step 2 and iterating with the objective
of lowering network cost.

Note in steps 2 and 3 that most carriers are reluctant to make large changes to the
existing IP backbone topology, since these can be very disruptive and costly events.
Therefore, steps 2 and 3 usually incur small topology changes from one planning
period to another planning period. We will not describe detailed algorithms for the
above in detail here. Approaches to the above problem can be found in [22, 23].

The traffic matrix can come in a variety of forms, such as the peak 5-min average
loads between AR-pairs or average loads, etc. Unfortunately, many organizations
responsible for IP network design either have little or no data about their current
or future traffic matrices. In fact, many engineers who manage IP networks ex-
pand their network by simply observing link loads. When a link load exceeds some
threshold, they add more capacity. Given no knowledge or high uncertainty of the
true, stochastic traffic matrix, this may be a reasonable approach. However, network
failures and their subsequent restorations are the phenomena that cause the greatest
challenges with such a simple approach. Because of the extensive rerouting that can
occur after a network failure, there is no simple or intuitive parameter to determine
the utilization threshold for each link. Traffic matrix estimation is discussed in detail
in Chapter 5.

A missing ingredient in the above network design algorithm is we did not de-
scribe how to model the needed network availability for an ISP to achieve its
SLAs. Theoretically, even if we assume the traffic matrix (present and/or future)
is completely accurate, to achieve the network design availability objective, all the
component failure modes and all the network layering must be modeled to design
the IP backbone. The decision variables are the layers where we provide restoration
(including what type of restoration should be used) and how much capacity should
be deployed at each layer to meet the QoS objectives for the IP layer. This is further
complicated by the fact that while network availability objectives for transport layers
are often expressed in worst-case or average-case connection uptimes, IP backbone
QoS objective often use packet-loss metrics.
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However, we can approximate the packet loss constraints in large IP layer
networks by establishing maximum link utilization targets. For example, through
separate analysis it might be determined that every flow can achieve the objec-
tive maximum packet loss target by not exceeding 90% utilization on any 40 Gb/s
link, with perhaps lower utilization maxima needed on lower-rate links. Then, one
can model when this utilization condition is met over the set of possible fail-
ures, including subsequent restoration procedures. By modeling the probabilities
of the failure set, one can compute a network availability metric appropriate for
packet networks. The probabilities of events in the failure set can be computed us-
ing Markov models and the Mean Time Between Failures (MTBF) and the Mean
Time to Repair (MTTR) of the component disruptions. These parameters are usually
obtained from a combination of equipment-supplier specifications, network obser-
vation/data, and carrier policies and procedures.

A major stumbling block with this theoretical approach is that the failure event
space is exponential in size. Even for very small networks and a few layers, it is
intractable to compute all potential failures, let alone the subsequent restoration
and network loss. An approach to probabilistic modeling to solve this problem is
presented in more detail in Chapter 4 and in [28].

Armed with this background, we conclude this section by revisiting the issue
of why we show the IP backbone routing over an unrestorable DWDM layer in
the network layering of Fig. 2.3. This at first may seem counterintuitive because it
is generally true that, per unit of capacity, the cost of links at lower layers is less
than that of higher layers. Some of the reasons for this planning decision, which
is consistent with most large ISPs, were hinted at in Section 2.5.3. We summarize
them here.

1. Backbone router disruptions (failures or maintenance events) originate within
the IP layer and cannot be restored at lower layers. Extra link capacity must be
provided at the IP layer for such disruptions. Once placed, this extra capacity can
then also be used for IP layer link failures that originate at lower layers. This
obviates most of the cost advantages of lower-layer restoration.

2. Under nonfailure conditions, there is spare capacity available in the IP layer to
handle uncertain demand. For example, restoration requirements aside, to handle
normal service demand, IP layer links could be engineered to run below 80% uti-
lization during peak intervals of the traffic matrix and well below that at off-peak
intervals. If we allow higher utilization levels during network disruption events,
then this provides an existing extra buffer during those events. Furthermore, there
may be little appreciable loss during network disruptions during off-peak periods.

As QoS and CoS features are deployed in the IP backbone, there is yet another
advantage to IP layer restoration. Namely, the IP layer can assign different QoS
objectives to different service classes. For example, one such distinction might be to
plan network restoration so that premium services receive better performance than
best-effort services during network disruptions. In contrast, the DWDM layer cannot
make such fine-grain distinctions; it either restores or does not restore the entire IP
layer link, which carries a mixture of different classes of services.
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2.6 IPTV Backbone Example

Some major carriers now offer nationwide digital television, high-speed Internet,
and Voice-over-IP services over an IP network. These services typically include
hundreds of digital television channels. Video content providers deliver their con-
tent to the service provider in digital format at select locations called super hub
offices (SHOs). This in turn requires that the carrier have the ability to deliver
high-bandwidth IP streaming to its residential customers on a nationwide basis. If
such content is delivered all the way to residential set-top boxes over IP, it is com-
monly called IPTV. There are two options to providing such an IPTV backbone.
The first option is to create a virtual network on top of the IP backbone. Since video
service consists mostly of streaming channels that are broadcast to all customers, IP
multicast is usually the most cost-effective protocol to transport the content. How-
ever, users have high expectations for video service and even small packet losses
negatively impact video quality. This requires the IP backbone to be able to trans-
port multicast traffic at a very high level of network availability and efficiency. The
first option results in a mixture of best-effort traffic and traffic with very high quality
of service on the same IP backbone, which in turn requires comprehensive mecha-
nisms for restoration and priority queuing.

Consequently, some carriers have followed the second option, wherein they cre-
ate a separate overlay network on top of the lower-layer DWDM or TDM layers. In
reality, this is another (smaller) IP layer network, with specialized traffic, network
structure, and restoration mechanisms. We describe such an example in this section.
Because of the high QoS objectives needed for broadcast TV services, the reader
will find that this section builds on most of the previous material in this chapter.

2.6.1 Multicast-Based IPTV Distribution

Meeting the stringent QoS required to deliver a high-quality video service (such as
low latency and loss) requires careful consideration of the underlying IP-transport
network, network restoration, and video and packet recovery methods.

Figure 2.28 (borrowed from [9]) illustrates a simplified architecture for a net-
work providing IPTV service. The SHO gathers content from the national video
content providers, such as TV networks (mostly via satellite today) and distributes
it to a large set of receiving locations, called video hub offices (VHOs). Each VHO in
turn feeds a metropolitan area. IP routers are used to transport the IPTV content in
the SHO and VHOs. The combination of SHO and VHO routers plus the links that
connect them comprise the IPTV backbone. The VHO combines the national feeds
with local content and other services and then distributes the content to each metro
area. The long-distance backbone network between the SHO and the VHO includes
a pair of redundant routers that are associated with each VHO. This allows for pro-
tection against router component failures, router hardware maintenance, or software
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upgrades. IP multicast is used for delivery as it provides economic advantages for
the IPTV service to distribute video. With multicast, packets traverse each link at
most once.

The video content is encoded using an encoding standard such as H.264. Video
frames are packetized and are encapsulated in the Real-Time Transport Protocol
(RTP) and UDP. In this example, PIM-SSM is used to support IP multicast over the
video content. Each channel from the national live feed at the SHO is assigned
a unique multicast group. There are typically hundreds of channels assigned to
standard-definition (SD) (1.5 to 3 Mb/s) and high-definition (HD) (6 to 10 Mb/s)
video signals plus other multimedia signals, such as “picture-in-picture” channels
and music. So, the live feed can be multiple gigabits per second in aggregate
bandwidth.

2.6.2 Restoration Mechanisms

The IPTV network can use various restoration methods to deliver the needed
video QoS to end-users. For example, it can recover from relatively infrequent and
short bursts of loss using a combination of video and packet recovery mechanisms
and protocols, including the Society of Motion Picture and Television Engineers
(SMPTE; www.smpte.org/standards) 2022–1 Forward Error Correction (FEC)
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standard, retransmission approaches based on RTP/RTCP [33] and Reliable UDP
(R-UDP) [31], and video player loss-concealment algorithms in conjunction with
set-top box buffering. R-UDP supports retransmission-based packet-loss recovery.
In addition to protecting against video impairments due to last-mile (loop) transmis-
sion problems in the access segment, a combination of these methods can recover
from a network failure (e.g., fiber link or router line card) of 50 ms or less. Repairing
network failures usually takes far more than 50 ms (potentially several hours), but
when combined with link-based FRR, this restoration methodology could meet the
stringent requirements needed for video against single-link failures.

Figure 2.29 (borrowed from [9]) illustrates how we might implement link-based
FRR in an IPTV backbone by depicting a network segment with four node pairs
that have defined virtual links (or pseudowires). This method is the pseudowire,
next-hop FRR approach described in Section 2.5.2.2. For example, node pair E-C
has a lower-layer link (such as SONET OC-n or Gigabit Ethernet) in each direction
and a pseudowire in each direction (a total of four unidirectional logical links) used
for FRR restoration. The medium dashed line shows the FRR backup path for the
pseudowire E!C. Note that links such as E-A are for restoration and, hence, have
no pseudowires defined. Pseudowire E!C routes over a primary path that consists
of the single lower-layer link E!C (see the solid line in Fig. 2.29). If a failure occurs
to a lower-layer link in the primary path such as C-E, then the router at node E
attempts to switch to the backup path using FRR. The path from the root to node A
will switch to the backup path at node E (E-A-B-C). Once it reaches node C, it will
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continue on its previous (primary) path to node A (C-B-F-A). The entire path from
E to A during the failure is shown by the outside dotted line. Although the path
retraces itself between the routers B and C, the multicast traffic does not overlap
because of the links’ unidirectionality. Also, although the IGP view of the topology
realizes that the lower-layer links between E and C have gone “down,” because the
pseudowire from E!C is still “up” and has the least weight, the shortest path tree
remains unchanged. Consequently, the multicast tree remains unchanged. The IGP
is unaware of the actual routing over the backup path. Note that these backup paths
are precomputed, by analyzing all possible link failures in a comprehensive manner,
a priori.

If we route the pseudowire FRR backup path on a lower-layer path that is diverse
from its primary path, FRR operates rapidly (suppose around 50 ms), and we set the
hold-down timers appropriately, IGP will not detect the effect of any single fiber
or DWDM layer link failure. Therefore, the multicast tree will remain unaffected,
reducing the outage time of any single-link failure from tens of seconds to approxi-
mately 50 ms. This order of restoration time is needed to achieve the stringent IPTV
network availability objectives.

2.6.3 Avoiding Congestion from Traffic Overlap

A drawback of restoration using next-hop FRR is that since it reroutes traffic on
a link-by-link basis, it can suffer traffic overlap during link failures, thus requiring
more link capacity to meet the target availability. Links are deployed bidirectionally,
and traffic overlap means that the packets of the same multicast flows travel over the
same link (in the same direction) two or more times. If we avoid overlap, we can
run the links at higher utilization and thus design more cost-effective networks. This
requires that the multicast tree and backup paths be constructed so that traffic does
not overlap.

To illustrate traffic overlap, Fig. 2.30a shows a simple network topology with
node S as the source and nodes d1 to d8 as the destinations. Here, each router is
connected by a pair of directed links (in opposite directions). The two links of the
pair are assigned the same IGP weight and the multicast trees are derived from these
weights. The Fig. 2.30a illustrates two sets of link weights. Figure 2.30b shows the
multicast tree derived from the first set of weights. In this case, there exists a single-
link failure that causes traffic overlap. For example, the dotted line shows the backup
route for link d1–d4. If link d1–d4 fails, then the rerouted traffic will overlap with
other traffic on links S -d2 and d2–d6, thereby resulting in congestion on those
links. Client routers downstream of d2 and d6 will see impairments as a result of
this congestion. It is desirable to avoid this congestion wherever possible by con-
structing a multicast tree such that the backup path for any single-link failure does
not overlap with any downstream link on the multicast tree. This is achieved by
choosing OSPF link weights suitably.

The tree derived from the second pair of weights is shown in Fig. 2.30c. In this
case, the backup paths do not cause traffic overlap in response to any single-link
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failure. The multicast tree link is now from d6 to d2. The backup path for link
d1–d4 is the same as in Fig. 2.30b. Observe that traffic on this backup path does not
travel in the same direction as any link of the multicast tree. An algorithm to define
FRR backup paths and IGP weights so that the multicast tree does not overlap from
any single failure can be found in [10].

2.6.4 Combating Multiple Concurrent Failures

The algorithm and protocol in [10] helps in avoiding traffic overlap of the multi-
cast tree during single-link failures. However, multiple link failures can still cause
overlap. An example is shown in Fig. 2.31. Assume that links d1–d4 and d3–d8
are both down. If the backup path for edge d1–d4 is d1-S-d2-d6-d5-d4 (as shown in
Fig. 2.30b and in Fig. 2.31) and the backup path for edge d3–d8 is d3-S-d2-d6-d7-d8,
traffic will overlap paths on edges S-d2 and d2–d6. There would be significant traffic
loss due to congestion if the links of the network are sized to only handle a single
stream of multicast traffic.

This situation essentially occurs because MPLS FRR occurs at Layer 2 and there-
fore the IGP is unaware of the FRR backup paths. Furthermore, the FRR backup
paths are precalculated and there is no real-time (dynamic) accommodation for
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different combinations of multiple-link failures. In reality, multiple (double and even
triple) failures can happen. When they occur, they can have a large impact on the
performance of the network.

Yuksel [36] describes an approach that builds on the FRR mechanism but limits
its use to a short period. When a single link fails and a pseudowire’s primary path
fails, the traffic is rapidly switched over to the backup path as described above.
However, soon afterwards, the router sets the virtual link weight to a high value and
thus triggers the IGP reconvergence process – this is colloquially called “costing
out” the link. Once IGP routing converges, a new PIM tree is rebuilt automatically.
This avoids long periods where routing occurs over the FRR backup paths, which
are unknown to the IGP. This ensures rapid restoration from single-link failures
while allowing the multicast tree to dynamically adapt to any additional failures
that might occur during a link outage. It is only during this short, transient period
when FRR starts and IGP reconvergence finishes that another failure could expose
the network to a path overlapping on the same link. The potential downside of this
approach is that it incurs two more network reconvergence processes – that is, the
period right after FRR has occurred and then again when the failure is repaired.
If it is not carefully executed, this alternative approach can cause many new video
interruptions due to small “hits” after single failures.

Yuksel [36] proposes a careful multicast recovery methodology to accomplish
this approach, yet avoid such drawbacks. A key component of the method is the
make-before-break change of the multicast tree – that is, the requirement to hitlessly
switch traffic from the old multicast tree to the new multicast tree. When the failure
is repaired, the method normalizes the multicast tree to its original shortest path tree
again in a hitless manner. The key modification to the multicast tree-building process
(pruning and joining nodes) is that the prune message to remove the branch to the
previous parent is not sent until the router receives PIM–SSM data packets from its
new parent for the corresponding (S,G) group. Another motivation for this modi-
fication is because current PIM–SSM multicast does not have an explicit acknowl-
edgement to a join request. It is only through the receipt of a data packet on that
interface that the node knows that the join request was successfully received and
processed at the upstream node. The soft-state approach of IP Multicast (refresh the
state by periodically sending join requests) is also used to ensure consistency. This
principle is used to guide the tree reconfiguration process at a node in reaction to a
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failure. In this way, routers do not lose data packets during the switchover period.
Of course, this primarily works in the PIM-SSM case, where there is a single source.

As we can observe from the description above, building an IPTV backbone with
high network availability builds on most of the protocols, multilayer failure models,
and restoration machinery we have described in the previous sections of the chapter.
In particular, given the underlying probabilities of network failures plus these com-
plex failure and restoration mechanisms, such an approach must include the network
design methodology to evaluate and estimate the theoretical network availability of
the IPTV backbone. If such a methodology was not utilized, a carrier would run the
risk of having its video customers dissatisfied with their video service because of
inadequate network availability.

2.7 Summary

This chapter presents an overview of the layered network design that is typical in a
large ISP backbone. We emphasized three aspects that influence the design of an IP
backbone. The first aspect is that the IP network design is strongly influenced by its
relationship with the underlying network layers (such as DWDM and TDM layers)
and the network segments (core, metro, and access). ISP networks use a hierarchy
of specialized routers, generally called access and backbone routers. At the edge of
the network, the location of access routers, and the types of interfaces that they need
to support are strongly influenced by the way the customers connect to the back-
bone through the metro network. In the core of a large carrier network, backbone
routers are interconnected using DWDM transmission technology. As IP traffic is
the dominant source of demand for the DWDM layer, the backbone demands drive
requirements for the DWDM layer. The need for multiple DWDM links has driven
the evolution of aggregate links in the core.

The second aspect is that ISP networks have evolved from traditional IP forward-
ing to support MPLS. The separation of routing and forwarding and the ability to
support a routing hierarchy allow ISPs to support new functionality including Layer
2 and Layer 3 VPNs and flexible traffic engineering that could not be as easily sup-
ported in a traditional IP network.

Finally, this chapter provided an overview of the issues that affect IP network reli-
ability, including the impact of network disruptions at multiple network layers and,
conversely, how different network layers respond to disruptions through network
restoration. We described how failures and maintenance events originate at various
network layers and how they impact the IP backbone. We presented an overview
of the performance of OSPF failure recovery to motivate the need for MPLS Fast
Reroute. We summarized the interplay between network restoration and the network
design process.

To tie these concepts together, we presented a “case study” of an IPTV backbone.
An IPTV network can be thought of as an IP layer with a requirement for very
high performance, essentially high network availability and low packet loss. This
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requires the interlacing of multiple protocols, such as R-UDP, MPLS Fast Reroute,
IP Multicast, and Forward Error Control. We described how lower-layer failures
(including multiple failures) affect the IP layer and how these IP layer routing and
control protocols respond. Understanding the performance of network restoration
protocols and the overall availability of the given network design requires careful
modeling of the types and likelihood of network failures, as well as the behavior
of the restoration protocols. This chapter endeavored to lay a good foundation for
reading the remaining chapters of this book.

We conclude by alerting the reader to an important observation about IP network
design. Telecommunications and its technologies undergo constant change. There-
fore, this chapter describes a point in time. The contents of this chapter are different
from what they would have been 5 years ago. There will be further changes over
the next 5 years and, consequently, the chapter written 5 years from now may look
quite different.
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Glossary of Acronyms and Key Terms

1:1 One-by-one (signal switched to restoration path on
detection of failure)

1 C 1 One-plus-one (signal duplicated across both service path
and restoration path; receiver chooses surviving signal upon
detection of failure)

Access
Network
Segment

The feeder network and loop segments associated with a
given metro segment

ADM Add/Drop Multiplexer
Administrative
Domain

Routing area in IGP

Aggregate
Link

Bundles multiple physical links between a pair of routers
into a single virtual link from the point of view of the
routers. Also called bundled or composite link

AR Access Router
AS Autonomous System
ASBR Autonomous System Border Router
ATM Asynchronous Transfer Mode
AWG Arrayed Waveguide Grating
B-DCS Broadband Digital Cross-connect System (cross-connects at

DS-3 or higher rate)
Backhaul Using TDM connections that encapsulate packets to

connect customers to packet networks
BER Bit Error Rate
BGP Border Gateway Protocol
BLSR Bidirectional Line-Switched Ring
BR Backbone Router
Bundled Link See Aggregate Link
CE switch Customer-Edge switch
Channelized A TDM link/connection that multiplexes lower-rate signals

into its time slots
CHOC Card CHannelized OC-n card
CIR Committed Information Rate
CO Central Office
Composite
Link

See Aggregate Link

Core Network
Segment

Equipment in the POPs and network structures that connect
them for intermetro transport and switching

CoS Class of Service
CPE Customer Premises Equipment
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CSPF Constraint-based Shortest Path First
DCS Digital Cross-connect System
DDoS Distributed Denial of Service (security attack on router)
DoS Denial of Service (security attack on router)
DS-0 Digital Signal – level 0 a pre-SONET signal carrying one

voice-frequency channel at 64 kb/s)
DS-1 Digital Signal – level 1 (a 1.544 Mb/s signal).

A channelized DS-1 carries 24 DS0s
DS-3 Digital Signal – level 3 (a 44.736 Mb/s signal).

A channelized DS-3 carries 28 DS1s
DWDM Dense Wavelength-Division Multiplexing
E-1 European plesiosynchronous (pre-SDH) rate of 2.0 Mb/s
eBGP External Border Gateway Protocol
EGP Exterior Gateway Protocol
EIGRP Enhanced Interior Gateway Routing Protocol
EIR Excess Information Rate
EPL Ethernet Private Line
FCC Federal Communications Commission
FE Fast Ethernet (100 Mb/s)
FEC Forward Error Correction – bit-error recovery technique in

TDM transmission and some IPs
FEC Forwarding Equivalence Class – classification of flows

defined in MPLS
Feeder
Network

The portion of the access network between the loop and
first metro central office

FRR Fast Re-Route
FXC Fiber Cross-Connect
Gb/s Gigabits per second (1 billion bits per second)
GigE Gigabit Ethernet (nominally 1 Gb/s)
GMPLS Generalized MPLS
HD High definition (short for HDTV)
HDTV High-definition TV (television with resolution exceeding

720�1280)
Hitless Method of changing network connections or routes that

incur negligible loss
iBGP Interior Border Gateway Protocol
IETF Internet Engineering Task Force
IGP Interior Gateway Protocol
Internet Route
Free Core

Where MPLS removes external BGP information plus
Layer 3 address lookup from the interior of the IP backbone

IGMP Internet Group Management Protocol
Inter-office
Links

Links whose endpoints are contained in different central
offices
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Intra-office
Links

Links that are totally contained within the same central
office

IOS Intelligent Optical Switch
IP Internet Protocol
IPTV Internet Protocol television (i.e., entertainment-quality

video delivered over IP)
IROU Indefeasible Right of Use
IS-IS Intermediate-System-to-Intermediate-System (IP routing

and control plane protocol)
ISO International Organization for Standardization (not an

acronym)
ISP Internet Service Provider
ITU International Telecommunication Union
Kb/s Kilobits per second (1,000 bits per second)
LAN Local Area Network
LATA Local Access and Transport Area
Layer n A colloquial packet protocol layering model, with origins to

the OSI reference model. Today, roughly Layer 3
corresponds to IP packets, Layer 2 to MPLS LSPs,
pseudowires, or Ethernet-based VLANs, and Layer 1 to all
lower-layer transport protocols

LDP Label Distribution Protocol
LMP Link Management Protocol
Local Loop The portion of the access segment between the customer

and feeder network. Also called “last mile”
LSA Link-State Advertisement
LSDB Link-State Database
LSP Label Switched Path
LSR Label Switch Router
MAC Media Access Control
MAN Metropolitan Area Network
Mb/s Megabits per second (1 Million bits per second)
MEMS Micro-Electro-Mechanical Systems
Metro
Network
Segment

The network layers of the equipment located in the central
offices of a given metropolitan area

MPEG Moving Picture Experts Group
MPLS Multiprotocol Label Switching
MSO Multiple System Operator (typically coaxial cable

companies)
MSP Multi-Service Platform – A type of ADM enhanced with

many forms of interfaces
MTBF Mean Time Between Failure
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MTSO Mobile Telephone Switching Office
MTTR Mean Time to Repair
Multicast Point-to-multipoint flows in packet networks
N-DCS Narrowband Digital Cross-connect System (cross-connects

at DS0 rate)
n-degree
ROADM

A ROADM that can fiber to more than three different
ROADMS (also called multidegree ROADM)

Next-hop Method in MPLS FRR that routes around a down link
Next-next-hop Method in MPLS FRR that routes around a down node
Normalization Step in network restoration after all failures are repaired to

bring the network back to its normal state
NTE Network Terminating Equipment
OC-n Optical Carrier – level n (designation of optical transport of

a SONET STS-n)
ODU Optical channel Data Unit – protocol data unit in ITU OTN
O-E-O Optical-to-Electrical-to-Optical
OIF Optical Internetworking Forum
OL Optical Layer
OSPF Open Shortest Path First
OSPF-TE Open Shortest Path First – Traffic Engineering
OSS Operations Support System
OT Optical Transponder
OTN Optical Transport Network – ITU optical protocol
P Router Provider Router
PBB-TE Provider Backbone Bridge – Traffic Engineering
PBT Provider Backbone Transport
PE Router Provider-Edge Router
PIM Protocol-Independent Multicast
PL Private Line
P-NNI Private Network-to-Network Interface (ATM routing

protocol)
POP Point Of Presence
PPP Point-to-Point Protocol
PPPoE Point-to-Point Protocol over Ethernet
Pseudowire A virtual connection defined in the IETF PWE3 that

encapsulates higher-layer protocols
PVC Permanent Virtual Circuit
PWE3 Pseudo-Wire Emulation Edge-to-Edge
QoS Quality of Service
RAR Remote Access Router
RD Route Distinguisher
Reconvergence IGP process to update network topology and adjust routing

tables
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RIB Router Information Base
ROADM Reconfigurable Optical Add/Drop Multiplexer
RR Route Reflector
RSTP Rapid Spanning Tree Protocol
RSVP Resource Reservation Protocol
RT Route Target (also Remote Terminal in metro TDM

networks)
RD Route Distinguisher
RTP Real-Time Protocol
SD Standard Definition (television with resolution of about

640 � 480)
SDH Synchronous Digital Hierarchy (a synchronous optical

networking standard used outside North America,
documented by the ITU in G.707 and G.708)

Serving CO The first metro central office to which a given customer
homes

SHO Super Hub Office
SLA Service Level Agreement
SRLG Shared Risk Link Group
SONET Synchronous Optical Network (a synchronous optical

networking standard used in North America, documented in
GR-253-CORE from Telcordia)

SONET/SDH
self-healing
rings

Typically UPSR or BLSR rings

SPF Shortest Path First
STS-n Synchronous Transport Signal – level n (a signal level of

the SONET hierarchy with a data rate of n � 51.84 Mb/s)
SVC Switched Virtual Circuit
TCP Transmission Control Protocol
TDM Time Division Multiplexing
UDP User Data Protocol
UNI User-Network Interface
Unicast Point-to-point flows in packet networks
UPSR Unidirectional Path-Switched Ring
VHO Video Hub Office
VLAN Virtual Local Area Network
VoD Video on Demand
VoIP Voice-over-Internet Protocol
VPLS Virtual Private LAN Service (i.e., Transparent LAN

Service)
VPN Virtual Private Network
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WAN Wide Area Network
Wavelength
continuity

A restriction in DWDM equipment that a through
connection must be optically cross-connected to the same
wavelength on both fibers

W-DCS Wideband Digital Cross-connect System (cross-connects at
DS-1, SONET VT-n or higher rate)

DWDM Wavelength-Division Multiplexing
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Chapter 3
Reliability Metrics for Routers in IP Networks

Yaakov Kogan

3.1 Introduction

As the Internet has become an increasingly critical communication infrastructure for
business, education, and society in general, the need to understand and systemati-
cally analyze its reliability has become more important. Internet Service Providers
(ISPs) face the challenge of needing to continuously upgrade the network and grow
network capacity, while providing a service that meets stringent customer-reliability
expectations. While telecommunication companies have long experience providing
reliable telephone service, the challenge for an ISP is more difficult because changes
in Internet technology, particularly router software, are significantly more frequent
and less rigorously tested than was the case in circuit-switched telephone networks.
ISPs cannot wait until router technology matures – a large ISP has to meet high re-
liability requirements for critical applications like financial transactions, Voice over
IP, and IPTV using commercially available technology. The need to use less mature
technology has resulted in a variety of redundancy solutions at the edge of the net-
work, and in well-thought-out designs for a resilient core network that is shared by
traffic from all applications.

The reliability objective for circuit-switched telephone service of “no more
than 2 hours downtime in 40 years” has been applied to voice communication
since 1964 [1]. It has been achieved using expensive redundancy solutions for
both switches and transmission facilities. Though routers are less reliable than
circuit switches, commercial IP networks have three main advantages when de-
signing for reliability, in comparison with legacy telephone networks. First, packet
switching is a far more economically efficient mechanism for multiplexing network
resources than circuit switching, given the bursty nature of data traffic. Second, pro-
tocols like Multi-Protocol Label Switching (MPLS) support a range of network
restoration options that are more economically efficient in restoration from fail-
ures of transmission facilities than traditional 1:1 redundancy. Third, commercial
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IP networks can provide different levels of redundancy to different commercial
customers, for example, by offering access diversity or multihoming options, pric-
ing the service depending on its reliability. This allows Internet service providers
to satisfy customers who are price-sensitive [2] while recovering the high cost of
redundancy from customers who require increased reliability to support mission
critical applications.

The reliability of modern provider edge routers, which have a large variety of in-
terface cards, cannot be accurately characterized by a single downtime or reliability
metric because it requires averaging the contributions of the various line cards that
may hide the poor reliability of some components. We address this challenge by
introducing granular metrics for quantifying the reliability of IP routers. Section 3.2
provides an overview of the main router elements and redundancy mechanisms.
In Section 3.3, we use a simplified router reliability model to demonstrate the appli-
cation of different reliability metrics. In Section 3.4, we define metrics for measuring
the reliability of IP routers in production networks. Section 3.5 provides an overview
of challenges with measuring end-to-end availability.

3.2 Redundancy Solutions in IP Routers

This section provides an overview of the primary elements of a modern router and
associated redundancy mechanisms, which are important for availability modeling
of services in IP networks. A high-speed IP router is a special multiprocessor system
with two types of processors, each with its own memory and CPU: Route Processors
(RPs) and Line–Cards (LCs). Each line–card receives packets from other routers via
one or more logical interfaces, and performs forwarding operations by sending them
to outbound logical interfaces using information in its local Forwarding Information
Base (FIB). The route processor controls the operation of the entire router, runs
the routing protocols, maintains the necessary databases for route processing, and
updates the FIB on each line–card. This separation implies that each LC can con-
tinue forwarding packets based on its copy of the FIB when the RP fails. Figure 3.1
provides a simplified illustration of router hardware architecture, where two route
processors (active and backup) and multiple line-cards are interconnected through
a switch fabric. The Monitor bus is used exclusively for transmission of error and
management messages that help one to isolate the fault when a component is faulty
and to restore the normal operation of the router, if the failed component is backed
up by a redundant unit. Data traffic never goes through Monitor bus but across the
switch fabric. These hardware (HW) components operate under the control of an
Operating System (OS). Additional details for Cisco and Juniper routers can be
found in [3, 4] and [5], respectively.

A typical Mean Time Between Failures (MTBF) for both RPs and LCs is about
100,000 h (see, e.g., Table 9.3 in [6]). This MTBF accounts only for hard failures
requiring replacement of the failed component, in contrast with soft failures, from
which the router can recover, for example, by card reset. A typical example of a soft
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Power supplies

Active RP

Line Card 1

Line Card n

Monitor Bus

Backup RP

Switch
fabric

Cooling system

Fig. 3.1 Generic router hardware architecture

hardware failure is parity error. Router vendors do not usually provide an MTBF
for the OS, as it varies over a wide range. According to our experience, a new OS
version may have an MTBF well below 100,000 h as a result of undetected software
errors that are first encountered after the OS is deployed to the field. According to
our experience, the MTBF for a stable OS is typically above 100,000 h, though
even with a stable OS, changes in the operating environment can trigger latent
software errors.

Without redundancy solutions at the edge of the network, component failures in-
terrupt customer traffic until the failed component is recovered by reset, which may
take about a minute, or until it is replaced, which can take hours. To reduce failure
impacts, shared HW components whose failure would impact the entire router (e.g.,
RP, switch fabric, power supply, and cooling system) are typically redundant. In this
case, the restoration time (assuming a successful failover to the redundant compo-
nent) is defined by the failover time. For example, in Cisco 12000 series routers
[3] and Juniper T640 router [7], the switch fabric consists of five cards, four of
which are active and one provides redundancy with a subsecond restoration time
when an active card fails. Failure of one power supply or cooling element does not
have any impact on service.

RP redundancy is provided by a configuration with two RP cards: primary and
backup. A first attempt at reducing the failover time has been made by running the
backup RP in standby mode with partial synchronization between the active and
standby RPs that enables the standby RP to maintain all Layer 1 and Layer 2 ses-
sions and recover the routing database from adjacent nodes when the primary RP
fails. However, when a primary RP fails, BGP adjacencies with adjacent routers go
down. The loss of BGP adjacency has the same effect on network routing as fail-
ure of the entire router until the standby RP comes on-line and re-establishes
BGP adjacencies with its neighbors. During this time, the routing protocols will
reconverge to another route and then back again that will cause transient packet
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loss – a phenomenon known as “route flapping.” (Route flapping occurs when a
router alternately advertises a network destination via one route, then another (or as
unavailable, and then available again) in quick sequence [8].)

To prevent the adjacent routers from declaring the failed router out of service
and removing it from their routing tables and forwarding databases, vendors have
developed high availability (HA) routing protocol extensions, which allow a router
to restart its routing software gracefully in such a way that packet forwarding is
not disrupted when the primary RP fails. If the routers adjacent to a given router
support these extensions, they will continue to advertise routes from the restarting
router during the grace period. Cisco’s and Juniper’s HA routing protocol extensions
are known under the name of Non-Stop Forwarding (NSF) [9] and Graceful Restart
(GR) [10], respectively. A detailed description of the Cisco NSF support for BGP,
OSPF, IS-IS, and EIGRP routing protocols as well as for MPLS-related protocols
can be found in [9]. Here, we describe the BGP protocol extension procedures that
follow the implementation specification provided in the IETF proposed standard
“Graceful Restart Mechanism for BGP” [11]. Let R1 be the restarting router and
R2 be a peer. The goal is to restart a BGP session between R1 and peering routers
without redirecting traffic around R1.

1. R1 and R2 signal each other that they understand Graceful Restart in their initial
exchange of BGP OPEN messages when the initial BGP connection is estab-
lished between R1 and R2.

2. An RP failover occurs, and the router R1 BGP process starts on the newly active
RP. R1 does not have a routing information base and must reacquire it from its
peer routers. R1 will continue to forward IP packets destined for (or through)
peer routers (R2) using the last updated FIB.

3. When R2 detects that the TCP session with R1 is cleared, it marks routes, learned
from R1, as STALE, but continues to use them to forward packets. R2 also ini-
tializes a Restart-timer for R1. Router R2 will remove all STALE routes unless it
receives an OPEN message from R1 within the specified Restart-time.

4. R1 establishes a new TCP session with R2 and sends an OPEN message to R2,
indicating that its BGP software has restarted. When R2 receives this OPEN
message, it resets its own Restart-timer and starts a Stalepath-timer.

5. Both routers re-established their session. R2 begins to send UPDATE messages
to R1. R1 starts an Update-delay timer and waits until up to 120 s to receive
End-of-RIB (EOR) from all its peers.

6. When R1 receives EOR from all its peers, it will begin the BGP Route Selection
Process.

7. When this process is complete, it will begin to send UPDATE messages to R2.
R1 indicates completion of updates by EOR and R2 starts its Route Selection
Process.

8. While R2 waits for an EOR, it also monitors Stalepath time. If the timer expires,
all STALE routes will be removed and “normal” BGP process will be in effect.
When R2 has completed its Route Selection Process, then any STALE entries
will be refreshed with newer information or removed from the BGP RIB and
FIB. The network is now converged.
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One drawback of NSF/GR is that there is a potential for transient routing loops
or packet loss if a restarting router loses its forwarding state (e.g., owing to a
power failure). A second drawback of NSF/GR is that it can prolong delays of
network-layer re-routing in cases where the service is NOT restored by RP failover.
In addition, to be effective in a large ISP backbone, NSF/GR extensions would need
to be deployed on all of the peering routers. However, the OSPF NSF extension is
Cisco proprietary. The respective drafts were submitted to the IETF but not approved
as standards. Since most large ISP networks use routers from multiple vendors, the
lack of standardization and universal adoption by vendors limits the usefulness of
the NSF and GR extensions.

Another approach to router reliability, called Non-Stop Routing (NSR), is free
from the drawbacks of graceful restart. It is a self-contained solution that does not
require protocol extensions and has a faster failover time. With NSR, the standby
RP runs its own version of each protocol and there is continuous synchronization
between the active and standby RPs to the extent that it enables the standby RP to
take over when the active RP fails without any disruption in the existing peering
sessions. The first implementation of NSR was done by Avici Systems [12] in 2003
in the Terabit Switch Router (TSR) router that was used in the AT&T core network.
Later, other router vendors implemented their versions of NSR (see, e.g., [13]).

It is important to note that router outages can be divided into two categories:
planned and unplanned outages. Much of the preceding discussion focused on RP
failures or unplanned outages. Planned outages are caused by scheduled mainte-
nance activities, which include software and hardware upgrades as well as card
replacement and installation of additional line-cards. Router vendors are develop-
ing a software solution on top of NSR to support in-service software upgrade, or
ISSU (see, e.g., [13–15]). The goal of ISSU is a significant reduction in downtime
due to software upgrades, potentially eliminating this category of downtime if both
the old and new SW versions support ISSU.

We now turn our attention to line-card failures. Line-card failures are distinct
from link failures – while link failures can often be recovered by the underlying
transport technology, e.g., SONET ring (see Chapter 2), line-card failures require
traffic to be handled by a redundant line-card provisioned on the same or a different
router. Line-card redundancy is particularly important for reducing the outage dura-
tion of PE (provider-edge) routers that terminate thousands of low-speed customer
ports. The first candidate for redundancy is an uplink LC that is used for connection
to a P (core) router. Without redundancy, any uplink LC downtime will cause PE
router isolation. In addition, a redundant uplink LC allows us to connect a PE router
to two P routers using physically diverse transport links. This configuration results
in the near elimination of PE router downtime caused by periodic maintenance ac-
tivities on P routers, under the assumption that maintenance is not performed on
these two P routers simultaneously. PE router downtime is nearly eliminated in this
case because the probability of PE isolation caused by the failure of the second up-
link or the other P router is negligibly small if the maintenance window is short.
Restoration from an uplink LC failure is provided at the IP-Layer with restoration
time of the order of 10 s as described in Chapter 2.
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SONET interfaces on IP routers may support the ability to automatically switch
traffic from a failed line-card to a redundant line-card, using a technique called
Automatic Protection Switching (APS) [16]. Implementation of APS requires in-
stallation of two identical line-cards; one card is designated as primary, the other
as secondary. A port on the primary LC is configured as the working interface and
the port with the same port number on the secondary LC as the protection inter-
face. The ports form a single virtual interface. Ports on the secondary LC cannot
be configured with services; they can only be configured as protection ports for the
corresponding ports on the primary LC. The protection and working interfaces are
connected to a SONET ADM (Add-Drop Multiplexer), which sends the same signal
payload to the working and protection interfaces. When the working interface fails,
its traffic is switched to the protection interface. According to our experience, the
switchover time is of the order of 1 min. Hitless switchover requires protocol syn-
chronization between the line–cards, which was not available at the time of writing
of this chapter. APS is only available in a 1:1 configuration. As a result, it is con-
sidered to be expensive. An alternative line-card redundancy approach developed at
AT&T [17] is based on a new ISP edge architecture called RouterFarm. RouterFarm
utilizes 1:N redundancy, in which a single PE backup router can support multiple
active routers. The RouterFarm architecture supports customer access links that con-
nect to PE routers over a dynamically reconfigurable access network. When a PE
router fails or is taken out of service for planned maintenance, control software re-
homes the customer access links from the affected router to a selected backup router
and copies the appropriate router configuration data to the backup router. Service is
provided by the backup router once the rehoming is complete. After the primary
router is repaired or required maintenance is performed, customers can be rehomed
back to the primary router.

3.3 Router Reliability Modeling

As described in Section 3.2, router outages can be divided into two categories:
planned and unplanned. Planned outages are caused by scheduled maintenance
activities. Customers with a single connection to an ISP edge router are noti-
fied in advance about planned maintenance. Outages outside of the maintenance
window are referred to as unplanned. The common practice is to evaluate router
reliability metrics for planned and unplanned outages separately. Table 3.1 provides
an example1 of downtime calculation for software (SW) and hardware (HW) up-
grades that require the entire router to be taken out of service. The downtime is
calculated based on upgrade frequency per year in the second column and mean up-
grade duration in the third column. The total mean downtime per year for planned
outages is 42 min.

1 All examples are for illustrative purposes only and are not meant to model or describe any network
or vendor’s product.
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Table 3.1 Planned downtime for SW and HW upgrades

Activity Freq/year Duration (min) Downtime (min)

SW upgrade 2 15 30
HW upgrade 0.2 60 12

The router downtime is close to 0 for unplanned outages if the router supports RP
and LC redundancy. If LC redundancy is not supported, unplanned router downtime
depends on the ratio rLC=mLC where rLC and mLC denote LC MTTR (Mean Time To
Repair) and MTBF, respectively. Using the fact that rLC � mLC, one can approx-
imate the downtime probability by rLC=mLC and calculate the average unplanned
router downtime per year as

dLC D .rLC=mLC/ � 525; 600 .min=year/:

The factor 525; 600 D 365 � 24 � 60 is the number of minutes in a 365-day year.
With stable hardware and software, rLC=mLC � 4 � 10�5 and unplanned downtime
dLC is around 21 min, which is less than the planned downtime due to upgrades by
a factor of 2.

The reliability improvement due to RP and LC redundancy for unplanned outages
can be evaluated using the following simplified router reliability model described
by a system consisting of two independent components representing the LC and RP.
Component 1 corresponds to the LC and component 2 corresponds to the RP. Each
component alternates between periods when it is up and periods when it is down.
The system is working if both components are up. For nonredundant component
i; i D 1; 2, denote MTBF and MTTR by mi and ri , respectively. For a component
consisting of primary and backup units, we assume that once a primary unit fails, the
backup unit starts to function with probability pi after a random delay with mean
�i � ri . With probability 1 � pi , the switchover to the backup unit fails, in which
case the mean downtime is ri . Thus, the MTTR for a redundant component is

bi D pi�i C .1 � pi /ri : (3.1)

Two important particular cases correspond to pi D 0 (no redundancy) and �i D 0

(instantaneous switchover). The MTBF for a redundant component is

ci D mi if �i > 0

ci D mi=.1 � pi / if �i D 0: (3.2)

The steady state probability that the system (component) is working is referred to as
availability. The complementary probability is referred to as unavailability. Based
on our assumptions, the availability of component i is

Ai D ci

ci C bi

(3.3)
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and the system availability is
A D A1A2: (3.4)

In our case, ri � mi that allows us to obtain the following simple approximation
for the system unavailability:

U D 1 � A1A2 D 1 � .1 � U1/.1 � U2/ � U1 C U2 (3.5)

where Ui D bi=.ci C bi / is unavailability of component i . Another important re-
liability metric is the rate fs at which the system fails. In our case (see, e.g., 7c
in [18])

fs � 1=c1 C 1=c2: (3.6)

Redundancy without instantaneous switchover decreases the mean component
downtime bi and the component and the system unavailability. However, the system
failure rate does not decrease because the component uptime ci D mi remains
unchanged if �i > 0. Instantaneous switchover decreases both the unavailability
and the system failure rate.

The availability of LCs and RPs with no redundancy is typically better than
0.9999 (four nines) but worse than 0.99999 (five nines). We can compute an es-
timate of the improvement due to redundancy using Eq. (3.1). If the redundancy of
component i is characterized by a probability of successful switchover pi D 0:95

and �i=ri D 0:05, then the mean component downtime bi and therefore its unavail-
ability would decrease by about a factor of 10, resulting in a component availability
exceeding five nines. The system availability would be limited by the availability of
any nonredundant component.

3.4 Reliability Metrics for Routers in Access Networks

Figure 3.2 depicts a typical Layer 3 access topology for enterprise customers. It
includes n provider-edge routers PE1, : : : , PEn and two core or backbone routers
P1 and P2, which are responsible for delivering traffic from customer edge (CE)

P1

CE P2PEn

PE1CE

B
ackbone

···

Fig. 3.2 Access network elements
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routers at a customer location into the commercial IP network backbone. The service
provided by an ISP to an enterprise customer is typically associated with a customer
“access port.” An access port is a logical interface on the line-card in a PE, where
the link from a customer’s CE router terminates. In general, a PE has a variety of
line-cards with different port densities depending on the port speed. For example,
a channelized OC-12 card provides up to 336 T1/E1 ports, while a channelized
OC-48 card can provide up to either 48 T3 ports, or 16 OC3 ports, or 4 OC12
ports. In Fig. 3.2, each PE is dual-homed to two different P (core) routers using
two physically diverse transport links terminating on different line-cards at the PE
router. (These transport links are referred to as uplinks.) The links that connect P
routers at different nodes are generally provided by an underlying transport network.
Dual-homing is used to reduce the impact on the customer due to outages – from
a potentially long repair interval to short-duration packet loss caused by protocol
reconvergence. Dual-homing is used to address the following outage scenarios:

� Outage of uplink transport equipment
� Outage of an uplink line-card at PE routers
� Outage of an uplink line-card at P routers
� Outage of one P router or its associated backbone links

Customer downtime can be caused by a failure in a PE component, such as a failed
interface or line-card, or from a total PE outage.

Our goal in this section is to provide a practical way of applying the traditional
reliability metrics like availability and MTBF to a large network of edge routers. The
calculation of these metrics is straightforward in the case of K identical systems
s1; : : : ; sK , where each system alternates between periods when it is up and periods
when it is down. Assume that k � K different systems si1 ; : : : ; sik failed during
time interval of length T , and let tj be the total outage duration of system j . The
unavailability Uj of system j can be estimated as

Uj D tj =T for j D i1; : : : ; ik (3.7)

and Uj D 0 otherwise. Then, the average unavailability is

U D

KP

j D1

Uj

K
D

kP

j D1

tij

KT
(3.8)

and the average availability is

A D 1 � U : (3.9)

Finally, the average time between failures is estimated as KT=L, where L � k is
the total number of failures during time interval T .

There are two main difficulties with extending these estimates to routers. First,
routers experience failures of a single line-card in addition to entire router failures.
Second, routers may not be identical. The initial approach to overcome these dif-
ficulties was to assign to each failure a weight that represents the fraction of the
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access network impacted by the failure. Such an approach is adequate for access
networks consisting of the same type routers and line-cards with port speeds in a
sufficiently narrow range, which was the case of early access networks with Cisco’s
7500 routers. Modern access networks may consist of several router platforms and
high-speed routers may have line-cards with port speed varying in a wide range. For
these networks, averaging failures over various router platforms and line-cards with
different port speeds is not sufficient. We start with presenting the existing aver-
aging techniques and demonstrating their deficiencies and then describe a granular
approach where availability is described by a vector with components representing
the availability for each type of access line-cards.

Two frequently used expressions for calculating the fraction of the impacted ac-
cess network are based on different parameterizations of impacted access ports in
service and have the following forms [19]:

f D Number of impacted access ports in service

Total number of all access ports in service
(3.10)

and

f D Total bandwidth of impacted access ports in service

Total bandwidth of all access ports in service
(3.11)

Having the fraction fi of access port impacted and failure duration Di for each
failure i; i D 1; : : : ; L during time interval of length T , we can estimate the average
access unavailability and availability as

U access D
LX

iD1

fi

Di

T
and Aaccess D 1 � U access (3.12)

respectively. Formally, one can use Eq. (3.12) with port-weighting or bandwidth-
weighting fractionsfi for estimating the average unavailability (availability) of any
access network with different router platforms. However, there are several problems
with these averaging techniques that limit their usefulness:

� Port-weighted fraction (3.10) emphasizes line-card failures with low-speed ports
while failures of high-speed ports are heavily discounted because the port density
on a line-card is inversely proportional to the port speed.

� Bandwidth-weighted fraction (3.11) assigns lower weight to failures of line-cards
with low-speed ports because they do not utilize the entire bandwidth of the
line-card.

� Any averaging over different router platforms or even for one router platform
with a variety of line-cards that have different quality of hardware and software
may hide defects.

These issues are illustrated by the following example. Consider an access network
consisting of 100 Cisco gigabit switch routers (GSRs) and assume that each router
has two access line-cards of each of the following three types:
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� Channelized OC12 with up to 336 T1 ports
� Channelized OC48: one card is with up to 48 T3 ports while another card is either

with up to 16 OC3 ports (50 routers) or with up to 4 OC12 ports (50 routers)
� 1-port OC48.

The total number of ports in service and their respective bandwidth (BW) are shown
in Table 3.2. The number of ports in the third column of Table 3.2 is obtained by
multiplying the number of ports in service given in the second column of Table 3.3
by the total number of cards with the respective port speed. For T1 and OC48, the
total number of cards of each type is 200 D 2�100. For T3, OC3, and OC12, the to-
tal number of cards is 100, 50, and 50, respectively. In Table 3.3, we use Eqs. (3.10)
and (3.11) to calculate port-weight and bandwidth-weight for failure of one line-
card depending on the number of ports in service given in the second column. The
bandwidth of a line-card is obtained as a product of the number of ports in ser-
vice, given in the second column of Table 3.3, and the respective speed given in the
second column of Table 3.2. One can see that port-weighting practically disregards
failures of line-cards with OC48 and OC12 ports, while contribution of failures of
line-cards with T3 and OC3 ports is discounted relative to T1 ports by a factor of
6.7 and 20, respectively. As a result, the availability of the access network is dom-
inated by the availability of channelized OC12 card with T1 ports. As one could
expect, bandwidth-weighting is biased toward failures of line-cards with an OC48
port. However, failures of other line-cards, except for a channelized OC12 card with
T1 ports, become more visible in comparison with port-weighting.

As a result of these problems with port and bandwidth-weighting techniques, a
more useful approach is to evaluate average availability for each router platform
and for each type of access LC separately. The increasing variety of edge routers
and access line-cards justifies such an approach, since it allows the ISP to track

Table 3.2 Total number of ports in service and their bandwidth

Port Speed (Mbps) Number of ports BW (Gbps)

T1 1.5 40,000 60.0
T3 45 3,000 135.0
OC3 155 500 77.5
OC12 622 150 93.3
OC48 2,400 200 480.0
Total 43,850 845.8

Table 3.3 Port-weight and bandwidth-weight per line-card

Port In service P-weight BW-weight

T1 200 0.00456 0.00035
T3 30 0.00068 0.00160
OC3 10 0.00023 0.00183
OC12 3 6.8E-05 0.00221
OC48 1 2.3E-05 0.00284
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the reliability with finer granularity. Consider a set of edge routers of the same
type with J types of access line–cards, which are monitored for failures during
time interval of length T . For each customer impacting failure i; i D 1; : : : ; L,
we record the number nij of type j cards affected and the respective failure dura-
tion tij. In the case of access line-card redundancy, only failures of active (primary)
line-card are counted and then only if the failover to the backup line-card was not
hitless. The average unavailability of type j access line-card is calculated as

Uj D

LP

iD1

nijtij

Nj T
(3.13)

where Nj is the total number of type j active cards. The average unavailability can
be expressed as

Uj D Rj

Mj

(3.14)

where

Rj D

LP

iD1

nijtij

LP

iD1

nij

(3.15)

is the average repair time for an LC of type j , and

Mj D Nj T

LP

iD1

nij

(3.16)

can be interpreted as the average time between router failures impacting customers
on access line-cards of type j . Metric Mj can be considered as an extension of
the traditional field hardware MTBF. For the field MTBF, only individual line-card
failures, which require card replacement, are counted in the denominator. In Mj ,
we count all failures of type j cards outside the maintenance window, including
those caused by reset, software bugs, and all impacted cards of type j in case of
entire router failure. This distinction is important since we want a metric that accu-
rately captures customer impact caused by all HW and SW failures. For example,
each reset of an active (primary) line-card can cause a protocol reconvergence event
resulting in short-duration packet loss. Metrics R; M , and U can also be defined for
the entire population of access line-cards without differentiating failure by LC type.
Denote

N D
JX

j D1

Nj ; n D
JX

j D1

LX

iD1

nij; t D
JX

j D1

LX

iD1

tij: (3.17)
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Then

R D t

n
; M D NT

n
(3.18)

and the average unavailability

U D R

M
: (3.19)

The value of using Mj in addition to the average unavailability is demonstrated by
the following example.

Example 3.1. Consider a set of 400 routers and let T D 1;000 h. Each router has
two cards of Type 1, three cards of Type 2, and five cards of Type 3. The number
of failures for the entire router and each card type with their duration is given in
Table 3.4. In case of single card failures, nij D 1 if LC of type j failed and nij D 0

otherwise. In the case of entire router failure, .ni1; ni2; ni3/ D .2; 3; 5/. In this
example, we assume constant failure duration tij D tj of type j cards and a con-
stant duration of the entire router failure. The failure duration is measured in hours.
The failure parameters in Table 3.4 are referred to as Scenario 1. We also consider
a Scenario 2, in which the only difference with Scenario 1 is that the number of
failures of entire routers is increased from 1 to 5.

The reliability metrics for two scenarios are given in Table 3.5. The results in
columns R and M for LC Type j; j D 1; 2; 3, and for All Cards are calcu-
lated using Eqs. (3.15), (3.16), and .3:18/, respectively. The unavailability for LC
Type j; j D 1; 2; 3, and for All Cards is calculated using Eqs. (3.14) and (3.19),
respectively. The defects per million (DPM) is a commonly used metric that is ob-
tained by multiplying the respective unavailability by 1,000,000.

Note that for All Cards, defects per million (DPM) are below 10 in both scenar-
ios, implying a high availability exceeding 99.999% (five nines), while the average
time between customer impacting failures M in Scenario 2 is almost half of that in
Scenario 1. Therefore, DPM, in contrast with average time between customer im-
pacting failures, is not sensitive to the frequency of short failures of the entire router.

Table 3.4 Failures and their duration: Scenario 1

Failure # Failures Duration

Router 1 0.1
LC type 1 30 0.8
LC type 2 6 1.5
LC type 3 2 0.5

Table 3.5 Reliability metrics

LC type
Scenario 1 Scenario 2
R M DPM R M DPM

1 0.76 25,000 30.25 0.63 20,000 31.25
2 1.03 133,333 7.75 0.50 57,143 8.75
3 0.21 285,714 0.75 0.13 74,074 1.75
All Cards 0.73 83,333 8.75 0.44 45,455 9.75
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If an ISP were only tracking DPM and router outages increased from one outage per
1,000 h to five outages per 1,000 h, it might miss the significant decrease in reliabil-
ity as seen from the customer’s perspective.

The metrics in the All Cards row hide a low average time between failures and
high DPM for LC Type 1 in both scenarios. The average time between customer
impacting failures by LC type amplifies the difference between the two scenarios.
For example, for LC Type 3, the average time between failures M3 decreased al-
most by a factor of 4 in Scenario 2, in comparison with Scenario 1. This example
illustrates the importance of measuring reliability metrics by the type of access line-
cards. It also illustrates the significant impact that even short-duration outages of
an entire router have on reliability. Furthermore, it shows why nonstop routing and
in-service software-upgrade capabilities described in Section 3.2 are considered to
be so important by ISPs.

3.5 End-to-End Availability

Evaluation of the end-to-end availability requires evaluation of the backbone avail-
ability in addition to the access availability discussed in Section 3.4. Given the scale
and complexity of a large ISP backbone, there is no generally agreed upon ap-
proach for measuring and modeling end-to-end availability. Chapter 4 provides a
fairly general approach for performance and reliability (performability) evaluation
of networks consisting of independent components with finite number of failure
modes. Its application involves the steady state probability distribution that is used
for calculation of the expected value of the measure F defined on the set of net-
work states. This section presents a brief overview of some results related to state
aggregation and the selection of function F for evaluating the backbone availability.

Large ISP backbones are typically designed to ensure that the network stays
connected under all single-failure scenarios. Furthermore, the links are designed
with enough capacity to carry the peak traffic load under all single-failure scenar-
ios. Therefore, the majority of failures do not cause loss of backbone connectivity.
Typically, when a failure happens, P routers detect the failure and trigger a failover
to a backup path. If the failover were hitless and the backup path did not increase
the end-to-end delay and also had enough capacity to carry all traffic, then the fail-
ure would not have any customer impact. Failures impacting customer traffic include
the following events:

1. Loss of connectivity
2. Increased end-to-end delay on the backup path
3. Packet loss due to insufficient capacity of the backup path
4. Routing reconvergence triggered by the original failure. Such a reconvergence

may cause packet loss during several seconds.

Assume that the duration of each event can be measured. Two approaches to mea-
suring the backbone availability are based on knowing the actual point-to-point
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traffic demand matrix that allows us to calculate the amount of impacted traffic
for each event. In the first approach [20], only events 3 and 4 are included. The
backbone unavailability is defined as the fraction of traffic lost over a given time
period. In the second approach [21], all four events are included. Availability is
measured for each origin–destination pair as the percentage of time that the network
can satisfy a service-level agreement including 100% connectivity and thresholds
on packet loss and delay. The main complexity in the implementation of either
approach is in measuring event durations. The determination of event durations
requires specially designed network instrumentation involving synthetic (active)
measurements. Reference [22] describes a standardized point-to-point approach to
path-level measurements and reference [23] describes a novel approach that uses
a single measurement host to collect network-wide one-way performance data.
These approaches also require a well-thought-out data management infrastructure
and computationally intensive processing of their output [24]. Application of edge-
to-edge availability distribution to evaluation of VoIP (Voice over IP) reliability [25]
is addressed in [26].
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Chapter 4
Network Performability Evaluation

Kostas N. Oikonomou

4.1 Introduction

This chapter is an introduction to the area of performability evaluation of networks.
The term performability, which stands for performance plus reliability, was in-
troduced in the 1980s in connection with the performance evaluation of fault-
tolerant, degradable computer systems [23].1 In network performability evaluation,
we are interested in investigating a network’s performance not only in the “perfect”
state, where all network elements are operating properly, but also in states where
some elements have failed or are operating in a degraded mode (see, e.g., [8]). The
following example will introduce the main ideas.

Consider the network (graph) of Fig. 4.1. On the left, the network is in its perfect
state, and on the right one node and one edge have failed.2 Node and edge fail-
ures occur independently, according to certain probabilities, which we assume to
be known. An assignment of “working” or “failed” states to the network elements
defines a state of the network. By the independence assumption, the probability of
that state is the product of the state probabilities of the elements.

There are two traffic flows in this network: one from node 1 to node 5, and the
other from 7 to 3. The flows are deterministic, of constant size, and there is no queu-
ing at the nodes. Our interest is in the latency of each flow, defined as the minimum
number of hops (edges) that the flow must traverse to get to its destination when it is
routed on the shortest path. In each state of the network, a flow has a given latency:
in the perfect state, both flows have latency 2 (hops), but in the example failure state
the first flow has latency 3 and the second 1. The simplest characterization of the
latency metric would be to find its expected value over the possible network states,

K.N. Oikonomou (�)
200 Laurel Ave, Middletown, NJ, 07748
e-mail: ko@research.att.com

1 Unfortunately, the terminology is not completely standard and some authors still use the term
“reliability” for what we call performability; see, e.g., [1]. One may also encounter other terms
such as “availability” or “dependability”.
2 When a node fails, we consider that all edges incident to it also fail.

C.R. Kalmanek et al. (eds.), Guide to Reliable Internet Services and Applications,
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Fig. 4.1 A 7-node, 10-edge network with 217 possible states. The performance metric is traffic
latency, measured in hops

of which there are 217 � 130;000. A more complete characterization would be
to find its entire probability distribution. This would allow one to answer questions
such as “what is the probability that the latency of flow 1 does not exceed 3?”,
and “what upper bound on the latency of flow 2 can be guaranteed with probability
0.999?”. The answers to these questions ( performability guarantees) are useful in
setting performance targets for the network, or SLAs.

This basic example illustrates several points, all of which will be covered in more
detail in later sections.

Reliability/Performance Trade-Off in the Analysis

A fundamental fact is that the size of the state space is exponential in the number
of network elements. In the above example, if the number of network elements is
doubled, the number of network states becomes about 17�109, and this is still a small
network, with only 34 elements; a network model with several hundred elements
would be much more typical. This means that for any realistic network model the
state space is practically infinite, so the amount of work that can be done in each state
to compute the performance metrics is limited. In other words, in performability,
analysis there is a fundamental trade-off between the reliability (state space) and
performance aspects. A consequence of this trade-off is that the performance model
cannot be as detailed as it would be in a pure performance analysis: in the example,
we assumed constant traffic flows and no queuing at nodes. Another aspect of the
trade-off is that only the investigation of the steady-state behavior of the model is,
in general, feasible: in the example, we treated the network elements as two-valued
random variables, not as two-state random processes. However, a mitigating factor is
that the network states generally have very different probabilities, so that we may be
able to calculate bounds on the performance metrics by computing their values only
on a reasonable number of states, those with high probability. With this fundamental
trade-off in mind, we now discuss ways in which the simple performability model
of the example can be extended.
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Enhancements to the Simple Model

To make the model presented in the example more useful for a realistic analysis, we
could add capacities to the graph’s edges. We could also add sizes to the traffic flows,
and have more sophisticated routing that allows only shortest paths that have enough
capacity for a flow. Further, for a better latency measure, we could add lengths to
the graph edges. Another category of enhancements would be aimed at representing
failures more realistically. To begin with, the network elements could be allowed to
have more than one failure mode, e.g., an edge could operate at full capacity, half
capacity, or zero capacity (fail). We could separate the network elements from the
entities that fail by introducing “components” that have failure modes and affect the
graph elements in certain ways. For example, such a component could represent an
optical fiber over which two graph edges are carried, and whose failure (cut) would
fail both of these edges at the same time. In Section 4.2 we describe a hierarchical
network model that has all the features mentioned above, among others. Finally, we
could allow different types of routing for traffic flows, and also introduce the notion
of network restoration into the model. These additions are described in Section 4.3.

Network Performability in the Literature

A number of network performability studies have appeared in the literature. Levy
and Wirth [21] investigate the call completion rate in a communications network.
Alvarez et al. [4] study performability guarantees for the time required to satisfy a
web request in a network with up to 50 nodes, where only nodes can fail, but without
restoration. Levendovszky et al. [19] study the expected lost traffic in the Hungarian
backbone SDH network with 52 nodes and 59 links, and no restoration. Carlier et al.
[7] use a three-level network model, and study expected lost traffic in a 111-node,
180-link network using k-shortest path restoration. Gomes and Craveirinha [12]
study a 46-node, 693-link representation of the Lisbon urban network with a three-
level performability model, and compute blocking probabilities for a Poisson model
of the network traffic, with no restoration. Finally, layered specification of a network
for the purposes of performability evaluation has been used in [7,12], which separate
the network into a “physical” and a “functional” layer, and in [22], which uses a
special-purpose separation into “node cluster” and “call-processing path” layers.

Some further references are given in Section 4.4.3.

Chapter Outline

In Section 4.2 we describe a four-level, hierarchical network model, suited for
performability analysis, and illustrate it with an IP-over-optical network exam-
ple. In Section 4.3 we discuss the performability evaluation problem in general,
give a mathematical formulation, present the state-generation approach to the per-
formability evaluation of networks, and discuss basic performance measures and
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related issues. We also introduce the nperf network performability analyzer, a
software package developed in AT&T Labs Research. In Section 4.4 we conclude
by presenting two case studies that illustrate the material of this chapter, the first
involving an IPTV distribution network, and the second dealing with architecture
choices for network access.

4.2 Hierarchical Network Model

For the purpose of our performability modeling, we will think of a “real” network as
consisting of three layers3: a traffic layer, a transport layer, and a physical layer. On
the other hand, as shown in Fig. 4.2, our performability model is divided into four
levels: traffic, graph, component, and reliability. (In terms of the ISO OSI reference
model, both models address layers 1 through 3.) To illustrate the correspondence
between the three network layers and the four model levels, we use the case of an
IP-over-optical “real” network. The four-level performability model applies to many
other types of real networks as well: for example, Oikonomou et al. [25] describe
its application to a set of satellites that communicate among themselves and a set of
ground stations via microwave links, whereas the ground stations are interconnected
by a terrestrial network.

4.2.1 IP-Over-Optical Network Example

A modern commercial packet network typically consists of IP routers connected by
links, which are transported by an underlying optical network. We describe how we
model the traffic, transport, and physical layers of such a network, and how we map
them to the levels of the performability model in Fig. 4.2. (For more on this topic,
see Chapter 2.)

Traffic Layer

Based on an estimate of the peak or average traffic pattern, we create a matrix giving
the demand or “flow” between each pair of routers. (Methods for creating such a
traffic matrix from measurements are described in Chapter 5.) A demand has a rate,
a unit, and possibly a type or class associated with it.

3 We say “real” because any description is itself at some level of abstraction and omits aspects
which may be important if one adopts a different viewpoint.
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Fig. 4.2 The four-level network performability model used by the nperf performability analyzer.
F is the performance measure, discussed in Section 4.3.3

Transport Layer Nodes

A network node represents an IP router. At the component level this node expands
into a data plane, a control plane, a hardware and software upgrade component, and
a number of networking interfaces (line cards/ports). The data plane, or switch-
ing fabric, is responsible for routing packets, while the control plane computes
routing tables and processes other network signaling protocols, such as OSPF or
BGP. When a data plane component fails, all the links incident to its router fail.
When a control plane component fails, the router continues to switch packets, but
cannot participate in rerouting, including restoration. Failure of a port component
fails the corresponding link(s). The “upgrade” component represents the fact that,
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periodically, the router is effectively down because it is undergoing an upgrade of
its hardware or software. (This is by no means a very sophisticated router relia-
bility model, see Chapter 3, but exemplifies the performance-reliability trade-off
discussed in Section 4.1.) Finally, fix one of the above classes of components, say
router cards. At the reliability level we think of all these components as independent
copies of a continuous-time Markov process (see, e.g., [5] or [6]) with failure tran-
sition rate � and repair transition rate �, which may be specified in terms of MTBF
(mean time between failures, D 1=�), and MTTR (mean time to repair, D 1=�).

Transport Layer Links

A link between routers fails if either of the port components at its endpoints fails,
if a data plane of one of the endpoint nodes fails, or if a lower-layer component
over which the link is routed fails (e.g., a network span, discussed next). Two net-
work nodes may be connected by multiple parallel links. These parallel links may
be grouped into a type of virtual link called a composite or bundled link, whose
capacity is the sum of the capacities of its constituent links. For the purposes of IP
routing, the routers see only a single bundled link. When a constituent link fails, the
capacity of the bundled link is reduced accordingly. A bundled link fails (or more
precisely is “taken out of service”) when the aggregate capacity of its non-failed
constituent links falls below a specified threshold.

Physical Layer Spans

We use the term “span” to refer to the network equipment and media (e.g., optical
fiber) at the physical layer that carries the transport-layer links. Failure of a span
component affects all transport-layer links which are routed over this span. When
modeling an IP-over-optical layered network, the physical layer usually uses dense
wavelength division multiplexing (DWDM), and a span consists of a concatenation
of point-to-point DWDM systems called optical transport systems (OTS).4 In turn,
an OTS is composed of many elements, such as optical multiplexers/demultiplexers,
optical amplifiers, and optical transponders. Also, a basic constraint in commercial
transport networks is that a span is considered to be working only if both of its
directions are working. With this assumption, it is not difficult to compute the failure
probability of a span based on the failure probabilities of its individual elements in
both directions. Thus, for simplicity, we generally represent a network span by a
single “lumped” component whose MTBF and MTTR are calculated as explained
in [28].

4 There are more complex DWDM systems with various optically-transparent “add/drop” capabil-
ities, which, for simplicity, we do not discuss here.
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Other Types of Components

A set of fibers that is likely to fail together because they are contained in a single
conduit/bundle can be represented by a fiber cut component that brings down all net-
work spans (hence all the higher IP-layer links) that include this fiber bundle. Other
types of catastrophic failures of sets of graph nodes and edges may be similarly
represented.

So far we have mentioned only binary components, i.e., with just two modes
of operation, “working” or “failed”. We discuss components with more than two
modes in Section 4.2.2.2.

4.2.2 More on the Graph and Component Levels

4.2.2.1 Graph Element Attributes

The graph is the level of the performability model at which the network routing and
restoration algorithms operate. Graph edges have associated capacities and (routing)
costs. In general, an edge’s capacity can be a vector, and this vector has a capacity
threshold associated with it, such that the edge is considered failed if the sum of the
capacities of its non-failed elements falls below the threshold. An edge with vector
capacity can directly represent a bundled link. The nperf performability analyzer
presented in Section 4.3 also allows many other attributes for edges, such as lengths,
latencies, etc., as well as operations on these attributes. These operations are covered
in Section 4.2.2.3.

4.2.2.2 Multi-Mode Components

Each component, representing an independent failure or degradation mechanism,
has a single working mode and an arbitrary number of failure modes. If it has a
single failure mode it is referred to as a “binary” component, otherwise it is called
“multi-mode”. In the nperf analyzer a component is represented by a star Markov
process, as shown in Fig. 4.3.

At the reliability level, the i th failure mode of a particular component is de-
fined by its mean time between failures and its mean time to repair by setting
�i D 1=MTBFi and �i D 1=MTTRi .

We now give some examples of using multi-mode components in network
modeling.

Router Upgrades We mentioned in Section 4.2.1 (binary) software and hardware
upgrade components for routers. Now suppose that there is an intelligent network
maintenance policy in place, by which router upgrades are scheduled so that only
one router in the network undergoes a software or hardware upgrade at any time.
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Fig. 4.3 A multi-mode component with m failure modes f1; : : : ; fm (left), and the special case of
a binary component (right). The components are continuous-time Markov processes of the “star”
form. The i th mode is entered with (failure) rate �i and exited with (repair) rate �i

This policy cannot be modeled by using binary upgrade components associated with
the routers, because (independence) there is nothing to prevent more than one of
them failing at a time. However, for an n-router network, the mutually exclusive
upgrade events can be represented by defining an .n C 1/-mode component whose
mode 1 corresponds to no upgrades occurring anywhere in the network, and each of
the remaining n modes corresponds to the upgrade of a single router.

Traffic Matrix Suppose we want to take into account daily variations in traffic
patterns/levels, e.g., for 60% of a typical day the traffic is represented by matrix
T1, for 20% by matrix T2, and for another 20% by matrix T3. This can be done by
letting the traffic matrix be controlled by a multi-mode component whose modes
w; f1; f2 have probabilities 0:6; 0:2; 0:2, respectively, and they set the traffic matrix
to T1; T2; T3, respectively.

Restoration Figure 4.2 implicitly assumes that network restoration happens at only
one level. However, multi-mode components afford the capability to model restora-
tion occurring at more than one network layer. The details of how this is done, using
the example of IP over SONET, can be found in [25].

4.2.2.3 Failure Mapping

Recall that failure of a binary component may affect a whole set of graph-level
elements: the spans of Section 4.2.1 are an example. More generally, when a multi-
mode component enters one of its failure modes, the effect on a graph element is
to change some of the element’s attributes. For example, the capacity of an edge
may decrease, or a node may become unable to perform routing. Depending on
the final values of the attributes, e.g., total edge capacity 6 some threshold, the
graph element may be considered “failed”. We refer to the effects of the compo-
nents on the graph as the component-to-graph- level failure mapping. Some of the
ways that a component can affect a graph element attribute are to add a constant
to it, subtract a constant from it, multiply it by a constant, or set its value to a
constant.
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4.3 The nperf Network Performability Analyzer

In this section, we begin by discussing how the general, i.e., not specific to networks,
performability evaluation problem can be defined mathematically, and then discuss
various aspects of this definition. We then review the so-called state generation ap-
proach to performability evaluation, and some basic ingredients of the performance
measures used when evaluating the performability of networks. We finally present
an outline of the nperf network performability analyzer, a tool developed in AT&T
Labs Research.

Useful background on performability in general is in [16] and in [32]. A more
extensive reference on the nperf analyzer itself and the material of this section
is [28].

4.3.1 The Performability Evaluation Problem

It is useful to understand the mathematical formulation of the network performa-
bility evaluation problem. Let C D fc1; : : : ; cng be a set of “components”, each
of which is either working or failed. (As already mentioned in Section 4.2.2, com-
ponents can be in more than two states, called “modes” to distinguish them from
network states, but to simplify the exposition here we restrict ourselves to two mode,
or “binary” components.) Abstractly, a component represents a failure or degrada-
tion mechanism; examples were given in Section 4.2.1.

Component ci is in its working mode with probability pi and in its failed mode
with probability qi D 1 � pi , both assumed known. Our basic assumption is that
all components are independent of one another, so that, e.g., the probability that ci

is down, cj is up, and ck is down is qipj qk . A network state is an assignment of
a mode to every component in C and can be represented by a binary n-vector. The
set of all network states S.C/ has size 2n, and the probability of a particular state
is the product of the mode probabilities of the n components. Let F be a vector-
valued performance measure (a function) defined on S.C/, mapping each state to an
m-tuple of real numbers; examples are given in Section 4.3.3.

The performability evaluation problem consists in computing the expected value
of the measure F over the set S.C/ of network states:

NF D
X

s2S.C/

F.s/ Pr.s/: (4.1)

There are various points to note here.

Complexity It is well known that the exact evaluation of (4.1) is difficult, even
if F is very simple. Intuitively this is because the size of the state space S.C/ is
exponential in the size of the set of components C. For a more precise demonstration
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of the complexity, suppose that each component corresponds to an edge of a graph,
the graph’s nodes do not fail, and we want to know the probability that there is a
path between two specific nodes a and b of the graph. This is known as the TWO

TERMINAL NETWORK RELIABILITY evaluation problem, and in this case F takes
only two values: F.s/ is 1 if there is a path from a to b in the graph state s, and
0 otherwise. Despite the very simple F , this problem is known to be #P-complete
(see e.g., [15, 32], or [8]). A consequence of this computational complexity is that,
in general, only approximate performability evaluation is feasible. We will return
to this in Sect. 4.3.2.

Performability Guarantees In practice, we are interested in computing more
sophisticated characteristics of F than its expectation NF , such as the probability,
over the set of network states, that F is less than some number x, or greater than
some number y. For example, we may want to claim that “with probability at least
99.9%, at most 2% of the total traffic is down, and with probability at least 90% at
most 10% of it is down”. Formally, such claims are statements of the type

Pr.F < x1/ > P1; Pr.F < x2/ > P2; : : : ; or
Pr.F > y1/ 6 Q1; Pr.F > y2/ 6 Q2; : : :

(4.2)

that hold over the entire network state space; they are known as performability
guarantees, and they can, for example, be used to set SLAs. The important point is
that the computation of (4.2) reduces easily to just the computation of expectations
of the type (4.1); see, e.g., [28].

Network When we are using the formalism leading to (4.1) to evaluate the per-
formability of a network, all the complexity is in the measure F . As Fig. 4.2 shows,
F then includes the failure mapping from the component to the graph level, the
routing and restoration algorithms, and the traffic level.

Time Recalling the reliability level of Fig. 4.2, each ci is in reality a two-state
Markov process, whose state fluctuates in time. If so, what is the meaning of the
expectation NF of the measure F ? It can be shown that if we average F over a long
time as the network moves through its states, this average will approach NF , if we
take the probabilities pi and qi associated with ci to be the steady-state probabilities
of the working and failed states of the Markov process representing ci .

Steady State The reader familiar with the performance analysis of Markov reward
models (see, e.g., [5,11]) will recognize that the definition (4.1) of the performabil-
ity evaluation problem is based on steady state expectations of measures. In many
cases it is transient, also known as finite-time, measures that may be of interest. The
evaluation of such measures on very large state spaces is much more difficult than
that of steady state measures, and outside the scope of the treatment in this chapter,
but it is currently an area of further development of the nperf tool.
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4.3.2 State Generation and Bounds

A number of approaches to computing the expectation NF in (4.1) approximately
have been developed. Without attempting to be comprehensive, they can be classi-
fied into (a) upper and lower bounds for certain F such as connectivity (using the
notions of cut and path sets), or special network/graph structures (see [16, 32]), (b)
“most probable states” methods ([13, 14, 16, 17, 31–33]), (c) Monte Carlo sampling
approaches ([7, 16]), and (d) probabilistic approximation algorithms for simple F ,
e.g., [18]. Methods of types (a) and (b) produce algebraic bounds on NF (i.e., not
involving any random sampling), while (c) and (d) yield statistical bounds.

Here we will discuss the “most probable states” methods, which are algorithms
for generating network states in order of decreasing probability. The rationale is that
if the component failure probabilities are small, most of the probability mass is con-
centrated on a relatively small fraction of the state space. Thus, as these methods
generate states one by one and evaluate F on them, they are attempting to update NF
with terms of highest value first. The most probable states methods are particularly
well suited to evaluating the performability of complex networks because they make
no assumptions (at least to first order) about what the performance measure F might
be or what properties it might have, which is especially important in view of the fact
that the complexity of network routing and restoration schemes is included in F .
The classical algorithms of [13, 33] apply to systems of only binary components,
whereas the algorithms of [14,17,30] can handle arbitrary multi-mode components.
nperf uses a hybrid state-generation algorithm described in [28], which handles ar-
bitrary multi-mode components and is suited especially to “mostly binary” systems,
that is systems where the proportion of components with more than two modes
is small. We find that such systems dominate performability models for practical
networks.

To explain what we mean by “at least to first order”, let ! and ˛ be the
smallest and largest values of F over S.C/, and suppose we generate the k highest-
probability elements of S.C/. If these states have total probability P , we have the
algebraic lower and upper bounds on NF

NFl D
kX

iD1

F.si / Pr.si / C .1 � P /!; NFu D
kX

iD1

F.si / Pr.si / C .1 � P /˛; (4.3)

first pointed out in [20]. The bounds (4.3) are valid for arbitrary F , but may some-
times require the generation of a large number of states to achieve a small enough
NFu � NFl D .1 � P /.˛ � !/. Tighter bounds are possible, but only by requiring F to

have some special property, such as monotonicity, limited growth, etc. See [27] for
further details.
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4.3.3 Performance Measures

There are two measures of fundamental importance in network performability
analysis, both having to do with lost traffic. These are

tlnr.s/ D total traffic lost because of no route in s

tlcg.s/ D total traffic lost because of congestion in s (4.4)

(We do not mean to imply that these are the only measures of importance. Depend-
ing on the application, the focus may shift to considerations other than lost traffic,
e.g., to latency, or to many others.) To define terms, we refer to the IP-over-optical
example of Section 4.2.1. A demand corresponds to a source-destination pair of
routers; we use traffic to mean the size (volume) of a demand, or of a set of demands.

The definition of tlnr is straightforward: a demand fails if a link (multi-edge) on
its route fails, and a failed demand is lost because of no route if no path for it can
be found after the network restoration process completes. tlnr.s/ is the sum of the
volumes of all lost demands in state s.

Our definition of tlcg is more involved.5 If the network routing allows congestion,
a demand is congested if its route includes an edge with utilization that exceeds
a threshold Uc . tlcg is a certain function (not the sum) of all congested demands.
Suppose we fix a routing R in state s; then we define tlcg to be the total traffic
offered to the network minus the maximum possible total flow F that can be carried
in state s using routing R without congestion. Here “there is congestion under R”
means “there is a (working) edge with utilization above the threshold Uc”. Equation
(4.5) formalizes this definition. Note that if the network uses flow control, such as
TCP in an IP network, the flow control will “throttle” traffic as soon as it detects
congestion, so that few packets will be really lost; in that case it is more accurate to
call our measure loss in network bandwidth. Now using the “link-path” formulation
[29], let D be the set of all subdemands (path flows) and D.e; R/ be the set of
subdemands using the non-failed edge e under the routing R. Also let fd be the
flow corresponding to subdemand d . Then F is the solution of the linear program

F D max
X

d2D

fd (4.5)

subject to

8e;
X

d2D.e;R/

fd � Ucce ; fd � vd ;

where ce is the capacity of edge e and vd the volume of demand d .

5 This definition is by no means unique, we claim only that it is useful in a wide variety of contexts.
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Consistent with what we noted in Section 4.3.1, the above discussion centered
around steady-state expectations of measures as the quantities of interest. In the
context of the case study in Section 4.4.2 we will touch on one interesting sub-class
of finite-time measures, event counts.

4.3.4 Network Routing and Restoration

The presence of network routing and restoration in the performance measure makes
the performability analysis of networks different from other such analyses. The
nperf analyzer incorporates three main kinds of network routing methods:

Uncapacitated Minimum-Cost This is meant to represent routing by, e.g., the
OSPF (Open Shortest Path First) protocol [24]. Link costs correspond to OSPF
administrative weights. OSPF path computation does not take into account the ca-
pacities or utilizations of the links. Another main IP-layer routing protocol, IS-IS
(Intermediate System–Intermediate System) behaves similarly for our purposes.

“Optimal” Routing This routing is based on multi-commodity flows ([2, 29]).
nperf incorporates both integral and non-integral (“real”) multi-commodity flow
methods. These methods could be regarded as representing variants of OSPF-TE.
Details are in [28].

Multicast Routing This type of routing sends the traffic originating from a source
node on a shortest-path tree rooted at this node and spanning a set of destination
nodes. The shortest paths to the destinations are determined by so-called reverse-
path forwarding.

These routing methods are not meant to be emulations of real network protocols;
they include only the features of these protocols that are important for the kind of
analysis that nperf is aimed at. In particular, a lot of details associated with timing
and signaling are absent (another instance of the reliability/performance trade-off
noted in Section 4.1).

4.3.5 Outline of the nperf Analyzer

With the above material in mind, Fig. 4.4 depicts the structure of the core of the
nperf tool. At the top we have the most probable state generation algorithms
of [13, 28, 33], mentioned in Section 4.3.2. The “routers” at the bottom of the
figure are the routing methods discussed in Section 4.3.4: “iMCF” corresponds
to integral multi-commodity flow, “rMCF” to non-integral (“real” or “fractional”)
multi-commodity flow, and “USP” to uncapacitated shortest paths.

The four-level network model is specified by a set of plain text files, listed in
Table 4.1.
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...≤ Pr(fi≤ x i)≤ ...

Fig. 4.4 Structure of the core nperf software

Table 4.1 Network model specification files

net.graph Specifies the network graph (nodes and edges)
net.dmd, net.units Specify the traffic demands, if the network has a traffic layer
net.comp Specifies the network components and the C ! G failure mapping
net.rel Lists (MTBF, MTTR) pairs for the modes of the components
net.perf Parameters for the performance measure(s)

The MTBFs for the components are typically obtained from a combination of
manufacturer data and in-house testing. The MTTRs are usually determined by
network maintanance policies, except for some special types of repairs, such as a
software reboot. (Of course, one always has the freedom to use hypothetical values
when performing a “what-if” analysis.) Uncertainties in the MTBFs and MTTRs
may be dealt with by repeating an analysis with different values of MTBFS and/or
MTTRs, and nperf has some facilities to ease this task. A more sophisticated



4 Network Performability Evaluation 127

Table 4.2 Publicly-available tools that have some relation to nperf. Web sites valid as of 2009

PTOLEMY Modeling and design of concurrent, real-time, embedded systems
http://ptolemy.eecs.berkeley.edu/

TANGRAM II Computer and communication system modeling
http://www.land.ufrj.br/tools/tangram2/tangram2.html

MOBIUS Model-based environment for validation of system reliability, availability
security, and performance
http://www.mobius.uiuc.edu/

PRISM Probabilistic model checker
http://www.prismmodelchecker.org/

TOTEM Toolbox for Traffic Engineering Methods
http://totem.run.montefiore.ulg.ac.be/

alternative is to assign uncertainties (prior probability distributions) to the MTBFs
and MTTRs and propagate them to posterior distributions on NF via a Bayesian anal-
ysis. However, this is outside the scope of this chapter.

4.3.6 Related Tools

Performance and reliability analyses of systems are vast areas with many ramifica-
tions. At this point there exist a number of tools that are, in one way or another,
related to some of what nperf does. Table 4.2 mentions some of the author’s fa-
vorites, all in the public domain; the interested reader may pursue them further.

Vis-a-vis these tools, the main distinguishing features of nperf are that it
is geared toward networks (hierarchical model, routing, restoration), and repre-
sents them by large numbers of relatively simple independent (noninteracting)
components.

4.4 Case Studies

We conclude by presenting two case studies that, among other things, illustrate the
application of the nperf tool. The first study is on a multicast network for IPTV
distribution, and the second involves choosing among a set of topologies for network
access.

4.4.1 An IPTV Distribution Network

In this study we analyzed a design for an IPTV distribution network similar to
the one discussed in [9], but with 65 nodes distributed across the continental US.
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These nodes are called VHOs (Video Head Offices), and there is an additional node
called an SHO (Super Hub Office), which is the source of all the traffic. The traf-
fic stream from the SHO is sent to the VHOs by multicast6: when a node receives
a packet, it puts a copy of it on each of its outgoing links. Thus traffic flows on
the edges of a multicast tree rooted at the SHO, and each VHO is a node on this
tree. The tree forms a sub-network of the provider’s overall network. The multicast
sub-network uses two mechanisms to deal with failures:

� fast re-route: each edge of the tree has a pre-defind backup path for it, which uses
edges of the encompassing network that are not on the tree.

� tree re-computation: if a tree edge fails, and fast-reroute is unable to protect it
because the backup path itself has also failed, a new tree is computed. This com-
putation is done by so-called reverse path forwarding: each VHO computes a
shortest path from it to the SHO, and the SHO then sends packets along each
such path in the reverse direction.

The advantage of fast re-route (FRR) is that it takes much less time, millisec-
onds instead of seconds, than tree re-computation. Given a properly designed FRR
capability, an interesting feature of the multicast network from the viewpoint of per-
formability analysis is that it essentially tolerates any single link failure.7 Therefore,
interesting behavior appears only under failures of higher multiplicity. Indeed, it
turns out that multiple failures can result in congestion: the backup paths for differ-
ent links are not necessarily disjoint and so when FRR is used to bypass a whole set
of failed links, a particular network link belonging to more than one backup path
may receive traffic belonging to more than one flow. If the link capacity is such that
this causes congestion, the congestion will last until the failure is repaired, which
may take time of the order of hours. One way to deal with this problem is to compute
a new multicast tree after FRR is done, and to begin using this new tree as soon as
the computation is complete, as suggested in [9]. This retains the speed advantage
of FRR and limits the duration of any congestion to the tree re-computation time.

For this network, performance must be guaranteed for every VHO (worst case),
not just overall. So, in the terms of Section 4.3.3, the multicast performability mea-
sures are two 65-element vectors, one for loss due to no path and one for loss due to
congestion, whose elements are computed on each network state.

We now summarize some of the results of this study. An initial network design,
known as design A, was carried out by experienced network designers. Its perfor-
mance, after normalizing the expectations of the measures by the total traffic and
converting the result to time per year,8 is shown in Fig. 4.5, top. Since this was a
well-designed network to begin with, its levels of traffic loss were quite low, bet-
ter than “five 9s”. Within these low levels, Fig. 4.5 shows that the loss due to no
path, the tlnr of (4.4), is dominant for most VHOs, but some of them also exhibit

6 Specifically by Protocol Independent Multicast (PIM).
7 By “link” here we mean an edge at the graph level of the model of Fig. 4.2.
8 For example, a traffic loss of 0.01% of the total translates to 1=10; 000 of a year, i.e., about
52 min/year.
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Fig. 4.5 Expected lost traffic, expressed in time per year, because of no path and congestion in
design A (top), and in design C (bottom). These are the tlnr and tlcg defined in (4.4). Design C is
A with tuned OSPF weights. For the purposes of comparing the two designs, the time unit of the
y-axis is irrelevant

significant loss because of congestion (tlcg). Even though the performability of this
network was entirely acceptable, we decided to see if the loss due to congestion
could be reduced. A detailed study of the network states generated by nperf that
led to congestion in Fig. 4.5 top, revealed that they were double and triple failures.
Further, we found that for VHOs 30 to 41 congestion could be practically eliminated
by tuning a certain set of OSPF link weights. The result, known as design C , per-
formed as shown in Fig. 4.5 bottom. It can be seen that a lot of congestion-induced
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losses were eliminated while the loss due to no path remained at the same level
throughout, and this was achieved without adding to the cost of the network design
at all. See [10] for more details on the subject of reliable IPTV network design.

4.4.2 Access Topology Choices

An issue that arose for a major Internet service provider was that traffic in its net-
work was increasing, but the backbone routers had limited expansion capability
(numbers of slots in the chassis). To get around this limitation it was proposed to
introduce intermediate aggregation routers in the access part of the network, and
the question was how this would affect the reliability of the access.

The configuration of the provider’s backbone offices before the introduction of
aggregation routers is shown in Fig. 4.6 top, and is referred to as “base”; there is a
“local” variant in which all routers are located within a single office, and a “remote”
variant in which the routers are in different offices. In reality there are many access
routers connecting to a pair of backbone routers, but showing just one in Fig. 4.6 is
enough for our purposes. There were two proposals for introducing the aggregation
routers, called the “box” and the “butterfly” designs, shown in Fig. 4.6 middle and
bottom. These had local and remote variants as well. Further, there was a premium
“diverse” option in the butterfly remote design in which the links between a back-
bone router and its two aggregation routers were carried on two separate underlying
optical transport (DWDM) systems, instead of the same transport (the “common”
option).

It was clear that the box alternative was cheaper because of fewer links, but what
was the reduction in availability relative to the costlier butterfly design? Also, how
did either of these options compare with the existing base design? The failure modes
of interest in all these designs were network spans, router ports, and software failures
or procedural errors; these failure modes are depicted as components in Fig. 4.7.
The metric chosen to compare the availabilities of the various designs was the mean
time between access disconnections, i.e., situations where the access router A had
no path to any backbone router BB. Note that network restoration is immaterial for
such events.

nperf models for the designs of Fig. 4.6 were constructed; given the metric of
interest, the models did not include a traffic layer. Typical values for the reliability
attributes of the components were selected as in Chapter 3. At a high level, note that
the longer links between the aggregation and backbone routers in the remote designs
are less reliable than the corresponding links in the local designs. The results of the
study are summarized in Table 4.3.

The mean access disconnection times are separated into two categories, of which
“hardware” includes the first three types of components listed in Fig. 4.7. The most
notable result in Table 4.3 is that irrespective of the architecture, software and pro-
cedural errors are by far the dominant cause for access router isolations. These
events are the ones that cannot be helped by redundancy. The second most important
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Fig. 4.6 “Base”, “box”, and “butterfly” access configurations. Each has a “local” and a “remote”
version. The remote versions have routers spread among different offices (the enclosing blue
boxes). BB are backbone routers, AG are aggregation routers, and A is an access router

feature is that compared to the base case, the introduction of aggregators doubles the
risk of access router isolation due to software and procedural errors, again irrespec-
tive of the design. With respect to hardware failures in the local case, the box design
increases the risk of isolation by a factor of 3 compared to the base case, but the
butterfly design is just as good as the base. In the remote case, the box design is
about twice as bad as the base, but the butterfly is in fact better, by at least a factor
of 2.75.
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Fig. 4.7 Components for the simplest “base” and most complex “butterfly remote common”
topologies. A component affects the edges or nodes which it overlaps in the diagram (the con-
nection to the Z router is fictitious, representing the part of the network beyond the backbone
routers, which is common to all alternatives)

Table 4.3 Mean access disconnection time (years), i.e., time between disconnec-
tions of access router A from both backbone routers BB, for the access topologies
of Fig. 4.6

Hardware Software & procedural error

Local Base 700 10
Box 232 5
Butterfly 699 5

Remote Base 120 10
Box 61 5
Butterfly diverse 676 5
Butterfly common 329 5

Summarizing availability by reporting only means makes comparisons easy, but
hides information that is important in assessing the risk. By making the reasonable
assumption that the isolation events occur according to a Poisson distribution with
means as specified in Table 4.3, we see that the 5-year mean implies that in a single
year one isolation event occurs with probability �16% and two events with proba-
bility �2%.
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4.4.3 Other Studies

Besides what was presented above, nperf has been used in a variety of other
studies: the performability of a backbone network under two different types of rout-
ing was analyzed in [3], the performability of a multimedia distribution network that
tolerates any single link failure was studied in [9, 10], two-layer IP-over-SONET
restoration in a satellite network was investigated in [25], and techniques for setting
thresholds for bundled links in an IP backbone network were studied in [26].

4.5 Conclusion

This chapter presents an overview of analyzing the combined performance and relia-
bility, known as performability, of networks. Performability analysis may be thought
of as repeating a performance analysis in many different states (failures or degra-
dations) of the network, and is thus much more difficult than either reliability or
performance analysis on its own. Successful analysis rests on finding a point on the
reliability–performance spectrum appropriate to the problem at hand. Our particular
approach to network performability analysis is based on a four-level hierarchical
network model, and on the nperf software tool, which embodies a number of
methods known in the literature, some new techniques developed by us, and is
under active development in AT&T Labs Research (finite-time measures, quality-
of-service additions to the traffic layer, etc.). We illustrated the ideas of analysing
performability by two case studies carried out with nperf and gave references to
other studies in the literature.
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Chapter 5
Robust Network Planning

Matthew Roughan

5.1 Introduction

Building a network encompasses many tasks: from network planning to hardware
installation and configuration, to ongoing maintenance. In this chapter, we focus on
the process of network planning. It is possible (though not always wise) to design a
small network by eye, but automated techniques are needed for the design of large
networks. The complexity of such networks means that any “ad hoc” design will
suffer from unacceptable performance, reliability, and/or cost penalties.

Network planning involves a series of quantitative tasks: measuring the current
network traffic and the network itself; predicting future network demands; deter-
mining the optimal allocation of resources to meet a set of goals; and validating the
implementation. A simple example is capacity planning: deciding the future capac-
ities of links in order to carry forecast traffic loads, while minimizing the network
cost. Other examples include traffic engineering (balancing loads across our exist-
ing network) and choosing the locations of Points-of-Presence (PoPs) though we do
not consider this latter problem in detail in this chapter because of its dependence
on economic and demographic concerns rather than those of networking.

Many academic papers about these topics focus on individual components of
network planning: for instance, how to make appropriate measurements, or on par-
ticular optimization algorithms. In contrast, in this chapter we will take a system
view. We will present each part as a component of a larger system of network plan-
ning. In the process of describing how the various components of network planning
interrelate, we observe several recurring themes:

1. Internet measurements are of varying quality. They are often imperfect or in-
complete and can contain errors or ambiguities. Measurements should not be
taken at face value, but need to be continually recalibrated [48], so that we have
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some understanding of the errors, and can take them into account in subsequent
processing. We will describe common measurement strategies in Section 5.2.

2. Analysis and modeling of data can allow us to estimate and predict otherwise
unmeasurable quantities. However, in the words of Box and Draper, “Essen-
tially, all models are wrong, but some are useful” [9]. We must be continually
concerned with the quality of model-based predictions. In particular, we must
consider where they apply, and the consequences of using an inaccurate model.
A number of key traffic models are described in Section 5.3, and their use in
prediction is described in Section 5.4.

3. Decisions based on quantitative data are at best as good as their input data, but
can be worse. The quality of input data and resulting predictions are variable,
and this can have consequences for the type of planning processes we can apply.
Numerical techniques that are sensitive to such errors are not suitable for network
engineering. Discussion of robust, quantitative network engineering is the main
consideration of Sections 5.5 and 5.6.

Noting all of the above, it should not be surprising that a robust design process
requires validation. The strategy of “set and forget” is not viable in today’s rapidly
changing networking environment. The errors in initial measurements, predictions,
and the possibility for mistakes in deployment mean that we need to test whether
the implementation of our plan has achieved our goals.

Moreover, actions taken at one level of operations may impact others. For exam-
ple, Qiu et al. [51] noted that attempts to balance network loads by changing routing
can cause higher-layer adaptive mechanisms such as overlay networks to change
their decisions. These higher-level changes alter traffic, leading to a change of the
circumstances that originally lead us to reroute traffic.

Thus, the process of measure!analyze/predict!control!validate should not
stop. Once we complete this process, the cycle begins again, with our validation
measurements feeding back into the process as the input for the next round of net-
work planning, as illustrated in Fig. 5.1. This cycle allows our planning process to
correct problems, leading to a robust process.

In many ways this resembles the more formal feedback used in control systems,
though robust planning involves a range of tasks not typically modeled in formal
control theory. For instance, the lead times for deploying network components such
as new routers are still quite long. It can take months to install, configure, and test
new equipment when done methodically. Even customers ordering access facilities

Fig. 5.1 Robust network
planning is cyclic

decision/control analysis/prediction

measurement
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can experience relatively long intervals from order to delivery, despite the obvious
benefits to both parties of a quick startup. So if our network plan is incorrect, we
cannot wait for the planning cycle to complete to redress the problem.

We need processes where the cycle time is shorter. It is relatively simple to
reroute traffic across a network. It usually requires only small changes to router
configurations, and so can be done from day to day (or even faster if automated).
Rebalancing traffic load in the short term – in the interim before the network ca-
pacities can be physically changed – can alleviate congestion caused by failures of
traffic predictions. This process is called traffic engineering.

Another aspect of robust planning is incorporation of reliability analysis. Inter-
net switches and routers fail from time to time, and must sometimes be removed
from service for maintenance. The links connecting routers are also susceptible to
failures, given their vulnerability to natural or man-made accident (the canonical
example is the careless back-hoe driver). Most network managers plan for the pos-
sibility of node or link failures by including redundant routers and links in their
network. A network failure typically results in traffic being rerouted using these re-
dundant pathways. Often, however, network engineers do not plan for overloads that
might occur as a result of the rerouted traffic. Again, we need a robust planning pro-
cess that takes into account the potential failure loads. We call this approach network
reliability analysis.

We organize this chapter around the key steps in network planning. We first
consider the standard network measurements that are available today. Their charac-
teristics determine much of what we can accomplish in network planning. We then
consider models and predictions, and then finally the processes used in making de-
cisions, and controlling our network. As noted, robust planning does not stop there,
we must continue to monitor our network, but there are a number of additional steps
we can perform in order to achieve a robust network plan and we consider them in
the final section of this chapter.

The focus of this chapter is backbone networks. Though many of the techniques
described here remain applicable to access networks, there are a number of critical
differences. For instance, access network traffic is often very bursty, and this affects
the approaches we should adopt for prediction and capacity planning. Nevertheless,
the fundamental ideas of robust planning that we discuss here remain valid.

5.2 Standard Network Measurements

Internet measurements are considered in more detail in Chapters 10 and 11, but a
significant factor in network planning is the type of measurements available, and
so we need some planning-specific discussions. In principle, it is possible to collect
extremely good data, but in practice the measurements are often flawed, and the
nature of the flaws are important when considering how to use the data.

The traffic data we might like to collect is a packet trace, consisting of a record of
all packets on a subsection of a network along with timestamps. There are various
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mechanisms for collecting such a trace, for instance, placing a splitter into an optical
fiber, using a monitor port on a router, or simply running tcpdump on one of the
hosts on a shared network segment. A packet trace gives us all of the information we
could possibly need but is prohibitively expensive at the scale we require for plan-
ning. The problem with a packet trace (apart from the cost of installing dedicated
devices) is that the amount of data involved can be enormous, for example, on an
OC48 (2.5 Gbps) link, one might collect more than a terabyte of data per hour. More
importantly, a packet trace is overkill. For planning we do not need such detail, but
we do need good coverage of the whole network. Packet traces are only used on
lower speed networks, or for specific studies of larger networks.

There are several approaches we can use to reduce data to a more manageable
amount. Filtering, so that we view only a segment of the traffic (say the HTTP
traffic) is useful for some tasks, but not planning. A more useful approach is ag-
gregation, where we only store records for some aggregated version of the traffic,
thereby reducing the number of such records needed. A common form of aggre-
gation is at the flow-level where we aggregate the traffic through some common
characteristics. The definition of “flow” depends on the keys used for aggregation,
but we mean here flows aggregated by the five-tuple formed from IP source and
destination address, TCP port numbers, and protocol number. Flow data is typically
collected within some time frame, for instance, 15 min periods. What is more, flow-
level collection is often a feature of a router, and so does not require additional
measurement infrastructure other than the Network Management Station (NMS) at
which the data is stored. However, the volume of data can still be large (one net-
work under study collected 500 GB of data per day), and the collection process may
impact the performance of the router.

As a result, flow-level data is often collected in conjunction with a third method
for data reduction: sampling. Sampling can be used both before the flows are cre-
ated, and afterward. Prior to flow aggregation, sampling is used at rates of around
1:100–1:500 packets. That is, less than 1% of packets are sampled. This has the
advantage that less processing is required to construct flow records (reducing the
load on the router collecting the flows) and typically fewer flow records will be
created (reducing memory and data transmission requirements). However, sampling
prior to flow aggregation does have flaws, most obviously, it biases the data col-
lection toward long flows. These flows (involving many packets) are much more
likely to be sampled than short flows. However, this has rarely been seen as a prob-
lem in network planning where we are not typically concerned with the flow length
distribution.

Sampling can also be used after flow aggregation to reduce the transmission and
storage requirements for such data. The degree of sampling depends on the de-
sired trade-off between accuracy of measurements, and storage requirements for the
data. Good statistical approaches for this sampling, and for estimating the resulting
accuracy of the samples are available [16,17], though, as noted above, these are pre-
dominantly aimed at preserving details such as flow-length distributions, which are
largely inconsequential for the type of planning discussed here, so sampling prior to
flow construction is often sufficient for planning.
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Of more importance here is the fact that any type of sampling introduces errors
into measurements. Any large-scale flow archives must involve significant sampling,
and so will contain errors.

An alternative to flow-level data is data collected via the Simple Network Man-
agement Protocol (SNMP) [39]. Its advantage over flow-level data collection is that
it is more widely supported, and less vendor specific. However, the data provided is
less detailed. SNMP allows an NMS to poll MIBs (Management Information Bases)
at routers. Routers maintain a number of counters in these MIBs. The widely sup-
ported MIB-II contains counters of the number of packets and bytes transmitted and
received at each interface of a router. In effect, we can see the traffic on each link
of a network. In contrast to flow-level data, SNMP can only see link volumes, not
where the traffic is going.

SNMP has a number of other issues with regard to data collection. The polling
mechanism typically uses UDP (the User Datagram Protocol), and SNMP agents
are given low priority at routers. Hence SNMP measurements are not reliable, and
it is difficult to ensure that we obtain uniformly sampled time series. The result is
missing and error-prone data.

Flow-level data contains only flow start and stop times, not details of packet ar-
rivals, and typically SNMP is collected at 5-min intervals. The limit on timescale
of both data sets is important in network planning. We can only see average traffic
rates over these periods, not the variations inside these interval. However, conges-
tion and subsequent packet loss often occur on much shorter timescales. The result
is that such average measurements must always be used with care. Typically some
overbuild of capacity is required to account for the sub-interval variations in traf-
fic. The exact overbuild will depend on the network in question, and has typically
been derived empirically through ongoing performance and traffic measurements.
Values are usually fairly conservative in major backbones resulting in apparent un-
derutilization (though this term is unfair as it concerns average utilizations not peak
loads), and more aggressive in smaller networks.

In addition to traffic data, network planning requires a detailed view of any ex-
isting network. We need to know

� The (layer 3) topology (the locations of, and the links between routers)
� The network routing policies (for instance, link weights in a shortest-path proto-

col, areas in protocols such as OSPF, and BGP policies where multiple interdo-
main links exist)

� The mapping between current layer 3 links and physical facilities (WDM equip-
ment and optical fibers), and the details of the available physical network facili-
ties and their associated costs

The topology and routing data is principally needed to allow us to map traffic to
links. The mapping is usually expressed through the routing matrix. Formally, A D
fAirg is the matrix defined by

Air D
�

Fir; if traffic for r traverses link i

0; otherwise;
(5.1)
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where Fir is the fraction of traffic from source/destination pair r D .s; d / that
traverses link i . A network with N nodes, and L links will have an L � N.N � 1/

routing matrix.
Network data is also used to assess how changes in one component will affect the

network (e.g., how changes in OSPF link weights will impact link loads); determine
shared risk-of-failure between links; and determine how to improve our network
incrementally without completely rebuilding it in each planning cycle. The latter is
an important point because although it might be preferable to rebuild a network from
scratch, the capital value of legacy equipment usually prevents this option, except at
rare intervals.

For a small, static network, the network data may be maintained in a database,
however, best practice for large, complex, or dynamic networks is to use tools to
extract the network structure directly from the network. There are several meth-
ods available for discovering this information. SNMP can provide this information
through the use of various vendor tools (HP Openview, or Cisco NCM, e.g.), but it is
not the most efficient approach. A preferable approach for finding layer 3 informa-
tion is to parse the configuration files of routers directly, for instance, as described in
[22,24]. The technique has been applied in a number of networks [5,38]. The advan-
tages of using configuration files are manifold. The detail of information available
is unparalleled in other data sources. For instance, we can see details of the links
(such as their composition should a single logical link be composed of more than
one physical link).

The other major approach for garnering topology and routing information is to
use a route monitor. Internet routing is built on top of distributed computations
supported by routing protocols. The distribution of these protocols is often con-
sidered a critical component in ensuring reliability of the protocols in the face of
network failures. The distribution also introduces a hook for topology discovery. If
any router must be able to build its routing table from the routing information dis-
tributed through these protocols, then it must have considerable information about
the network topology. Hence, we can place a dummy router into the network to col-
lect such information. Such routing monitors have been deployed widely over the
last few years. Their advantage is that they can provide an up-to-date dynamic view.
Examples of such monitors exist for OSPF [61, 62], and IS-IS [1, 30], as well as for
BGP (the Border Gateway Protocol) [2, 3].

5.3 Analysis and Modeling of Internet Traffic

5.3.1 Traffic Matrices

We will now consider the analysis and modeling of Internet data, in particular, traffic
data. When considering inputs to network planning, we frequently return to the topic
of traffic matrices. These are the measurements needed for many network planning
tasks, and thus the natural structure around which we shall frame our analysis.
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A Traffic Matrix (TM) describes the amount of traffic (the number of packets or
more commonly bytes) transmitted from one point in a network to another during
some time interval, and they are naturally represented by a three-dimensional data
structure Tt .i; j /, which represents the traffic volume (in bytes or packets) from i to
j during a time interval Œt; t C �t/. The locations i and j are generally considered
to be physical geographic locations making i and j spatial variables. However, in
the Internet, it is common to associate i and j with logical structures related to the
address structure of the Internet, i.e., IP addresses, or natural groupings of such by
common prefix corresponding to a subnet.

Origin/Destination Matrices One natural approach to describe traffic matrices is
with respect to traffic volumes between IP addresses or prefixes. We refer to this
as an origin/destination TM because the IP addresses represent the closest approxi-
mation we have for the end points of the network (though HTTP-proxies, firewalls,
and NAT and other middle-boxes may be obscuring the true end-to-end semantics).
IPv4 admits nearly 232 potential addresses, so we cannot describe the full matrix
at this level of granularity. Typically, such a traffic matrix would be aggregated into
blocks of IP addresses (often using routing prefixes to form the blocks as these are
natural units for the control of traffic). The origin/destination matrix is our ideal
input for many network planning tasks, but the Internet is made up of many con-
nected networks. Any one network operator only sees the traffic carried by its own
network. This reduced visibility means that our observed traffic matrix is only a
segment of the real network traffic. So we can’t really observe the origin/destination
TM. Instead we typically observe the ingress/egress traffic matrix.

Ingress/Egress versus Origin/Destination A more practical TM, the ingress/
egress TM provides traffic volumes from ingress link to egress link across a sin-
gle network. Note that networks often interconnect at multiple points. The choice
of which route to use for egress from a network can profoundly change the na-
ture of ingress/egress TMs, so these may have quite different properties to the
origin/destination matrix. Forming an ingress/egress TM from an origin/destination
TM involves a simple mapping of prefixes to ingress/egress locations in a network,
but in practice this mapping can be difficult unless we monitor traffic as it enters
the network. We can infer egress points of traffic using the routing data described
above, but inferring ingress is more difficult [22, 23], so it is better to measure this
directly.

Spatial Granularity of Traffic Matrices As we have started to see with ori-
gin/destination traffic matrices, we can measure them at various levels of granularity
(or resolution). The same is true of ingress/egress TMs. At the finest level, we mea-
sure traffic per ingress/egress link (or interface). However, it is common to aggregate
this data to the ingress/egress router. We can often group routers into larger sub-
groups. A common such group is a Point-of-Presence (PoP), though there are other
sub- and super-groupings (e.g., topologically equivalent edge routers are sometimes
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grouped, or we may form a regional group). Given subsets S and D of locations,
may simply aggregate a TM across these by taking

Tt .S; D/ D
X

i2S

X

j 2D

Tt .i; j /: (5.2)

Typical large networks might have 10s of PoPs, and 100s of routers, and so such
TMs are of a more workable size. In addition, as we aggregate traffic into larger
groupings, statistical multiplexing reduces the relative variance of the traffic and
allows us to perform better estimates of traffic properties such as the mean and
variance.

Temporal Granularity of Traffic Matrices We cannot make instantaneous mea-
surements of a traffic matrix. All such observations occur over some time interval
Œt; t C �t/. It would be useful to make the interval �t smaller (for instance, for
detecting anomalies), but typically we face a trade-off against the errors and uncer-
tainties in our measurements. A longer time interval allows more “averaging-out”
of errors, and minimizes the impact of missing data. The best choice of time interval
for TMs is typically determined by the task at hand, and the network under study,
but a common choice is a 1 hour interval. In addition to being easily understood by
human operators, this interval integrates enough SNMP or flow-level data to reduce
the impact of (typical) missing data and errors, while allowing us to still observe
important diurnal patterns in the traffic.

5.3.2 Patterns in Traffic

It is useful to have some understanding of the typical patterns we see in network
traffic. Such patterns are only visible at a reasonable level of aggregation (otherwise
random temporal variation dominates our view of the traffic), but for high degrees
of aggregation (such as router-to-router traffic matrices on a large backbone net-
work) the pattern can be very regular. There are two main types of patterns that have
been observed: patterns across time, and patterns in the spatial structure. Each is
discussed below.

Temporal Patterns Internet traffic has been observed to follow both daily (diurnal)
and weekly cycles [33–35,57,64]. The origin of these cycles is quite intuitive. They
arise because most Internet traffic is currently generated by humans whose activi-
ties follow such cycles. Typical examples are shown in Figs. 5.2 and 5.3. Figure 5.2
shows a RRD Tool graph1 of the traffic on a link of the Australian Academic Re-
search Network (AARNet). Figure 5.3 shows the total traffic entering AT&T’s North
American backbone network at a Point of Presence (PoP) over two consecutive

1 RRDTool (the Round Robin Database tool) [47] and its predecessor MRTG (the Multi-Router
Traffic Grapher [46]) are perhaps the most common tools for collecting and displaying SNMP
traffic data.
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Fig. 5.2 Traffic on one link in the Australian Academic Research Network (AARNet) for just over
1 week. The two curves show traffic in either direction along the link
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Fig. 5.3 Total traffic into a region over 2 consecutive weeks. The solid line is the first week’s data
(starting on May 7), and the dashed line shows the second week’s data. The second figure zooms
in on the shaded region of the first

weeks in May 2001. The figure illustrates the daily and weekly variations in the
traffic by overlaying the traffic from the 2 weeks. The striking similarity between
traffic patterns from week to week is a reflection of the high level of aggregation
that we see in a major backbone network.

The observation of cycles in traffic is not new. For many years they have been
seen in telephony [13]. Typically telephone service capacity planning has been
based on a “busy hour”, i.e., the hour of the day that has the highest traffic. The
time of the busy hour depends on the application and customer base. Access net-
works typically have many domestic consumers, and consequently their busy hour
is in the evening when people are at home. On the other hand, the busy hour of busi-
ness customers is typically during the day. Obviously, time-zones have an effect on
the structure of the diurnal cycle in traffic, and so networks with a wide geographic
dispersion may experience different busy hours on different parts of their network.

In addition to cyclical patterns, Internet traffic has shown strong growth over
many years [45]. This long-term trend has often been approximated by exponential
growth, although care must be taken because sometimes such estimates have been
based on poor (short or erratic) data [45]. Long-term trends should be estimated
from multiple years of carefully collected data.
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Fig. 5.4 ABS traffic measurements showing Australian Internet traffic, with an exponential fit to
the data from 2000 to 2005. Data is shown by ‘o’, and the fit by the straight line. Note that the line
continuing past 2005 is a prediction based on the pre-2005 data, showing also the 95th percentile
confidence bounds for the predictions

One public example is the data collected by the Australian Bureau of Statistics
(ABS)2 who have collected historical data on Australian ISP traffic for many years.
Figure 5.4 shows Australia’s network traffic in petabytes per quarter with a log-y
axis. Exponential growth appears as a straight line on the log-graph, so we can ob-
tain simple predictions of traffic growth through linear regression. The figure shows
such a prediction based on pre-2005 data. It is interesting to note that the most recent
data point does not, as one might assume without analysis, represent a significant
drop in traffic growth. Relative to the long-term data the last point simply represents
a reversion to the long-term growth from rather exceptional traffic volumes over
2007. We will discuss such prediction in more detail in the following sections.

Standard time-series analysis [10] can be used to build a model of traffic con-
taining long-term trends, cyclical components (often called seasonal components in
other contexts), and random fluctuations. We will use the following notation here:

S.t/ D seasonal (cyclical) component; (5.3)

L.t/ D long-term trend; (5.4)

W.t/ D random fluctuations: (5.5)

The seasonal component is periodic, i.e., S.t C kTS / D S.t/, for all integers k,
where TS is the period (which is either 24 hour or 1 week). Before we can con-
sider how to estimate the seasonal (and trend) components of the traffic, we must

2 www.abs.gov.au

www.abs.gov.au
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model these components.3 At the most basic level, consider the traffic to consist
of two components, a time varying (but deterministic) mean m.t/ and a stochastic
component W.t/. At this level we could construct the traffic by addition or multi-
plication of these components (both methods are used in econometric and census
data). However, in traffic data, a more appropriate model [43, 56] is

x.t/ D m.t/ C
p

am.t/ W.t/; (5.6)

where a is called the peakedness of the traffic, W.t/ is a stochastic process with
zero mean, and unit variance, and x.t/ represents the average rate of some traffic
(say a particular traffic matrix element) at time t . More highly aggregated traffic is
smoother, and consequently would have a smaller value for a. The reason for this
choice of model lies in the way network traffic behaves when aggregated. When
multiple flows are aggregated onto a non-congested link, we should expect them to
obey the same model (though perhaps with different parameters). Our model has
this property: for instance, take N traffic streams xi with mean mi , peakedness ai ,
and stochastic components, which are independent realizations of a (zero mean, unit
variance) Gaussian process. The multiplexed traffic stream is

x D
NX

iD1

mi C
NX

iD1

p
ai mi Wi : (5.7)

The mean of the new process is m D PN
iD1 mi , and the peakedness (derived from

the variance) is a D 1
m

PN
iD1 ai mi , which is a weighted average of the component

peakednesses. The relative variance becomes

Vx D Varfxg=Efxg D 1

m2

NX

iD1

ai mi : (5.8)

If we take identical streams, then the relative variance decreases as we multiplex
more together, which is to be expected. The result is that in network traffic the
level of aggregation is important in determining the relative variance: more highly
aggregated traffic exhibits less random behavior. The data in Fig. 5.3 from AT&T
shows an aggregate of a very large number of customers (an entire PoP of one of
North America’s largest networks). The consequence is that we can see the traffic is
very smooth. In contrast the traffic shown in Fig. 5.2 is much less aggregated, and
shows more random fluctuations.

The model described above is not perfect (none are), but it is useful because it
(i) allows us to calculate variances for aggregated traffic streams in a consistent way
and to use these when planning our network, and (ii) its parameters are relatively

3 The reader should beware of methods, which do not explicitly model the data, because in these
methods there is often an implicit model.
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easy to measure, and therefore to use in traffic analysis. To do so, however, we find
it useful to spilt the mean m.t/ into the cyclic component (which we denote S.t/)
and the long-term trend L.t/ by taking the product

m.t/ D L.t/S.t/: (5.9)

We combine the two components through a product because as the overall load
increases the range of variation in the size of cycles also increases. When estimating
parameters of our models, it is important to allow for unusual or anomalous events,
for instance, a Denial of Service (DoS) attack. These events are rare (we hope), but it
is important to separate them from the normal traffic. Such terms can sometimes be
very large, but we do not plan network capacity to carry DoS attacks! The network is
planned around the paying customers. We separate them by including an impulsive
term, I.t/, in the model, so that the complete model is

x.t/ D L.t/S.t/ C p
aL.t/S.t/ W.t/ C I.t/: (5.10)

We will further discuss this model in Section 5.4, where we will consider how to
estimate its parameters, and to use it in prediction.

Spatial Patterns Temporal models are adequate for many applications: for in-
stance, where we consider dimensioning of a single bottleneck link (perhaps in the
design of an access network). However, spatial patterns in traffic provide us with ad-
dition planning capabilities. For instance, if two traffic sources are active at different
times, then clearly we can carry them both with less capacity than if they activate
simultaneously.

Spatial patterns refer to the structure of a Traffic Matrix (TM) at a single time
interval. It is common that TM elements are strongly correlated because they show
similar diurnal (and weekly) patterns. For example, in a typical network (without
wide geographic distribution) one will find that the busy hour is almost the same for
all elements of the TM, but there is additional structure.

For a start, TMs often come from skewed distributions. A common example is
where the distribution follows a rough 80–20 law (80% of traffic is generated by
the largest 20% of TM elements). Similar distributions have often been observed,
though often even more skewed: for instance 90–10 laws are not uncommon. How-
ever, the distribution is not “heavy-tailed”. Observed distributions have shown a
lighter tail than the log-normal distribution [55]. Consequently, traffic matrix work
often concentrates on these larger flows, but traditional (rather than heavy-tailed)
statistical techniques are still applicable.

Another simple feature one might naively expect of TMs – symmetry – is not
present. Internet routing is naturally asymmetric, as is application traffic (a large
amount of traffic still follows a client–server model, which results in strongly
asymmetric traffic). Hence, the matrix will not (generally) be symmetric [21], i.e.,
T .i; j / ¤ T .j; i/.

We observe some additional structure in these matrices. The simplest model
that describes some of the observed structure is the gravity model. In network
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applications, gravity models have been used to model the volume of telephone calls
in a network [31]. Gravity models take their name from Newton’s law of gravitation,
and are commonly used by social scientists to model the movement of people, goods
or information between geographic areas [49,50,63]. In Newton’s law of gravitation
the force is proportional to the product of the masses of the two objects divided by
the distance squared. Similarly, in gravity models for interactions between cities, the
relative strength of the interaction might be modeled as proportional to the product
of the cities’ populations, so a general formulation of a gravity model is given by

T .i; j / D Ri � Aj

fij

; (5.11)

where Ri represents the repulsive factors that are associated with leaving from i ;
Aj represents the attractive factors that are associated with going to j ; and fij is a
friction factor from i to j . The gravity model was first used in the context of Internet
traffic matrices in [67] where we can naturally interpret the repulsion factor Ri as
the volume of incoming traffic at location i , and the attractivity factor Aj as the
outgoing traffic volume at location j . The friction matrix

�
fij

�
encodes the locality

information specific to different source–destination pairs, however, as locality is not
as large a factor in Internet traffic as in the transport of physical goods, it is common
to assume fij D const. The resulting gravity model simply states that the traffic
exchanged between locations is proportional to the volumes entering and exiting at
those locations.

Formally, let T in.i/ and T out.j / denote the total traffic that enters the network
via i , and exits via j , respectively. The gravity model can then be computed by

T .i; j / D T in.i/T out.j /

T tot
; (5.12)

where T tot is the total traffic across the network. Implicitly, this model relies on a
conservation assumption, i.e., traffic is neither created nor destroyed in the network
so that T tot D P

k T in.k/ D P
k T out.k/: The assumption may be violated, for

instance, when congestion causes packet loss. However, in most backbones conges-
tion is kept low, and so the assumption is reasonable.

In the form just described, the gravity model has distinct limitations. For instance,
real traffic matrices may have non-constant fij (perhaps as a result of different time
zones). Moreover, even if an origin destination traffic matrix matches the gravity
model well, the ingress/egress TM may be systematically distorted [7]. Typically,
networks use hot-potato routing, i.e., they choose the egress point closest to the
ingress point, and this results in a systematic distortion of ingress/egress traffic
matrices away from the simple gravity model. These distortions and others re-
lated to the asymmetry of traffic and distance sensitivity may be incorporated in
generalizations of the gravity model where sufficient data exists to measure such
deviations [13, 21, 67].
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The use of temporal patterns in planning is relatively obvious. The use of spatial
patterns such as the gravity model is more subtle. The spatial structure gives us the
capability to fill in missing values of the traffic matrix when our data is not perfect.
Hence we can still plan our network, even in the extreme case where we have no
data at all.

5.3.3 Application Profile

We have so far discussed network traffic along two dimensions: the temporal and
spatial. There is a third aspect of traffic to consider: its application breakdown, or
profile. Common applications on the Internet are email, web browsing (and other
server-based interactions), peer-to-peer file transfers, video, and voice. Each may
have a different traffic matrix, and as some networks move toward differentiated
Quality of Service (QoS) for different classes of traffic, we may have to plan net-
works based on these different traffic matrices.

Even where differentiated service is not going to be provided, a knowledge of the
application classes in our network can be very useful. For instance

� Voice traffic is less variable than data, and so can require less overhead for sub-
measurement interval variations.

� Peer-to-peer applications typically generate more symmetric traffic than web
traffic, and so downstream capacity (toward customer eyeballs) is likely to be
more balanced when peer-to-peer applications dominate.

� We may be planning to eliminate some types of traffic in future networks (e.g.,
peer-to-peer traffic has often been considered to violate service agreements that
prohibit running servers).

The breakdown of traffic on a network is not trivial to measure. As noted, typical
flow-level data collection includes TCP/UDP port numbers, and these are often as-
sociated with applications using the IANA (Internet Assigned Numbers Authority)
list of registered ports.4 However, the port numbers used today are often associated
with incorrect applications because:

	 Ports are not defined with IANA for all applications, e.g., some peer-to-peer
applications.

	 An application may use ports other than its well-known ports to circumvent
access control restrictions, e.g., nonprivileged users often run WWW servers on
ports other than port 80, which is restricted to privileged users on most operating
systems, while port 80 is often used for other applications (than HTTP) in order
to work around firewalls.

	 In some cases server ports are dynamically allocated as needed. For example,
FTP allows the dynamic negotiation of the server port used for the data transfer.

4 http://www.iana.org/assignments/port-numbers

http://www.iana.org/assignments/port-numbers
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This server port is negotiated on an initial TCP, connection which is established
using the well-known FTP control port, but which would appear as a separate
flow.

	 Malicious traffic (e.g., DoS attacks) can generate a large volume of bogus traffic
that should not be associated with the applications that normally use the affected
ports.

In addition, there are some incorrect implementations of protocols, and ambiguous
port assignments that complicate the problem. Better approaches to classification of
traffic exist (e.g., [58]), but are not always implemented on commercial measure-
ment systems.

Application profiles can be quite complex. Typical Internet providers will see
some hundreds of different applications. However, there are two major simplifica-
tions we can often perform. The first is a clustering of applications into classes. QoS
sometimes forms natural classes (e.g., real-time vs bulk-transfer classes), but regard-
less we can often group many applications into similarly structured classes, e.g., we
can group a number of protocols (IMAP, POP, SMTP, etc.) into one class “email”.
Common groupings are shown in Table 5.1, along with exemplar applications.

There may be a larger number of application classes, and often there is a sig-
nificant group of unknown applications, but a typical application profile is highly
skewed. Again, it is common to see 80–20 or 90–10 rules. In these cases, it is com-
mon to focus attention on those applications that generate the most traffic, reducing
the complexity of the profile.

However, care must be taken because some applications that generate relatively
little traffic on average may be considered very important, and/or may generate high
volumes of traffic for short bursts. There are several such examples in enterprise
networks, for instance, consider a CEO’s once-a-week company-wide broadcast, or
nightly backups. Both generate a large amount of traffic, but in a relative short-time
interval, so their proportion of the overall network traffic may be small. More gen-
erally, much of the control-plane traffic (e.g., routing protocol traffic) in networks is
relatively low volume, but of critical importance.

Table 5.1 Typical
application classes grouped
by typical use

Class Example applications

Bulk-data FTP, FTP-Data
Database access Oracle, MySQL
Email IMAP, POP, SMTP
Information finger, CDDBP, NTP
Interactive SSH, Telnet
Measurement SNMP, ICMP, Netflow
Network control BGP, OSPF, DHCP, RSVP, DNS
News NNTP
Online gaming Quake, Everquest
Peer-to-peer Kazaa, Bit-torrent
Voice over IP SIP, Skype
www HTTP, HTTPS
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5.4 Prediction

There are two common scenarios for network planning:

1. Incremental planning for network evolution
2. Green-fields planning

In the first case, we have an existing network. We can measure its current traffic, and
extrapolate trends to predict future growth. In combination with business data, quite
accurate assessments of future traffic are possible. Typically, temporal models are
sufficient for incremental network planning, though better results might be possible
with recently developed full spatio-temporal models [52].

In green-fields planning, we have the advantage that we are not constrained in
our network design. We may start with a clean slate, without concerning ourselves
with a legacy network. However, in such planning we have no measurements on
which to base predictions. All is not lost, however, as we may exploit the spatial
properties of traffic matrices in order to obtain predictions. We discuss each of these
cases below.

There are other scenarios of concern to the network planner. For example

� Network mergers, for instance when two companies merge and subsequently
combine their networks.

� Network migrations, for instance, as significant services such as voice or frame-
relay are migrated to operate on a shared backbone.

� Addition (or loss) of a large customer (say a broadband access provider, a major
content provider, or a hosting center).

� A change in interdomain routing relationships. For instance, the conversion of
a customer to a peer would mean that traffic no longer transits from that peer,
altering traffic patterns.

The impact of these types of event is obviously dependent on the relative volume
of the traffic affected. Such events can be particularly significant for smaller net-
works, but it is not unheard of for them to cause unexpected demands on the largest
networks (for instance, the migration of an estimated half-million customers from
Excite@home to AT&T in 20025). However, the majority of such cases can be cov-
ered by one or both of the techniques below.

5.4.1 Prediction for Incremental Planning

Incremental planning involves extending, or evolving a current network to meet
changing patterns of demands, or changing goals. The problem involves predic-
tion of future network demands, based on extrapolation of past and present network

5 http://news.cnet.com/ExciteHome-to-shut-down-ATT-drops-bid/2100-1033 3-276550.html

http://news.cnet.com/ExciteHome-to-shut-down-ATT-drops-bid/2100-1033_3-276550.html
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measurements. The planning problems we encounter are often constrained by the
fact that we can make only incremental changes to our network, i.e., we cannot
throw away the existing network and start from a clean slate, but let us first consider
the problem of making successful traffic predictions.

Obviously, our planning horizon (the delay between our planning decisions and
their implementation) is critical. The shorter this horizon, the more accurate our
predictions are likely to be, but the horizon is usually determined by external factors
such as delays between ordering and delivery of equipment, test and verification of
equipment, planned maintenance windows, availability of technical staff, and capital
budgeting cycles. These are outside the control of the network planner, so we treat
the planning horizon as a constant.

The planning horizon also suggests how much historical data is needed. It is
a good idea to start with historical data extending several planning horizons into
the past. Such a record allows not only better determination of trends, but also an
assessment of the quality of our prediction process through analysis of past planning
periods. If such data is unavailable, then we must consider green-fields planning (see
Section 5.4.2), though informed by what measurements are available.

Given such a historical record, our primary means for prediction is temporal
analysis of traffic data. That is, we consider the traffic measurements of interest
(often a traffic matrix) as a set of time-series.

However, as noted earlier the more highly we aggregate traffic, the smaller its
relative variance, and the easier it is to work with. As a result, it can be a good idea
to predict traffic at a high level of aggregation, and then use a spatial model to break
it into components. For instance, we might perform predictions for the total traffic
in each region of our network, and then break it into components using the current
traffic matrix percentages, rather than predicting each element of the traffic matrix
separately.

There are many techniques for prediction, but we concentrate here on just one,
which works reasonably for a wide range of traffic, but we should note that as in all
of the work presented here, the key is not the individual algorithms but their robust
application through a process of measurement, planning, and validation.

5.4.1.1 Extracting the Long-Term Trend

We will exploit the previously presented temporal model for traffic, and note that
the key to providing predictions for use in planning is to estimate the long-term
trend in the data. We could form such an estimate simply by aggregating our time-
series over periods of 1 week (to average away the diurnal and weekly cycles) and
then performing standard trend analysis. However, knowledge of the cycles in traffic
data is often useful. Sometimes we design networks to satisfy the demand during a
“busy hour.” More generally though, the busiest hours for different components of
the traffic may not match (particularly in international networks distributed over
several time-zones), and so we need to plan our network to have sufficient capacity
at all hours of the day or night.
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Hence, the approach we present provides the capability to estimate both the long-
term trend, and the seasonal components of the traffic. It also allows an estimate of
the peakedness, providing the ability to estimate the statistical variations around the
expected traffic behavior. The method is hardly the only applicable time-series algo-
rithm for this type of analysis (for another example see [44]), but it has the advantage
of being relatively simple. The method is based on a simple signal processing tool,
the Moving Average (MA) filter, which we discuss in detail below.

The moving average can be thought of as a simple low-pass filter as it “passes”
low-frequencies, or long-term behavior, but removes short-term variations. As such
it is ideally suited to extracting the trend in our traffic data. Although there are many
forms of moving average, we shall restrict our attention to the simplest: a rectangular
moving average

MAx.t I n/ D 1

2n C 1

sDtCnX

sDt�n

x.s/; (5.13)

where n is the width of the filter, and 2n C 1 is its length. The length of the filter
must be longer than the period of the cyclic component in order to filter out that
component. Longer filters are often used to allow for averaging out of the stochastic
variation as well. The shortest filter we should consider for extracting the trend is
three times the period, which in Internet traffic data is typically 1 week. For example,
given traffic data x.t/, measured in 1 hour intervals, we could form our estimate
OL.t/ of the trend by taking a filter of length 3 weeks (e.g., 2n C 1 D 504 D
24�7�3), i.e., we might take OL.t/ D MAx.t I 252/ where MAx is defined in (5.13).

Care must always be taken around the start and end of the data. Within n data
points of the edges the MA filter will be working with incomplete data, and so these
estimates should be discounted in further analysis.

Once we have obtained estimates for the long-term trend, we can model its be-
havior. Over the past decade, the Internet has primarily experienced exponential
growth (for instance, see Fig. 5.4 or [45]) i.e.,

L.t/ D L.0/eˇt ; (5.14)

where L.0/ is the starting value, and ˇ is the growth rate. If exponential growth is
suspected the standard approach is to transform the data using the log function so
that we see

log L.t/ D log L.0/ C ˇt; (5.15)

where we can now estimate L.0/ and ˇ from linear regression of the observed data.
Care should obviously be taken that this model is reasonable. Regression provides
diagnostic statistics to this end, but comparisons to other models (such as a simple
linear model) can also be helpful.

Such a model can be easily extrapolated to provide long-term predictions of traf-
fic volumes. Standard diagnostics from the regression can also be used to provide
confidence bounds for the predictions, allowing us to predict “best” and “worst” case
scenarios for traffic growth, and an example of such predictions is given in Fig. 5.4
using the data from 2000 to 2004 to estimate the trend, and then extrapolating this
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until 2009. The figure shows the extrapolated optimistic and pessimistic trend esti-
mates. We can see that actual traffic growth from 2005 to 2007 was on the optimistic
side of growth, but that in 2008 the measured traffic was again close to the long-term
trend estimate.

This example clearly illustrates that understanding the potential variations in our
trend estimate is almost as important as obtaining the estimate in the first place. It
also illustrates how instructive historical data can be in assessing appropriate models
and prediction accuracy.

Often, in traffic studies, managers are keen to know the doubling time, the time
it takes traffic to double. This can be easily calculated by estimating the value of t

such that L.t/ D 2L.0/, or eˇt D 2. Again, taking logs we get the doubling time

t� D 1

ˇ
ln 2: (5.16)

The Australian data shown in Fig. 5.4 has a doubling time of 477 days.
The trend by itself can inform us of growth rate but modeling the cyclic variations

in traffic is also useful. We do this by extending the concept of moving average to
the seasonal moving average, but before doing so we broadly remove the long-term
trend from the data (by dividing our measurements x.t/ by OL.t/).

5.4.1.2 Extracting the Cyclical Component

The goal of a Seasonal Moving Average (SMA) is to extract the cyclic component
of our traffic. We know, a priori, the period (typically 7 days) and so the design of
a filter to extract this component is simple. It resembles the MA used previously in
that it is an average, but in this case it is an average of measurements separated in
time by the period. More precisely we form the SMA of the traffic with the estimated
trend removed, e.g.,

OS.t/ D 1

N

N �1X

nD0

x.t C nTS /= OL.t C nTS /; (5.17)

where TS is the period, and NTS is the length of the filter. In effect the SMA es-
timates the traffic volume for each time of day and week as if they were separate
time series. It can be combined with a short MA filter to provide some additional
smoothing of the results if needed.

The advantage of using an SMA as opposed to a straightforward seasonal average
is that the cyclical component of network traffic can change over time. Using the
SMA allows us to see such variability, while still providing a reasonably stable
model for extrapolation. There is a natural trade-off between the length of the SMA,
and the amount of change we allow over time (longer filters naturally smooth out
transient changes). Typically, the length of filter desired depends on the planning
horizon under which we are operating. We extrapolate the SMA in various ways,
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but the simplest is to repeat the last cycle measured in our data into the future, as
if the cyclical component remained constant into the future. Hence, when operating
with a short planning horizon (say a week), we can allow noticeable week-to-week
variations, and still obtain reasonable predictions, and so a filter length of three to
four cycles is often sufficient. Where our planning horizon is longer (say a year) we
must naturally assume that the week-to-week variations in the cyclical behavior are
smaller in order to extrapolate, and so we use a much longer SMA, preferably at
least of the order of the length of the planning horizon.

5.4.1.3 Estimating the Magnitude of Random Variations

Once we understand the periodic and trend components of the traffic, the next thing
to capture is the random variation around the mean. Most metrics of variation used in
capacity planning do not account for the time-varying component, and so are limited
to busy-hour analysis. In comparison, we now have an estimate of Om.t/ D OL.t/ OS.t/

and so can use (5.6) to estimate the stochastic or random component of our traffic
by z.t/ D .x.t/� Om.t//=

p Om.t/. We can now measure the variability of the random
component of the traffic using the variance of z.t/, which forms an estimate Oa for the
traffic’s peakedness. The estimator for Oa including the correction for bias is given
in [57]. Note that it is also important to separate the impulsive, anomaly terms from
the more typical variations. There are many anomaly detection techniques available
(see [66] for a review of a large group of such algorithms). These algorithms can
be used to select anomalous data points that can then be excluded from the above
analysis.

5.4.1.4 From Traffic Matrix to Link Loads

Once we have predictions of a TM, we often need to use these to compute the link
loads that would result. The standard approach is to write the TM in vectorized
form x, where the vector x consists of the columns of the TM (at a particular time)
stacked one on top of another. The link loads y can then be estimated through the
equation

y D Ax; (5.18)

where A is the routing matrix. The equation above can also be extended to project
observations or predictions of a TM over time into equivalent link loads.

Although there are multiple time-series approaches that can be used to predict
future behavior (e.g., Holt-Winters [11]), our approach has the advantage that it
naturally incorporates multiplexing. As a result, Eq. 5.18 can be extended to other
aspects of the traffic model. For instance, the variances of independent flows are
additive (the variance of the multiplexed traffic is the sum of the variances of the
components), and so the variance of link traffic follows the same relationship, i.e.,

vy D Avx; (5.19)
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where vy and vx are the variances of the link loads and TM, respectively. We can
use vy to deduce peakedness parameters for the link traffic using (5.7).

So far, we have assumed that the network (at least the location of links, and the
routing) is static. In reality, part of network planning involves changing the network,
and so the matrix A is really a potential variable. When we consider network plan-
ning, A appears implicitly as one of our optimization variables. Likewise, A may
change in response to link or router failures.

The reason-traffic matrices are so important is that they are, in principle, invariant
under changes to A. Hence predictions of link loads under the changes in A can be
easily made. For example, imagine a traffic engineering problem where we wish
to balance the load on a network’s internal links more effectively. We will change
routing in the network in order to balance the traffic on links more effectively. In
doing so, the link loads are not invariant (the whole point of traffic engineering is to
change these). However, the ingress/egress TM is invariant, and projecting this onto
the links (via the routing matrix) will predict the link loads under proposed routing
changes.

In reality, invariance is an approximation. Real TMs are not invariant under all
network changes, for instance, if network capacities are chosen to be too small,
congestion will result. However, the Transmission Control Protocol (TCP) will act
to alleviate this congestion by reducing the actual traffic carried on the network,
thereby changing the traffic matrix. In general, different sets of measurements will
have different degrees of invariance. For instance, an origin/destination TM is invari-
ant to changes in egress points (due to routing changes), whereas an ingress/egress
TM is not. It is clearly better to use the right data set for each planning problem, but
the desired data is not always available.

The lack of true invariance is one of the key reasons for the cyclic approach
to network planning. We seek to correct any problems caused by variations in our
inputs in response to our new network design.

5.4.2 Prediction for Green-Fields Planning

The above section assumes that we have considerable historical data to which we ap-
ply time-series techniques to extrapolate trends, and hence predict the future traffic
demands on our network. This has two major limitations:

1. IP traffic is constrained by the pipe through which it passes. TCP congestion
control ensures that such traffic does not overflow by limiting the source trans-
mission rate. In most networks our measurements only provide the carried load,
not the offered load. If the network capacities change, the traffic may increase in
response. This is a concern if our current network is loaded to near its capacity,
and in this case we must discount our measurements, or at least treat them with
caution.

2. When we design a new network there is nothing in place for us to measure.
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We will start by considering available strategies for the latter case. We can draw
inspiration from the spatial models previously presented. The fact that the simple
gravity model describes, to some extent, the spatial structure of Internet traffic ma-
trices presents us with a simple approach to estimate an initial traffic matrix.

The first step is to estimate the total expected traffic for the network, based on
demographics and market projections. Let us take a simple example: in Australia the
ABS measures Internet usage. Across a wide customer base the average usage per
customer was roughly 3 GB/month (since 2006). The total traffic for our network
is the usage per customer multiplied by the projected number of customers. We
can derive traffic estimates per marketing region in the same fashion. Note that the
figure used above is for the broad Australian market and is unlikely to be correct
elsewhere (typical Australian ISPs have an tiered pricing structure). Where more
detailed figures exist in particular markets these should be used.

The second step is to estimate the “busy-hour” traffic. As we have seen previ-
ously the traffic is not uniformly distributed over time. In the absence of better data,
we might look at existing public measurements (such as presented in Figs. 5.2 and
5.3, or as appears in [44]) where the peak to mean ratio is of the order of 3 to 2.
Increasing our traffic estimates by this factor gives us an estimate of the peak traffic
loads on the network.

The third step is to estimate a traffic matrix. The best approach, in the absence of
other information, to derive the traffic matrix is to apply the gravity model (5.12). In
the simple case, the gravity model would be applied directly using the local regional
traffic estimates. However, where additional information about the expected appli-
cation profile exists, we might use this to refine the results using the “independent
flow model” of [21]. Additional structural information about the network might al-
low use of the “generalized gravity model” of [68]. Each of these approaches allows
us to use additional information, but in the absence of such information the simple
gravity model gives us our initial estimate of the network traffic matrix.

What about the case where we have historical network traffic measurements, but
suspect that the network is congested so that the carried load is significantly below
the offered load? In this case, our first step is to determine what parts of the traffic
matrix are affected. If a large percentage of the traffic matrix is affected, then the
only approach we have available is to go back through the historical record until
we reach a point (hopefully) where the traffic is not capacity constrained. This has
limitations: for one thing, we may not find a sufficient set of data where capacity
constraints have left the measurements uncorrupted. Even where we do obtain suffi-
cient data, the missing (suspect) measurements increase the window over which we
must make predictions, and therefore the potential errors in these predictions.

However, if only a small part of the traffic matrix is affected we may exploit
techniques developed for traffic matrix inference to fill in the suspect values with
more accurate estimates. These methods originated due to the difficulties in collect-
ing flow-level data to measure traffic matrices directly. Routers (particularly older
routers) may not support an adequate mechanism for such measurements (or suffer
a performance hit when the measurements are used), and installation of stand-alone
measurement devices can be costly. On the other hand, the Simple Network Man-
agement Protocol (SNMP) is almost ubiquitously available, and has little overhead.
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Unfortunately, it provides only link-load measurements, not traffic matrices. How-
ever, the two are simply related by (5.18). Inferring x from y is a so-called “network
tomography” problem. For a typical network the number of link measurements is
O.N / (for a network of N nodes), whereas the number of traffic matrix elements is
O.N 2/ leading to a massively underconstrained linear inverse problem. Some type
of side information is needed to solve such problems, usually in the form of a model
that roughly describes a typical traffic matrix. We then estimate the parameters of
this crude model (which we shall call m), and perform a regularization with respect
to the model and the measurements by solving the minimization problem

argmin
x

ky � Axk2
2 C �2d.x; m/; (5.20)

where k � k2 denotes the l2 norm, � > 0 is a regularization parameter, and d.x; m/

is a distance between the model m and our estimated traffic matrix x. Exam-
ples of suitable distance metrics are standard or weighted Euclidean distance and
the Kullback–Leibler divergence. Approaches of this type, generally called strate-
gies for regularization of ill-posed problems are more generally described in [29],
but have been used in various forms in many works on traffic matrix inference.
The method works because the measurements leave the problem underconstrained,
thereby allowing many possible traffic matrices that fit the measurements, but the
model allows us to choose one of these as best. Furthermore, through � the method
allows us to tradeoff our belief about the accuracy of the model against the expected
errors in the measurements.

We can utilize TM structure to interpolate missing values by solving a similar
optimization problem

argmin
x

kA .x/ � Mk2
2 C �2d.x; mg/; (5.21)

where A .x/ D M expresses the available measurements as a function of the traffic
matrix (whether these be link measurements or direct measurements of a subset of
the TM elements we do not care), and mg is the gravity model. This regularizes
our model with respect to the measurements that are considered valid. Note that the
gravity model in this approach will be skewed by missing elements, so this approach
is only suitable for interpolation of a few elements of the traffic matrix. If larger
numbers of elements are missing, we can use more complicated techniques such as
those proposed in [52] to interpolate the missing data.

5.5 Optimal Network Plans

Once we have obtained predictions of the traffic on our network we can commence
the actual process of making decisions about where links and routers will be placed,
their capacities, and the routing policies that will be used. In this section we discuss
how we may optimize these quantities against a set of goals and constraints.
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The first problem we consider concerns capacity planning. If this component of
our network planning worked as well as desired, we could stop there. However,
errors in predictions, coupled with the long planning horizon for making changes
to a network mean that we need also to consider a short-term way of correcting
such problems. The solution is typically called traffic engineering or simply load
balancing, and is considered in Section 5.5.2.

5.5.1 Network Capacity Planning

There are many good optimization packages available today. Commercial tools such
as CPLEX are designed specifically for solving optimization problems, while more
general purpose tools such as Matlab often include optimization toolkits that can be
used for such problems. Even Excel includes some quite sophisticated optimization
tools, and so we shall not consider optimization algorithms in detail here. Instead we
will formulate the problem, and provide insight into the practical issues. There are
three main components to any optimization problem: the variables, the objective,
and the constraints.

The variables here are obviously the locations of links, and their capacities.
The objective function – the function which we aim to minimize – varies de-

pending on business objectives. For instance, it is common to minimize the cost of
a network (either its capital or ongoing cost), or packet delays (or some other net-
work performance metric). The many possible objectives in network design result
in different problem formulations, but we concentrate here on the most common
objective of cost minimization.

The cost of a network is a complex function of the number and type of routers
used, and the capacities of the links. It is common, however, to break up the prob-
lem hierarchically into inter-PoP, and intra-PoP design, and we consider the two
separately here.

The constraints in the problem fall into several categories:

1. Capacity constraints require that we have “sufficient” link capacity. These are the
key constraints for this problem so we consider these in more detail below.

2. Other technological constraints, such as limited port numbers per router.
3. Constraints arising as a result of the difficulties in multiobjective optimization.

For example, we may wish to have a network with good performance and low
cost. However, multiobjective optimization is difficult, so instead we minimize
cost subjected to a constraint on network performance.

4. Reliability constraints require that the network functions even under network
failures. This issue is so important that other chapters of this book have been
devoted to this issue, but we shall consider some aspects of this problem here
as well.
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5.5.1.1 Capacity Constraints and Safe-Operating Points

Unsurprisingly, the primary constraints in capacity planning are the capacity con-
straints. We must have a network with sufficient capacity to carry the offered traffic.
The key issue is our definition of “sufficient.” There are several factors that go into
this decision:

1. Traffic is not constant over the day, so we must design our network to carry loads
at all times of day. Often this is encapsulated in “busy hour” traffic measurements,
but busy hours may vary across a large network, and between customers, and so
it is better to design for the complete cycle.

2. Traffic has observable fluctuations around its average behavior. Capacity plan-
ning can explicitly allow for these variations.

3. Traffic also has unobservable fluctuations on shorter times than our measurement
interval. Capacity planning must attempt to allow for these variations.

4. There will be measurement and prediction errors in any set of inputs.

Ideally, we would use queueing models to derive an exact relationship between mea-
sured traffic loads, variations, and so determine the required capacities. However,
despite many recent advances in data traffic modeling, we are yet to agree on suf-
ficiently precise and general queueing models to determine sufficient capacity from
numerical formulae. There is no “Erlang-B” formulae for data networks. As a result,
most network operators use some kind of engineering rule of thumb, which comes
down to an “over-engineering factor” to allow for the above sources of variability.

We adopt the same approach here, but the term “over-engineering factor” is mis-
leading. The factor allows for known variations in the traffic. The network is not
over-engineered, it only appears so if capacity is directly compared to the available
but flawed measurements. In fact, if we follow a well-founded process, the network
can be quite precisely engineered.6

We therefore prefer to use the term Safe Operating Point (SOP). A SOP is de-
fined statistically with respect to the available traffic measurements on a network.
For instance, with 5-min SNMP traffic measurements, we might define our SOP
by requiring that the load on the links (as measured by 5-min averages) should not
exceed 80% of link capacity more than five times per month. The predicted traffic
model could then be used to derive how much capacity is needed to achieve this
bound.

Traffic variance depends on the application profile and the scale of aggregation.
Moreover, the desired trade-off between cost and performance is a business choice
for network operators. So there is no single SOP that will satisfy all operators. Given
the lack of precision in current queueing models and measurements, the SOP needs
to be determined by each network operator experimentally, preferably starting from
conservative estimates. Natural variations in network conditions often allow enough

6 It is a common complaint that backbone networks are underutilized. This complaint typically
ignores the issues described above. In reality, many of these networks may be quite precisely
engineered, but crude average utilization numbers are used to defer required capacity increases.
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scope to see the impact of variable levels of traffic, and from these determine more
accurate SOP specifications, but to do this we need to couple traffic and performance
measurements (a topic we consider later).

A secondary set of capacity constraints arises because there is a finite set of
available link types, and capacity must be bought in multiples of these links. For
instance, many high-speed networks use either SONET/SDH links (typically giving
155 Mbps times powers of 4) and/or Ethernet link capacities (powers of 10 from
10 Mbps to 10 Gbps). We will denote the set of available link capacities (including
zero) by C .

Finally, most high-speed link technologies are duplex, and so we need to allocate
capacity in each direction, but we typically do so symmetrically (i.e., a link has the
same capacity from i ! j as from j ! i even when the traffic loads in each
direction are different).

5.5.1.2 Intra-PoP Design

We divide the network design or capacity planning problem into two components
and first consider the design of the network inside a PoP. Typically this involves
designing a tree-like network to aggregate traffic up to regional hubs, which then
transit the traffic onto a backbone.7 The exact design of a PoP is considered in more
detail in Chapter 4, but note that in each of the cases considered there we end up
with a very similar optimization problems at this level.

There are two prime considerations in such planning. Firstly, it is typical that
the majority of traffic is nonlocal, i.e., that it will transit to or from the backbone.
Local traffic between routers within the PoP in the Internet is often less than 1%
of the total. There are exceptions to this rule, but these must be dealt with on an
individual basis. Secondly, limitations on the number of ports on most high-speed
routers mean that we need at least one layer of aggregation routers to bring traffic
onto the backbone: for instance, see Fig. 5.5. For clarity, we show a very simple
design (see Chapter 4 for more examples). In our example, Backbone Routers (BRs)

Fig. 5.5 A typical PoP
design. Aggregation Routers
(AR) are used to increase the
port density in the PoP and
bring traffic up to the
Backbone Routers (BR)

to backbone

customers

BR BR

AR AR AR

7 In small PoPs, a single router (or redundant pair) may be sufficient for all needs. Little planning
is needed in this case beyond selecting the model of router, and so we do not include this simple
case in the following discussions.
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and the corresponding links to Aggregation Routers (ARs) are assigned in pairs in
order to provide redundancy, but otherwise the topology is a simple tree.

There are many variations on this design, for instance, additional BRs may be
needed, or multiple layers. However, in our simple model, the design is determined
primarily by the limitations on port density. The routers lie within a single PoP, so
links are short and their cost has no distance dependence (and they are relatively
cheap compared to wide-area links). The number of ARs that can be accommo-
dated depends on the number of ports that can be supported by the BRs, so we shall
assume that ARs have a single high-capacity uplink to each BR to allow for a max-
imum expansion factor in a one-level tree. As a result, the job of planning a PoP is
primarily one of deciding how many ARs are needed.

As noted earlier we do not need a TM for this task. The routing in such a network
is predetermined, and so current port allocations and the uplink load history are
sufficiently invariant for this planning task. We use these to form predictions of
future uplink requirements and the loads on each router. When predictions show
that a router is reaching capacity (either in terms of uplink capacity, traffic volume,
or port usage) we can install additional routers based on our predictions over the
planning horizon for router installation.

There is an additional improvement we can make in this type of problem. It is rare
for customers to use the entire capacity of their link to our network, and so the uplink
capacity between AR and BR in our network need not be the sum of the customers’
link capacities. We can take advantage of this fact through simple measurement-
based planning, but with the additional detail that we may allocate customers with
different traffic patterns to routers in such a way as to leverage different peak hours
and traffic asymmetries (between input and output traffic), so as to further reduce
capacity requirements.

The problem resembles the bin packing problem. Given a fixed link capacity C

for the uplinks between ARs and BRs, and K customers with peak traffic demands
fTigK

iD1, the bin packing problem would be as follows: determine the smallest inte-
ger B , such that we can find a B-partition fSkgB

kD1
of the customers8 such that

X

i2Sk

Ti � C for all k D 1; : : : ; B: (5.22)

The number of subsets B gives the number of required ARs, and although the prob-
lem is NP-hard, there are reasonable approximation algorithms for its solution [18],
some of which are online, i.e., they can be implemented without reorganization of
existing allocations.

The real problem is more complicated. There are constraints on the number
of ports that can be supported by ARs dependent on the model of ARs being

8 A B-partition of our customers is a group of B non-empty subsets Sk � f1; 2; : : : ; Kg
that are disjoint, i.e., Si \ Sj D � for all i ¤ j , and which include all customers, i.e.,
[B

kD1Sk D f1; 2; : : : ; Kg.
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deployed, constraints on router capacity, and in addition, we can take advantage
of the temporal, and directional characteristics of traffic. Customer demands take
the form ŒIi .t/; Oi .t/�, where Ii .t/ and Oi .t/ are incoming and outgoing traffic de-
mands for customer i at time t . So the appropriate condition for our problem is to
find the minimal number B of ARs such that

X

i2Sk

Ii .t/ � C and
X

i2Sk

Oi .t/ � C for all k; t: (5.23)

This is the so-called vector bin packing problem, which has been used to model
resource constrained processor scheduling problems, and good approximations have
been known for some time [15, 28].

The major advantage of this type of approach is that customers with different
peak traffic periods can be combined onto one AR so that their joint traffic is more
evenly distributed over each 24-hour period. Likewise, careful distribution of cus-
tomers whose primary traffic flows into our network (for instance, hosting centers)
together with customers whose traffic flows out of the network (e.g., broadband ac-
cess companies) can lead to more symmetric traffic on the uplinks, and hence better
overall utilization. In practice, multiplexing gains may improve the situation, so that
less capacity is needed when multiple customers’ traffic is combined, but this effect
only plays a dominant role when large numbers (say hundreds) of small customers
are being combined.

5.5.1.3 Inter-PoP Backbone Planning

The inter-PoP backbone design problem is somewhat more complicated. We start
by assuming, we know the locations at which we wish to have PoPs. The ques-
tion of how to optimize these locations does come up, but it is common that these
locations are predetermined by other aspects of business planning. In inter-PoP plan-
ning, distance-based costs are important. The cost of a link is usually considered to
be proportional to its length, though this is approximate. The real cost of a link has a
fixed component (in the equipment used to terminate a line) in addition to distance-
dependent terms derived from the cost to install a physical line, e.g., costs of cables,
excavation and right of ways. Even where leased lines are used (so there are min-
imal installation costs) the original capital costs of the lines are usually passed on
through some type of distance sensitive pricing.

In addition, higher speed links generally cost more. The exact model for such
costs can vary, but a large component of the bandwidth-dependent costs is in
the end equipment (router interface cards, WDM mux/demux equipment, etc.). In
actuality-real costs are often very complicated: vendors may have discounts for bulk
purchases, whereas cutting-edge technology may come at a premium cost. How-
ever, link costs are often approximated as linear with respect to bandwidth because
we could, in principle, obtain a link with capacity 4c by combining four links of
capacity c.
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In the simple case then, cost per link has the form

f .de; ce/ D ˛ C ˇde C �ce; (5.24)

where ˛ is the fixed cost of link installation, ˇ is the link cost per unit distance,
and � is the cost per unit bandwidth. As the distance of a link is typically a fixed
property of the link, we often rewrite the above cost in the form

fe.ce/ D ˛e C �ce; (5.25)

where now the cost function depends on the link index e.
We further simplify the problem by assuming that BRs are capable of dealing

with all traffic demands so that only two (allowing for redundancy) are needed in
each PoP, thus removing the costs of the router from the problem.

Finally, we simplify our approach by assuming that routes are chosen to follow
the shortest possible geographic path in our network. There are reasons (which we
shall discuss in the following section) why this might not be the case, however, a
priori, it makes sense to use the shortest geographic path. There are costs that arise
from distance. Most obviously, if packets traverse longer paths, they will experience
longer delays, and this is rarely desirable. In addition, packets that traverse longer
paths use more resources. For instance, a packet that traverses two hops rather than
one uses up capacity on two links rather than one.

As noted earlier, we need to specify the problem constraints, the basic set of
which are intended to ensure that there is sufficient capacity in the network. When
congestion is avoided, queueing delays will be minimal, and hence delays across
the network will be dominated by propagation delays (the speed of light cannot be
increased). So ensuring sufficient capacity implicitly serves the purpose of reducing
networking delays. As noted, we adopt the approach of specifying an SOP, which
we do in the form of a factor � 2 .0; 1/, which specifies the traffic limit with respect
to capacity. That is, we shall require that the link capacity ce be sufficient that traffic
takes up only � of the capacity, leaving 1�� of the capacity to allow for unexpected
variations in the traffic.

The possible variables are now the link locations and their capacities. So, given
the (vectorized) traffic matrix x, our job is to determine link locations and capacities
ce , which implicitly defined the network routes (and hence the routing matrix A),
such that we solve

minimize
X

e2E

˛eI.ce > 0/ C �ce

such that Ax � �c;

ce 2 C;

(5.26)

where Ax D y, the link loads, c is the vector of links capacities, E is the set of
possible links, I.ce > 0/ is an indicator function (which is 1 where we build a link,
and 0 otherwise), and C is the set of available link capacities (which includes 0).

Implicit in the above formulation is the routing matrix A, which results from the
particular choice of links in the network design, so A is in fact a function of the
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network design. Its construction imposes constraints requiring that all traffic on the
network can be routed. The problem can be rewritten in a more explicit form using
flow-based constraints, but the above formulation is convenient for explaining the
differences and similarities between the range of problems we consider here.

There may be additional constraints in the above-mentioned problem resulting
from router limitations, or due to network performance requirements. For instance,
if we have a maximum throughput on each router, we introduce a set of constraints
of the form Bx � 	r, where r are router capacities, and B is similar to a routing
matrix in that it maps end-to-end demands to the routers along the chosen path.
Port constraints on a router might be expressed by taking constraints of the formP

j I.ci;j > 0/ � pi , where pi is the port limit on router i . Port constraints are
complicated by the many choices of line cards available for high-speed routers, and
so have sometimes been ignored, but they are a key limitation in many networks.
The issue is sometimes avoided by separation of inter- and intra-PoP design, so that
a high port density on BRs is not needed.

The other complication is that we should aim to optimize the network for 24 � 7

operations. We can do so simply by including one set of capacity constraints for each
time of day and week, i.e., Axt � �c. The resulting constraints are in exactly the
same form as in (5.26) but their number increases. However, it is common that many
of these constraints are redundant, and so can be removed from the optimization
(without effect) by a pre-filtering phase.

The full optimization problem is a linear integer program, and there are many
tools available for solution of such programs. However, it is not uncommon to relax
the integer constraints to allow any ce � 0. In this case, there is no point in having
excess capacity, and so we can replace the link capacity constraint by Ax D �c. We
then obtain the actual design by rounding up the capacities. This approach reduces
the numerical complexity of the problem, but results in a potentially suboptimal
design. Note though, that integer programming problems are often NP hard, and
consequently solved using heuristics, which likewise can lead to suboptimal de-
signs. Relaxation to a linear program is but one of a suite of techniques that can be
used to solve problems in this context, often in combination with other methods.

Moreover, it is common, the mathematical community to focus on finding prov-
ably optimal designs, but this is not a real issue. In practical network design we
know that the input data contains errors, and our cost models are only approximate.
Hence, the mathematically optimal solution may not have the lowest cost of all re-
alizable networks. The mathematical program only needs to provide us with a very
good network design.

The components of real network suffer outages on a regular basis: planned main-
tenance and accidental fiber cuts are simple examples (for more details see Chapters
3 and 4). The final component of network planning that we discuss here is reliability
planning: analyzing the reliability of a network. There are many algorithms aimed
at maintaining network connectivity, ranging from simple designs such as rings or
meshes, to formal optimization problems including connectivity constraints. Com-
monly, networks are designed to survive all single link or node outages, though more
careful planning would concern all Shared Risk Groups (SRG), i.e., groups of links
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and/or nodes who share fates under common failures. For instance, IP links that use
wavelengths on the same fiber will all fail simultaneously if the fiber is cut.

However, when a link (or SRG) fails, maintaining connectivity is not the only
concern. Rerouted traffic creates new demands on links. If this demand exceeds
capacity, then the resulting congestion will negatively impact network performance.
Ideally, we would design our network to accommodate such failures, i.e., we would
modify our earlier optimization problem (5.26) as follows:

minimize
X

e2E

˛eI.ce > 0/ C �ce

such that Ax � �c;

and Ai x � 
c; 8i 2 F ;

(5.27)

where F is the set of all failure scenarios considered likely enough to include,
and Ai is the routing matrix under failure scenario i . Naively implemented with
� D 
, this approach has the limitation that the capacity constraints under failures
can come to dominate the design of the network so that most links will be heavily
underutilized under normal conditions. Hence, we allow that the SOPs with respect
to normal loads, and failure loads to be different, � < 
 < 1, so that the mismatch is
somewhat balanced, i.e., under normal conditions links are not completely underuti-
lized, but there is likely to be enough capacity under common failures. For example,
we might require that under normal loads, peak utilizations remain at 60%, while
under failures, we allow loads of 85%.

Additionally, the number of possible failure scenarios can be quite large, and
as each introduces constraints, it may not be practical to consider all failures. We
may need to focus on the likely failures, or those that are considered to be most
potentially damaging. However, it is noteworthy that only constraints that involve
rerouting need be considered. In most failures, a large number of links will be un-
affected, and hence the constraints corresponding to those links will be redundant,
and may be easily removed from the problem.

The above formulation presumes that we design our network from scratch, but
this is the exception. We typically have to grow our network incrementally. This
introduces challenges – for instance, it is easy to envisage a series of incremental
steps that are each optimal in themselves, but which result in a highly suboptimal
network over time. So it is sometimes better to design an optimal network from
scratch, particularly when the network is growing very quickly. In the mean time we
can include the existing network through a set of constraints in the form ce � leCc0

e ,
where le is the legacy link capacity on link e, and c0

e is the additional link capacity.
The real situation is complicated by some additional issues: (i) typical IP router load
balancing is not well suited for multiple parallel links of different capacities so we
must choose between increasing capacity through additional links (with capacity
equal to the legacy links) or paying to replace the old links with a single higher
capacity link; and (ii) the costs for putting additional capacity between two routers
may be substantially different from the costs for creating an entirely new link. Some
work [40] has considered the problem of evolvability of networks, but without all
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of the addition complexities of IP network management, so determining long-term
solutions for optimal network evolution is still an open problem.

5.5.2 Traffic Engineering

In practice, it takes substantial time to build or change a network, despite modern
innovations in reconfigurable networks. Typical changes to a link involve physically
changing interface cards, wiring, and router configurations. Today these changes are
often made manually. They also need to be performed carefully, through a process
where the change is documented, carefully considered, acted upon, and then tested.
The time to perform these steps can vary wildly between companies, but can easily
be 6 months once budget cycles are taken into account.

In the mean time we might find that our traffic predictions are in error. The best
predictions in the world cannot cope with the convulsive changes that seem to occur
on a regular basis in the Internet. For instance, the introduction of peer-to-peer net-
working both increased traffic volumes dramatically in a very short time frame, and
changed the structure of this traffic (peer-to-peer traffic is more symmetric that the
previously dominant client–server model). YouTube again reset providers’ expecta-
tions for traffic. The result will be a suboptimal network, in some cases leading to
congestion.

As noted, we cannot simply redesign the network, but we can often alleviate con-
gestion by better balancing loads. This process, called traffic engineering (or just
load balancing) allows us to adapt the network on shorter time scales than capacity
planning. It is quite possible to manually intervene in a network’s traffic engineering
on a daily basis. Even finer time scales are possible in principle if traffic engineer-
ing is automated, but this is uncommon at present because there is doubt about the
desirability of frequent changes in routing. Each change to routing protocols can
require a reconvergence, and can lead to dropped packets. More importantly, if such
automation is not very carefully controlled it can become unstable, leading to oscil-
lations and very poor performance.

The Traffic Engineering (TE) problem is very similar to the network design prob-
lem. The goal or optimization objective is often closely related to that in design. The
constraints are usually similar. The major difference is in the planning horizon (typ-
ically days to weeks), and as a result the variables over which we have control.
The restriction imposed by the planning horizon for TE is that we cannot change
the network hardware: the routers and links between them are fixed. However, we
can change the way packets are routed through the network, and we can use this to
rebalance the traffic across the existing network links.

There are two methods of TE that are most commonly talked about. The most
often mentioned uses MultiProtocol Label Switching (MPLS) [54], by which we
can arbitrarily tunnel traffic across almost any set of paths in our network. Find-
ing a general routing minimizing max-utilization is an instance of the classical
multi-commodity flow problem, which can be formulated as a linear program
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[6, Chapter 17], and is hence solvable using commonly available tools. We shall
not spend much time on MPLS TE, because there is sufficient literature already (for
instance, see [19, 36]). We shall instead concentrate on a simpler, less well known,
and yet almost as powerful method for TE.

Remember that we earlier argued that shortest-geographic paths made sense for
network routing. In fact, shortest-path routing does not need to be based on geo-
graphic distances. Most modern Interior Gateway Protocols allow administratively
defined distances (for instance, Open Shortest Path First (OSPF) [42] and Intermedi-
ate System-Intermediate System (IS-IS) [14]). By tweaking these distances we can
improve network performance. By making a link distance smaller, you can make a
link more “attractive”, and so route more traffic on this link. Making the distance
longer can remove traffic. Configurable link weights can be used, for example, to
direct traffic away from expensive (e.g., satellite) links.

However, we can formulate the TE problem more systematically. Let us consider
a shortest-path protocol with administratively configured link weights (the link dis-
tances) we on each link e. We assume that the network is given (i.e., we know its
link locations and capacities), and that the variables that we can control are the
link weights. Our objective is to minimize the congestion on our network. Several
metrics can be used to describe congestion. Network-wide metrics such as that pro-
posed in [25, 26] can have advantages, but we use the common metric of maximum
utilization here for its simplicity.

In many cases, there are additional “human” constraints on the weights we can
use in the above optimization. For instance, we may wish that the resulting weights
do not change “too much” from our existing weights. Each change requires recon-
figuration of a router, and so reducing the number of changes with respect to the
existing routing may be important. Likewise, the existing weights are often chosen
not just for the sake of distance, but also to make the network conceptually simpler.
For instance, we might choose smaller weights inside a “region” and large weights
between regions, where the regions have some administrative (rather than purely ge-
ographical) significance. In this case, we may wish to preserve the general features
of the routing, while still fine-tuning the routes. We can express these constraints in
various ways, but we do so below by setting minimum and maximum values for the
weights. Then the optimization problem can be written: choose the weights w, such
that we

minimize max
e2E

ye=ce

such that Ax D y;

and wmin
e � we � wmax

e ; 8e 2 E

(5.28)

where A is the routing matrix generated by shortest-path routing given by link
weights we , and the link utilizations are given by ye=ce (the link load divided
by its capacity). The wmin

e and wmax
e constrain the weights for each link into a

range determined by existing network policies (perhaps within some bound of the
existing weights). Additional constraints might specify the maximum number of
weights we are allowed to change, or require that links weights be symmetric, i.e.,
w.i;j / D w.j;i/.
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The problem is in general NP-hard, so it is nontrivial to find a solution. Over the
years, many heuristic methods [12,20,25,26,37,41,53] have been developed for the
solution of this problem.

The exciting feature of this approach is that it is very simple. It uses standard IP
routing protocols, with no enhancements other than the clever choice of weights.
One might believe that the catch was that it cannot achieve the same performance as
full MPLS TE. However, the performance of the above shortest-path optimization
has been shown on real networks to suffer only by a few percent [59,60], and impor-
tantly, it has been shown to be more robust to errors in the input traffic matrices than
MPLS optimization [60]. This type of robustness is critical to real implementations.

Moreover, the approach can be used to generate a set of weights that work well
over the whole day (despite variations in the TM over the day) [60], or that can
help alleviate congestion in the event of a link failure [44], a problem that we shall
consider in more detail in the following section.

5.6 Robust Planning

A common concern in network planning is the consequence of mistakes. Traf-
fic matrices used in our optimizations may contain errors due to measurement
artifacts, sampling, inference, or predictions. Furthermore, there may be inconsis-
tencies between our planned network design, and the actual implementation through
misconfiguration or last minute changes in constraints. There may be additional in-
consistencies introduced through the failure of invariance in TMs used as inputs, for
example, caused by congestion alleviation in the new network.

Robust planning is the process of acknowledging these flaws, and still designing
good networks. The key to robustness is the cyclic approach described in Section
5.1: measure ! predict ! plan ! and then measure again. However, with some
thought, this process can be made tighter. We have already seen one example of
this through TE, where a short-term alteration in routing is used to counter errors in
predicted traffic. In this section we shall also consider some useful additions to our
kitbag of robust planning tools.

5.6.1 Verification Measurements

One of the most common sources of network problems is misconfiguration. Extreme
cases of misconfigurations that cause actual outages are relatively obvious (though
still time-consuming to fix). However, misconfigurations can also result in more
subtle problems. For instance, a misconfigured link weight can mean that traffic
takes unexpected paths, leading to delays or even congestion.

One of the key steps to network planning is to ensure that the network we planned
is the one we observe. Various approaches have been used for router configura-
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tion validation: these are considered in more detail in Chapter 9. In addition, we
recommend that direct measurements of the network routing, link loads, and perfor-
mance can be made at all times. Routing can be measured through mechanisms such
as those discussed in Section 5.2 and in more detail in Chapter 11. When performed
from edge node to edge node, we can use such measurements to confirm that traffic
is taking the routes we intended it to take in our design.

By themselves, routing measurements only confirm the direction of traffic flows.
Our second requirement is to measure link traffic to ensure that it remains within
the bounds we set in our network design. Unexpected traffic loads can often be dealt
with by TE, but only once we realize that there is a problem.

Finally, we must always measure performance across our network. In principle,
the above measurements are sufficient, i.e., we might anticipate that a link is con-
gested only if traffic exceeds the capacity. However, in reality, the typical SNMP
measurements used to measure traffic on links are 5-min averages. Congestion can
occur on smaller time scales, leading to brief, but nonnegligible packet losses that
may not be observable from traffic measurements alone. We aim to reduce these
through choice of SOP, but note that this choice is empirical in itself, and an ac-
curate choice relies on feedback from performance measurements. Moreover, other
components of a network have been known to cause performance problems even
on a lightly loaded network. For instance, such measurements allowed us to dis-
cover and understand delays in routing convergence times [32, 61], and that during
these periods bursts of packet loss would occur, from which improvements to Inte-
rior Gateway Protocols have been made [27]. The importance of the problem would
never have been understood without performance measurements. Such measure-
ments are discussed in more detail in Chapter 10.

5.6.2 Reliability Analysis

IP networks and the underlying SONET/WDM strata on which they run are often
managed by different divisions of a company, or by completely different compa-
nies. In our planning stages, we would typically hope for joint design between these
components, but the reality is that the underlying physical/optical networks are of-
ten multiuse, with IP as one of several customers (either externally or internally)
that use the same infrastructure. It is often hard to prescribe exactly which circuits
will carry a logical IP link. Therefore, it is hard in some cases to determine, prior to
implementation, exactly what SRG exist.

We may insist, in some cases, that links are carried over separate fibers, or even
purchase leased lines from separate companies, but even in these cases great care
should be taken. For instance, it was only during the Baltimore train tunnel fire
(2001) [4] it was discovered that several providers ran fiber through the same tunnel.

Our earlier network plan can only accommodate planned network failure sce-
narios. In robust planning, we must somehow accommodate the SRGs that have
arisen in the implementation of our planned network. The first step, obviously, is to
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determine the SRGs. The required data mapping IP links to physical infrastructure
is often stored in multiple databases, but with care it is possible to combine the two
to obtain a list of SRGs. Once we have a complete list of failure scenarios we could
go through the planning cycle again, but as noted, the time horizon for this process
would leave our network vulnerable for some time.

The first step therefore is to perform a network reliability analysis. This is a sim-
ple process of simulating each failure scenario, and assessing whether the network
has sufficient capacity, i.e., whether Ai x � 
c. If this condition is already satisfied,
then no action need to be taken. However, where the condition is violated, we must
take one of two actions. The most obvious approach to deal with a specific vulnera-
bility is to expedite an increase in capacity. It is often possible to reduce the planning
horizon for network changes at an increased cost. Where small changes are needed,
this may be viable, but it is clearly not satisfactory to try to build the whole network
in this way.

The second alternative is to once again use traffic engineering. MPLS provides
mechanisms to create failover paths, however, it does not tell you where to route
these to ensure that congestion does not occur. Some additional optimization and
control is needed. However, we cannot do this after the failure, or recovery will
take an unacceptable amount of time. Likewise, it is impractical in today’s networks
to change link weights in response failures. However, previous studies have shown
that shortest-path link weight optimization can be used to provide a set of weights
that will alleviate congestive effects under failures [44], and such techniques have
(anecdotally) been used in large networks with success.

5.6.3 Robust Optimization

The fundamental issue we deal with is “Given that I have errors in my data, how
should I perform optimization?” Not all the news are bad. For instance, once we
acknowledge that our data is not perfect, we realize that finding the mathematically
optimal solution for our problem is not needed. Instead, heuristic solutions that find
a near optimal solution will be just as effective. This chapter is not principally con-
cerned with optimization, and so we will not spend a great deal of time on specific
algorithms, but note that once we decide that heuristic solutions will be sufficient,
several meta-heuristics such as genetic algorithms and simulated annealing become
attractive. They are generally easy to program, and very flexible, and so allow us to
use more complex constraints and optimization objective functions than we might
otherwise have chosen. For instance, it becomes easy to incorporate the true link
costs, and technological constraints on available capacities.

The other key aspect to optimization in network planning directly concerns ro-
bustness. We know there are errors in our measurements and predictions. We can
save much time and effort in planning if we accommodate some notion of these er-
rors in our optimization. A number of techniques for such optimization have been
proposed: oblivious routing [8], and Valiant network design [69, 70]. These papers
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present methods to design a network and/or its routing so that it will work well for
any arbitrary traffic matrix. However, this is perhaps going too far. In most cases we
do have some information about possible traffic whose use is bound to improve our
network design.

A simple approach is to generate a series of possible traffic matrices by
adding random noise to our predicted matrix, i.e., by taking xi D x C ei , for
i D 1; 2; : : : ; M . Where sufficient historical data exist, the noise terms ei should
be generated in such a way as to model the prediction errors. We can then optimize
against the set of TMs, i.e.,

minimize
X

e2E

˛eI.ce > 0/ C �ce

such that Axi � �c; 8i D 1; 2; : : : ; M:

(5.29)

Once again this can increase the number of constraints dramatically, particularly in
combination with reliability constraints, unless we realize that again many of these
constraints will be redundant, and can be pruned by preprocessing.

The above approach is somewhat naive. The size of the set of TMs to use is
not obvious. Also we lack guidance about the choice we should make for �. In
principle, we already accommodate variations explicitly in the above optimization
and so we might expect � D 1. However, as before we need � < 1 to accommodate
inter-measurement time interval variations in traffic, though the choice should be
different than in past problems.

Moreover, there may be better robust optimization strategies that can be ap-
plied in the future. For instance, robust optimization has been applied to the
traffic engineering problem in [65], where the authors introduce the idea of COPE
(Common-case Optimization with a Penalty Envelope) where the goal is to find the
optimal routing for a predicted TM, and to ensure that the routing will not be “too
bad” if there are errors in the prediction.

5.6.4 Sensitivity Analysis

Even where we believe that our optimization approach is robust, we must test this
hypothesis. We can do so by performing a sensitivity analysis. The standard ap-
proach in such an analysis is to vary the inputs and examine the impact on the
outputs. We can vary each possible input to detect robustness to errors in this in-
put, though the most obvious to test is sensitivity to variations in the underlying
traffic matrix. We can test such sensitivity by considering the link loads under a
set of TMs generated, as before, by adding prediction errors, i.e., xi D x C ei ,
for i D 1; 2; : : : ; M , and then simply calculating the link loads yi D Axi . There
is an obvious relationship to robust optimization, in that we should not be testing
against the same set of matrices against which we optimized. Moreover, in sensi-
tivity analysis it is common to vary the size of the errors. However, simple linear
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algebra allows us to reduce the problem to a fixed load component y D Ax and a
variable component wi D Aei , which scales linearly with the size of the errors, and
which can be used to see the impact of errors in the TM directly.

5.7 Summary

“Reliability, reliability, reliability” is the mantra of good network operators.
Attaining reliability costs money, but few companies can afford to waste mil-
lions of dollars on an inefficient network. This chapter is aimed at demonstrating
how we can use robust network planning to attain efficient but reliable networks,
despite the imprecision of measurements, uncertainties of predictions, and general
vagaries of the Internet.

Reliability should mean more than connectivity. Network performance measured
in packet delay or loss rates is becoming an important metric for customers deciding
between operators. Network design for reliability has to account for possible con-
gestion caused by link failures. In this chapter we consider methods for designing
networks where performance is treated as part of reliability.

The methodology proposed here is built around a cyclic approach to network de-
sign exemplified in Fig. 5.1. The process of measure ! analyze/predict ! control
! validate should not end, but rather, validation measurements are fed back into
the process so that we can start again. In this way, we attain some measure of ro-
bustness to the potential errors in the process. However, the planning horizon for
network design is still quite long (typically several months) and so a combination
of techniques such as traffic engineering are used at different time scales to ensure
robustness to failures in predicted behavior. It is the combination of this range of
techniques that provides a truly robust network design methodology.
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Chapter 6
Interdomain Routing and Reliability

Feng Wang and Lixin Gao

6.1 Introduction

Routing as the “control plane” of the Internet plays a crucial role on the performance
of data plane in the Internet. That is, routing aims to ensure that there are forwarding
paths for delivering packets to their intended destinations. Routing protocols are the
languages that individual routers speak in order to cooperatively achieve the goal in
a distributed manner. The Internet routing architecture is structured in a hierarchical
fashion. At the bottom level, an Autonomous System (AS) consists of a network
of routers under a single administrative entity. Routing within an AS is achieved
via an Interior Gateway Protocol (IGP) such as OSPF or IS-IS. At the top level, an
interdomain routing protocol glues thousands of ASes together and plays a crucial
role in the delivery of traffic across the global Internet. In this chapter, we provide
an overview of the interdomain routing architecture and its reliability in maintaining
global reachability.

Border Gateway Protocol (BGP) is the current de-facto standard for interdomain
routing. As a path vector routing protocol, BGP requires each router to advertise
only its best route for a destination to its neighbors. Each route includes attributes
such as AS path (the sequence of ASes to traverse to reach the destination), and
local preference (indicating the preference order in selecting the best route). Rather
than simply selecting the route with the shortest AS path, routers can apply complex
routing policies (such as setting a higher local preference value for a route through a
particular AS) to influence the best route selection, and to decide whether to propa-
gate the selected route to their neighbors. Although BGP is a simple path vector
protocol, configuring BGP routing policies is quite complex. Each AS typically
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configures its routing policy according to its own goals, such as load-balancing
traffic among its links, without coordinating with other networks. However, arbi-
trary policy configurations might lead to route divergence or persistent oscillation
of the routing protocol. That is, although BGP allows flexibility in routing policy
configuration, BGP itself does not guarantee routing convergence. Arbitrary policy
configurations, such as unintentional mistakes or intentional malicious configura-
tion, can lead to persistent route oscillation [9, 11].

Besides being a policy-based routing protocol, BGP has many features that aim
to scale a large network such as the global Internet. One feature is that BGP sends
incremental updates upon routing changes rather than sending complete routing in-
formation. BGP speaking routers send new routes only when there are changes.
Related with the incremental update feature, BGP uses a timer, referred to as the
Minimum Route Advertisement Interval (MRAI) timer, to determine the minimum
amount of time that must elapse between routing updates in order to limit the
number of updates for each prefix. Therefore, BGP does not react to changes in
topology or routing policy configuration immediately. Rather, it controls the fre-
quency in which route changes can be made in order to avoid overloading router
CPU cycles or reduce route flap. While MRAI timers can be effective in reducing
routing update frequency, the slow reaction to changes can delay route convergence.
More importantly, during the delayed route convergence process, routes among
neighboring routers might be inconsistent. This can lead to transient routing loops
or transient routing outages (referred to as transient routing failures) caused by the
delay in discovering alternate routes.

The goal of this chapter is to provide an overview of BGP, to give practical guide-
lines for configuring BGP routing policy and offer a framework for understanding
how undesirable routing states such as persistent routing oscillation and transient
routing failures or loops can arise. We also present a methodology for measuring the
extent to which these undesirable routing states can affect the quality of end-to-end
packet delivery. We will further describe proposed solutions for reliable interdomain
routing. Toward this end, we outline this chapter as follows.

We begin with an introduction to BGP in Section 6.2. We first describe
interdomain routing architecture, and then illustrate the details of how BGP enables
ASes to exchange global reachability information and various BGP route attributes.
We further present routing policy configurations that enable each individual AS to
meet its goal of traffic engineering or commercial agreement.

In Section 6.3, we introduce multihoming technology. Multihoming allows an
AS to have multiple connections to upstream providers in order to survive a single
point of failure. We present various multihoming approaches, such as multihoming
to multip le upstream providers or single upstream provider to show the redundancy
and load-balancing benefits associated with being multihomed.

In Section 6.4, we highlight the limitations of BGP. For example, the protocol
design does not guarantee that routing will converge to a stable route. We further
show how incentive compatible routing policies can prevent routing oscillation, and
how transient routing failures or loops can occur even under incentive compatible
routing configuration or redundant underlying infrastructure.
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Having understood the potential transient routing failures and routing loops, we
describe a measurement methodology, and measurement results that quantify the
impact of transient routing failures and routing loops on end-to-end path perfor-
mance in Section 6.5. This illustrates the severity that routing outages can affect the
quality of packet delivery.

In Section 6.6, we present a detailed overview of the existing solutions to achieve
reliable interdomain routing. We show that both protocol extensions and routing
policies can enhance the reliability of interdomain routing. Finally, we conclude the
chapter by pointing out possible future research directions in Section 6.7.

6.2 Interdomain Routing

This section introduces the interdomain routing architecture, the interdomain
routing protocol, BGP, and BGP routing policy configuration.

6.2.1 Interdomain Routing Architecture

The Internet consists of a large collection of hosts interconnected by networks of
links and routers. The Internet is divided into thousands of ASes. Examples range
from college campuses and corporate networks to global Internet Service Providers
(ISPs). An AS has its own routers and routing policies, and connects to other
ASes to exchange traffic with remote hosts. A router typically has very detailed
knowledge of the topology within its AS, and limited reachability information about
other ASes. Figure 6.1 shows an example of the Internet topology, where there are
large transit ISPs such as MCI or AT&T, and stub ASes, such as the University
of Massachusetts’ network, which does not provide transit service to other ASes.

AS 1249

Umass.edu
MCI

AS 15169

Servers

Google.comSprint

AT & T

Fig. 6.1 An example topology of interconnection among Internet service providers and stub
networks
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Note that the topologies of the transit ISPs and stub ASes shown in this example are
much simpler than those in reality. Typically, a large transit ISP consists of hundreds
or thousands of routers.

ASes interconnect at public Internet exchange points (IXPs) such as MAE-EAST
or MAE-WEST, or dedicated point-to-point links. Public exchange points typically
consist of a shared medium such as a Gigabit Ethernet, or an ATM switch, that inter-
connects routers from several different ASes. Physical connectivity at the IXP does
not necessarily imply that every pair of ASes exchanges traffic with each other. AS
pairs negotiate contractual agreements that control the exchange of traffic. These
relationships include provider-to-customer, peer-to-peer, and backup, and are dis-
cussed in more detail in Section 6.4.1.

Each AS has responsibility for carrying traffic to and from a set of customer
IP addresses. The scalability of the Internet routing infrastructure depends on the
aggregation of IP addresses in contiguous blocks, called prefixes, each consisting of
a 32-bit IP address and a mask length (e.g., 1:2:3:0=24). An IP address is generally
shown as four octets of numbers from 0 to 255 represented in decimal form. The
mask length is used to indicate the number of significant bits in the IP address. That
is, a prefix aggregates all IP addresses that match the IP address in the significant
bits. For example, prefix 1:2:3:0=24 represents all addresses between 1:2:3:0 and
1:2:3:255.

An AS employs an intradomain routing protocol (IGP) such as OSPF or IS-
IS to determine how to reach routers and networks within itself, and employs an
interdomain routing protocol, i.e., Border Gateway Protocol (BGP) in the cur-
rent Internet, to advertise the reachability of networks (represented as prefixes) to
neighboring ASes.

6.2.2 IGP

Each AS uses an intradomain routing protocol or IGP for routing within the AS.
There are two classes of IGP: (1) distance vector and (2) link state routing protocol.
In distance-vector routing, every routing message propagated by a router to its
neighbors contains the length of the shortest path to a destination. In link-state rout-
ing, every router learns the entire network topology along with the link costs. Then
it computes the shortest path (or the minimum cost path) to each destination. When
a network link changes state, a notification, called link state advertisement (LSA),
is flooded throughout the network. All routers note the change and recompute their
routes accordingly.

6.2.3 BGP

The interdomain routing protocol, BGP, is the glue that pieces together the various
diverse networks or ASes that comprise the global Internet today. It is used among
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ASes to exchange network reachability information. Each AS has one or more bor-
der routers that connect to routers in neighboring ASes, and possibly a number of
internal BGP speaking routers.

BGP is a path-vector routing protocol that facilitates routers to exchange the
path used for reaching a destination. By including the path in the route update in-
formation, one can avoid loops by eliminating any path that traverses the same node
twice. Using a path vector protocol, routers running BGP distribute reachability
information about destinations (network prefixes) by sending route updates – con-
taining route announcements or withdrawals – to their neighbors in an incremental
manner. BGP constructs paths by successively propagating advertisements between
pairs of routers that are configured as BGP peers. Each advertisement concerns
a particular prefix and includes the list of ASes along the path (the AS path) to
the network containing the prefix. By representing the path to be traversed by the
ASes, BGP hides the details of the topology and routing information inside each
AS. Before accepting an advertisement, the receiving router checks for the presence
of its own AS number in the AS path to discard routes with loops. Upon receiving
an advertisement, a BGP speaking router must decide whether or not to use this
path and, if the path is chosen, whether or not to propagate the advertisement to
neighboring ASes (after adding its own AS number of the AS path). BGP requires
that a router simply advertise its best route for each destination to its neighbors.
A BGP speaking router withdraws an advertisement when the prefix is no longer
reachable with this route, which may lead to a sequence of withdrawals by upstream
ASes that are using this path.

When there is an event affecting a router’s best route to a destination, that router
will compute a new best route and advertise the routing change to its neighbors.
If the router no longer has any route to the destination, it will send a withdrawal
message to neighbors for that destination. When an event causes a set of routers
to lose their current routing information, the routing change will be propagated to
other routers. To limit the number of updates that a router has to process within a
short time period, a rate-limiting timer, called the Minimum Route Advertisement
Interval (MRAI) timer, determines the minimum amount of time that must elapse
between routing updates to a neighbor [26]. This has the potential to reduce the
number of routing updates, as a single routing change might trigger multiple tran-
sient routes during the path exploration or route convergence process before the final
stable route is determined. If new routes are selected multiple times while waiting
for the expiration of the MRAI timer, the latest selected route shall be advertised
at the end of MRAI. To avoid long time loss of connectivity, RFC 4271 [26] spec-
ifies that the MRAI timer is applied to only BGP announcements, not to explicit
withdrawals. However, some router implementations might apply the MRAI timer
to both announcements and withdrawals.

BGP sessions can be established between router pairs in the same AS (we re-
fer the BGP session as iBGP session) or different ASes (we refer the BGP session
as eBGP session). Figure 6.2 illustrates examples of iBGP and eBGP sessions. Each
BGP speaking router originates updates for one or more prefixes, and can send the
updates to the immediate neighbors via an iBGP or eBGP session. iBGP sessions
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Fig. 6.2 Internal BGP (iBGP) versus external BGP (eBGP)

are established between routers in the same AS in order for the routers to exchange
routes learned from other ASes. In the simplest case, each router has an iBGP
session with every other router (i.e., fully meshed iBGP configuration). In the fully-
meshed iBGP configuration, a route received from an iBGP router cannot be sent
to another iBGP speaking router, since a route via an iBGP peer should be directly
received from the iBGP peer.

In practice, an AS with hundreds or thousands of routers may need to im-
prove scalability using route reflectors to avoid a fully-meshed iBGP configure.
These optimizations are intended to reduce iBGP traffic without affecting the rout-
ing decision. Each route reflector and its clients (i.e., iBGP neighbors that are not
route reflectors themselves) form a cluster. Figure 6.3 shows an example of route
reflector cluster, where cluster 1 contains route reflector RR1 and its three clients.
Typically, route reflectors and their clients are located in the same facility, e.g., in
the same Point of Presence (PoP). Route reflectors themselves are fully meshed. For
example, in Fig. 6.3, the three route reflectors RR1, RR2 and, RR3 are fully meshed.
A route reflector selects the best route among the routes learned via clients in the
cluster, and sends the best route to all other clients in the cluster except the one from
which the best route is learned, as well as to all other route reflectors. Similarly, it
also reflects routes learned from other route reflectors to all of its own clients.

6.2.4 Routing Policy and Route Selection Process

The simplest routing policy is the shortest AS path routing, where each AS selects
a route with the shortest AS path. BGP, however, allows much more flexible routing
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Fig. 6.4 Import policies, route selection, and export policies

policies than the shortest AS path routing. An AS can favor a path with a longer AS
path length by assigning a higher local preference value. BGP also allows an AS to
send a hint to a neighbor on the preference that should be given to a route by using
the community attribute. BGP also enables an AS to control how traffic enters its
network by assigning a different multiple exit discriminator (MED) value to the ad-
vertisements it sends on each link to a neighboring AS. Otherwise, the neighboring
AS would select the link based on the link cost within its own intradomain routing
protocol. An AS can also discourage traffic from entering its network by perform-
ing AS prepending, which inflates the length of the AS path by listing an AS number
multiple times.

Processing an incoming BGP update involves three steps as shown in Fig. 6.4:

1. Import policies that decide which routes to consider
2. Path selection that decides which route to use
3. Export policies to decide whether (and what) to advertise a neighboring AS

An AS can apply both implicit and explicit import policies. Every eBGP peering
session has an implicit import policy that discards a routing update when the re-
ceiving BGP speaker’s AS already appears in the AS path; this is essential to avoid
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Table 6.1 Steps in the BGP
path selection process

1. Highest local preference
2. Shortest AS path
3. Lowest origin type
4. Smallest MED
5. Smallest IGP path cost to egress router
6. Smallest next-hop router id

introducing a cycle in the AS path. The explicit import policy includes denying or
permitting an update, and assigning a local-preference value. For example, an ex-
plicit import policy could assign local preference to be 100 if a particular AS appears
in the AS path or deny any update that includes AS 2 in the path.

After applying the import policies for a route update from an eBGP session,
each BGP speaking router then follows a route selection process that picks the
best route for each prefix, which is shown in Table 6.1. The BGP speaking router
picks the route with the highest local preference, breaking ties by selecting the route
with the shortest AS path. Note that local preference overrides the AS-path length.
Among the remaining routes, the BGP speaking router picks the one with the small-
est MED, breaking ties by selecting the route with the smallest cost to the BGP
speaking router that passes the route via an iBGP session. Note that, since the tie-
breaking process draws on intradomain cost information, two BGP speaking routers
in the same AS may select different best routes for the same prefix. If a tie still
exists, the BGP speaking router picks the route with the smallest next hop router ID.

Each BGP speaking router sends only its best route (one best route for each
prefix) via BGP sessions, including eBGP and iBGP sessions. The BGP speaking
router applies implicit and explicit export policies on each eBGP session to a neigh-
boring BGP speaker. Each BGP speaking router applies an implicit policy that sets
MED to default values, assigns next hop to interface that connects the BGP session,
and prepends the AS number of the BGP speaking router to the AS path. Explicit
export policies include permitting or denying the route, assigning MED, assigning
community set, and prepending the AS number one or more times to the AS path.
For example, an AS could prepend its AS number several times to the AS path for
a prefix.

Although the BGP route selection process aims to select routes based mostly
on BGP attributes, it is not totally independent from IGP. In fact, IGP cost can
influence route selection when the best path is based on the comparison of the IGP
cost to the egress routers. We refer to this tie-break BGP route selection as hot-
potato routing, since with all other BGP attributes being equal, each AS selects the
route with the shortest path to exit its network. For example, in Fig. 6.5, AS 3 learns
BGP routes to destination, originated by AS 0 at egress routers C1 and C2 from
AS 1 and AS 2, respectively. The value on each link within AS 3 represents the
corresponding IGP cost. Suppose that the two learned routes to the destination have
identical local preferences. We see that the AS path lengths of the two routes are
equal. Router C3 learned two routes from C1 and C2, respectively, and selects the
one learned from C1 as the best route because the IGP cost of path (C3 C1) is smaller
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Fig. 6.5 An example
illustrating hot-potato routing
at AS 3. The value around
a link represents an IGP
weight
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Fig. 6.6 Local preference configuration

than that of path (C3 C2). Similarly, router C4 will select the route learned from C2
as the best route because the path has smaller IGP cost than path (C4 C2). However,
hot-potato routing means that changing IGP weight can cause BGP speaking routers
to select a different best rout and therefore, shift egress routers. For instance, by
changing the IGP link cost between router C1 and C3 from 8 to 10, router C3 will
change its egress router from C1 to C2.

BGP routing policy configuration is typically indicated by a router configuration
file. A BGP routing policy can be assigned based on the destination prefix or the next
hop AS. For example, in Fig. 6.6, AS 0 advertises a prefix “10.1.1.0/24” to the In-
ternet. AS 3 connects to AS 1 and AS 2, and will get routing updates about the
destination “10.1.1.0/24” from the two ASes. AS 3 decides what path its outbound
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traffic to the destination is going to take. Suppose that AS 3 prefers to use the con-
nection via AS 1 to reach the destination. As shown in the following configuration
based on Cisco IOS commands, Router RTA at AS 3 sets an explicit import policy
that assigns a local preference value 100 to the route from AS 1:

router bgp 3
neighbor 1.1.1.1 remote-as 1
neighbor 1.1.1.1 route-map AS1-IN in
neighbor 4.4.4.2 remote-as 3

access-list 1 permit 0.0.0.0 255.255.255.255

route-map AS1-IN permit
match ip address 1
set local-preference 100

We describe the commands in the above configuration as follows. The first
command starts a BGP process with an AS number of 3 at router RTA. The second
command sets up an eBGP session with router at AS 1. The route-map command
associated with the neighbor statement applies route map AS1-IN to inbound up-
dates from AS 1. Just like the first neighbor command, the fourth command sets
up an iBGP session with router RTB. The access-list command creates an access
list named 1 to permit all advertisements. The route-map command creates a route
map named AS1-IN that uses the access list 1 to identify routes to be assigned local
preference of 100.

6.2.5 Convergence Process of BGP

In this section, we illustrate how BGP routing processes converge to stable routes.
Figure 6.7 shows an example of a routing policy configuration of a simple topology.
In this chapter, we simplify the representation of the network using graph theoretical
notations of nodes and edges, where a node represents either an AS or a BGP speak-
ing router, and an edge represents the link between two nodes. In this example, we
use a node to represent an AS. Furthermore, throughout this chapter, we focus on
one destination prefix, d , which is always originated from AS 0. The figure indicates
the export policy by showing all AS paths that an AS can receive from the adjacent

Fig. 6.7 An example of
policy configuration that
converges. The paths around
a node represents its
permissible AS paths and the
paths are ordered in the
descending order of
preference
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router on the associated interface (referred to as permissible AS paths). The figure
also indicates the import policy by ordering the paths in the descending order of
local preference. The BGP routing process converges as follows.

1. Destination prefix d is announced to ASes 1, 2, 3 via direct links.
2. ASes 1, 2, and 3 all choose its direct path as their best route since those are the

only route they received, and announce these direct paths to neighbors.
3. AS 1 now has two paths, (1 0) and (1 2 0), since these are only permissible paths.

AS 2 now has two paths, (2 0) and (2 3 0). AS3 now has two paths, (3 0) and
(3 1 0). According to the local preference of each AS, AS 1 ends up choosing
(1 0) as its best route, AS 3 chooses (3 1 0) as its best route, and AS 2 chooses
(2 3 0) as its best route.

4. AS 3 announces its best path (3 1 0), and therefore, implicitly withdraws its route
announcement of (3 0) from AS 2. Now, with (2 0) as its only path, AS 2 chooses
(2 0) as its best path.

5. AS 2 announces its best path to both AS 1 and AS 3. However, such an announce-
ment does not change the route that AS 1 or AS 3 chooses.

Therefore, all ASes choose a stable route where no routers need to send new update
messages, and hence the BGP process converges. Note that during the convergence
process, each AS selects and/or announces its best route in an asynchronous manner
that is determined by the expiration of MRAI timers. We simplify the process by
assuming that route announcements are performed in “a lock step”. Nevertheless, it
can be proved that in this example, no matter what the exact steps of the convergence
process are, the stable route reached by each AS is the same.

6.3 Multihoming Technology

In this section, we provide an overview of the current multihoming technology,
which is widely used to provide redundant connection. Multihoming refers to the
technology where an AS connects to the Internet through multiple connections via
one or more upstream providers. It is intended to enhance the reliability of the In-
ternet connectivity. When one of the connections fails or is in maintenance, the AS
can still connect to the Internet via other connections. Multihoming configuration
can be achieved using BGP configuration, static routes, Network Address Transla-
tion (NAT), or a combination of the above. In this section, we focus on describing
multihoming with BGP configuration.

The redundancy provided by multihoming can bring additional complexity to the
network configuration. First of all, it is imperative to designate primary and backup
connections in such a manner so that when the primary connection fails, it can au-
tomatically fall back to the backup connection. Second, it is desirable to distribute
traffic across multiple connections. Traffic can be classified into inbound and out-
bound traffic. Outbound traffic is the traffic originating within the multihomed AS
or its customers destined to other ASes; inbound traffic is the traffic destined to the
AS or its customers coming from other ASes.
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A multihomed AS can be multihomed to a single provider, or to multiple
providers. We will describe how multihoming to a single provider and multiple
providers can be configured in the next two Sections 6.3.1 and 6.3.2.

6.3.1 Multihoming to a Single Provider

The simplest way for an AS to connect to the Internet is by setting up a single
connection with a provider. However, the AS has only one connection to send and
receive data. This single-homed configuration cannot be resilient to a single point
of failure such as link or router failure or maintenance. To address this issue, the AS
can set up multiple connections to the provider. Four types of connections can be es-
tablished between an AS and its provider. We describe each type of the connections
as follows:

� Multiple Connections Between a Single Customer Router and Single Provider
Access Router (SSA) An AS has a single border router connected to its provider’s
access router with multiple links. As illustrated in Fig. 6.8a, AS 0 has a single

(a) SSA (b) SMA

(c)  MMA (d) MMB

Fig. 6.8 Four types of multihoming connections
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border router BoR1, which connects to AS 1’s access router, AR1, via two links.
If one of the links fails, the other link can be used.

� Multiple Connections Between a Single Customer Router and Multiple Provider
Access Routers (SMA) An AS has a single router connected to its provider’s
multiple access routers. For example, in Fig. 6.8b, BoR1 connects to AS 1 at
both AR1 and AR2. This configuration can maintain connectivity with a single
point of failure of links or the access routers, but cannot do so with a failures of
the customer router.

� Multiple Connections Between Multiple Customer Routers and Multiple Provider
Access Routers (MMA) An AS has multiple routers connected to its provider’s
multiple access routers. Note that those multiple access routers at the provider
are connected to the same backbone router. For example, in Fig. 6.8c, AS 0 has
two routers: BoR1 and BoR2. Each border router connects to an access router
(AR) in AS 1. This configurations can maintain connectivity with a single point
of failure of access routers or border routers. However, the two access routers
connect to the same backbone router, BaR1. A failure at BaR1 can cause both
the connections to become unavailable.

� Multiple Connections Between Multiple Customer Routers and Multiple Provider
Backbone Routers (MMB) An AS has multiple connections between its multiple
border routers and multiple backbone routers as its provider. This configuration
can achieve higher reliability than that of MMA. For example, in Fig. 6.8d, AS
0 has two border routers, BoR1 and BoR2, which are connected to geographi-
cally separate backbone routers at AS 1. AS 0’s BoR1 connects to AS 1’s access
router AR 1, and they are at the same geographical location, while the border
router BoR2 is connected to another backbone router BaR1. A private physical
connection connects the customer AS’s border router BoR2 and the backbone
router BaR1. This method can maintain connectivity even under a failure of the
backbone router.

Next, we describe how an AS can control traffic over the primary and backup
link. First, we discuss the control of outbound traffic. A multihomed AS can assign
different local preference values to the routes learned from its provider to control its
outgoing traffic. For example, in Fig. 6.8b, BoR1 will receive two identical routes
for each destination prefix. AS 0 can assign higher local preference values to prefer
the routes received through one particular connection over other routes for the same
destination received through the other connection. Multihomed configurations of
SSA, MMA or MMB can apply the same method to control outbound traffic over
the primary link. In addition, an AS multihomed to a single provider with SSA, can
use another method – setting the next hop to a virtual address to control outbound
traffic. For example, in Fig. 6.8a, AR1 can be assigned a virtual address – a loopback
interface. BoR1 will set up a connection with the loopback address. As a result, all
routes that BoR1 receives from AR1 will have the same next hop 20.10.10.1. Since
next hop 20.10.10.1 can be reached via two connections, outbound traffic can be
distributed over the two links.
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Second, we discuss how an AS multihomed to a single provider can control its
inbound traffic. In this case, the multihomed AS can tweak the BGP attribute values,
such as AS path length or MED, to influence route selection at the providers’ router.
For example, an AS can prepend its AS number on the AS path of the route update
announced via the backup link, or send the route update via the backup link with
a higher MED value than that via the primary link. As a result, the primary link is
used in normal situations since it has a shorter AS path or lower MED value. When
the primary link is down, the backup link will be used.

6.3.2 Multihoming to Multiple Providers

The availability of the Internet connectivity provided by upstream providers is very
important for an AS. Multihoming to more than one provider can ensure that the
AS maintains the global Internet connectivity even if the connection to one of its
providers fails [1]. For example, in Fig. 6.9. AS 0 is multihomed to two upstream
providers: AS 1 and AS 2. AS 0 may use one of its providers as its primary provider,
and the other as a backup provider. When connectivity through the primary provider
fails, AS 0 still has its connectivity to the Internet through the backup provider.

A multihomed AS can be configured to direct its outbound traffic through the
primary provider. Only when the connection through the primary provider fails, its
outbound traffic can use the connection through the backup provider. To achieve this
goal, a multihomed AS can use the same approach described for the AS multihomed
to a single provider. That is, an AS may assign a higher local preference for the
route through the primary provider than that through the backup. For its outbound

Fig. 6.9 An example of an AS multihomed to two upstream providers
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traffic, an AS multihomed to multiple providers can use the same approach as those
described for an AS multihomed to a single provider.

A multihomed AS might control which provider its inbound traffic can use. There
are several approaches to control the route used for inbound traffic. The simplest
approach is to advertise its prefixes only to the primary provider so that inbound
traffic can use the primary provider. For example, in Fig. 6.9, AS 0 can advertise
its prefix to its primary provider, say, AS 1. However, such selective advertisement
cannot provide the redundancy afforded by multihoming. In the above example,
if the link between AS 1 and AS 0 fails, AS 0 becomes unreachable until AS 0
notices the failure and advertises its prefixes to the backup provider, AS 2. In this
case, the time it takes to fail over to the backup provider depends on how fast the
multihomed AS detects the failure and determines to announce its profixes to the
backup provider, and how fast the announcement propagates to the global Internet.

Alternatively, an AS can control the route taken by the inbound traffic by splitting
its prefix into several specific prefixes, and advertise the more specific prefixes to the
primary providers. For example, in Fig. 6.10, AS 0 has a prefix, “12.0.0.0/19”. AS
0 splits the prefix into two more specific prefixes: “12.0.0.0/20” and “12.0.16.0/20”.
AS 0 can announce “12.0.0.0/20” to AS 1, and “12.0.16.0/20” to AS 2. At the
same time, AS 0 can advertise its prefix, “12.0.0.0/19” to both providers. As a re-
sult, inbound traffic to “12.0.0.0/20” comes from AS 1, while inbound traffic to
“12.0.16.0/20” comes from AS 2. This approach can balance the traffic load between
the two providers by designating each one as the primary provider for a specific
prefix. At the same time, the approach can tolerant failure of links to providers.
For example, if the link between AS 0 and AS 1 fails, destinations within prefix
“12.0.0.0/20” can still be reached via AS 2 since prefix “12.0.0.0/19” is announced
via AS 2. Despite the advantage of load balancing and fault tolerance, this approach
has the drawback of potentially increasing the number of prefixes announced to the
global Internet.

Fig. 6.10 An example of splitting prefixes
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Another approach to control the route of inbound traffic is via AS prepend. An
AS can prepend its AS number, one or several times when announcing to the backup
provider. This can “discourage” other AS to select the route via the backup provider.
Note that this approach cannot ensure that all inbound traffic will go through the
primary provider. It is possible for an AS to use the longer backup path rather than
the shorter primary path if the backup path has a higher local preference. In fact,
most providers prefer customers over providers. Consider the example network in
Fig. 6.9, AS 2 learns paths to reach prefixes in AS 0 from both the direct and its
upstream connections, but AS 2 will prefer the direct connection, although AS 0
intends it to be a backup path.

In summary, multihoming techniques aim to provide redundant connectivity.
Nevertheless, the extent that these multihoming techniques can ensure continuous
connectivity is hinged on how long it takes for the routing protocol, BGP, to failover
to backup routes. In Section 6.4.2, we will discuss how BGP can recover from a
failure and how long it takes BGP to discover alternate routes.

6.4 Challenges in Interdomain Routing

Failures and changes in topology or routing policy are fairly common in the Internet
due to various causes such as maintenance, router crash, fiber cuts, and misconfig-
uration [4, 17, 18]. Ideally, when such changes occur, routing protocols should be
able to quickly react to those failures to find alternate paths. However, BGP is a
policy-based routing protocol, and is not guaranteed to converge to a stable state,
in which all routers agree on a stable set of routes. Persistent route oscillation can
significantly degrade the end-to-end performance of the Internet. Furthermore, even
if BGP converges, it has been known to be slow to react and recover from network
changes. During routing convergence, there are three potential routing states from
the perspective of any given router: path exploration during which an alternate route
instead of the final stable route is used, transient failures during which there is
no route to a destination but a route will be eventually discovered, and transient
forwarding loops in which routes to a destination form a forwarding loop and the
forwarding loop will eventually disappear. Path exploration does not lead to packet
drops, while transient failures or transient loops do. In this chapter, we describe how
persistent route oscillation, routing failures, and routing loops can occur.

6.4.1 Persistent Route Oscillation

BGP routing protocol provides great flexibility in routing policies that can be set by
each AS. However, arbitrary setting of routing policies can lead to persistent route
oscillation. For example, Fig. 6.11 shows the “bad gadget” example used in [9]. In
this example and all of the following examples, we focus on a single destination
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Fig. 6.11 An example of
BGP routing policy that leads
to persistent route oscillation.
The AS paths around a node
represent a set of permissible
paths, which are ordered in
the descending order of local
preference
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prefix that originates from AS 0, without losing generality. In this example, ASes 1,
2, and 3 receive only the direct path to AS 0 and indirect path via their clockwise
neighbor, and prefer to route via their clockwise neighbor over the direct path to AS
0. For example, AS 2 receives only paths (2 1 0) and (2 0) and prefers route (2 1
0) over route (2 0). This routing policy configuration will lead to persistent route
oscillation. In fact, it can be proved that no matter what route an AS chooses ini-
tially [9], it will keep changing its route and never reach a stable route. For example,
the following sequence of route changes shows how a persistent route oscillation can
occur.

1. Initially, ASes 1, 2, and 3 choose paths (1 2 0), (2 0), and (3 0), respectively.
2. After AS 2 receives path (3 0) from AS 3, it changes from its current path (2 0)

to the higher preference path (2 3 0), which in turn forces AS 1 to change its path
from (1 2 0) to (1 0) because path (1 2 0) is no longer available.

3. When AS 3 notices that AS 1 uses path (1 0), it changes its path (3 0) to (3 1 0).
This in turn forces AS 2 to change its path to (2 0).

4. After AS 2 sends path (2 0) to AS 1, AS 1 changes its path (1 0) to (1 2 0), which
in turn forces AS 3 to change its path (3 1 0) to (3 0), and the oscillation begins
again.

In practice, however, routing policies are typically set according to commercial
contractual agreements between ASes. Typically, there are two types of AS rela-
tionship: provider-to-customer and peer-to-peer. In the first case, a customer pays
the provider to be connected to the Internet. In the second case, two ASes agree to
exchange traffic on behalf of their respective customers free of charge. Note that
contractual agreement between peering ASes typically requires that traffic via both
directions of the peering link has to be within a ratio negotiated between peering
ASes. In addition to these two common types of relationship, an AS may have a
backup relationship with a neighboring AS. Having a backup relationship with a
neighbor is important when an AS has limited connectivity to the rest of the Internet.
For example, two ASes could establish a bilateral backup agreement for providing
the connection to the Internet in the case that one AS’ link to its primary provider
fails. Typically, provider-to-customer relationships among ASes are hierarchical.
The hierarchical structure arises because an AS typically selects a provider with a
network of larger size and scope than its own. An AS serving a metropolitan area
is likely to have a regional provider, and a regional AS is likely to have a national
provider as its provider. It is very unlikely that a nationwide AS would be a customer
of a metropolitan-area AS.
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It is common for an AS to adopt an import routing policy, referred to as prefer
customer routing policy, where routes received from an AS’ customers are always
preferred over those received from its peers or providers. Such a partial order on
the set of routes is compatible with economic incentives. Each AS has economic
incentives to prefer routes via a customer link to those via peer or provider links,
since it does not have to pay for the traffic via customer links. On the other hand,
the AS has to pay for traffic via provider links, and traffic sent to its peer has to be
“balanced out” with traffic from its peer. It is also common for an AS to adopt an
export routing policy, referred to as no-valley routing policy, where an AS does not
announce a route from a provider or peer to another provider or peer. For example,
in Fig. 6.12, and the following examples, an arrowed line between two nodes rep-
resents a provider-to-customer relationship, with the arrow ending at the customer.
A dashed line represents a peer-to-peer relationship. We visualize a sequence of
customer-to-provider links as an uphill path, for example, path (1 3 5) is an up-
hill path. We define a sequence of provider-to-customer links as a down hill path,
for example, path (5 4 1) is a down hill path. A peer-to-peer link is defined as a
horizontal path. The no-valley routing policy ensures that no path contains a valley
where a downhill path is followed by either a peer-to-peer link or uphill path, or
a peer-to-peer link is follower by an uphill path or a peer-to-peer link. That is, an
AS path may take one of the following forms: (1) an uphill path followed by one
or no peer-to-peer link, (2) a downhill path, (3) a peer-to-peer link followed by a
downhill path, (4) an uphill path followed by a downhill path, or (5) a uphill path
followed by a peering link, followed by a downhill path. For example, in Fig. 6.12,
paths (3 5 4) and (1 3 5 6 4 2) are no-valley paths while AS paths (3 1 4) and (3 1 2 6)
are not no-valley paths.

ASes adopt these rules since there is no economic incentive for an AS to transit
traffic between its providers and peers. Note that we name it no-valley routing policy
since such an export policy ensures that no route traverses a provider-to-customer
link and then a customer-to-provider link, or a provider-to-customer link and then a

AS 1 AS 2

AS 6AS 5

AS 4AS 3

Provider-to-customer

Peer-to-peer

Fig. 6.12 Paths (3 5 4) and (1 3 5 6 4 2) are no-valley paths while AS paths (3 1 4) and (3 1 2 6)
are not no-valley paths
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peer-to-peer link, or a peer-to-peer link and then another peer-to-peer link, or peer-
to-peer link and then customer-to-provider link, all of which are valley paths if there
is a hierarchical structure in provider-to-customer relationships.

It has been proved that under the hierarchical provider-to-customer relationships,
these common routing policies can indeed ensure route convergence [8]. Further-
more, these policies ensure route convergence under router or link failures, and
changes in routing policy. Note that each AS can configure its routers with the prefer
customer routing policy without knowing the policies applied in other ASes. There-
fore, each AS has an economic incentive to follow the preferred customer routing
policy. In addition, it is practical to implement the policy since ASes can set their
routing policies without coordinating with other ASes.

In addition to local preference setting, it has been observed that certain iBGP
configuration may result in persistent route oscillation [2,10]. Figure 6.13 shows an
example of route reflector and policy configuration that can lead to persistent route
oscillation. AS 1 consists of two route reflectors, A and B. A has two clients, C1
and C2, while B has one client, C3. The IGP cost of the link between two nodes is
indicated beside the link, and the MED value of the routes is indicated in parenthe-
ses. It can be proved that no matter what the initial route is for each router, it is not
possible for the routers to reach a stable route. As an example, we show below a
possible sequence of route changes that lead to persistent oscillation.

1. Route reflector A selects path p2 and route reflector B selects path p3.
2. Route reflector A receives p3 and selects p1 because p3 has a lower MED than

p2 and p1 has lower IGP metric than p3.
3. Route reflector B receives p1 and selects p1 as the best path (due to a lower IGP

cost) and withdraws p3.
4. Route reflector A selects p2 over p1 (due to a lower IGP cost) and withdraws p1.
5. Route reflector B selects p3 over p2 (due to lower MED). Now both A and B

return back to their initial routes.

Fig. 6.13 An example route
reflector configuration that
leads to persistent oscillation



200 F. Wang and L. Gao

One of the reasons that this route reflector configuration can lead to persistent
route oscillation is that MED is compared only among links in the same AS. It
is possible to enforce a rule that MED is always compared even when they come
from links to different ASes. Other guidelines have also been proposed to prevent
route reflector configuration from persistent oscillation. These guidelines include
exploiting the hierarchical structure of route reflector configuration [10] similar to
that proposed in [8]. That is, if a route reflector configuration ensures that a route
reflector chooses a route from its client over that from another route reflector (e.g.
with IGP cost setting), then it can ensure route convergence.

6.4.2 Transient Routing Failures

Even when BGP eventually converges to a set of stable routes, network failures,
maintenance events, and router configuration changes can cause BGP to recon-
verge. Ideally, when such an event occurs, routing protocols should be able to react
quickly to those failures to find alternate paths. However, BGP is known to be slow
in reacting and recovering from network events. Previous measurement studies have
shown that BGP may take tens of minutes to reach a consistent view of the network
topology after a failure [17–19].

During the convergence period, a router might contain routing information that
lags behind the state of the network. For example, it is possible for a router to even-
tually discover an alternate path when one of the links in its original path fails.
However, during the discovery process, the router might lose all of its paths before
an alternate path is discovered. Such a transient loss of reachability is referred to as
a transient routing failure.

Figure 6.14 shows an example of policy configuration and link failure scenario
that can lead to a transient routing failure. In this example, AS 1 and AS 2 are
providers of AS 3, AS 0 is a customer of AS 1, and AS 1 is a peer of AS 2. Note
that the import and export policies are realistic in the sense that it follows the prefer-
customer and no-valley routing policy. When the link between AS 3 and AS 0 fails,
AS 3 temporarily loses its connection to the destination AS 0. AS 3 has to send a
withdrawal message to cause its neighbor AS 1 to select a new best path. Before
AS 3 receives the new path from AS 1, it will experience transient loss of reach-
ability to AS 0. In addition, the timing of sending withdrawal and announcement

Fig. 6.14 An example
illustrating routing failure at
AS 3. The text around a node
represents a set of permissible
paths and their ordering in
local preference (higher
preference first)
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Fig. 6.15 Transient routing
failures take place in a typical
eBGP system. The AS paths
around a node represent a set
of permissible paths, which
are ordered in the descending
order of local preference
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messages are determined by the expiration of MRAI timers, which can take several
seconds to tens of seconds. During this period, all packets destined to AS 0 at AS 3
will be dropped.

In a typical AS where the prefer-customer and no-valley routing policies are
followed, it is quite likely to have ASes experience transient failures. In fact, when
an event causes an AS to change from a customer route to a provider route and all
of its providers use it to reach a destination, the AS will definitely experience a
transient failure. This is because the AS has to withdraw the customer route first
before its provider can discover an alternate path and send the path to it. Please refer
to [30] for a proof. Figure 6.15 shows an example to illustrate this point. Suppose
that before the link between AS 1 and AS 0 fails, AS 1, AS 3, and AS 6 all have only
one path via their customers to reach the destination. When the link failure occurs,
the ASes will experience transient failure before they can learn the route via their
providers. AS 2 may experience the failure (depending on whether the withdrawal
from AS 6 is suppressed the MRAI timer), but AS 7 does not experience any
transient routing failure.

In previous section, we have shown that multihoming technology can provide
redundant underlying connections. Here, we use several examples to discuss
whether BGP can fully exploit the redundancy to quickly recover from failures.
In fact, BGP fails to take advantage of this redundancy to provide high degree of
path diversity. The reason is due to the iBGP configuration. A typical hierarchical
iBGP system consists of a core with fully meshed core routers, i.e., route reflectors,
and the edge routers which are the clients of the relevant route reflectors. Transient
routing failures can occur within a hierarchical iBGP system. Figure 6.16 shows an
example that illustrates how routing failures can occur due to iBGP configuration.
A multihoming AS AS 0 has two providers: AS 1 and AS 2. AS 1 can reach a des-
tination originated at AS 0 via one of two access routers, AR1 or AR2. According
to the prefer-customer routing policy, the path via AR1 is assigned higher local
preference value than those via AR2. As a result, all routers inside AS 1 will use
the path via AR1 to reach the destination except the access router AR2. Once the
link between AR1 and AS 2 fails, all routers except AR2 might experience transient
routing failures, before failover to the path via AR2.
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Fig. 6.16 An AS with a hierarchical iBGP configuration can experience transient failures
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Fig. 6.17 An AS with multiple connections to a destination prefix can experience transient failures

Our second example, shown in Fig. 6.17, is used to show the reliability issue
for an AS with multiple connections to a single provider. In this example, AS 0
has two connections to AS 1. Suppose that AS 0 considers the connection via AS
1’s AR1 as the primary link, and the other connection via AR2 as the backup link.
Suppose that AS 0 uses AS path prepending to implement this configuration. AS 0’s
BoR2 advertises its prefix with AS path (0 0 0). As a result, all routers inside AS
1 except router AR2 have only one single route to reach the destination. If the link
between AS 0’s BoR1 and AS 1’s AR1 fails, all routers within AS 1 except AR2
will experience transient failures.
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Our third example, shown in Fig. 6.18, is used to show the reliability issue for an
AS with multiple geographical connections to a single provider. In this example, we
assume that AS 0 considers the connection via AS 1’s AR2 as the primary link,
and the connection via AR1 as the backup link. Just like the previous example,
suppose that AS 0 uses AS path prepending to implement this configuration. As a
result, all routers inside AS 1 except router AR2 has only one single route to reach
the destination. If the link between AS 0’s BoR2 and AS 1’s AR2 fails, all routers
within AS 1 except AR2 will experience transient failures.

Our last example used to show load balancing can avoid transient routing fail-
ures. In Fig. 6.19, AS 0 distributes its inbound traffic among the two connections
by applying hot-potato routing policy. That is, the backbone routers within AS 1
select the best route according to IGP costs to the egress routers, AR1 and AR2.

Fig. 6.18 An AS with geographical connections to a destination prefix can experience transient
failures

Fig. 6.19 Load balancing configuration can avoid transient failures
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Fig. 6.20 A transient failure experienced by router RT1 when the link between AS 0 and AS 1 is
added or recovered

As a result, all backbone routers have two different routes to reach the destination.
This configuration can avoid single points of failures for backbone routers and link
failures between AS 1 and AS 0.

So far we have focused on scenarios that lose a route. In fact, when gaining
a route, it is still possible to experience transient routing failures. For example,
Fig. 6.20 shows a scenario where a router can experience transient routing failure
due to iBGP configuration. In this example, AS 1 and AS 2 are providers of AS 0,
and AS 1 and AS 2 have peer-to-peer relationship. When the link between AS 1
and AS 0 is added or recovered from a failure, AS 1 prefers direct path to destina-
tion AS 0. Before the link is recovered, all routers within AS 1 select the path via
AS 2 as their best paths. After the recovery event, all routers within AS 1 use the
path through the recovered link. During the route convergence process, router RT3
first selects the direct path to AS 0 and then sends the new route to router RT2 and
router RT1. Once router RT2 receives the direct route from router RT3, it selects
the route and withdraws its route through AS 2 from router RT1, since it cannot
announce its currently selected route via router RT3 to router RT2 (due to the fact
that a fully meshed iBGP session cannot reflect a route learned from one peer to
another). If router RT1 receives the withdraw message from router RT2 before re-
ceiving the announcement message from router RT3, it will experience transient
routing failures.

6.4.3 Transient Routing Loops

During the route convergence process, it is possible to have not only transient rout-
ing failures, but also transient routing loops. A topology or routing policy change
can lead the routers to recompute their best routes and update forwarding tables.
During this process, the routers can be in an inconsistent forwarding state, causing



6 Interdomain Routing and Reliability 205

Fig. 6.21 An example of transient routing loop between AS 2 and AS 3. The list of AS paths
shown beside each node is the set of permissible paths for the node, and the permissible paths are
ordered in the descending order of local preference

transient routing loops. Measurement studies have shown that the transient loops
can last for more than several seconds [13, 29, 31]. Figure 6.21 shows a scenario
where a transient routing loop can occur. In this example, when the link between
AS 1 and AS 0 fails, AS 2 and AS 3 receive a withdrawal message from AS 1.
These two ASes will each select the path via the other to reach the destination be-
cause the local preference value of a path via a peer is higher than that of a path via
a provider. As a result, there is a routing loop. After AS 2 and AS 3 exchange their
new routes, AS 2 will remove the path from AS 3 and select the path from AS 4 as
the best path. Finally, all ASes will use the path via AS 4.

6.5 Impact of Transient Routing Failures and Loops
on End-to-End Performance

In this section, we aim to understand the impact that transient routing failures and
loops have on end-to-end path performance. We describe an extensive measurement
study that involves both controlled routing updates of a prefix and active probes
from a diverse set of end hosts to the prefix.

6.5.1 Controlled Experiments

The infrastructure for the controlled experiments is shown in Fig. 6.22. The in-
frastructure includes a BGP Beacon prefix from the Beacon routing experiment
infrastructure [21]. The BGP Beacon is multihomed to two tier-1 providers to
which we refer to as ISP1 and ISP 2. We control routing events by injecting
well-designed routing updates from BGP Beacon at scheduled times to emulate
link failures and recoveries. To understand the impact of routing events on the data
plane performance, we select geographic and topologically diverse probing loca-
tions from the PlanetLab experiment testbed [25] to conduct active probing while
routing changes are in effect.
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Fig. 6.22 Measurement infrastructure

Fig. 6.23 Time schedule (GMT) for injecting routing events from BGP beacon

Every 2 hours, the BGP Beacon sends a route withdrawal or announcement to
one or both providers according to the time schedule shown in Fig. 6.23. Each cir-
cle denotes a state, indicating the providers offering transit service to the Beacon.
Each arrow represents a routing event and state transition, marked by the time that
the routing event (either a route announcement or a route withdrawal) occurs. For
example, at midnight Beacon withdraws the route through ISP 1, and at 2:00 a.m.,
Beacon announces the route through ISP 1. There are 12 routing events every day.
Only eight routing events keep the Beacon connected to the Internet; the other four
serve the purpose of resetting the Beacon connectivity. These eight beacon events
are classified into two categories: failover beacon event and recovery beacon event.
In a failover beacon event, the Beacon changes from the state of using both providers
to the state of using only a single provider. In a recovery beacon event, the Beacon
changes from the state of using a single provider for connectivity to the state of us-
ing both providers. These two classes of routing changes emulate the control plane
changes that a multihomed site may experience in terms of losing and restoring a
link to one or more of its providers. For example, between midnight and 2:00 a.m.,
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the BGP Beacon is in a state that is only connected to ISP 2; at 2:00 a.m., it an-
nounces the Beacon prefix to ISP 1, leading to connectivity to both ISPs. This event
emulates a link recovery event. At 4:00 a.m., the Beacon sends a withdrawal to ISP 1
so that the Beacon is in a state that is only connected to ISP2. This event emulates a
failover event.

A set of geographically diverse sites in the PlanetLab infrastructure probe a host
within the Beacon prefix by using three probing methods: UDP packet probing,
ping, and traceroute. Probing is performed every hour during injected routing events
and when there are no routing events, so as to calibrate the results. At every hour,
every probing source sends a UDP packet stream marked by sequence numbers to
the BGP Beacon host at 50 ms interval. The probe starts 10 min before each hour
and ends 10 min after that hour (i.e., the probing duration is 20 min for each hour).
Upon the arrival of each UDP packet, the Beacon host records the timestamp and
sequence number of the UDP packet. In addition, ping and traceroute are sent from
the probe hosts toward the Beacon host, for measuring round-trip time (RTT) and
IP-level path information during the same 20 min time period. Both ping and tracer-
oute are run as soon as the previous ping or traceroute probe completes. Thus, their
probing frequency is limited by the round-trip delay and the probe response time
from routers.

6.5.2 Overall Packet Loss

In this section, we present data plane performance during failover and recovery
beacon events. Packet loss and loss burst length are used to measure the impact of
routing events on end-to-end path performance. We refer to a series of consecutively
lost packets during a routing event as a loss burst. Loss burst length is the maximum
number of consecutive lost packets during a routing event. Since several lost bursts
can be observed during a routing event, we consider the one with the maximum
number of consecutive lost packets, which represents the worst-case scenario during
the event.

Figure 6.24a shows the number of loss bursts over all probing hosts during
failover beacon events for the entire duration of measurement. The x-axis represents
the start time of a loss burst, which is measured (in second) relative to the injection
of withdrawal messages. We observe that the majority of loss bursts occur right after
time 0, i.e., the time when a withdrawal message is advertised. Figure 6.24b shows
the number of loss bursts during recovery beacon events across all probe hosts un-
dergoing path changes. We observe that loss bursts occur right after time 0, and can
last for 10 s.

Figure 6.25a shows the distributions of loss burst length before, during, and after
a path change for failover beacon events. The x-axis is shown in log scale. We
find that the packet loss burst length during path change can have as many as 480
consecutive packets. Compared with the loss burst length during a path change, the
packet loss burst size before and after a path change are quite short. Figure 6.25b
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Fig. 6.24 Number of loss bursts starting at each second [31] (Copyright 2006 Association for
Computing Machinery, Inc. Reprinted by permission)
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Fig. 6.25 The cumulative distribution of loss burst length [31] (Copyright 2006 Association for
Computing Machinery, Inc. Reprinted by permission)

shows the loss burst length during recovery beacon events. We observe that the loss
burst length during routing change does not show a significant difference compared
with those before or after routing change. In addition, loss burst length can be as
long as 140 packets for recovery beacon events. Such loss is most likely caused by
routing failures.

6.5.3 Packet Loss Due to Transient Routing Failures or Loops

From the measurement results, we see that during both events, many packet loss
bursts occur. Packet loss can be attributed to network congestion or routing fail-
ures. In order to identify routing failures, ICMP response messages, as measured by
traceroutes and pings, are used. After deriving loss burst, unreachable responses
from traceroutes and pings are correlated with the loss bursts. Since hosts in
PlanetLab are NTP time synchronized, the loss bursts are correlated with ICMP
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messages using the time window [�1 s, 1s]. When a router does not have a route
entry for an incoming packet, it will send an ICMP network unreachable error mes-
sage back to the source to indicate that the destination is unreachable if it is allowed
to do so. Based on the ICMP response message, we can determine when and which
router does not have a route entry to the Beacon host. Loss bursts that have corre-
sponding unreachable ICMP messages are attributed to routing failures. In addition,
if a packet is trapped in forwarding loops, its TTL value will decrease until the value
reaches 0 at some router. The router will send a “TTL exceeded” message back to
the source. Thus, from traceroute data, we can observe forwarding loops.

Table 6.2 shows the number of failover beacon events, the number of loss bursts,
and the number of lost packets that can be verified as caused by routing failures or
loops. We verify that 23% of the loss bursts, corresponding to 76% of lost packets,
are caused by routing failures or loops. We are unable to verify the remaining 77%
of loss bursts, which correspond to only 24% of packet loss. These loss bursts may
be caused by either congestion or routing failures for which traceroute or ping is not
sufficient (due to either insufficient probe frequency or lack of ICMP messages) for
the verification.

Similar to our analysis on failover events, we correlate ICMP unreachable
messages with loss bursts occurring during recovery events. Table 6.3 shows that
26% of packet loss is verified to be caused by routing failures.

Since routers in the Internet may filter out ICMP packets, it is possible that
some loss packets do not have corresponding ICMP messages even if those loss
bursts might be caused by routing failures or routing loops. As a result, we may
underestimate the number of loss bursts due to routing failures or routing loops.
Therefore, the number of loss bursts caused by routing failures or routing loops
might be more than what can be identified by our methodology.

Table 6.2 Overall packet loss caused by routing failures or loops
during failover events

Causes
Failover Loss Lost
beacon events bursts packets

Routing failures 451 (38%) 607 (16%) 37,751 (42%)
Routing loops 208 (18%) 239 (7%) 30,592 (34%)
Unknown 539 (44%) 2,875 (77%) 21,948 (24%)

Table 6.3 Packet loss caused by routing changes during recovery
events

Causes
Recovery Loss Loss
beacon events bursts packets

Routing failures 17 (5%) 39 (2%) 480 (11%)
Routing loops 24 (7%) 37 (2%) 640 (15%)
Unknown 290 (88%) 1,714 (96%) 3,266 (74%)
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We measure the duration of a loss burst as the time interval between the latest
received packets before the loss and the earliest one after the loss. Figure 6.26a
shows the duration of loss bursts that can and cannot be verified as caused by routing
failures or routing loops during failover events. Again, we observe that the loss
bursts that are verified as caused by routing failures or routing loops last longer than
those unverified loss bursts. Figure 6.26b further shows that loss bursts caused by
routing loops last longer than those caused by routing failures.

Figure 6.27a shows the cumulative distribution of the duration of loss bursts that
are verified and unverified as caused by routing failures or routing loops during re-
covery events. We observe that verified loss bursts on average are longer than those
unverified. In addition, during recovery events, more than 98% of routing failures
or routing loops last less than 5 seconds, while during failover events, about 80% of
routing failures or routing loops last less than 5 seconds as shown in Fig. 6.26. This
means that loss bursts caused by routing failures during recovery events last much
shorter than those during failover events. We also observe that unverified loss bursts
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Fig. 6.26 Duration for verified vs. unverified loss bursts during failover events [31] (Copyright
2006 Association for Computing Machinery, Inc. Reprinted by permission.)
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last less than 4 seconds. Figure 6.27b shows the duration of verified loss bursts that
are caused by routing failures and loops during recovery events. We observe that
57% of packet loss is due to forwarding loops, which is slightly higher than that for
failover events (47%). This implies that forwarding loops are also quite common
during recovery events.

6.6 Research Approaches

We have seen from the measurement study in the previous section that routing
failures and routing loops contribute to degraded end-to-end path performance sig-
nificantly. Several approaches have been proposed to address the problem of routing
failures and routing loops. These approaches can be broadly classified into three cat-
egories: convergence-based solution, path protection-based solution, and multiple
path-based solution.

� Convergence-Based Solutions These approaches focus on reducing BGP con-
vergence delay. In particular, they aim to reduce convergence delay by eliminat-
ing invalid routes quickly. Reducing convergence delay may indirectly shrink the
periods of routing failures or routing loops since it takes less time to converge to
a stable route.

� Path Protection-Based Solutions These approaches focus on preestablishing
recovery paths before potential network events. These preestablished paths sup-
plement the best path selected by BGP. When there is a routing outage, the
recovery path is used to route traffic. The recovery path could be a preestablished
protection tunnel, or an alternate AS path.

� Multipath-Based Solutions The goal of these approaches is to exploit path di-
versity to provide fault tolerance. To increase path diversity, multipath routes are
discovered. For example, multiple routing trees can be created on the same un-
derlying topology. When one of the routes fails, other routes can be probed and
then used if valid to route traffic.

6.6.1 Convergence Based Solutions

BGP is a path vector protocol. Each BGP speaking router has to rely on its
neighbors’ announcements to select its best route. Since each BGP speaking router
does not have the topology information, it is possible that an AS explores many AS
paths before eventually reaching the final stable path. Figure 6.28 shows an example
of the path exploration process during BGP convergence. Suppose the link between
AS 1 and AS 0 fails. This failure event makes the destination unreachable at each
AS. We refer to this type of events as fail-down events. The following potential
sequence of route changes shows how path exploration can occur.
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Fig. 6.28 An example of
path exploration during BGP
convergence. The list of AS
paths shown beside each node
is the set of permissible paths
for the node, and the
permissible paths are ordered
in the descending order of
local preference
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1. AS 1 sends a withdrawal message to AS 2 and AS 3, respectively.
2. As AS 2 receives the withdrawal, it removes path (2 1 0) from its routing table,

selects path (2 3 1 0) as its new best path, and advertises the new path to all
neighbors.

3. After AS 3 receives the withdrawal from AS 1, it will use path (3 2 1 0), and
advertise it to its neighbors.

4. When AS 2 and AS 3 learn the new paths (2 3 1 0) and (3 2 1 0) from each other,
they will remove their best paths, and use path (2 4 3 1 0) and path (3 4 2 1 0),
respectively.

5. Since both AS 2 and AS 3 use the paths from AS 4, they will send AS 4 with-
drawal messages to withdraw their previously advertised paths. As a result, AS 4
loses its all paths, and sends a withdrawal message to AS 2 and AS 3, respec-
tively.

6. After AS 2 and AS 3 receive the withdrawals from AS 4, their routing tables do
not have any route to the destination.

This example shows that each node literally has to try several AS paths that tra-
verse the failed link/node before it finally chooses the best valid path or determines
that there is no best path. For instance, AS 2 might explore the sequence AS paths
(2 1 0) ! (2 3 1 0) ! (2 4 3 1 0) before it removes all paths from its routing table.
Previous measurement studies have shown that BGP may take tens of minutes to
reach a consistent view of the network topology after a failure [17–19]. Note that
although this example shows a fail-down scenario, we can indeed extend it to show a
fail-over scenario in which an AS has to explore many invalid paths before finalizing
to a stable valid path.

Several solutions have been proposed to rapidly indicate and remove invalid
routes to suppress the exploration of obsoleted paths [5, 7, 23, 24]. Consistency As-
sertions (CA) [24] tries to achieve this goal by examining path consistency based
solely on the AS path information carried in BGP announcements. Suppose that
an AS has learned two paths to a destination from neighbor N1 and neighbor
N2, respectively. N1 advertises path (N1 A B C 0) and neighbor N2 advertises
(N2 B X Y 0). CA assumes that each AS can only use one path. Thus, by comparing
these two paths, it can detect that the two paths advertised by AS B ((B C 0) and
(B X Y 0)) are not consistent. We use an example shown in Fig. 6.28 to show how
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an AS can take advantage of consistency checking to accelerate route convergence.
A router can use a withdrawal received directly from a neighbor to check path con-
sistency. When the link between AS 1 and AS 0 fails, AS 1 sends withdrawals to
AS 2 and AS 3. Once AS 2 and AS 3 notice that their neighbor AS 1 withdraws its
path to the destination, they check whether AS 1 appears in any existing path. Since
the two path (2 3 1 0) and (2 4 3 1 0) contains path (1 0), neither can be selected
and AS 2 removes them from its routing table. Similarly, AS 3 removes path (3 2
1 0) and (3 4 2 1 0). Eventually, AS 2 and AS 3 will withdraw their paths to the
destination. As a result, CA eliminates the paths to be explored.

However, the AS path consistency might not contain sufficient information about
invalid paths. It is hard to accurately detect invalid routes based solely on the AS
path information. For example, in Fig. 6.28, after AS 2 and AS 3 receive the with-
drawals sent by AS 1 due to link (1 0) failure, AS 2 and AS 3 send withdrawals to
AS 4 since all of their paths go through AS 1. Now suppose that AS 2’s withdrawal
reaches AS 4 before AS 3 does. In this case, AS 4 cannot consider path (4 3 1 0)
as an invalid path since the path does not contain the withdrawn path (2 1 0). AS 4
cannot determine if the withdrawal of path (2 1 0) is due to the failure of link (2 1)
or link (1 0).

To accurately identify invalid paths, Ghost Flushing [5] reduces convergence de-
lay by aggressively sending explicit withdrawals to quickly remove invalid paths.
Whenever an AS’s current best path is replaced by a less preferred route, Ghost
Flushing allows the AS to immediately generate and send explicit withdrawal mes-
sages to all its neighbors before sending the new path. The withdrawal messages is
to flush out the path previously advertised by the AS. For example, in Fig. 6.28, after
AS 2 receives the withdrawal sent by AS 1 due to link (1 0) failure, AS 2 will use
less preferred path (2 3 1 0). Before sending the path (2 3 1 0) to its neighbors, AS 2
sends extra withdrawal messages to its neighbors AS 3 and AS 4. Because BGP
withdrawal messages are not subjected to the MRAI timer, invalid paths can poten-
tially be quickly deleted from the AS’s neighbors. For example, the withdrawal sent
by AS 2 will help AS 3 to remove the invalid path (3 2 1 0). From this example,
we know that Ghost Flushing does not really prevent path exploration, but instead
attempts to speed up the process.

To further identify invalid routes quickly, additional information can be incor-
porated into BGP route updates. BGP-RCN and EPIC [7, 23] propose to use with
location information about failures, or root cause information, to identify invalid
routes. When a link failure occurs, the nodes adjacent to the link will detect the
change. The node, referred to as the root cause node (RCN), will attach its name to
the routing update it sends out. The RCN is propagated to other ASes along each
impacted path. Thus, an AS can use the RCN to remove all the invalid paths at
once. For example, Fig. 6.28 illustrates the basic idea of BGP-RCN. When the link
between AS 1 and AS 0 fails, root cause notification is sent with a withdrawal by
AS 1. When AS 2 receiving the withdrawal, it uses the root cause notification to
find invalid paths that contain AS 1. Thus, path (2 3 1 0) is considered as an invalid
path and will be removed. Similarly, at AS 3, path (3 2 1 0) is detected as an invalid
route. AS 2 and AS 3 send withdrawals to AS 4, and piggyback the root cause in the



214 F. Wang and L. Gao

Table 6.4 Properties of convergence-based solutions. M is the MRAI timer value. n is the number
of ASes in the network. D is the diameter of the network. jEj is the number of AS level links. h is
the processing delay for a BGP update message to traverse an AS hop

Convergence delay Messages Modification to
Modification

Protocols (fail-down) (fail-down) BGPs messages
to BGP route
selection eBGP iBGP

Standard BGP M � n jEj � n N/A N/A N/A N/A
CA M � n jEj No Yes Yes No
Ghost Flushing h � n 2jEjn h

M
No Yes Yes Yes

BGP-RCN h � D jEj � n C 1 Yes Yes Yes No
EPIC h � D jEj � 1 Yes Yes Yes Yes

withdrawals. After receives the withdrawal messages with root cause, AS 4 removes
all its routes because all paths contain the root cause node AS 1.

EPIC [7] further extends the idea of root cause notification so that it can be ap-
plied to a router rather than an AS. In general, a failure can occur to a router or a link
between a pair of routers. A failure on a link between two ASes does not necessarily
mean that all links between the two ASes fail. The root cause notification in BGP-
RCN can only indicate failures on an AS or links between a pair of ASes. EPIC
further allows routing information that contains failure information about router or
link between a pair of routers.

We summarize important properties of the four approaches in Table 6.4. We con-
sider the upper bound of convergence time and the number of messages during a
fail-down event. We also compare those approaches in term of the modifications
need from the standard BGP. For example, we consider if an approach needs to
modify to BGP’s messages format or BGP route selection, and if those approaches
can be applied to eBGP or iBGP.

6.6.2 Path Protection-Based Solutions

The convergence based-approaches focus on rapidly removing invalid routes to
accelerate BGP convergence process. They are efficient in reducing convergence
delay. However, simply applying those methods might not necessarily lead to re-
liable routing. In fact, accelerating the process of identifying invalid routes might
sometimes exacerbate routing outages. Figure 6.29 shows such an example. We first
consider the case of running the standard BGP. When the link between AS 1 and
AS 0 fails, AS 1 sends a withdrawal to AS 2 and AS 3 immediately, and AS 2 sends
a withdrawal to AS 3 right after. Upon receiving the withdrawal, AS 3 will quickly
switch to the path (3 4 0). At the same time, when AS 2 receives the withdrawal mes-
sage, it selects path (2 3 1 0). Even though this path is invalid, AS 2 still reroutes
traffic to a valid next hop AS, which has a valid path. Therefore, in this case, AS 2
can reroute traffic to the destination before it receives the valid path (3 4 0).
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Fig. 6.29 An example showing transient routing failures at AS 2 when RCN is used. The list of
AS paths shown beside each node is the set of permissible paths for the node, and the permissible
paths are ordered in the descending order of local preference

On the contrary, if the root cause information is sent with the withdrawal by AS 1.
AS 2 will remove path (2 3 1 0), and temporarily lose its reachability to AS 0 until
receiving the new path from AS 3. The duration of temporary loss of reachability
could last longer than that in the case of the standard BGP. The duration that AS 2
loses its reachability depends on the delay to get the alternate path from AS 3, which
is determined by the time it takes to receive the announcement of path (3 4 0) from
AS 3, which is subjected to MRAI timer. Without using the root cause information,
the duration that AS 2 loses its reachability depends on the propagation delay of the
withdrawal from AS 1 to AS 2, which is not subjected to MRAI timer [26].

The path protection-based solutions are designed specifically for improving
the reliability of interdomain routing. The major idea is that local protection paths
are identified before failures. When the primary path fails, local protection paths are
temporarily used. Many approaches have been proposed for link-state intradomain
routing protocols to protect intradomain link failures [6, 14, 16, 27, 33]. How-
ever, the BGP speaking routers do not have the knowledge of the global network
topology. They have routing information from neighbors only. Therefore, there are
two challenges in implementing path protection in BGP; first, one needs to find lo-
cal preplanned protection paths; second, one needs to decide how and when to use
the protection paths. Next, we present several path protection-based approaches. We
first focus on how they address the first challenge. We then discuss how they address
the second challenge.

Bonaventure et al. [3] have proposed a fast reroute technique, referred to as
R-Plink, to protect direct interdomain links. The basic idea is that each router pre-
computes recovery path for each of its BGP peering links, which is used to reroute
traffic when the protected BGP link fails. In order to discover an appropriate re-
covery path, each edge router inside an AS advertises its currently active eBGP
sessions by using a new type of iBGP update message. After having other routers’
routing information, an edge router chooses a path to protect its current active eBGP
session from all recovery routes. Figure 6.30 shows an example to illustrate this
approach. In this example, AS 2 advertises the same destination to AS 1’s two
routers A and C. Suppose that the routing policies on AS 1 are configured to se-
lect the path via router A as the best path. However, router A cannot learn any route
via router C through BGP because of the local-preference settings on this router.
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Fig. 6.30 A precomputed protection path is used to protect the interdomain link between AS 1
and AS 2

To automatically discover the alternate path, routers A and C advertise their active
eBGP sessions. Thus, router A will know an alternate path via routers C and E, and
choose the path to protect its current path to the destination. Once the link (A D)
fails, router A can forward the packets affected by the failure through the alternate
path via (C E) link.

In contrast of R-Plink, R-BGP aims to solve the transient routing failures problem
for any interdomain link failure, not just for the failure of a direct neighboring
interdomain link [15]. R-BGP precomputes an alternate path for each AS to protect
interdomain links. In particular, an AS first checks all paths it knows, and then se-
lects the one most disjoint from its current best path, which is defined as the failover
path. Finally, the AS advertises the failover path only to the next-hop AS along its
best path. Note that in the standard BGP, an AS should not advertise its best path to
the neighbor currently used to reach that destination, since this path would generate
a loop. Advertising a failover path guarantees that, whenever a link goes down, the
AS immediately upstream of the down link knows a failover path and can avoid un-
necessary packet drops. One limitation of this approach is that it guarantees to avoid
routing failures only under the hierarchical provider-customer relationships and the
common routing policy, i.e., the no-valley and prefer-customer routing policy. Fur-
ther, it does not address the routing failures caused by iBGP configuration.

Backup Route Aware Routing Protocol (BRAP) is to achieve fast transient fail-
ure recovery considering both eBGP routing policy and iBGP configurations [28].
To achieve this, BRAP requires that a router should be enabled to advertise an al-
ternate path if its best path is not allowed to be advertised due to loop prevention
or routing policies. The general idea for BRAP is as follows: a router should ad-
vertise following policy compliant paths in addition to the best path: (1) a failover
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Table 6.5 Comparing path protection-based solutions. jEj is the number of AS level links, jEr j
is the number of router level links

Messages Modification to Modification to
eBGP iBGPProtocols (failover) BGPs messages other part of BGP

R-Plink N/A Yes Yes Yes Yes
R-BGP jEj Yes Yes Yes No
BRAP jEr j Yes Yes Yes Yes

path to the nexthop router along the best path; and (2) a loop-free alternate path,
defined as a temporary backup path, to its upstream neighbors. BRAP extends BGP
to distribute the alternate routes along eBGP and iBGP sessions.

Now, we describe how to use a protection path. When a router needs to use a
protection path, the router needs to inform the other routers along the path of the
change. Otherwise, redirecting traffic to the protection path could cause forwarding
loops. For example, in Fig. 6.30, when router A sends traffic along the alternate path
via routers B and C, their routing tables still consider router A as the next hop. Pro-
tection tunnels on the data plane is proposed to avoid such forwarding loops [3].
Protection tunnels can be implemented by using encapsulation schemes such as
MPLS over IP. With MPLS over IP, only the ingress border router consults its BGP
routing table to forward a packet, and encapsulates IP header with the destination
set to the IP address of the egress border router. All the other routers inside the
AS will rely on their IGP routing tables or their label forwarding table to forward
the packet. R-BGP utilizes “virtual” connections to avoid forwarding loops. There
are two “virtual” connections between each pair of BGP-speaking routers, one for
the primary path traffic, and the other for the failover traffic. The virtual connection
can be implemented by using virtual interfaces when the two routers are physically
connected, or MPLS or IP tunnels if they are not. Similarly, BRAP uses a protection
path through MPLS or IP tunnels.

We summarize the features of the three path protection-based solutions in
Table 6.5. We consider the upper bound of the number of messages during a
failover event, modification to BGP, and whether those approaches can be applied
to eBGP or iBGP.

6.6.3 Multiple Path-Based Solution

A straightforward solution to improve the route reliability is to discover multiple
paths. There are two proposals for multiple path interdomain routing. The first one
is MIRO [32] that allows routers to inform their neighbors multiple routes instead
of only the best one. Thus, MIRO can allow ASes to have more control over the
flow of traffic in their networks, as well as enable quick reaction to path failures.
The second one is Path Splicing [22], which aims to take advantage of alternate
paths in BGP routing table to discover multiple paths. Instead of using only the best
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path in the BGP routing table, a packet can select any path in the BGP routing table
by indicating which one to use in its header. Clearly, probing has to be deployed
before multiple paths can be discovered since arbitrary selection of alternate paths
can lead to routing loops.

6.7 Conclusion and Future Directions

Interdomain routing is the glue that binds thousands of networks in the Internet to-
gether. Its reliability plays determinable role on the end-to-end path performance. In
this chapter, we have presented the challenges in designing and implementing a re-
liable interdomain routing protocol. Specifically, through measurement studies, we
present a clear overview of the impact of transient routing failures and transient rout-
ing loops on the end-to-end path performance. Finally, we have critically reviewed
the existing proposals in this field, highlighting pros and cons of those approaches.

While certain efforts have been made to enhance interdomain routing reliability,
this issue remains open. We believe that the development of new routing infrastruc-
ture, for example, multipath routing is one promising direction of future research.
Reliability enhancement through multiple path advertisement is not a new idea.
Many efforts have been been made to extend BGP to allow the advertisement of
multiple paths [12, 20]. However, designing scalable interdomain routing through
multiple path advertisement is challenging. One of those challenges is to understand
the degree of path diversity provided by multiple path advertisement is sufficient to
overcome network failures. At the same time, this challenge highlights the need for
designing new path diversity metrics. Path diversity metrics such as the number of
node-disjoint and link-disjoint links can be used to compute the inter-AS path diver-
sity. However, new path diversity metrics needs to be devised to take into account
the performance, reliability, and stability.
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Chapter 7
Overlay Networking and Resiliency

Bobby Bhattacharjee and Michael Rabinovich

7.1 Introduction

An “overlay” is a coordinated collection of processes that use the Internet for com-
munication. The overlay uses the connectivity provided by the network to form
any overlay topologies and information flows fitting its applications, irrespective
of the topology of the underlying network infrastructure. In a broad sense, every
distributed system and application forms an overlay. Certainly, routing protocols
form overlays as does the interconnection of NNTP servers that form the Usenet.
We use the term “overlay networks” in a narrower sense: an application uses an
overlay only if processes on end-hosts are used for routing and relaying messages.
The overlay network is layered atop the physical network, which enables additional
flexibility. In particular, the overlay topology can be tailored to application require-
ments (e.g., overlay topologies can be set up to provide low-latency lookup on flat
names spaces), overlay routing may choose application-specific policies (e.g., over-
lay routing meshes can find paths in contradiction of policies exported by BGP),
and overlay networks can emulate functionality not supported by the underlying
network (e.g., overlays can implement application-layer multicast over an unicast
network).

The flexibility enabled by overlay networks can be both a blessing and a curse.
On the one hand, it gives application developers the control they need to implement
sophisticated measures to improve the resilience of their application. On the other
hand, overlay networks are built over end-hosts, which are inherently less stable,
reliable, and secure than lower-layer network components comprising the Internet
fabric. This presents significant challenges in overlay network design.
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In this chapter, we concentrate on the former aspect of overlay networks and
present a survey of overlay applications with a focus on how they are used to
increase network resilience. We begin with a high-level overview of some issues
that can hamper the network operation and how overlay networks can help address
these issues. In particular, we consider how overlay networks can make a distributed
application more resilient to flash crowds and overload, to component failures and
churn, network failures and congestion, and to denial of service attacks.

7.1.1 Resilience to Flash Crowds and Overload

The emergence of the Web has led to a new phenomenon where Internet resources
are exposed to potentially unlimited demand. It is difficult (and indeed inefficient)
for content providers to provision sufficient capacity for the worst-case load (which
is often hard to predict). Inability to predict worst-case load leaves content providers
susceptible to flash crowds: rapid surges of demand that exceed the provisioned
capacity.

Approaches to address flash crowds differ by resource type. It is useful to distin-
guish the following types of Internet resources:

� Large files, exemplified by software packages and media files, with file sizes on
the order of megabytes for audio tracks, going up to tens or even hundreds of
megabytes for software packages and gigabytes for full-length movies.

� Web objects, consisting of typical text and pictures on Web pages, with sizes
ranging from one to hundreds of kilobytes.

� Streaming media, where the download (often at bounded bit rates) continues over
the duration of content consumption.

� Internet applications, where a significant part of service demand to process a
client request is due to the computation at the server rather than delivering content
from the server to the client.

IP multicast is a mechanism at the IP level that could potentially address the flash
crowd problem in the first three of these resource types. At a high level, IP multi-
cast creates a tree with the content source as the root, and the content consumers
as the leaves. The source sends only one copy of a packet, and routers inside the
network forward and duplicate packets as necessary to implement forwarding to all
receivers. IP multicast decouples the resources requirements at the source from the
number of simultaneous receivers of identical data. However, IP multicast cannot
help when different contents need to be sent to different clients, or when the same
content needs to be sent at different times, or when one needs to scale up an Internet
application. Furthermore, although IP multicast is widely implemented, access to
the IP multicast service is enabled only in the confine of individual ISPs to selected
applications.
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Overlay networks can help overcome these limitations. Content delivery
networks are an overlay-based approach widely used for streaming, large file,
and Web content delivery. A content delivery network (CDN) is a third-party infras-
tructure that content providers employ to deliver their data. In a sense, it emulates
multicast at the application level, with content providers’ sites acting as roots of the
multicast trees and servers within the CDN infrastructure as internal multicast tree
nodes. What distinguishes a CDN from IP multicast is that, as with any overlays,
its deployment does not rely on additional IP services beyond the universal IP
unicast service, and that CDN nodes have long-term storage capability, allowing the
distribution trees to encompass clients consuming content at different times.

A CDN derives economy of scale from the fact that its infrastructure is shared
among multiple content providers who subscribe to the CDN’s service. Indeed,
because flash crowds are unlikely to occur at the same time for multiple content
providers, a CDN needs much less overprovisioning of its infrastructure than an in-
dividual content provider: a CDN can reuse the same capacity slack to satisfy peak
demands for different content at different times.

Another overlay approach, called peer-to-peer (P2P) delivery, provides resilience
to flash crowds by utilizing client bandwidth in delivering content. By integrating
clients into the delivery infrastructure, P2P approaches promise the ability to organ-
ically scale with the demand surge: the more clients want to obtain certain content,
the more resources are added to the delivery infrastructure. The P2P paradigm has
been explored in various contexts, but most widely used are P2P approaches to
large-file downloads and streaming content.

Peer-to-peer or peer-assisted delivery of streaming content is particularly com-
pelling because streaming taxes the capacity of the network and at the same time
imposes stringent timing requirements. Consider, for example, a vision for a fu-
ture Internet TV service (IPTV), where viewers can seamlessly switch between
tens of thousands of live broadcast channels from around the world, millions of
video-on-demand titles, and tens of millions of videos uploaded by individual users
using capabilities similar to those provided by today’s YouTube-type applications.
Consider a global carrier providing this service in high-definition to 500 million sub-
scribers, with 200 million simultaneous viewers at peak demand watching different
streams – either distinct titles or the same titles shifted in time. Assume conser-
vatively that a high-definition stream requires a streaming rate of 6 Mbps (it is
currently close to 10 Mbps but is projected to reduce with improvements in cod-
ing). The aggregate throughput to deliver these streams to all the viewers is 1.2
Petabits per second. Even if a video server could deliver 10 Gbps of content, the
carrier would need to deploy 120,000 video servers to satisfy this demand through
naive unicast. Given these demands on the network and server capacities, overlay
networks – in particular peer-to-peer networks – are important technologies to en-
able IPTV on a massive scale.
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7.1.2 Resilience to Component Failures and Churn

A distributed application needs to be able to operate when some of its components
fail. For example, we discussed how P2P networks promise resiliency to flash
crowds. However, because they integrate users’ computers into the content deliv-
ery infrastructure, they are especially prone to component failures (e.g., when a user
kills a process or terminates a program) and to peer churn (as users join and leave
the P2P networks). The flexibility afforded by overlay networks can be exploited
to incorporate a range of redundancy mechanisms. These mechanisms allow sys-
tem designers to utilize many failure prone components (often user processes on
end-hosts) to craft highly resilient applications.

Existing P2P networks have proven this resiliency by functioning successfully
despite constant peer churn. Besides traditional file-sharing P2P networks, other
examples of churn-resistant overlay network designs include a peer-to-peer Web
caching system [36] and a churn-resistant distributed hash table [52].

7.1.3 Resilience to Network Failures and Congestion

Overlay networks can mitigate the effects of network outages and hotspots. Two
end-hosts communicating over an IP network have little control over path selection
or quality. The end-to-end path is a product of the IGP routing metrics used within
the involved domains, and the BGP policies (set by administrators of these domains)
across the domains. These metrics and policies are often entirely nonresponsive to
transient congestion; in some case, two nodes may fail to find a path (due to BGP
policies) even when a path exists.

Overlay networks allow end-users finer-grained control over routing and thus
can be agile in reacting to the underlying network conditions. Consider a hypo-
thetical voice-over-IP communication between hosts at the University of Maryland
(in College Park, Maryland) and Case Western Reserve University (in Cleveland,
Ohio). The default path may traverse an Internet2 router in Pennsylvania. However,
if this router is congested, an overlay-based routing system that is sensitive to path
latency could try to route around the congestion. For instance, the routing overlay
could tunnel the packets through overlay nodes at the University of Virginia and the
University of Illinois, which might bypass the temporary congestion on the default
path.

Systems such as RON [4], Detour [55, 56], and Peerwise [38] create such rout-
ing overlays that route around adverse conditions in the underlying IP network.
These systems build meshes for overlay routing and make autonomous routing de-
cisions. RON builds a fully connected mesh and continually monitors all edges.
When the direct path between two nodes fails or has shown degraded performance,
communication is rerouted through the other overlay nodes. Not all systems build a
fully connected mesh: Nakao et al. [44] use topology information and geography-
based distance prediction to build a mesh that is representative of the underlying
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physical network. Peerwise creates overlay links only between nodes that can pro-
vide shortcuts to each other. Experiments with all of these systems show that it is
indeed possible to reduce end-to-end latency and improve connectivity using routing
overlays.

7.1.4 Resilience to DoS Attacks

Overlay networks can be used to protect content providers from Distributed Denial-
of-Service (DDoS) attacks. During a DDoS attack, an attacker directs a set of
compromised machines to flood the victim’s incoming links. DDoS attacks are
effective because (1) the content provider often cannot distinguish an attacking con-
nection from a legitimate client connection, (2) the number of attacking hosts can
be large enough that it is difficult for the victim’s network provider to set up static
address filters, and (3) the attackers may spoof their source IP addresses. Over the
last decade, DDoS attacks have interrupted service to many major Internet destina-
tions, and in some cases, have been the root cause for the termination of service [31].
Networking researchers have developed many elegant approaches to mitigating the
effect of and tracing the root of DDoS attacks; unfortunately, almost all of them
require changes to the core Internet protocols.

Overlay services can be used to provide resiliency without changing protocols or
infrastructure. SOS [28] and Mayday [3] are overlay services that “hide” the address
of the content-providing server. Instead the server is “protected” by an overlay, and
access to the server may require strong authentication or captchas (that can distin-
guish attackers from legitimate clients). The protective overlay is large enough that
it is not feasible or profitable to attack the entire overlay. The content provider’s
ISP blocks all access to the server except by a small set of (periodically changing)
trusted nodes who relay legitimate requests to the server.

7.1.5 Chapter Organization

We have discussed various ways in which overlay networks can improve resiliency
of networked applications. In the rest of this chapter we discuss some of these appli-
cations in more detail. We begin by introducing a foundational concept used in many
overlay applications – a distributed hash table – in Section 7.2. We then discuss rep-
resentative overlay applications including streaming media systems in Section 7.3
and Web content delivery networks in Section 7.4. Section 7.5 describes an over-
lay approach to improving the resiliency of Web services against DDoS attacks.
We discuss swarming protocols for bulk transfer in Section 7.6, and conclude in
Section 7.7.
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7.2 A Common Building Block: DHTs

Distributed applications often maintain large sets of identifiers or keys, such as
names of files, IDs of game players, or addresses of chat rooms. For scalability,
resilience, and load-balance, the task of maintaining these keys is divided amongst
the nodes participating in the system. This approach scales since each node only
deals with a limited subset of keys, it is resilient since a single key can be replicated
onto more than one node, and finally it balances load since lookups and storage
overhead are distributed (relatively) evenly over all the participants.

A node responsible for a key may perform various application-specific actions
related to this key: store the corresponding data, act as a control server for a named
group, and so forth. A fundamental capability such a system must support is to allow
each participating node to identify the node(s) responsible for a given key. Once
a seeking node locates the node(s) that store a key, it may initiate corresponding
actions.

Distributed Hash Tables (DHTs) are a technique for efficiently distributing keys
among nodes. DHTs provide this capability while limiting the knowledge each node
must maintain about the other nodes in the system: instead of directly determining
a responsible node (as would be the case with regular hashing), a node can only
determine some nodes that are “closer” (by some metric) to the responsible node.
The node then sends its request to one of the closer nodes, which in turn would
forward the request toward a responsible node until the request reaches its target.
Good DHTs ensure that requests must traverse only a small number of overlay hops
en route to a responsible node. In a system with n nodes, many DHT protocols limit
this hop count to O.log n/ while storing only O.log n/ routing state at each node
for forwarding requests. Newer designs reduce some of the overheads to constants
[23, 41, 50].

DHTs are a common building block for many types of distributed services,
including distributed file systems [18], publish–subscribe systems [14, 58], coop-
erative Web caching [25], and name service [6]. They have even been proposed as a
foundation for general Internet infrastructures [58]. DHTs can be built using a struc-
tured network, in which the DHT protocol chooses which nodes in the network are
linked (and uses the structure inherent in these connections to reduce lookup time)
or an unstructured network, in which the node interconnection is either random or
an external agent specifies which nodes may be connected (as can be the case if
links are constrained as in a wireless network or have specific semantics such as
trust). We next describe prototypical DHT systems that are designed for cooperative
environments.

7.2.1 Chord: Lookup in Structured Networks

Chord [59] was one of the first DHTs that routed requests in O.log n/ overlay hops
while requiring each node to store only O.log n/ routing state. The routing state at
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each node contains pointers to some other nodes and is called a node’s finger table.
Nodes responsible for a key store a data item associated with this key; the DHT can
be used to lookup data items by key.

Chord assigns an identifier (uniformly at random) to each node from a large ID
space (2N IDs, N is usually set at 64 or 128). Each item to be stored in the DHT
is also assigned an ID from the same space. Chord orders IDs onto a ring modulo
2N . An item is mapped to the node with the smallest ID larger than the item’s ID
modulo 2N . Using this definition, we say that each item is mapped onto the node
“closest” to the item in the ID space.

A node with ID x stores a “finger table”, which consists of references to nodes
closest to IDs x C2i ; i 2 f0; N �1g. The successor of i , denoted as s.i/, is the node
whose ID is immediately greater than i ’s ID modulo 2N . Likewise, the predecessor
of i , p.i/, is the node whose ID is immediately less than n’s (Fig. 7.1). Each Chord
node is responsible for the half-open interval consisting of its predecessor’s ID (non-
inclusive) and its own ID (inclusive).

When a new node joins, it finds its “place” on the ring by routing to its own ID
(say x), and can populate its own routing table by successively querying for nodes
with the appropriate IDs (x C 1; x C 2; x C 4; : : : ). In the worst case, this incurs
O.log2 n/ overhead.

A node returns the data (if any) upon receiving a lookup for a key in the range
of IDs it stores. For other lookups, it “routes” (forwards) the query to the node in
its finger table with the highest ID (modulo 2N ) smaller than the key. This process
iterates until the item is found or it is determined that there is no item corresponding
to the lookup. Figure 7.2 shows two examples of lookups in Chord. In the first case,
the data corresponding to key value 3 is looked up (starting from node 52); in the
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Fig. 7.2 Two lookups on the Chord ring

second, 42 is looked up starting from node 46. The figure shows the nodes visited
by the queries in each case, and also the interval (part of the Chord space) each node
is responsible for.

In practice, Chord nodes inherit most of their routing table from their neighbors
(and avoid the O.log2 n/ work to populate tables). Nodes periodically search the
ring for “better” finger table entries. As nodes leave and rejoin, the Chord ring is
kept consistent using a stabilize protocol, which ensures eventual consistency of
successor pointers.

More details about Chord, including the details of the stabilization protocol, can
be found in [60].

7.2.2 LMS: Lookup on Given Topologies

As we saw in the previous section, Chord imposes the overlay topology on its nodes
that is stipulated by node IDs, and lookup queries traverse routes in this topology.
Such networks are often referred to as structured. In contrast, some overlay net-
works allow participating nodes to form arbitrary topologies, irrespective of their
node IDs. These networks are called unstructured. The simplest form of lookup on
an unstructured topology is to flood the query. Flooding searches, while adequate
for small networks, quickly become infeasible as networks grow larger.

LMS (Local Minima Search [43]) is a protocol designed for unstructured net-
works that scale better than flooding. In LMS, the owner of each object places
replicas of the object on several nodes. Like in a DHT, LMS places replicas onto
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nodes which have IDs “close” to the object. Unlike in a DHT, however, in an
unstructured topology there is no deterministic mechanism to route to the node,
which is the closest to an item. Instead, LMS introduces the notion of a local min-
imum: a node u is a local minimum for an object if and only if the ID of u is the
closest to the item’s ID in u’s neighborhood (those nodes within h hops of u in the
network, where h is a parameter of the protocol, typically 1 or 2).

In general, for any object there are many local minima in a graph, and repli-
cas are placed onto a subset of these. During a search, random walks are used to
locate minima for a given object, and a search succeeds when a local minimum
holding a replica is located. While DHTs typically provide a worst-case bound of
O.log n/ steps for lookups in a network of size n, LMS provides a worst-case bound
of O.T .G/ C log n/, where T .G/ is the mixing time of G (the time by which a
random walk on the topology G approaches its stationary distribution). T .G/ is
O.log n/ or polylogarithmic in n for a wide range of randomly-grown topologies.
This “O.T .G/ C log n/” is typically in the 6–15 range in networks of size up to
100; 000. Let dh be the minimum size of the h-hop neighborhood of any node in G.
LMS achieves its performance by storing O.

p
n=dh/ replicas, and with a message

complexity (in its lookups) of O.
p

n=dh � .T .G/ C log n//. This is notably worse
than DHTs, but is a considerable improvement over other (essentially linear-time)
lookup techniques in networks that cannot support a structured protocol, and a vast
improvement over flooding-based searches [43].

The use of local minima in LMS provides a high assurance that object repli-
cas are distributed randomly throughout the network. This means that even if the
lookup part of the LMS protocol is not used (such as for searches on object attributes
that consequently cannot use the virtualized object identifier), flooding searches will
succeed with high probability even with relatively small bounded propagation dis-
tances. Finally, LMS also provides a high degree of fault-tolerance.

7.2.3 Case Study: OpenDHT

Since many distributed applications can benefit from a lookup facility, a logical step
is to develop a DHT substrate. OpenDHT is an example of such a substrate[53].

An application using a DHT may need to execute application-specific actions
at each node along DHT routing paths or at the node responsible for a given key.
However, to satisfy a range of applications, OpenDHT takes a minimalist approach:
it only allows applications to associate a data item with a given key and store it in the
substrate (at a node or nodes that OpenDHT selects to be responsible for this key)
as well as retrieve it from the substrate. The DHT routing is done “under covers”
within the substrate and is not exposed to the application.

In other words, OpenDHT is an external storage platform for third-party appli-
cations. While OpenDHT in itself is a peer-to-peer overlay network, application
end-hosts do not participate in it directly. Instead, it runs on PlanetLab [16] nodes;
applications that use OpenDHT may or may not use PlanetLab.
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OpenDHT provides two simple primitives to applications: put(key, data) which
is used to store a data item and an associated key, and get(key) which retrieves pre-
viously stored data given its key.1 Multiple puts with the same key append their
data items to the already existing ones, so a subsequent get would retrieve all these
data. OpenDHT, therefore, implements an application-agnostic shared storage fa-
cility. Due to its open nature, OpenDHT includes special mechanisms to prevent
resource hoarding by any given user. It also limits the size of data items to 1 KB and
times out deposited data items that are not explicitly renewed by the application.
Renewal is done by issuing an identical “put” before the original data item expires.

The shared storage provided by OpenDHT allows end-hosts in a distributed ap-
plication to conveniently share state, without any administrative overhead. This
capability turned out to be powerful enough to support a growing number of ap-
plications. In fact, OpenDHT primitives can be used to implement an application
that employs its own DHT routing among the application’s end-hosts [53].

While a great deal of engineering ingenuity ensures that OpenDHT nodes’ re-
sources are shared fairly among competing applications, OpenDHT’s resiliency and
scalability come from its overlay network architecture. Besides demonstrating these
benefits of overlays, OpenDHT has shown the generality of the DHT concept by
using it as a foundation of a substrate that has proved useful for a number of diverse
applications.

7.2.4 Securing DHTs

Chord and LMS are only two of many different contemporary lookup protocols.
These two protocols assume that nodes are cooperative and altruistic. While these
protocols are highly resilient to random component failures, it is more difficult to
protect them against malicious attacks. This is especially a concern since DHTs
may be built using public, non-centrally administered nodes, some of which may
be corrupt or compromised. There are several ways in which adversarial nodes may
attempt to subvert a DHT. Malicious nodes may return incorrect results, may attempt
to route requests to other incorrect nodes, provide incorrect routing updates, prevent
new nodes from joining the system, and refuse to store or return items. There are
several DHT design that provide resilience to these types of attacks. We describe
one in detail next.

7.2.5 Case Study: NeighborhoodWatch

The NeighborhoodWatch DHT [11] provides security against malicious users
that attempt to subvert a DHT instance by misrouting or dropping queries,

1 The actual API includes additional primitives and parameters, which are beyond the scope of our
discussion.
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refusing to store items, preventing new nodes from joining, and similar attacks.
NeighborhoodWatch employs the same circular ID space as Chord [59], and also
maps its nodes into neighborhoods as in [20]. However, in NeighborhoodWatch,
each node has its own neighborhood that consists of itself, it’s k successors, and
k predecessors, where k is a system parameter. NeighborhoodWatch’s security
guarantees hold if and only if for every sequence of k C 1 consecutive DHT nodes,
at least one is alive and honest.

NeighborhoodWatch employs an on-line trusted authority, the Neighborhood
Certification Authority (NCA) to attest to the constituents of neighborhoods. The
NCA has a globally known public key. The NCA may be replicated, and the state
shared between NCA replicas is limited to the NCA private key, a list of malicious
nodes, and a list of complaints of non-responsive nodes.

The NCA creates, signs, and distributes neighborhood certificates, or nCerts, to
each node. Nodes need a current and valid nCert in order to participate in the system.
Upon joining, nodes receive an initial nCert from the NCA. nCerts are not revoked;
instead nodes must renew their nCerts on a regular basis by contacting the NCA.
nCerts list the current membership of a neighborhood, accounting for any recent
changes in membership that may have occurred. Using signed nCerts, any node can
identify the set of nodes that are responsible for storing an item with a given ID.
NeighborhoodWatch employs several mechanisms that detect and prove misbehav-
ior (described in detail in [11]). The NCA removes malicious nodes from the DHT
by refusing to sign a fresh nCert for that node.

Nodes maintain and update their finger tables as in Chord. The join procedure
is shown in Fig. 7.3. For each of node n’s successors, predecessors, and finger table
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entries, n stores a full nCert (instead of only the node ID and IP address as in Chord).
When queried as part of a lookup operation, nodes return nCerts rather than informa-
tion about a single node. Routing is iterative: if a node on the path fails (or does not
answer), the querier can contact another node in the most recently obtained nCert.

Recall that NeighborhoodWatch assumes that every sequence of k C 1 consecu-
tive nodes in the DHT contains at least one node that is alive and honest. The insight
is that if nodes cannot choose where they are placed in the DHT, malicious nodes
would have to corrupt a large fraction of the nodes in the DHT in order to obtain
a long sequence of consecutive, corrupt nodes. By making routing depend on long
sequences of nodes (neighborhoods), nodes are guaranteed to know of at least one
other honest node that is “near” a given point in the DHT. In order to protect against
a given fraction f of malicious nodes, the system operator chooses a value of k

such that this assumption holds with high probability.
Items published to the DHT are self-certifying. In addition, when a node stores

an item, it returns a signed receipt to the publisher. This receipt is then stored back
in the DHT. This prevents nodes from lying about whether they are storing a given
item: if a querier suspects that a node is refusing to return an item, it can look for a
receipt. If it finds a receipt, it can petition the NCA to remove the misbehaving node
from the DHT.

7.2.6 Summary and Further Reading

In this section, we have described the basic functionality provided by DHTs, and
provided case studies that demonstrate different flavors of DHTs and lookup pro-
tocols. We have described how DHTs attain their lookup performance, and also
described how DHT protocols can be subverted by attackers. Finally, we have
presented a DHT design that is more resilient to noncooperative and malicious be-
havior. Our review is not comprehensive; there are many other interesting DHT
designs. We point the interested reader to [12, 20, 23, 41, 50, 51, 54, 66].

7.3 Resilient Overlay-Based Streaming Media

Overlay-based streaming media systems can be decomposed into three broad cate-
gories depending on their data delivery mechanism (Fig. 7.4).

Participants in a single-tree system arrange themselves into a tree. By definition,
this implies that there is a single, loop-free, path between any two tree nodes. The
capacity of each tree link must be at least the streaming rate. Content is forwarded
(i.e., pushed) along the established tree paths. The source periodically issues a con-
tent packet to its children in the tree. Upon receiving a new content packet, each
node immediately forwards a copy to its children. The uplink bandwidth of leaf
nodes remains unused (except by recovery protocols) in a single tree system.
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Fig. 7.4 Decomposition
of Streaming Media Protocols Streaming Media Protocols

Single-Tree Multi-TreeMesh

Single-Tree Mesh Hybrid Multi-Tree Mesh Hybrid

Examples of single-tree systems include ESM [15], Overcast [26], ZIGZAG [61],
and NICE [8].

In a multi-tree system, each participating node joins k different trees and the
content is partitioned into k stripes. Each stripe is then disseminated in one of the
trees, just as in a single-tree system. In a multi-tree protocol, each member node
can be an interior node in some tree(s) and a leaf node in other trees. Further, each
stripe requires only 1=kth the full stream bandwidth, enabling multi-trees to utilize
forwarding bandwidths that are a fraction of the stream rate. These two properties
enable multi-tree systems to utilize available bandwidth better than a single-tree.
SplitStream [13], CoopNet [45], and Chunkyspread [62] are examples of multi-tree
systems.

In mesh-based or swarming overlays, the group members construct a random
graph. Often, a node’s degree in the mesh is proportional to the node’s forwarding
bandwidth, with a minimum node degree (typically five [69]) sufficient to ensure
that the mesh remains connected in the presence of churn.

The source periodically makes a new content block available, and each node
advertises its available blocks to all its neighbors. A missing block can then be
requested from any neighbor that advertises the block. Examples of mesh-based
systems are CoolStreaming [69], Chainsaw [46], PRIME [39], and PULSE [47].

As Fig. 7.4 shows, the base dataplanes can be combined to form hybrid data-
planes. Hybrid dataplanes combine tree- and mesh-based systems by employing a
tree backbone and an auxiliary mesh structure. Typically, blocks are “pushed” along
the tree edges (as in a regular tree protocol) and missing blocks are “pulled” from
mesh neighbors (as in a regular mesh protocol).

Prototypical examples of single-tree-mesh systems are mTreeBone [65] and
Pulsar [37]. Bullet [29] is also a single-tree mesh but instead of relying on the pri-
mary tree backbone to deliver the majority of blocks, random subsets of blocks are
pushed along a given tree edge and nodes recover the missing blocks via swarming.
PRM [9] is a probabilistic single-tree mesh system. Chunkyspread [62], GridMe-
dia [68], and Coolstreaming+ [33, 34] are multi-tree-mesh systems. CPM [22] is a
server-based system that combines server multicast and peer-uploads.
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7.3.1 Recovery Protocols

Tree-based delivery is fragile, since a single failure disconnects the data deliv-
ery until the tree is repaired. Existing protocols have added extra edges to a tree
(thus approximating a mesh) for reducing latency [40] and for better failure recov-
ery [9, 67]. These protocols are primarily tree-based, but augment tree delivery (or
recovery) using links. Multi-tree protocols are more resilient, since a single failure
often affects only one (of k) trees. Mesh delivery is robust by design; single node
or even multiple failures are not of high consequence since the data is simply pulled
along surviving mesh paths.

We next describe in detail different delivery protocols with a focus on their
recovery behavior.

7.3.2 Case Study: Recovery in Trees Using Probabilistic Resilient
Multicast (PRM)

PRM [10] introduces three new mechanisms – randomized forwarding, triggered
NAKs and ephemeral guaranteed forwarding – to tree delivery. We discuss random-
ized forwarding in detail.

In randomized forwarding, each overlay node, with a small probability,
proactively sends a few extra transmissions along randomly chosen overlay edges.
Such a construction interconnects the data delivery tree with some cross edges
and is responsible for fast data recovery in PRM under high failure rates of over-
lay nodes. We explain the details of proactive randomized forwarding [10] using
the example shown in Fig. 7.5. In the original data delivery tree (Panel 0), each
overlay node forwards data to its children along its tree edges. However, due to net-
work losses on overlay links (e.g., hA; Di and hB; F i) or failure of overlay nodes
(e.g., C , L, and Q), a subset of existing overlay nodes do not receive the packet
(e.g., D; F; G; H; J; K and M ). We remedy this as follows. When any overlay node
receives the first copy of a data packet, it forwards the data along all other tree edges
(Panel 1). It also chooses a small number (r) of other overlay nodes and forwards
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Fig. 7.5 The basic idea behind PRM. The circles represent the overlay nodes. The crosses indicate
link and node failures. The arrows indicate the direction of data flow. The curved edges indicate
the chosen cross overlay links for randomized forwarding of data. [10]
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data to each of them with a small probability, ˇ. For example, node E chooses to for-
ward data to two other nodes using cross edges F and M . Note that as a consequence
of these additional edges some nodes may receive multiple copies of the same packet
(e.g., node T in Panel 1 receives the data along the tree edge hB; T i and cross edge
hP; T i). Therefore, each overlay node needs to detect and suppress such duplicate
packets. Each overlay node maintains a small duplicate suppression cache, which
temporarily stores the set of data packets received over a small time window. Data
packets that miss the latency deadline are dropped. Hence the size of the cache is
limited by the latency deadline desired by the application. In practice, the duplicate
suppression cache can be implemented using the playback buffer already maintained
by streaming media applications. It is easy to see that each node on average sends
or receives up to 1 C ˇr copies of the same packet. The overhead of this scheme is
ˇr , where we choose ˇ to be a small value (e.g., 0.01) and r to be between 1 and 3.
In PRM, nodes discover other random nodes by employing periodic random walks.

It is instructive to understand why such a simple, low-overhead randomized for-
warding technique is able to increase packet delivery ratios with high probability,
especially when many overlay nodes fail. Consider the example shown in Fig. 7.6,
where a large fraction of the nodes have failed in the shaded region. In particular, the
root of the subtree, node A, has also failed. So if no forwarding is performed along
cross edges, the entire shaded subtree is partitioned from the data delivery tree. No
overlay node in this entire subtree would receive data packets until the partition is
repaired. However, using randomized forwarding along cross edges a number of
nodes from the unshaded region will have random edges into the shaded region
as shown (hM; Xi; hN; Y i and hP; Zi). The overlay nodes that receive data along
such randomly chosen cross edges will subsequently forward data along regular tree
edges and any chosen random edges. Since the cross edges are chosen uniformly at
random, a large subtree will have a higher probability of cross edges being incident
on it. Thus as the size of a partition increases, so does its chance of repair using
cross edges.

Triggered NAKs are the reactive components of PRM. An overlay node can de-
tect missing data using gaps in received sequence numbers. This information is used
to trigger NAK-based retransmissions. PRM further includes a Ephemeral Guaran-
teed Forwarding technique, which is useful for providing uninterrupted data service

Fig. 7.6 PRM provides
successful delivery with high
probability because large
subtrees affected by a node
failure get randomized
recovery packets with high
probability. [10]
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when the overlay construction protocol is detecting and repairing a partition in the
data delivery tree. Here, when the tree is being repaired, the root of an affected sub-
tree receives a stream of data from a “random” peer. More details about PRM are
available in [10].

7.3.3 Case Study: Multi-Tree Delivery Using Splitstream

In Splitstream, the media is divided into k stripes, using a coding techniques such
as multi-descriptive coding (MDC). All of the stripes in aggregate provides perfect
quality, but each stripe can be used independent of the others and each received
stripe progressively improves the stream quality. Splitstream forms k trees, such
that, ideally, each node is an interior node in only one tree. The source multicasts
stripes onto different trees, and each node receives all stripes and forwards only one
stripe.

When a node departs, at most one tree is affected since every node is a leaf in
all but one tree. Therefore, node departures do not affect delivery quite as much as
a single tree system. Further, the forwarding bandwidth of every node is now used,
since each node is an interior node in at least one stripe tree. Finally, since each
stripe is approximately 1=kth the bandwidth of the original stream, each node can
serve more children, which results in a shorter tree (higher average outdegree) and
lower latency.

Splitstream is built atop Scribe, which itself is an overlay multicast protocol built
using the Pastry DHT. Due to bandwidth constrains on individual nodes, it is not
always feasible to form the ideal interior-disjoint trees such that each node is an
interior node in only one tree. In particular, a stripe tree may run out of forwarding
bandwidth (because all of its leaf nodes are interior nodes in some other tree). To
solve this problem, Splitstream maintains a “Spare Capacity Group (SCG),” which
contains nodes with extra capacity that can forward onto more than one stripe. In
bandwidth-scare deployments, nodes may have to use the SGC to locate a parent. In
extreme cases, it may be impossible to form a proper Splitstream forest; however,
this condition is rare and analysed in detail in [13].

7.3.4 Case Study: Recovery Using a Mesh
in CoolStreaming/DONet

In Coolstreaming, a random mesh connects the members of the data overlay, and
random blocks are “pulled” from different mesh neighbors. Each node maintains
an mCache, which is a partial list of other active nodes in the overlay. A new
node initially contacts the source; the source selects a random “deputy” from its
mCache, and the deputy supplies the new node with currently active nodes. Each
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node periodically percolates a message (announcing itself) onto the overlay using a
gossip protocol.

The media stream is divided into fixed sized segments; each segment has a
sequence number and each node maintains a bitmap, called the buffer map, to
represent the availability of segments. In CoolStreaming, the default buffer map
contains 120 bits. Each node maintains neighbors (called partners) proportional to
its forwarding bandwidth, while still maintaining a minimum number of partners
(typically 5).

Nodes periodically (usually every second) exchange their buffer maps with their
partners, and use a scheduling heuristic to exchange blocks. The scheduling algo-
rithm must select a block to request, and an eligible node to request the block from.
The block requested is the scarcest block (supplied by least number of nodes). The
node from which this block is requested is the eligible node (which has advertised
the scarce block) with the most bandwidth. The origin node serves only as a supplier
and publishes a new content block every second.

Partners can be updated from the node’s mCache as needed, and the mCache is
updated using the periodic gossip. Individual node failures have very little effect on
the delivery since a node can simply select a different partner to receive a block.
However, the trade-off is control overhead (bitmap exchange) and latency (which is
now proportional to the product of buffer map size and overlay diameter).

7.4 Web Content Delivery Networks

Resource provisioning is a fundamental challenge for Internet content providers.
Too much provision and the infrastructure will simply depreciate without generating
return on investment; too little provision and the web site may lose business and
potentially steer users to competitors.

A content delivery network (CDN) offers a service to content providers that helps
address this challenge. A typical CDN provider deploys a number of CDN servers
around the globe and uses them as a shared resource to deliver content from multiple
content providers that subscribe to the CDN’s service. The CDN servers are also
known as edge servers because they are often located at the edges of the networks
in which they are deployed. Content delivery networks represent a type of overlay
network because they route content between the origin sites and the clients through
edge servers.

A CDN improves resiliency and performance of subscribing web sites in several
ways.

� As already mentioned in Section 7.1.1, a CDN can reuse capacity slack to absorb
demand peaks for different content providers at different times. By sharing a
large slack across a diverse pool of content providers, CDNs improve resiliency
of the subscribing web sites to flash crowds.
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� A CDN promises a degree of protection against denial of service attacks because
the enormous capacity the attacker would need to saturate to exert any noticeable
performance degradation.

� A CDN improves the performance of content delivery under normal load because
it can process client requests from a nearby edge server.

CDNs are used to deliver a variety of content, including static web objects, soft-
ware packages, multimedia files, and streaming content – both video-on-demand
and live. For video-on-demand, edge servers deliver streams to viewers from their
cached files; typically, these files are pre-loaded to the edge server caches from
origin sites as they become available. However, if a requested file is not cached,
the edge server will typically obtain the stream from the origin and forward it to
the viewer, while also storing the content locally for future requests. In the case
of live streaming (“Webcasts”), content flows form a distribution tree, with view-
ers as leaves, edge servers as intermediate nodes, and the origin as the root. Often,
however, CDN servers form deeper trees. In either case, Webcast delivery through
a CDN can benefit from various tree-based approaches to streaming media systems
such as those discussed in Section 7.3. In the rest of this section, we will limit our
discussion to how CDNs deliver static files, including static web objects, software
packages, multimedia files, etc.

7.4.1 CDN Basics

A CDN must interpose its infrastructure transparently between the content provider
and the user. Furthermore, unlike P2P networks where users run specialized peer
software, a CDN must serve clients using standard web browsers. Thus, a fundamen-
tal building block in a CDN is a mechanism to transparently reroute user requests
from the content provider’s site (known as the “origin size” in the CDN parlance)
to the CDN platform. The two main techniques that have been used for this purpose
are DNS outsourcing and URL rewriting. Both techniques rely on the domain name
system (DNS), which maps human-readable names, such as www.firm-x.com, to
numeric Internet protocol (IP) addresses. A browser’s HTTP request is preceded by
a DNS query to resolve the host name from the URL. The DNS queries are sent by
browsers’ local DNS servers (LDNS) and processed by the web sites’ authoritative
DNS servers (ADNS).

In URL rewriting, a content provider rewrites its web pages so that embed-
ded links use host names belonging to the CDN domain. For example, if a page
www.firm-x.com contains an image picture.jpg that should be delivered by the
CDN, the image URL would be rewritten to a form such as http://images.firm-
x.com.cdn-foo.net/real.firm-x.com/picture.jpg. In this case, the DNS query for
images.firm-x.com.cdn-foo.net would arrive to CDN’s DNS server in a normal way,
without redirection from firm-x.com’s ADNS. Note that URL rewriting only works
for embedded and hyperlinked content. The container pages (i.e., the entry points
to the web sites) would have to be delivered from the origin site directly.
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Fig. 7.7 A high-level view of a CDN architecture

DNS outsourcing refers to techniques that exploit mechanisms in the DNS pro-
tocol that allow a query to be redirected from one DNS server to another. Beside
responses containing IP addresses, the DNS protocol allows two response types that
can be used for redirection. An NS-type response specifies a different DNS server
that should be contacted to resolve the query. A CNAME-type response specifies a
canonical name, a different host name that should be used instead of the name con-
tained in the original query. Either response type can be used to implement DNS
outsourcing.

Figure 7.7 depicts a high-level architecture of a CDN utilizing DNS outsourcing.
Consider a content provider – firm-x.com in the example – that subscribes to CDN
services to deliver its content from the images.firm-x.com subdomain. (Content
from other subdomains, such as www.firm-x.com might be delivered independently,
perhaps by the provider’s origin server itself.)

When a client wants to access a URL with this hostname, it first needs to resolve
this hostname into the IP address of the server. To this end, it sends a DNS query
to its LDNS (step 1), which ultimately sends it to the ADNS server for firm-x.com
(step 2). ADNS now engages the CDN by redirecting LDNS’s query to the DNS
server operated by the CDN provider (CDN DNS in the figure). ADNS does it by
returning, in the exchange of step 2, an NS record specifying CDN DNS. LDNS
now sends the query for images.firm-x.com to CDN DNS, which can now choose
an appropriate edge server and return its IP address to LDNS (step 3). The LDNS
server forwards the response to the client (step 4), which now downloads the file
from the specified server (step 5). When the request arrives at the edge server, the
server may or may not have the requested file in its local cache. If it does not, it
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obtains the file from the origin server (step 6) and sends it to the client; the edge
server can also cache this file for future use, depending on the cache-controlling
headers that came with the file from the origin server.

With either DNS outsourcing or URL rewriting, when a DNS query arrives at
CDN’s DNS server, the latter has the discretion to select the edge server whose IP
it would return in the DNS response. This provides the CDN with an opportunity to
spread the content delivery load among its edge servers (by resolving different DNS
queries to different edge servers) and to localize content delivery (by resolving a
given DNS query to an edge server that close to the requesting client, according to
some metric). There are a number of sometimes contradicting factors that can affect
edge server selection. The mechanisms and policies for server selection is a large
part of what distinguishes different CDNs from one another.

The much-simplified architecture described above is fully workable except for
one detail: how does the edge server receiving a request know which origin server
to contact for the requested file? CDNs use two basic approaches to this issue. In
the example of Fig. 7.7, assuming the client uses HTTP 1.1, the client will include
an HTTP Host header “Host:images.firm-x.com” with its request to the edge server.
This gives the edge server the necessary information.

Another approach, which does not rely on the host header, involves embed-
ding provider identity into the path portion of the URL. This technique is used in
particular with URL rewriting. For example, with the above URL http://images.firm-
x.com.cdn-foo.net/real.firm-x.com/picture.jpg, the client’s request to the edge serve
will be for file “real.firm-x.com/picture.jpg”, providing edge server with the infor-
mation about the origin server.

7.4.2 Bag of DNS Tricks

Looking at Fig. 7.7, an immediate concern with this architecture is the CDN DNS
server. First, it is a centralized component that can become the bottleneck in the
system. Second, it undermines localized data delivery to some degree because all
DNS queries must travel to this centralized component no matter where they come
from. These issues are exacerbated by the fact that, in order to retain fine-grained
control over edge server selection, CDN DNS must limit the amount of time its
responses can be cached and reused by clients. It does so by assigning a low time-
to-live (TTL) value to its responses, a standard DNS protocol feature for controlling
response caching. This increases the volume of DNS queries that CDN DNS must
handle.

Moderate-sized CDNs sometimes disregard these concerns because DNS queries
usually take little processing, with a single server capable of handling several thou-
sand queries per second. With additional consideration that DNS server load is
easily distributed in a server cluster, the centralized DNS resolution can handle
large amounts of load before becoming the bottleneck in practice. Furthermore,
the overhead of nonlocalized DNS processing only becomes noticeable in practice



7 Overlay Networking and Resiliency 241

for delivering small files. For large file downloads, such as software packages or
multimedia files, a few hundred millisecond of initial delay will be negligible com-
pared to several minutes of the download itself.

Large CDNs, however, deal with extraordinary total loads and provide content
delivery services for all file sizes. Thus, they implement their DNS service as a
distributed system in its own right.

One approach to implement a distributed DNS service again utilizes DNS redi-
rection mechanisms. For example, the Akamai CDN [1] implements a two-level
DNS system. The top-level DNS server is a centralized component and is regis-
tered as the authoritative DNS server for the accelerated content. Thus, initial DNS
queries arrive at this server. The top-level DNS server responds to queries with
an NS-type response, redirecting the requester to a nearby low-level DNS server.
Moreover, these redirecting responses are given a long TTL, in effect pinning the
requester to the selected low-level DNS server. The actual name resolution occurs
at the low-level DNS servers. Because most DNS interactions occur between clients
and low-level CDN DNS servers, the DNS load is distributed and the interactions
are localized in the network.

Another approach uses a flat DNS system, and utilizes IP anycast to spread the
load among them. A CDN using this approach deploys a number of CDN DNS
servers in different Internet locations but assigns them the same IP address. Then, it
relies on the underlying IP routing infrastructure to deliver clients’ DNS queries des-
tined to this IP address to the closest CDN DNS server. In this way, DNS processing
load is both distributed and localized among the flat collection of DNS servers. The
Limelight CDN [35] utilizes this technique.

Beside DNS service scalability, Limelight further leverages the above technique
to sidestep the decision about which of the data centers would be the closest to
the client. In particular, Limelight deploys a DNS server in every data center; then
each given request will be delivered by the anycast mechanism to its closest data
center. The DNS server receiving a request then simply picks one of the edge servers
co-located in the same data center for the subsequent download. This approach,
however, is not without drawbacks. One limitation is that it relies exclusively on the
proximity notion reflected in Internet routing; there are other considerations, such
as network congestion and costs. Another limitation is due to the originator problem
discussed in the next subsection.

7.4.3 Issues

The basic idea behind CDNs might seem simple, but many technical challenges
lurk. An obvious challenge is server selection, which is an open-ended issue. There
are a number of factors that may affect the selection.

A basic factor is proximity: one of the key promises of CDN technology is that
they can deliver content from a nearby network location. But what does “nearby”
mean? To start with, there are a number of proximity metrics one could use, which
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differ in how closely they correlate with end-to-end performance and how hard they
are to obtain. Geographical distance, autonomous system hops, and router hops,
could be used as relatively static proximity metrics. Static metrics may incorpo-
rate domain knowledge, such as maps of private peering points among network
providers, since private peering points can be more reliable than public network ac-
cess points. Then, one could consider dynamic path characteristics, such as packet
loss, network packet travel delay (one-way or round-trip), and available path band-
width. Obtaining these dynamic metrics and keeping them fresh is much more
challenging. Further, a CDN may account for economic factors, such as the prefer-
ence of utilizing certain network carriers even at the expense of a slight performance
degradation.

Once the proximity metrics are figured out, the next question is how to com-
bine them with server load metrics, since in the end we need to pick a certain
edge server for a given request. Server loads are inherently dynamic. They raise
a number of questions of their own, with their own research literature. How long
a history of past data to consider, and which load characteristics to measure? One
can consider a variety of characteristics, including CPU usage, network utilization,
memory, and disk IO. How frequently to collect load measurements, and how fre-
quently to recompute load metrics? How to avoid a “herd effect” [19], where a CDN
sends too much the demand to an underloaded server, only to overload it in the next
cycle?

The next set of questions is architectural in nature. As we discussed earlier,
the prevalent mechanism in CDNs for routing requests to a selected edge server
is based on DNS. DNS-based routing raises so-called originator and hidden load
problems [49].

The originator problem is due to the fact that CDN proximity-based server se-
lection can only be done relative to the originator of the DNS query, which is the
client’s DNS server, and not the actual host that will be downloading the content.
Thus, the quality of any proximity-based server selection is limited by how close
the actual client is to the LDNS it is using. While there has been some work on
determining the distance between clients and their LDNSs [42, 57], the end-to-end
effect of this issue on user-perceived performance is not yet fully known.

One way to sidestep the originator problem is to utilize IP anycast for the HTTP
interaction [2]. Similar to anycast-based DNS interactions considered previously,
different edge servers in this case would advertise the same IP address. This address
would be returned to the clients by CDN DNS, and packets from a given browser
machine would be delivered to the closest edge server naturally thanks to IP rout-
ing. Anycast was previously considered unsuitable for HTTP downloads for two
reasons. First, unlike DNS that uses the UDP transport protocol by default, HTTP
runs on top of TCP. TCP is a stateful connection-oriented protocol, and if a rout-
ing path changes in the middle of the ongoing download, the edge server browser
may attempt to continue the download from a different edge server, leading to a
broken TCP connection. Second, IP anycast selects among end-points for packet de-
livery without consideration for the routing path quality or end-point load. However,
recent insights into the anycast behavior [7] and network traffic engineering [63]
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alleviate these concerns, especially when a CDN is deployed within one autonomous
system. ICDS – a CDN service by AT&T [5] – is currently pursuing a variant of this
approach.

The hidden load problem arises because of drastically different number of clients
behind different LDNS servers. A large ISP likely has thousands of clients sharing
the same LDNS. Then, a single DNS query from this LDNS can result in a large
amount of demand for the selected edge server. At the same time, a single query
from the LDNS of a small academic department will impose much smaller load.
Because a CDN distributes load at the granularity of DNS queries, potentially drastic
and unknown imbalances of load resulting from single queries complicate proper
load balancing.

Another architectural issue relates to the large number of edge servers a CDN
maintains. When new popular content appears and generates a large number of
requests, these requests will initially miss in the edge server caches and will be for-
warded to the origin server. These missed requests may overload the origin server
in the beginning of a flash crowd, until edge servers populate their caches [27].
CDNs often pre-load new content to the edge servers when the content is known
to be popular. However, unpredictable flash crowds present a danger. Consequently,
CDNs sometimes deploy peer-to-peer cooperation among their edge servers, with
edge servers forwarding missed requests to each other rather than directly to the ori-
gin server. This gives rise to more complex overlay network topologies than the
one-hop overlay routing in the basic CDN architecture described here. In fact, the
underlying mechanisms can be even more complex: the complex overlay topolo-
gies add overhead due to application-level processing at each hop. Thus, one could
try to use simple one-hop topology under normal load and add more complex re-
quest routing dynamically once the danger of a “miss storm” is detected. This in
turn opens a range of interesting algorithmic questions involved in deciding when
to start forming a complex topology and how to form it.

This overview is necessarily brief. Its goal is only to convey the fact that con-
tent delivery networks represent an important aspect of Internet infrastructure and a
rich environment for research and innovation. We refer the reader to more targeted
literature, such as [24, 49, 64]

7.5 Attack-Resilient Services

We have seen that overlay systems provide resilience by design: the lack of central-
ized entities naturally provides a measure of resilience against component failures.
Overlay systems can also form the building block for systems that are resilient to
malicious attack. SOS [28] and a subsequent derivative, Mayday [3], are the two
overlay systems that provide denial-of-service protection for Internet services. We
discuss SOS next.
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7.5.1 Case Study: Secure Overlay Service (SOS)

Secure Overlay Services (SOS) is an overlay network designed to protect a server
(the target) from distributed denial of service attacks.

SOS enables a “confirmed” user to communicate with the protected service. Con-
ceptually, the service is protected by a “ring” of SOS overlay nodes, which are able
to confirm incoming requests as valid. Once a request is validated, it is forwarded on
to the service. Users, by themselves, are not able to directly communicate with the
service (initially); in fact, the protected server’s address may be hidden or changing.

SOS forms a distributed firewall around the target server. The server advertises
the SOS overlay nodes (called Service Overlay Access Points [SOAPs])) as its initial
point of contact. Users initiate contact to the server by connecting to one of the SOS
overlay nodes. Malicious users may attack overlay nodes, but by assumption are not
able to bring down the entire overlay.

The server’s ISP filters all packets to the server’s address, except for a chosen few
(who are allowed to traverse this firewall). These privileged nodes are called “secret
servlets”. Secret servlets designate a few SOAP nodes (called Beacons) as the ren-
dezvous point between themselves and incoming connections. Regular SOAP nodes
use an overlay routing protocol (such as Chord) to route authenticated requests to
the Beacons.

Beacons know of and forward requests to the secret servlets. Only secret servlets
are allowed through the ISP firewall around the target, and the servlets finally for-
ward the authenticated request to the protected server.

7.6 File-Sharing Peer-to-Peer Networks

Consider the task of distributing a large file (e.g., in the order of hundreds of MB)
to a large number of users. We already discussed one overlay approach – CDNs –
targeting such an application. However, the CDN approach requires the source of
the file to subscribe to CDN services (and pay the resultant service fees). Further-
more, this approach requires a CDN company to be vigilant in provisioning enough
resources to keep up with the potential scale of downloads involved.

Peer-to-peer networks provide an appealing alternative, which organizes users
themselves into an overlay distribution platform. This approach is appealing to con-
tent providers because it does not require a CDN subscription. It also scales naturally
with the popularity of a download: the more users are downloading a file, the more
resources take part in the overlay distribution network adding the capacity to the de-
livery platform. Some peer-to-peer networks also provide administrative resiliency,
as they have no special centralized administrative component. In fact, the utiliza-
tion of the client upload bandwidth and CPU capacity in content delivery can also
make P2P techniques interesting as an adjunct (rather than an alternative) to a CDN
service.
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In this section, we will concentrate on unique challenges that arise when the P2P
system downloads a large (e.g., on the order of 100s of MB) file. In particular, we
will consider the following two challenges:

� Block Distribution Imagine a flash crowd downloading a 100 MB software
package. A naive approach (pursued by early P2P networks) would let each peer
download the entire file and then make itself available as a source of this file for
other peers. This approach, however, would not be able to sustain a flash crowd.
Indeed, each peer would take a long time – tens of minutes over a typical residen-
tial broadband connection – to download this file and in the meantime the initial
file source would have no help in coping with the demand. The solution is to
chop the file into blocks and distribute different blocks to different peers, so that
they can start using each other faster for block distribution. But this creates an in-
teresting challenge. Obviously, the system needs to make a diverse set of blocks
available as quickly as possible, so that each peer has a better chance of finding
another peer from which to obtain missing blocks. But achieving this diversity
is difficult when no peer possesses global knowledge about block distribution at
any point in time.

� Free Riders A particularly widespread phenomenon is that of selfish peers:
peers that attempt to make use of the peer content delivery without contribut-
ing their own resources. These peers are called “free riders”. More generally, a
peer may try to bypass fairness mechanisms in the P2P network and obtain more
than its share of resources, thus getting better service at the expense of other
users.

We will consider these two challenges in the context of the mesh model of con-
tent distribution. Using the terminology of BitTorrent – a popular P2P network – the
key components of a mesh P2P network are seeds, trackers, and peers (or leechers).
Originally the file exists at the source server (or servers) called seeds. There is a
special tracker node that keeps track of at least some subset of the peers who are in
the process of downloading the file. A new peer joins the download (a swarm) by
contacting the tracker, obtaining a random subset of existing peers, and establish-
ing P2P connections (i.e., overlay network links) with them. The download makes
collective progress by peers exchanging missing blocks along the overlay edges.
Having completed the download, a peer may stay in the swarm as a seed, uploading
without downloading anything more in return.

7.6.1 Block Distribution Problem

BitTorrent attempts to achieve a uniform distribution of blocks (or “pieces”: a set
of blocks in BitTorrent) among the peers through localized decisions. Neighboring
peers exchange lists of blocks that they already have. A peer determines which of
the blocks it is missing are the rarest in its local neighborhood and requests these
blocks first. Because the neighborhoods in the BitTorrent protocol evolve over time,
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the rarest-first block distribution leads to more uniform distribution of blocks in the
network and to better chance of a peer finding a useful block without contacting the
source.

Recently, an ingenious alternative to the BitTorrent protocol has been proposed,
which removes the issue of choosing the blocks completely [21]. This new approach,
called Avalanche, follows the same mesh model with seeds, trackers, and peers,
as BitTorrent. However, Avalanche makes virtually every block useful to any peer
through network coding as follows.

Peers no longer choose a single, original block to download from their neighbors
at a time. Instead, every time a peer uploads a block to a neighbor, it simply com-
putes a linear combination of all the blocks it currently has from a given file using
random coefficients, and uploads the result along with auxiliary information, derived
from the coefficients it used and those previously received with its own downloaded
blocks. Once a peer collects enough encoded blocks (usually the same number as the
number of blocks in the file), it can reconstruct the original file by solving a system
of linear equations. A system implementing these ideas has been publicly available
as Microsoft Secure Content Downloader since 2007, although the original author
of BitTorrent raised questions about the importance of the removal of the block
distribution problem in practice and the possible performance overhead involved
[17]. These concerns have been reflected in recent empirical studies demonstrating
that BitTorrent’s rarest-first piece selection strategy effectively provides block
uniformity [30].

7.6.2 Free Riders Problem: Upload Incentives

To improve its resiliency to free riding, BitTorrent utilizes an incentives mechanism.
The goal of this mechanism is to ensure that peers who contribute more to content
upload receive better download service. Just like its approach to block distribution
problem, BitTorrent implements its incentives mechanism largely through localized
decisions by each peer using a round-based unchoking algorithm to decide how
much to send to its neighbors.

When a peer learns a set of other peers from the file’s tracker (usually around
30–50), the peer starts by establishing connections to these peers, some of which
will agree to send blocks to the peer. At the end of every unchoking round (10 s in
most BitTorrent clients), the peer decides which of the peers it should upload blocks
to in the next round. To this end, the peer considers the throughput of its download
from the peers in the previous round and selects a small number (four in Azureus,
a popular BitTorrent client implementation) of peers to which it will upload blocks
in the next round. Selecting a peer for uploading is called “unchoking” a peer. In
addition to unchoking the top four peers who have given in the past, a peer also
unchokes another peer at random in each round. This helps the peer to bootstrap
new peers, to discover potentially higher-performing peers, and to ensure that every
peer, even with poor connectivity, makes some progress; without this “optimistic
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unchoking,” these impoverished peers would end up choked by everybody. Except
for optimistic unchoking, a peer only uploads to other peers if they have blocks that
it does not. If two peers have blocks that the other lacks, the peers are said to be
interested in one another.

This protocol works because a free rider will end up being choked by most of its
neighbors, only relying on random unchokes to make any progress. However, recent
work [48] has found that the BitTorrent protocol penalizes high-capacity peers: as
the upload performance of a peer increases, its download performance grows but
less than proportionally to the upload contribution. In other words, the protocol is
not entirely tit-for-tat in a usual sense of the word.

Consequently, a new BitTorrent client called BitTyrant has been implemented
that improves the download performance of high-capacity peers [48]. BitTyrant
achieves this goal by exploiting the following observation. Regular BitTorrent peers
allocate their upload capacity equally among their unchoked neighbors. Because of
this, a strategic peer does not need to upload to regular peers at its maximum capac-
ity: it only needs to upload faster than most of its peers’ other neighbors, so that its
peers would keep it unchoked.

Thus, the key idea behind the BitTyrant client is to keep an estimate of the in-
dividual upload rates to its neighbors that is sufficient to stay in the neighbors’
unchoked set most of the time, and to upload to each neighbor at just that rate. Then,
BitTyrant uses the spared upload capacity to unchoke more peers and hence to in-
crease its download performance. Furthermore, the BitTyrant client selects only the
peers with the highest return-on-investment: those peers whose data capacity can
be obtained “cheaply.” The authors of BitTyrant observed significant reduction in
file download times by their modified client. However, if all clients adopted selfish
BitTyrant behavior with cut-off of expensive peers as mentioned above, the over-
all performance for all clients would decrease, especially for low-capacity clients.
Thus, while discouraging free riding, BitTorrent still relies on altruistic contribution
of high-capacity peers to achieve its performance.

Although BitTorrent’s unchoking algorithm of giving to the top-four contribu-
tors has been broadly described as being tit-for-tat, recent work has shown that it
is more accurately represented as an auction [32]. Each unchoking round can be
viewed as an auction, where the “bids” are other peers’ uploads in previous rounds,
and the “good” being auctioned is the peer’s upload bandwidth. Viewed this way,
BitTyrant’s strategy of “coming in the last (winning) place” is easily seen as the
clear winning strategy. Also by reframing BitTorrent as an auction, a solution to
strategic attempts like BitTyrant arises: change the way peers “clear” their auction.

A new client has been introduced that replaces BitTorrent’s top-four strategy
with a proportional share response. Proportional share is a simple strategy: if a peer
has given some fraction, say 10%, of all of the blocks you received in the previous
round, then allot to that peer the same fraction, 10%, of your upload bandwidth. Note
that this does not necessarily result in peers providing the same number of blocks
in return, rather the same fraction of bandwidth. This results in what turns out to
be a very robust form of fairness: the more a peer gives, the more that peer gets.
Even highly provisioned peers therefore have incentive to contribute as much of
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their bandwidth as possible. The authors of this PropShare client have demonstrated
that proportional share is resilient to a wide array of strategic manipulation. Fur-
ther, PropShare outperforms BitTorrent and BitTyrant, and as more users adopt the
PropShare client, the overall performance of the system improves.This work demon-
strates the importance of an accurate model of incentives in a complex system such
as BitTorrent.

A strategic peer can achieve higher download performance by manipulating the
list of blocks it announces to its neighbor [32]. Suppose node p in a BitTorrent
swarm possesses some rare blocks. Since p has rare blocks, it is going to be inter-
esting to many of its neighbors, who will all want to upload blocks to p in exchange
for these rare blocks. However, once p announces these rare blocks, p’s neighbors
will download these blocks from p and exchange them amongst themselves. Node
p can sustain interest amongst its neighbors longer by under-reporting its block
map, in particular, by strategically revealing the rare blocks one by one. This strat-
egy guarantees p remains interested for longer since p’s neighbors, who all get the
same rare block from p, cannot benefit by exchanging amongst themselves.

This observation suggests a general under-reporting strategy. A node can remain
interesting to its neighbors longest by announcing only the blocks necessary to
maintain interest but no more. Similar to an all-BitTyrant strategy, when all peers
strategically under-report their blocks in this manner [32], the overall performance
of the system degrades.

In general, BitTorrent’s incentives mechanisms have come under intense scrutiny.
Through rich empirical studies and analyses that incorporate various economic prin-
ciples, BitTorrent continues to grow more robust to cheating clients. Whether a
system as complex as BitTorrent can be made fully robust to such users remains
open.

7.7 Conclusion

This chapter considers ways by which overlays-based techniques improve applica-
tion resiliency. We have described how applications can utilize overlay networks to
better cope with challenges such as flash crowds, the need to scale to often unpre-
dictable loads, network failures and congestion, and denial of service attacks. We
have considered a representative sample of these applications, focusing on their use
of overlay network concepts. This sample included distributed hash tables, network
storage, large file distribution by peer-to-peer networks, streaming content delivery,
content delivery networks, and web services. It is simply not feasible to comprehen-
sively cover overlay applications and research within one chapter. Instead, we hope
that this chapter conveys sufficient information to give the reader a sampling of the
various application domains where overlays are useful, and a sense for the flexibility
that overlay networks provide to an application designer.
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Chapter 8
Network Configuration Management

Brian D. Freeman

8.1 Introduction

This chapter will discuss network configuration management by presenting a
high-level view of the software systems that are involved in managing a large
network of routers in support of carrier class services. It is meant to be an overview,
highlighting the major areas that a network operator should assess while design-
ing or buying a configuration management system, and not the final source of all
information needed to build such a system.

When a service and its network are small, network configuration management is
typically done manually by a knowledgeable technician with some form of work-
flow to get the data needed to perform their configuration tasks from the sales group.
Inventory tracking may be handled by simply inserting comments into the interface
description fields on the router and perhaps by maintaining some spreadsheets on a
file server. The technician might or might not use an element management system
(EMS) to do the configuration changes. If the network is new, for example, support-
ing the needs of a small company or the network needs of an “Internet startup,” most
of the configuration tasks represent a “new order.” Configuration requests occur at
low volume and the technician probably has a great deal of flexibility in how he or
she goes about meeting the needs of the new network service.

As the number of users of the service grows, the expectations placed on the
network operator to meet a certain level of reliability and performance grows ac-
cordingly. In time, because of growth in the sheer volume of orders, the single
knowledgeable worker becomes a department, and “change orders” that modify the
configuration associated with an existing customer of the network start becoming a
larger and larger share of the effort. At this point, the network may contain multi-
ple types of routers purchased from different vendors, each of which has different
features and resource limits. Changes made to a router configuration to support
one customer can now affect another customer. For example if one customer’s
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configuration change causes a router resource such as table size to be exceeded,
multiple customers might be affected. In addition, other departments or areas within
the business now need data on the installed inventory to drive customer reporting,
usage-based billing or ticketing, etc. Finally, as the volume grows, there is a need
for automation or “flow through provisioning” to both reduce cost/time and protect
against mistakes. The simple, manual approaches no longer work: an end-to-end
view is needed for network configuration management so that all the pieces required
to support the business can be integrated.

This chapter provides an overview of the elements of a robust network configura-
tion management system. There are many goals for such a system, but the primary
goal of any network configuration management system is to protect the network
while providing the ordered service for the customers. Since changing the network
configuration can cause outages if not done correctly, a key requirement of a net-
work configuration management system is to ensure that the configuration changes
do not destabilize the network. The system must provide the ordered service for
the customer without affecting other customers, other ports associated with the cus-
tomer being provisioned or the network at large.

The network configuration management system is also typically the primary
source of data – the source of truth – used by many business systems and processes
that surround the network. The functions that depend on configuration data are as
mundane as trouble ticketing and spare part tracking, to more sophisticated capa-
bilities like traffic reporting, for which the association of ports to customers must
be obtained so that traffic reports can be properly displayed on the customer service
portal.

Finally, the network configuration management system is the enforcer of the en-
gineering rules that specify the maximum safe resources to be consumed on the
routers for various features. As such, in addition to protecting the network, the
system also impacts profitability, since inventory is either used efficiently or in-
efficiently. This depends on how good the configuration management system is at
implementing the engineering rules as well as how good it is at processing service
cancellation or disconnect requests in a timely fashion. If the configuration man-
agement system does not properly return a port that is no longer in service to the
inventory available for new requests, expensive router hardware can be stranded
indefinitely.

In summary, the primary goal of a network configuration management system is
to manage router configurations to support customer service, subject to three key
secondary goals:

� Protect the network
� Be the source of truth about the network
� Enforce the business and engineering rules

To explore this topic further, we will first review some key concepts to help struc-
ture the types of data items the system must deal with in Section 8.2. Section 8.3
describes the subcomponents of the system and the unique requirements of each
subcomponent. This section also discusses the two approaches that are commonly
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used for router configuration – policy-based and template-based approaches – since
this is a key aspect of the problem to be solved. Section 8.3 also touches on the
differences between provider-edge (PE) and customer-edge (CE) router configura-
tion tasks and the differences between consumer and enterprise IP router services in
their typical approaches to configuration management. We present a brief overview
of provisioning audits, which is discussed in more detail in Chapter 9. Provisioning
audits are important to ensure that the network configuration management system
stays as a good source of truth for the other systems and business processes that
need data about the network. Finally, one of the key challenges in a large network is
handling changes, ranging from an isolated change to a setting on an individual cus-
tomer’s interface, to more complex changes such as bulk changes to a large number
of routers and interfaces. To illustrate these issues, Section 8.4 discusses the data
model and process issues associated with moving a working connection from one
configuration to the next. This section also touches on some typical network mainte-
nance activities that impact a system in different ways than a customer provisioning
focus. Section 8.5 shows a complete step by step example of provisioning a port
order.

8.2 Key Concepts

There are two important types of data that a network configuration management
system must handle: physical inventory data and logical inventory data. In addition
to these data types, the system has to be designed to appropriately handle and resolve
data discords between the state of the network (“What it is”) and the view of the
network that is contained in the network inventory database (“What it should be”).
This section introduces these concepts.

8.2.1 Physical Inventory

The physical inventory database, as the name implies, contains the network hard-
ware that is deployed in the field. The basic unit is usually a chassis with a set of
components, including common elements like route processor cards or power sup-
plies, and line cards with transport interfaces that support one or more customer
“ports.” These ports are what carry the customer-facing and backbone-facing traffic.
Line cards that support multiple customer ports are often referred to as channelized
interfaces (e.g. channelized T3 cards or channelized OC48 cards). The physical in-
ventory database keeps track of whether the subchannels on these line cards are
assigned to a customer with a state for each channel of “assigned” or “unassigned.”
The data model for physical inventory often reflects the physical world in which
cards are contained in a chassis and a chassis is contained in a cabinet. Each cus-
tomer port is associated with a subchannel on a physical interface.
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8.2.2 Logical Inventory

The logical inventory database includes the inventory data that are not physical.
This is a broad and less rigid category of information, since it includes multiple
database entities with ephemeral ties to the physical inventory. An IP address is a
good example of a database entity with an ephemeral tie. IP addresses exist on an
interface, but we can move addresses to ports on another router; hence, an address
is not permanently tied to a single piece of physical equipment. Many logical com-
ponents are inventoried as database entities and assigned as needed by the carrier.
IP addresses, VLAN tags, BGP community strings [1], and Autonomous System
Numbers (ASNs) [2] are all examples of logical data that need to be tracked and
managed. Generally, logical inventory assigned to a customer is associated with a
particular piece of physical inventory. However, the association can change over
time. A good example of a change in the association between physical and logical
inventory occurs when a customer’s connection is upgraded from a T1 to a T3. The
physical inventory will change drastically but the logical inventory in terms of the IP
address, BGP routing, and QoS settings may not change. It is also useful to under-
stand that some logical inventory is associated with a single piece of equipment like
an IP address while other logical inventory is “network wide” and is associated with
multiple pieces of equipment like MPLS Route Distinguishers and Route Targets.

8.2.3 Discords: What It Is Versus What It Should Be?

Data discords are a fact of life in production systems. Through a variety of means,
the data in the network and the data in the inventory system get out of synch. In
plain language, a situation is created where the inventory view of the world, “what
it should be,” does not match with truth or the network view of the world, “what
it is.”

Both physical and logical inventory can contain discords. Generally, the phys-
ical inventory discords occur because of card replacements and initial installation
errors that occur without a corresponding update of the database. For example, a
discord would occur if a 4-port Ethernet card was replaced with an 8-port Ether-
net card, but the database was not updated. Autodiscovery of hardware components
can greatly assist in reducing the data discords in the physical inventory. Many pro-
duction systems back up the router configuration daily and use commands from
the vendor to collect detailed firmware and hardware data from the equipment. The
command “show diag” dumps this kind of detailed information and the output can
be saved to a file. Very accurate physical inventory information can be obtained by
parsing the output of commands run on the router to obtain hardware information
like the “show diag” command or various SNMP MIB queries. Automatic discov-
ery of physical inventory can reduce the physical discords to zero. Many spare part
tracking processes are dependent on the ability to automatically discover changes
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in serial numbers on components so that failure rates on cards can be tracked and
replacement parts restocked as needed. Maintaining control on “What it is” is part
of the physical inventory audit process.

Logical inventory discords also happen frequently but are harder to resolve. As
an example, if a customer port that is running in the network has static routing and
the inventory database indicates that it should be BGP routing, which is correct?
Another example of logical inventory discord is the mismatch between the service
that the customer currently has and the ordered service. In general, it is easier to
detect logical inventory discords than to resolve them. Given their impacts on the
external support processes and billing, detection, reporting, and correcting these
situations is important.

Another key concept that the industry uses is that “the network is the database.”
This concept results from a desire by network operators to use the network config-
uration as ground truth to drive processes. Most equipment has some mechanism
for querying for configuration data. However, practical matters require externally
accessible views of those data. Fault management, for example, cannot query the
network in real time on every SNMP trap that gets generated (this can be thousands
per second); so a copy of the configuration data has to reside in a database and con-
sequently a process/program to audit and synchronize that data with the network has
to be part of the overall network configuration management system.

With these key concepts in mind, we will discuss the elements of a network
configuration management system.

8.3 Elements of a Network Configuration Management System

Figure 8.1 provides a high-level view of the elements that make up a Network
Configuration Management System. The external interfaces are to technicians and
Operating Support Systems/Business Support Systems (OSS/BSS) on the top and
the Network Elements at the bottom. Each of the major elements inside the system
will be addressed in subsequent sections.

8.3.1 Inventory Database

A database of the physical and logical inventory is the core of the system. This
database will consist of both the real assets purchased and deployed by the corpo-
ration (the physical inventory discussed in Section 8.2.1) and the logical assets that
need to be tracked (e.g., WAN and LAN IP address assignments, number of QoS
connections per router, max assigned Virtual Route Forwarding (VRF) tables [3] on
the router, etc.).

The database entities have parent/child relationships that form a tree as you place
items in the schema. For example, a complex is a site with a set of cabinets. A cab-
inet within a site may have multiple chassis or routers. A router has multiple cards,
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Fig. 8.1 High-level view of network configuration management system

each in a slot on the chassis. A card can have multiple ports. When viewed graphi-
cally, this parent/child relationship is a tree with the single item complex at the top
and the ports at the “leaves” of the tree. A robust inventory database will have a
schema with multiple “regions” of data with linkages between them as needed. One
major ISP has an inventory database with over 1,000 tables to handle the inventory
and the various applications that deal with the inventory.

The two main regions are the physical equipment tree of data (e.g., com-
plex/cabinet/router/slot/port) and logical inventory tree of data (e.g., customer,
premise, service, and connection). The service database entity (one node up from
the connection entity in the tree) typically contains the linkage to other logical
assignments like Serial IP address, VRF labels, Route Distinguishers [3], Route
Targets [3], etc. The reason the data are separated into these regions is to permit
the movement of logical assets to different ports (i.e., connections) and to support
changes in the physical assets associated with a customer as a result of changes in
technology or network-grooming activities. Changes in technology, such as a new
router with lower port costs, and network grooming, moving connections from one
router/circuit to another to improve efficiency, are examples of carrier changes that
may also affect the data model. These carrier decisions are sometimes even more
complex than the customer-initiated changes to deal with correctly in the inventory
database.

Without separation of the regions, the ongoing life-cycle management of the ser-
vice is difficult. For example, at points in time, we need to have multiple assets
available for testing and move the “active” connection to the new assets only after
satisfactory testing has completed. This means that we maintain multiple “services”
for the same physical port, both the old service and the future service.

The inventory database stores the “What should be” for the corporation and the
current and future state of the equipment and connections for a customer.
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Many subsystems of a configuration management system are dependent on the
inventory database. One of the major dependencies is the audit subsystem. The audit
subsystem must store information for the physical “What it is” form of the network
in a schema. Typically, since audit or discovery starts with the physical assets, the
physical inventory model at the router/component level is reused for the “What it
is” model. It is interesting to note that cabinet and location of equipment data are
typically not discoverable, so those are usually inferred through naming conventions
like the encoding of the router hostname. For example, a router might have a host-
name like “n54ny01zz1” where the “n54” indicates a particular office in New York
City and “ny” is for New York State. The “01” indicates that it is the first router in
the office and the “zz1” would indicate the type or model of the router. The encoding
is not an industry standard, but most carriers use something similar.

The logical “What it is” model is also based on the rich “What it should be”
model. It is again interesting to note that the logical discovery does not have the non-
network data items like street address of the customer or other business information.
A prudent network operation puts processes in place to encode pertinent information
in the interface description line so that linkages to business support systems can be
maintained and audited.

For example, large carriers tend to automatically encode a customer name and
pointers to location records to make it easier to manage events pertinent to the in-
terface in customer care and ticketing systems. The example below shows an active
port in maintenance (MNX), for a customer, ACME MARKETING that is located
in ANYTOWN, NJ, on circuit DHEC.123456..ATI. Various database keys are also
encoded.

interface Serial4/0.11/8:0
description MNX j ACME TECHNICAL MARKETING j ANYTOWN j NJ j
DHEC.123456..ATI j 19547 j 3933470 j 4151940 j USA j MIS j j

The two main inputs to the inventory database are the physical and logical in-
ventory on the router and the customer order data. The physical and logical router
data are typically inserted through the GUI during network setup by the capacity
management organization as assets are installed, tested, and made ready for service.
Another practice in use is to install the equipment and then use the autodiscovery
tools to “learn” the equipment’s physical inventory. Logical assets are entered into
the system as appropriate since they are not necessarily tied to the equipment in all
cases.

The customer order data are created usually through an API from the OSS/BSS
during the ordering phase of a customer’s request for service and updated as the or-
der progresses through the business processes to move from an order to an installed
and tested connection.

A note of caution, the amount of customer order data that are replicated into the
network configuration management system should be minimized. A good design
incorporates just enough to make it easier for people to deal with problems encoun-
tered in provisioning and activities that the upstream OSS/BSS may not have the
capability to manage like custom features. The more customer order data stored
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in the network configuration management system, the more the management of
that data alone becomes a problem. Customer contact data are an example of data
that should not be in the network configuration management system, since they are
volatile and in fact may pertain to broader applications than the network service.

8.3.2 Router Configuration Subsystem

The second subsystem we will discuss is the Router configuration management
system. This subsystem takes the information from the inventory database and cre-
ates configuration changes for the installed router. The inventory database typically
provides data needed to drive configuration details like the types and versions of
commands to use for configuration (these can vary by make and model), the IP ad-
dresses/hostnames and passwords for access to the routers, and the customer order
data for the specific configuration. The generation of the specific router configura-
tion commands is the more difficult aspect. There are numerous approaches to the
creation of the configuration changes, but the two main ones large carriers use today
are policy management and templates.

8.3.2.1 Policy Management Approach

The policy management approach attempts to break down the router configuration
into a set of conditions and actions (e.g., policies) and generates the combined con-
figuration on the router by evaluating the conditions and action in a set of policies.
For example, QoS settings fit nicely into the policy management approach, since
the router typically has a configuration statement to define the condition and action
for applying QoS. The configuration statement can be shared by multiple ports and
any interface can be assigned to that policy. Creating a QoS policy that assigns 20%
of the bandwidth to high-priority class (e.g., voice traffic) and the remainder to a
best-effort class could be reused by many ports on a router. One condition/action
definition (e.g., policy) reused multiple times is easy to implement and maintain.
Some configurations are more difficult to implement in a policy management sys-
tem since they do not adhere nicely to a condition/action policy format. An example
of this is IP addressing (or address management), which typically uses fairly com-
plex rules to determine which address to assign to an interface.

Large policy management systems do exist, but the linkage between different
policies can be subject to scaling issues when dealing with the application of a
large number of network and customer policies as in a VPN with a large number
(e.g., thousands) of end points. Configuration auditing (described later) in particular
becomes difficult to manage in a policy management system because the policy view
of the data sometimes is not readily apparent to the knowledgeable network engineer
when looking at the more detailed CLI commands in the backup configuration file
used for audits. Finally, testing of policy-based systems is complicated, since it is
not always clear what the resulting policy-based configuration will be in the CLI.
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The number of test cases increases to make sure the policy engine generates all the
configuration change options that the network certification process has confirmed as
working correctly.

8.3.2.2 Template Management Approach

Template management uses a more simplistic approach. The details of tested sets
of configurations are documented in a template and the data to drive a particular
template is pulled from the inventory database. The benefit of a template approach is
that only the configurations that are known to be valid are put into the network. This
approach is a more reliable method of ensuring that the network is always configured
to operate in a configuration supported by the testing and certification program.
Policy-management systems have a more difficult time ensuring that they are always
configuring the router into a condition that matches the certified configurations.

The challenge is building the template from the set of features ordered by the cus-
tomer. Generally, the template languages have a nesting structure so that the range
of templates can be kept under control. As the set of templates grows, there is some
complication in applying the correct template, but the resulting router configuration
tends to be cleaner and more optimized (since each template is a test case) than the
policy-based configurations.

Both approaches have merit and a growing set of functions can be handled more
readily with policies; so the likely system for a large carrier is a mixture of these
techniques with templates for the basic configurations like basic IP conditions and
routing and policies for the more advanced functions like QoS configuration on CPE
routers. Large ISPs will have hybrid approaches to provide the best fit tool for each
problem.

An important aspect of the router configuration subsystem is the interaction be-
tween the users of current inventory (processes like ticketing and fault management)
and the need to deal with future changes. Growing from a 512 kb/s link to a full T1
or growing from a single T1 to Multilink PPP (MLPPP) [4] are examples with very
different degrees of complexity but both have the need to track both the current con-
nection data and the future connection data. The router configuration system has to
be able to handle modifying the current configuration to move an active connection
to the new connection configuration. To handle failure conditions properly, this sub-
system has to deal with roll forward and roll back of the configuration. Sometimes,
the template approach is cleaner, since the “before” configuration can be captured
directly from the router and re-applied even if the original data for it are not readily
available.

There are some key differences in managing provider-edge and customer-edge
configurations that influence the choice of template-based or policy-based configu-
ration management that we discuss here.

Provider-edge (PE) routers tend to have a large number of interfaces (100 or
more) with many interfaces of the same basic type. Generally, the configurations
are relatively simple since the router’s primary role is stability, reliability, and fast
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packet forwarding. Since large carrier router configurations tend to be less variable,
we tend to see template-based configuration management systems on the PE. How-
ever, since MPLS VPNs have the added complexity of multiple router configurations
being involved to correctly implement the VPN, usage of policy-based configuration
management is growing.

Customer-edge (CE) routers tend to have a much smaller number of interfaces
(less than 10) with a wide variation in configurations depending on the busi-
ness/industry of the customer. For example, the CE router may need advanced
traffic-shaping rules to ensure that performance-sensitive traffic has a priority on
their internal network over the access to the internet proxy/firewall. Other customers
might need to do video streaming for training and thus need QoS setting for video
priority over other data traffic. Some customer may even be running internet applica-
tions that require prioritization of the http/ftp traffic to/from their router to provide
service to their customers. The CE router is closer to the customer and thus gets
the burden of handling more customer-specific applications like firewalls, packet
shaping, and complicated internal routing policies. Policy-based router configura-
tion management systems are commonly used on CE routers because that is a better
fit to the disparate customer needs for the edge environment.

Finally, for the network carrier it is important to understand the different chal-
lenges that a mass-market consumer broadband internet access service places on
the configuration management system. Mass-market configuration tends to have a
very small set of routing configuration options. The most obvious variable in the
configurations is the access speed. While you might think setting up QoS and ACLs
would tend to increase the configuration options, it really only adds complexity and
not much variation, since the configurations tend to be similar across large sets of
connections. Although the number of different configurations is small, the rate of
change is large. Initial provisioning rates are not only much larger than the enter-
prise space but the volumes of change orders are large as well. An Enterprise Internet
access service might typically need to process several thousand orders a week with
a similar magnitude of change orders. A mass-market service might need to pro-
cess thousands of orders per day and tens of thousands of change orders per day.
Mass-market router configuration systems tend toward template-based approaches
because of the simplicity of the configuration, the smaller range of features, and the
performance advantages of the template approach for large-scale processing.

8.3.2.3 Mediation Layer

Most service providers have multiple vendor platforms in their network, but even
single vendor network will have multiple models and versions of the router op-
erating system. The router configuration subsystem that writes data to the routers
usually has a mediation layer to deal with the router-specific commands. The media-
tion layer also exists when reading data for the audit layer to turn the vendor-specific
commands/output into a common syntax for use by the audit application. The
mediation layer will also handle nuances of the security model for accessing the
routers that may vary based on vendor and region of the globe.
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8.3.3 GUI/API

The GUI/API subsystem deals with the typical functions of retrieval, display, and
data input for the system. The technology of this subsystem is typical of large-scale
systems. This subsystem uses HTTP Web server technology with an html-based
GUI and a SOAP/XML-based API. A critical aspect for large carrier is that the API
becomes the predominant flow into the system. At scale, the API is used to handle
the large volume order flow from the business support systems (BSS), both to elec-
tronically transfer the data and trigger the various automated functions in the router
configuration management system. The GUI is used infrequently for customer pro-
visioning and is used primarily for correcting any fallout that might have occurred.
Having a robust set of APIs is critical to business success. Obviously, the APIs
must also keep pace, as new features are added to the router so that the automated
processes can trigger them. The GUI comes into play for manual interaction and
maintenance activities and various other tasks that are not economic to automate
through APIs. The other important aspect of the GUI is the implementation of a
robust authentication/authorization layer, since some user groups should not have
access to the router configuration change functions to prevent unintended changes
that could cause a service outage.

One aspect of the GUI that is also worth mentioning is read access to the “What
it is” state of the router. Typically, there are sets of read-only CLI commands that the
customer care organization depends on for responding to customer-reported prob-
lems. Most router platforms have a limited set of connections, so it is problematic
to give a large customer care team direct access to the router CLI. The solution
large carriers typically use is to put a web-based GUI in place with a limited set
of functions that can be selected by the customer care agents. The GUI then acts
as a proxy through the router configuration subsystem to execute these commands
on the router. These commands include the various “show” commands as well as
options to run limited repair functions like “clear counters” and/or “shutdown”/“no
shutdown” on the interface. Exposing these functions through the GUI reduces the
impact on the router and provides a mechanism for the throttling and audit rules to
be applied to prevent a negative impact. The edit checks that occur before commands
are executed on the router also help one to prevent unintended effects.

8.3.4 Design and Assign

This subsystem applies the engineering rules to select a port for a customer’s ser-
vice and can accept or reject a request for service based on available inventory.
The subsystem has an API that takes the service request parameters and other
customer network information and generates an assignment to a particular port on a
router. That assignment is typically called a Tie Down and the data set is Tie Down
Information (TDI). The API can be called either through the GUI or directly by the
BSS. Assignment is nontrivial, since the function must ensure that all engineering
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rules that help protect the network are satisfied like finding a port on a card with
sufficient resources while also satisfying the business rules, which seek to limit
transport costs and latency by picking a router closer to the customer. For exam-
ple, the engineering rules may limit the number of QoS configured ports on certain
card types. As an example of router assignment, a poor assignment would be to pick
a router in California for a customer in New York.

The assignment function calculates both an optimal assignment and the current
assignment. The optimal assignment is the first choice router location that mini-
mizes backhaul cost (e.g., ideally a customer in Ohio will be homed to a router in
Ohio). However, it could be that the Ohio router complex does not have a router with
sufficient capacity (bandwidth, QoS ports, etc.). The design and assign function sys-
tem needs to be designed to implement the appropriate business rules in this case.
For example, the business rule in this case is to “home” the customer on an alternate
router in a different location. Alternatively, the business rule could be to reject the
order. Typically, the “reject the order” business rule applies in mass-market situa-
tions. Business rules for enterprise markets usually choose to have longer backhaul
costs rather than reject the order. In the enterprise market, the business rule might
select a router in an alternate location like Indiana if no routers in Ohio had sufficient
resources.

The business would like the flexibility to be able to move the port from the
Indiana router to an Ohio router in the future without impacting the customer.
Consequently, the “assign” function will allocate a Serial IP address from a logi-
cal inventory pool associated with Ohio’s router complex, assign it to the interface
on the router in Illinois, and “exception route” that address to Indiana. This assign-
ment permits the CE/PE connection to be re-homed from Ohio to Indiana without
affecting the customer’s router configuration, since their WAN IP address would not
change and then the exception route for Indiana can be removed to get to a more
optimum network routing configuration as well as a reduced backhaul configura-
tion. The tracking of the optimal and current assignment data adds complexity to
this subsystem, the inventory database, and the router configuration system (for the
exception routes), but it is a good example of the types of business decisions that
can ripple back into the router configuration management system requirements.

8.3.5 Physical Inventory Management

Physical inventory management deals with the entering and tracking of data about
the router equipment. It deals not only with equipment configuration details like
what cards are installed in the routers but also where those routers are located
for maintenance dispatch. The physical database also contains the parameters for
the engineering rules that vary by equipment make and model. These parameters
come either from the router vendor documentation or from certification testing.
The parameters and the associated rules can range from simple rules like maximum
bandwidth per line card to complex rules like the maximum number of VPN routes
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with QoS on all line cards on the router with version 3 of the line card firmware. As
new routers or cards are added to the network, this subsystem tracks all the associ-
ated data for these assets including tracking whether a router or port is “in service”
and available for assignment. As ports are assigned to customers, the physical in-
ventory removes those ports from the assets that are available for assignment. The
physical inventory also deals with the tracking of serial numbers of cards so that as
cards are replaced or upgraded, the new parameters can be used for the engineering
rules. For example, a card with 256 MB of memory could be upgraded to 512 MB
and thus be able to support more QoS connections. The physical inventory subsys-
tem keeps track of these engineering parameters (sometimes called reference data)
about vendor equipment for use by other subsystems. Here are a few of the typical
parameters tracked:

Maximum logical ports
Maximum aggregate bandwidth
Maximum card assignment
Maximum PVCs
Logical channel limits
IDB limit
VRF limit
BGP limit
COS limit
Routes limit

8.3.6 Logical Inventory Management

Logical inventory management deals with the entering and tracking of data about
the logical assets (IP addresses, ACLs, Route Distinguishers, Route Targets, etc.).
This can be a large subsystem depending on the different features available, but the
hardest item in the category is the IP address management. IP address management
deals with the assignment of efficient blocks to the various intended uses. Typically,
the engineering rules require different blocks of addresses to be used for infras-
tructure connections, WAN IP address blocks, and customer LAN address blocks.
This requires not only higher-level IP address block management functions so that
access control lists can be managed efficiently but also functions to deal with ex-
ternal systems like the ARIN registry. Service Providers typically update the ARIN
“Who Is” database through an API so that LAN IP blocks assigned to enterprise cus-
tomers appear as being assigned to those customers. This aids the service provider
in obtaining additional IP address blocks from the registrar if needed. The tracking
of per router elements like ACL numbers is simpler but has its own nuances and
complexity, since the goal is to reuse ACL numbers where it is possible to reduce
the load on the router. Typically, memory is consumed for every ACL on a router.
The ACLs for different ports for the same customer tend to be identical so that mem-
ory utilization (and processing time on the ACL) can be reduced by compressing the
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disparate ACLs into a single ACL that can be shared among a custom’s ports. Nu-
merous other items have to be tracked in logical inventory and assigned during the
assignment function depending on the feature or service being provided and the log-
ical inventory management system grows in complexity as more logical features are
added to the service.

8.3.7 Reports and Feeds

The reports and feeds subsystem is responsible for distributing inventory data to
users and systems required to run the business. The main users of this subsystem
are the fault/service assurance system and the ticketing system. The fault/service
assurance system needs data about the in-service assets so that alarms can be pro-
cessed correctly. Its source of truth is usually the “What it is” data from the inventory
database. The ticketing system is more concerned with the data about the customer,
since they get notification of an event from the fault/service assurance system and
have need to understand for a given port/card/router problem which customer or cus-
tomers are affected. Fault and ticketing systems tend to get feeds of the inventory
data, since their query volume can be quite high and the load can best be managed
with a local cache of the data rather than directly querying the inventory database.
Generally, the inventory data does not change rapidly; so a local cache is sufficient
and alarms/tickets do not need these data until after test and turn up of the interface.

Other users need various reports and feeds from the inventory database, and
generally these are pulled either as a report from the GUI or APIs. A GUI-based
reporting application can easily be deployed on the inventory database for items like
port utilization reports for capacity management. APIs can be created as needed for
generating bulk files or responding to simple queries.

8.3.8 Router Audit

The router audit subsystem is responsible for doing both the discovery of the “What
it is” state of the router and comparing the “What it is” with the “What it should be”
in the inventory database. The audit function described in this section is designed to
detect differences with the inventory data. There are other mechanisms that can be
applied to look at the larger set of configuration rules. Some of these are covered in
Chapter 9.

Discovery is typically done with an engine that parses the router configurations
into database attributes. As described before, the parsed router configuration data
are stored in the inventory database but in a separate set of tables from the physical
and logical inventory. The schemas of the audit tables are similar to the physical
and logical inventory tables, but they lack some attributes that do not exist in the
router configuration; the major attributes are the same so that they can be compared
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with the “what it should be” tables. After storage, the compare or audit function
does an item-by-item comparison, tracking any discords. The audit is CPU- and
disk-intensive and typically is only done across the entire network data set on a
daily basis. The discovery/audit process is also used to pick up changes like card
replacements. It is typical for this audit function to take 4–6 hours to complete across
a large network even when high-end servers are employed. The good news is that
the process can typically be run using the backup copies of the router configuration
files so that there is no impact on the network and limited impact on the users of the
system. Incremental audits can also be done on a port or card basis on demand as
part of the router configuration process.

It is worth noting that the tracking of discords requires a historical view: when a
discord was first detected and when was the last time it was detected. New discords
could correlate with an alarm or customer-reported problem. Old discords might be
indicative of data integrity error from a manual correction that was implemented to
repair a customer problem but not appropriately reflected back into the inventory
database.

While perhaps less visible to the overall router configuration management pro-
cess than other aspects of the configuration workflow, audit is a key step. Real-time
validations must be implemented for a change order so that if there is a discord, the
process will stop the change order from being applied to prevent a problem. It is
important to subsequently find and fix these discords so that future change orders
are not affected.

8.4 Dealing with Change

An important aspect of a configuration management system is to deal with changes
to an existing service. For example, the initial configuration of an interface can be
done in various phases and with little concern for timing until the interface is moved
from the shutdown state to the active state. However, an active interface has a differ-
ent set of rules. Generally, the timing associated with configuration changes is more
critical and the set of checks on the data and the configuration are more involved.

First, a robust network configuration management system will validate the cur-
rent configuration of the interface (“What it is”) against the “What it should be”
data and if there is a mismatch it should stop the change. The reasons are probably
obvious that unless the “What it is” and “What it should be” data sets are in agree-
ment, we are running the risk of changing to a configuration that will not work for
the customer because of a previous data inconsistency. For instance, if there have
been problems with a previous re-home and the ACLs are not the same between
the old configuration and the new configuration, it could prevent the customer from
accessing their network services.

Second, for the intended change, the configuration management system should
validate the data set against the interface data, the global configuration of the router,
and to the extent possible the larger network for the customer to ensure that the
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change is consistent with other “What it is” data. This usually consists of a set of
rules applied by the configuration management subsystem to ensure that a successful
change will be applied. A good example is again a re-home. If the old port is still
advertising its WAN IP address, you cannot bring up the same WAN IP address on
a different router or instabilities can be introduced (duplicate IP address detection is
an important validation rule).

8.4.1 Test and Turn Up

Bringing up a new connection involves testing that the connection works correctly
as ordered and then turning up the port for full service. Turning up a large con-
nection like a 10 Gb Ethernet connection is something done carefully because if
mis-configured it could either drive large amounts of traffic into a customer’s net-
work before they are prepared for it or remove traffic from a customer’s network by
mistake. For most changes against a running configuration, the process of applying
the change has to be coordinated with a maintenance window1 since service could
be impacted. Some changes may also require changes on the customer’s side of the
connection; so proper scheduling with the customer’s staff is required. For changes
that involve the physical connection (speed changes and re-homes), typically two
ports are in assignment at the same time and operations would like to test all or
parts of the new port before swinging the customer’s connection over. This “testing
phase” creates database complexity, since the new port has to be reserved for the
customer but it is not the “in-service” port from an alarming/ticketing standpoint.
Both the old and new have to be tracked until the port is fully migrated to the new
configuration. This requires the concept of “Pending” port assignments/connections
and database transactions to move a port from “Pending” to “Active,” from “Active”
to “Disconnected,” and finally the old record is deleted from the database.

The router configuration system has to maintain the ability to generate router
configurations for each of the interim steps in moving an active connection from one
port to another. There are configurations to bring up the new interface on temporary
information (e.g., temporary serial IP addresses and/or RD/RT/VRF information
for testing), steps to “shutdown” the old interface, steps to “no shutdown” the new
interface, and steps to reverse the entire process to roll back to the old interface.
All these need to be able to be driven through the API for relatively straightforward
changes with automated PE side re-homes that do not affect the customer premise
router and via the GUI for those more complicated changes that require coordination
with the customer. It is with dealing with change that the entire system is stressed
the most to meet the needs of not only ensuring that the network is protected but also
that the entire system responds fast enough to meet the human- or machine-driven
process requirements.

1 The Maintenance Window is a time period when there is expected to be low traffic and is used
by an operator for planned activities that could impact service. Usually it is in the late night/ early
morning of the time zone of the router like 3–6 a.m.
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Another attribute of change that is worth mentioning is changes to active in-
terfaces that are infrastructure connections (e.g., two or more backbone links that
connect network routers). A routine task is to change the OSPF metric on one link
to “cost it out”2 of use so that maintenance on the connection can be done. A prob-
lem exists if the state of this link is left in the “costed out” state. Failure of the now
single primary link causes isolation, since one link could be hard failed and the other
link is out of service by being “costed out.” A robust configuration management sys-
tem also has maintenance functions to permit the operations staff to cost out a link,
to record that the link is “costed out,” and to generate an alarm condition if the link
stays “costed out” for a period of time.

Finally, a type of change that is of growing importance in large networks is the
ability to apply changes in bulk. The complexity of modern routers leads to situa-
tions where a latent bug or security vulnerability is found in a router that can only
be repaired by changing the configuration on a large number of ports in the network.
This requires special update processes to handle the updates in a bulk fashion. Typ-
ically, this is a customized application on the router configuration subsystem that is
targeted at dealing with the bulk processing. The reason why this gets complicated is
not only because of tracking that all the changes are applied (routers sometimes tend
to refuse administrative requests under heavy load) but also throttling the updates to
specific routers so as not to overload them.

8.5 Example of Service Provisioning

This section will tie all the pieces together in an example of service provisioning for
a simple Internet access service.

Once all the order data are collected and optionally entered into an automated
order management, the provisioning steps can occur including downloading the con-
figurations to the router. The individual configurations are called configlets, since
they are usually incremental changes to an interface or pieces of the global configu-
ration, and not an entire router configuration. They are outlined below.

1. Create customer
2. Create premise/site
3. Create service instance
4. Create connection and reserve inventory
5. Download initial configuration
6. Download loopback test configlet
7. Download shutdown configlet
8. Download final configlet with “no shutdown”
9. Run daily audit

2 When OSPF costs on a set of links are adjusted to shift traffic off of one link and onto another
link, the process is informally called “costing out” the link.
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1. Create customer
This task is simply to group all the customer data into one high-level account
by creating (or using a previously created) customer entity in the database.
Sometimes, it relates to an enterprise but oftentimes because of mergers and ac-
quisitions or even departmental billing arrangement the “customer” at this level
does not uniquely identify a corporation. There can even be complicated arrange-
ments with wholesalers that must be reflected in various customer attributes.

2. Create premise/site
This task creates a database entity corresponding to the physical site that
the access circuit terminates in at the customer’s site. Street address, city,
state/province, country etc. are typical parameters. Corporations can have mul-
tiple services at an address so that we track the address partly not only to make
it easier to work with the customer but also because these data will impact the
selection of the optimum router to reduce backhaul costs.

3. Create service instance
This task collects the parameters about the intended service on this connection. It
will define the speed, any service options like quality of service, and all the other
logical connection parameters. These data directly affect the set of engineering
rules that will be applied to actually find an available port on an optimum router.

4. Create connection and reserve inventory
This task combines the above data into an assignment. The selection of a router
complex is done first using the parameters of address to look for a complex with
a short backhaul. This is called “Homing.” After a preliminary complex is as-
signed, the routers in the complex are checked for available port capacity and if
there is port capacity, the engineering rules for this connection on that router are
tested. For example, a router may have available ports, but there may be insuffi-
cient resources for additional QoS or MPLS VPN routes on the cards. The system
will recursively examine all routers in the complex to look for an available port
that matches the engineering rules. If no router is found, the system will examine
a next best optimum complex and repeat the search. This assignment function can
take a substantial amount of system resources to complete and is not guaranteed
to find a solution due to resource or other business rule constraints.

Once a complex, router, and port has been selected, the logical inventory will
be tied to the physical inventory and this Tie Down Information (TDI) will be
returned to the ordering system so that it can order the layer 1 connection from
the router to the customer premise. It is important to note that at this point the
Inventory database must set a state of the port so that no other customer can use
that router port. If the customer’s order is cancelled, the business process must
ensure that the port assignment is deleted as well to avoid stranded inventory.

At this point, the inventory database would show the port as “PENDING,”
since the inventory has been assigned but it is not in service. All the logical data
needed to configure the interface are in the database and any provider inventory
items have been assigned (serial IP addresses, ACL numbers, etc.).
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5. Download initial configuration
After the inventory has been assigned, an initial configuration of the port is down-
loaded to the router to define the basic interface. This configlet typically only
includes the serial IP address and default routing and defines the interface in a
shutdown state. This is also the first real-time audit step. This audit will confirm
that the assigned port is not used by some other connection. While rare, data dis-
cords of this type do occur. This download need not occur in real time, since it
will typically be some amount of time before the Layer 1 connection is ready.

6. Download the loopback test configlet
This step depends on the layer 1 connection to be installed so that it can occur
days, weeks, or months after step 5. In addition, after Layer 1 is installed, this
step typically occurs 24 h before the scheduled turn up date for a customer.
This configlet contains all the routing and configuration data for the connec-
tion. Downloading a configlet to do loopback testing on the network side of the
connection provides a final check of the provider’s part of the work. Just be-
fore the configlet is downloaded, a series of real-time audits are again conducted,
since the initial configlet audits could have been months ago. These audits check
both the static order data against the running router and attributes on other ports
on the router. For example, there is a verification that any new ACL number is
not already in use on another port for another customer. This check makes sure
that a manually configured port was not done in error. There is a verification that
any new VRF does not already exist on the router to check and see if another
order has been processed in parallel. There are numerous other validations as
well. This real-time audit is more detailed than the audit done for the initial con-
figlet, since it contains all the routing, QoS, and VPN data. If all validations are
successful, the configuration is downloaded and activated for testing with Layer
1 in loopback.

7. Download shutdown configlet
After successful pretesting, the router port is left in a shutdown state. It can re-
main in this configuration for some period of time but because routing instances
may have been defined even though the port is shutdown typically operators do
not leave a shutdown interface in the router configuration for more than 48 hours
or so. A shutdown interface is still discoverable from an SNMP network manage-
ment perspective so that a large number of admin down interfaces simply adds
load to the fault management system without adding value. If it is not success-
fully turned up, the configuration will be rolled back to the initial configuration.
While the Layer 1 circuit is being ordered/installed, there will likely be many
daily audits that run. These audits will find the port in the router in shutdown
state. The discord analysis will compare the “What it is” configuration and state
with the “What it should be” configuration and state and report any problems.
For our example, there is no problem but the audit might find that the port is in
a “no shutdown” state in the network indicating that perhaps a test and turn up
occurred but was not completed in the inventory database. The daily audit would
also find if the router card had been replaced for some reason and update tracking
data like serial numbers, etc.
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8. Download final configlet with “no shutdown”
At activation, the system will download the final router configuration with
“no shutdown” of the interface. Final testing may occur with the customer.
The testing for single-link static routed interfaces is usually automated but for
advanced configurations with multiple links or BGP routing, manual testing pro-
cedures are typical. It is at this point that the inventory database will update its
status on the port to active and mark the port “In service” for downstream systems
like the Fault Management and Ticketing systems.

9. Run daily audit
The daily audit will find the new state of the port to be active and the “What it
should be” state of “ACTIVE” matches the “What it is” state in the network.

8.6 Conclusion

Hopefully, we have provided a useful overview of a robust router configuration man-
agement system and helped to tie the key functions and subsystems back to the
business needs that drive complexity. From inventory management to provisioning
the customer’s service to handling changes to dealing with bulk security updates,
a large carrier cannot provide reliable service without a robust router configuration
management system.

Here is a summary of some “best practice” principles that will be helpful when
designing a Network Configuration Management system.

� Recognize data discords as a fact of life. Separate “What it is” and “What
it should be” data in the inventory database

� Configuration management is the source of truth for the business about the
current network using the “What it is” data

� Protect the network through real-time validation and auditing of the run-
ning network

� Design for change so that logical data are not permanently tied to physical
data

� Separate the schema for physical inventory and logical inventory
� Use templates to make configuration, discord detection, and testing easier
� Track port history, and not just the current state
� Design for multiple configurations of a port to handle the current port con-

figuration and the pending port configuration
� Design the system to support testing a port before it is turned up and roll-

back to an earlier configuration when tests fail
� Limit the amount of business data in the network-facing system so that you

do not create a problem of maintaining consistency
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Chapter 9
Network Configuration Validation1

Sanjai Narain, Rajesh Talpade, and Gary Levin

9.1 Introduction

To set up network infrastructure satisfying end-to-end requirements, it is not only
necessary to run appropriate protocols on components but also to correctly configure
these components. Configuration is the “glue” for logically integrating compo-
nents at and across multiple protocol layers. Each component has configuration
parameters, each of which can be set to a definite value. However, today, the large
conceptual gap between end-to-end requirements and configurations is manually
bridged. This causes large numbers of configuration errors whose adverse effects on
security, reliability, and high cost of deployment of network infrastructure are well
documented. For example:

� “Setting it [security] up is so complicated that it’s hardly ever done right. While
we await a catastrophe, simpler setup is the most important step toward better
security.” – Turing Award winner Butler Lampson [42].

� “. . . human error is blamed for 50 to 80 percent of network outages.” – Juniper
Networks [40].

� “The biggest threat to increasingly complex systems may be systems them-
selves.” – John Schwartz [61].

� “Things break and complex things break in complex ways.” – Steve Bellovin
[61].

� “We don’t need hackers to break systems because they’re falling apart by them-
selves.” – Peter Neumann [61].
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Thus, it is critical to develop validation tools that check whether a given config-
uration is consistent with the requirements it is intended to implement. Besides
checking consistency, configuration validation has another interesting application,
namely, network testing. The usual invasive approach to testing has several lim-
itations. It is not scalable. It consumes resources of the network and network
administrators and has the potential to unleash malware into the network. Some
properties such as absence of single points of failure are impractical to test as they
require failing components in operational networks. A noninvasive alternative that
overcomes these limitations is analyzing configurations of network components.
This approach is analogous to testing software by analyzing its source code rather
than by running it. This approach has been evaluated for a real enterprise.

Configuration validation is inherently hard. Requirements can be on connectivity,
security, performance, and reliability and span multiple components and protocols.
A real infrastructure can have hundreds of components. A component’s configura-
tion file can have a couple of thousand configuration commands, each setting the
value of one or more configuration parameters. In general, the correctness of a com-
ponent’s configuration cannot be checked in isolation. One needs to evaluate global
relationships into which components have been logically integrated. Configuration
repair is even harder, since changing configurations to make one requirement true
may falsify another. The configuration change needs to be holistic in that all require-
ments must concurrently hold.

This chapter motivates the need for configuration validation in the context of
a realistic collaboration network, proposes an abstract design of a configuration
validation system, surveys current technologies for realizing this design, outlines
experience with deploying such a system in a real enterprise, and outlines future
research directions.

Section 9.2 discusses the challenges of configuring a realistic, decentralized
collaboration network, the vulnerabilities caused by configuration errors, and the
benefits of using a validation system. Requirements on this network are complex to
begin with. Their manual implementation can cause a large number of configura-
tion errors. This number is compounded by the lack of a centralized configuration
authority.

Section 9.3 proposes a design of a system that can not only validate the above
network but also evolve to validate even more complex ones. This design consists
of four subsystems. The first is a Configuration Acquisition System for extracting
configuration information from components in a vendor-neutral format. The second
is a Requirement Library capturing best practices and design patterns that simplify
the conceptualization of end-to-end requirements. The third is a Specification Lan-
guage whose syntax simplifies the specification of requirements. The fourth is an
Evaluation System for efficiently evaluating requirements, for suggesting configu-
ration repair when requirements are false, and for creating visualizations of logical
relationships.

Section 9.4 discusses the Telcordiar IP Assure product [38] and the choices
it has made to realize this design. It uses a parser generator for configuration ac-
quisition. Its Requirement Library consists of requirements on integrity of logical
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structures, connectivity, security, performance, reliability, and government policy.
Its specification language is one of visual templates. Its evaluation system uses al-
gorithms from graph theory and constraint solving. It computes visualizations of
several types of logical topologies.

Section 9.5 discusses logic-based techniques for realizing the above validation
system design. Their use is particularly important for configuration repair. They sim-
plify configuration acquisition and specification. They allow firewall subsumption,
equivalence, and rule redundancy analysis. These techniques are the languages Pro-
log, Datalog, and arithmetic quantifier-free forms [51, 53, 67], the Kodkod [41, 69]
constraint solver for first-order logic of finite domains, the ZChaff [27, 46, 73]
minimum-cost SAT solver for Boolean logic, and Ordered Binary Decision Dia-
grams (OBDDs) [12].

Section 9.6 outlines related techniques for realizing the above validation system
design. These are type inference for configuration acquisition [47], symbolic reach-
ability analysis [72], its implementation [3] with symbolic model checking [48], and
finally, validation techniques for Border Gateway Protocol (BGP), the Internet-wide
routing protocol, and one of the most complex.

Section 9.7 contains a summary and outlines future research directions.

9.2 Configuration Validation for a Collaboration Network

This section discusses the challenges of configuring a realistic, multi-enterprise col-
laboration network, the types of its vulnerabilities caused by configuration errors,
the reasons why these arise, and the benefits that can be derived from using a con-
figuration validation system. Multiple communities of interest (COIs) are set up
as logically partitioned virtual private networks (VPNs) overlaid on a common IP
network backbone. The “nodes” of this VPN are gateway routers at each enter-
prise that participate in the COI. An enterprise can participate in more than one
COI, in which case it would have one gateway router for each COI. For each COI,
agreement is reached between participating network administrators on the top-level
connectivity, security, performance, and reliability requirements governing the COI.
Configuration of routers, firewalls, and other network components to implement
these requirements is up to administrators. There is no centralized configuration
authority. The administrators at different enterprises in a COI negotiate with each
other to ensure configuration consistency. Such decentralized networks exist in in-
dustry, academia, and government and are clear candidates for the application of
configuration validation tools.

Typical COI requirements are now described. The connectivity requirement is
that every COI site must be reachable from every other COI site. The security re-
quirement is twofold. First, all communication between sites must be encrypted.
Second, no packets from one COI can leak into another COI. This requirement is
especially important since collaborating enterprises have limited mutual trust. A site
can be a part of more than one COI but the information that site is willing to share
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with partners on one COI is distinct from that with partners in another COI. The
performance requirement specifies the bandwidth, delay, jitter, and packet loss for
various types of applications. The reliability requirement specifies that connectivity
be maintained in the face of link or node failure.

Since these requirements are complex, large numbers of configuration errors can
be made. This number is compounded by the lack of a centralized configuration
authority. The complexity has the further consequence that –less experienced ad-
ministrators, especially in an emergency, tend to statically route traffic directly over
the IP backbone rather than correctly set up dynamic routing. But, when the emer-
gency passes, static routes are not removed for concern of breaking the routing. Over
time, this causes the COIs to become brittle in that routes cannot be automatically
recomputed in the face of link or node failure.

While administrators are well aware of configuration errors and their adverse ef-
fects on the global network, they lack the tools to identify these, much less remove
these. The decentralized nature of the network prevents them from obtaining a pic-
ture of the global architecture. A validation system that could identify configuration
errors, make recommendations for repairing these and help understand the global
relationships would be of immense value to administrators.

Figure 9.1 shows the architecture of a typical COI with four collaborating sites
A, B, C, D. Each site contains a host, an internal router, and a gateway router. The
first two items are shown only for sites A and C. Each gateway router is physically
connected to the physical IP backbone network (WAN). Overlaid on this backbone
is a network of IPSec [41] tunnels interconnecting the gateway routers. An IPSec
tunnel is used to encrypt packets flowing between its endpoints. Overlaid on the
IPSec network is a network of GRE [22] tunnels. A GRE tunnel provides the ap-
pearance of two routers being directly connected even though there may be many
physical hops between them. The two overlay networks are “glued” together in such

WAN

RB

RC

RD

RA

GRE TunnelIA

IC

HA

HC

Physical Link

IPSec Tunnel

Fig. 9.1 Community of interest architecture
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a way that all packets through GRE tunnels are encrypted. A routing protocol, e.g.,
BGP [33, 36], is run over the GRE network to discover routes on this overlay. If
a link or node in this network fails, BGP discovers an alternate route if possible.
A packet originating at host HA destined to host HC is first directed by its internal
router IA to the gateway router RA. RA encrypts the packet, then finds a path to HC
on the GRE network. When the packet arrives at RC, it is decrypted, decapsulated,
and forwarded to IC. IC then forwards it to HC. All routers also run the internal
routing protocol called OSPF [42]. OSPF discovers routes to destinations that are
internal to a site. The OSPF process at the gateway router redistributes or injects in-
ternal routes into the BGP process. The BGP process then informs its peers at other
gateway routers about these routes. Eventually, all gateway routers come to know
about how to route packets to any reachable internal destination at any site.

In summary, connectivity, security, and reliability requirements are satisfied by
the use, respectively, of GRE, IPSec and BGP, and OSPF. The security requirement
that data from one COI not leak into another is satisfied implicitly. GRE reachabil-
ity to a different COI is disallowed, static routes to destinations in different COIs are
not set up, gateway routers at the same enterprise but belonging to different COIs
are not directly connected, and BGP sessions across different COIs are not set up.

The performance requirement is satisfied by ensuring that GRE tunnels are
mapped to physical links of the proper bandwidth, delay, jitter, and packet loss prop-
erties, although this is not always in control of COI administrators. Avoiding one
cause of packet loss, is however, in their control. This is the blocking of Maximum
Transmission Unit (MTU) mismatch messages. If a router receives a packet whose
size is larger than the router’s configured MTU, and the packet’s Do Not Fragment
bit is set, the router will drop the packet. The router will also warn the sender in
an ICMP message that it has dropped the packet. Then, the sender can reduce the
size of packets its sends. However, since ICMP is the same protocol used to carry
ping messages, firewalls at many sites block ICMP. The result is that the sender will
continue to send packets without reducing their size and they will all be dropped
by the router [68]. Packets increase in size beyond an expected MTU because GRE
and IPSec encapsulations add new headers to packets. To avoid such packet loss,
the MTU at all routers is set to some fixed value accounting for the encapsulation.
Alternatively, ICMP packets carrying MTU mismatch messages are not blocked.

This design is captured by the following requirements:

Connectivity Requirements

1. Each site has a gateway router connected to the WAN.
2. There is a full-mesh of GRE tunnels between gateway routers.
3. Each gateway router is connected to an internal router at the same site.

Security Requirements

1. There is a full-mesh network of IPSec tunnels between all gateway routers.
2. Packets through every GRE tunnel are encrypted with an IPSec tunnel.
3. No gateway router in a COI has a static route to a destination in a different COI
4. No cross-COI physical, GRE, BGP connectivity, or reachability is permitted.
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Reliability Requirements

1. BGP is run on the GRE tunnel network to discover routes to destinations in dif-
ferent sites.

2. OSPF is run within a site to discover routes to internal destinations.
3. OSPF and BGP route redistribution is set up.

Performance Requirements

1. MTU settings on all interfaces are set to be less than the expected packet size
after taking into account GRE and IPSec encapsulation.

2. Alternatively, access-control lists at each gateway router permit ICMP packets
carrying MTU messages.

Configuration parameters that must be correctly set to implement the above require-
ments include:

1. IP addresses and mask of physical and GRE interfaces
2. IP address of the local and remote BGP session end points and the autonomous

system (AS) number of the remote end point
3. Names of GRE interface and IP address of associated local and remote physical

tunnel end points
4. IP addresses of local and remote IPSec tunnel end points, encryption and hash

algorithms to apply to protected packets, and the profile of packets to be protected
5. Destination, destination mask, and next hop of static routes
6. Interfaces on which OSPF is enabled and the OSPF areas to which they belong
7. Source and destination address ranges, protocols, and port ranges of packets for

access-control lists
8. Maximum transmission units for router interfaces

As can be imagined, a large number of errors can be made in manual computation of
configuration parameter values implementing these requirements. GRE tunnels may
only configure in one direction or not at all. IPSec tunnels may only configure in one
direction or not at all. GRE and IPSec tunnels may not be “glued” together. GRE
tunnels or sequences of tunnels may link routers in distinct COIs. A COI gateway
router may contain static routes to a different COI, so packets could be routed to
that COI via the WAN. BGP sessions may be set up between routers in different
COIs, so these routers may come to know about destinations behind each other.
BGP sessions may only be configured in one direction or not at all. BGP sessions
may not be supported by GRE tunnels, so these sessions will not be established.
There may be single points of failure in the GRE and BGP networks. Finally, MTU
settings on routers in a COI may be different leading to the possibility of packet
loss. Such errors can be visualized by mapping various logical topologies. Two of
these are shown below.

In Fig. 9.2, nodes represent routers and edges represent a GRE edge between
routers. These edges have to be set up in both directions for a GRE tunnel to be es-
tablished. This graph shows two problems. First, the edge labeled “Asymmetric” has
no counterpart in the reverse direction. Second, the dotted line indicates a missing
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Fig. 9.2 GRE tunnel
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tunnel. Third, the hatched router indicates a single point of GRE failure. All GRE
packets to destinations to the right of this router pass through this router.

In Fig. 9.3, nodes represent routers and links represent BGP sessions between
nodes. This graph shows two problems. First, there is no full-mesh of BGP sessions
within COI 1. Second, there is a BGP session between routers in two distinct COIs.

9.3 Creating a Configuration Validation System

This section outlines the design of a system that can not only validate the network of
the previous section but also evolve to validate even more complex ones. As shown
in Fig. 9.4, this consists of a Configuration Acquisition system to acquire config-
uration information in a vendor-neutral format, a Requirement Library containing
fundamental requirements simplifying the task of conceptualizing administrator in-
tent, an easy-to-use Specification Language in which to specify requirements, and
an Evaluation System to efficiently evaluate specifications in this language. These
subsystems are now described.
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Fig. 9.4 Validation system architecture

9.3.1 Configuration Acquisition System

Each component has associated with it a configuration file containing commands
that define that component’s configuration. These commands are entered by the
network administrator. The most reliable method of acquiring a device’s con-
figuration information is to acquire this file, manually or automatically. Other
less-reliable methods are accessing the devices’ SNMP agent and querying con-
figuration databases. SNMP agents often do not store all of the configuration
information one might be interested in. The correctness and completeness of a con-
figuration database varies from enterprise to enterprise.

If configuration information is acquired from files, then these files have to be
parsed. Configuration languages have a simple syntax and semantics, since they are
intended to be used by network administrators who may not be expert programmers.
Different vendors offer syntactically different configuration languages. However,
the abstract configuration information stored in these files is the same, barring non-
standard features that vendors sometimes implement. This information is associated
with standardized protocols. Examples of it from the previous section are IP ad-
dresses, OSPF area identifiers, BGP neighbors, and IPSec cryptographic algorithms.
This information needs to be extracted from files and stored in a vendor-neutral for-
mat database. Then, algorithms for evaluating requirements can be written just once
against this database, and not once for every combination of vendor configuration
language. However, configuration languages are vast, each with a very large set
of features. Their syntax can change from one product release to another. Some
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vendors do not supply APIs to extract the abstract information. It should be pos-
sible to extract configuration information without having to understand all features
of a configuration language. Extraction algorithms should be resilient to inevitable
changes in configuration language syntax.

9.3.2 Requirement Library

The Requirement Library is analogous to libraries implementing fundamental al-
gorithms in software development. The Library should capture design patterns and
best practices for accomplishing fundamental goals in connectivity, security, relia-
bility, and performance. Examples of these for security can be found in [18] and for
routing in [33]. These patterns can be expressed as requirements. The administrator
should be easily able to conceptualize end-to-end requirements as compositions of
Library requirements.

9.3.3 Specification Language

The specification language should provide an easy-to-use syntax for expressing
end-to-end requirements. Specifications should be as close as possible in their forms
to their natural language counterparts. The syntax can be text-based or visual. Since
requirements are logical concepts, the syntax should allow specification of objects,
attributes, and constraints between these and compositions of constraints via opera-
tors such as negation, conjunction, disjunction, and quantification. For example, all
of these constructs appear in the Section 9.2 requirement “No gateway router in a
COI has a static route to a destination in a different COI.”

9.3.4 Evaluation System

The Requirement Evaluation system should contain efficient algorithms to evalu-
ate a requirement against configuration. These algorithms should output not just a
yes/no answer but also explanations or counterexamples to guide configuration re-
pair. Configuration repair is harder than evaluation. A set of requirements can be
independently evaluated but if some are false, they cannot be independently made
true. Changing the configuration to make one requirement true may falsify another.
To provide further insight into reasons for truth or falsehood of requirements, this
system should compute visualizations of logical relationships that are set up via
configuration, analogous to visualizations of quantitative data [70].
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9.4 IP Assure Validation System

This section describes the Telcordiar IP Assure product and discusses the choices
made in it to implement the above abstract design of a validation system. This prod-
uct aims to improve the security, availability, QoS, and regulatory compliance of IP
networks. It uses a parser generator for configuration acquisition. Its Requirement
Library consists of well over 100 requirements on integrity of logical structures,
connectivity, security, performance, reliability, and government policy. Its specifica-
tion language is one of visual templates. Its evaluation system uses algorithms from
graph theory and constraint solving. It also computes visualizations of several types
of logical topologies. If a requirement is false, IP Assure does compute a root-cause,
although its computation is hand-crafted for each requirement. IP Assure does not
compute a repair that concurrently satisfies all requirements.

9.4.1 Configuration Acquisition System

Section 9.3 raised three challenges in the design of a configuration acquisition sys-
tem. The first was the design of a vendor-neutral database schema for storing
configuration information. The second was extracting information from configu-
ration files without having to know the entire configuration language for a given
vendor. The third was making the extraction algorithms robust to inevitable changes
in the configuration language. This section describes IP Assure’s configuration ac-
quisition system and sketches how well it meets these challenges.

IP Assure has defined a schema loosely modeled after DMTF [20] schemas. It
uses the ANTLR [5] system to define a grammar for configuration files. The parser
generated by ANTLR reads the configuration file and if successful returns an ab-
stract syntax tree exposing the structure of the file. This tree is then analyzed by
algorithms implemented in Java to create and populate tables in its schema. Often,
information in a table is assembled from information scattered in different parts of
the file.

The system is illustrated in the context of a configuration file containing the fol-
lowing commands in Cisco’s IOS configuration language:

hostname router1
!
interface Ethernet0
ip address 1.1.1.1 255.255.255.0
crypto map mapx
!
crypto map mapx 6 ipsec-isakmp
set peer 3.3.3.3
set transform-set transx
match address aclx
!
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crypto ipsec transform-set transx esp-3des hmac
!
ip access-list extended aclx
permit gre host 3.3.3.3 host 4.4.4.4

A configuration file is a sequence of command blocks consisting of a main command
followed by zero or more indented subcommands. The first command specifies the
name router1 of the router. It has no subcommands. Any line beginning with
! is a comment line. The second command specifies an interface Ethernet0. It
has two subcommands. The first specifies the IP address and mask of this interface.
The second specifies the name mapx of an IPSec tunnel originating from this inter-
face. The parameters of the IPSec tunnel are specified in the next command block.
The main command specifies the name of the tunnel, mapx. The subcommands
specify the address of the remote endpoint of the IPSec tunnel, the set transx of
cryptographic algorithms to be used, and the profile aclx of the traffic that will be
secured by this tunnel. The next command block defines the set transx as con-
sisting of the encryption algorithm esp-3des and the hash algorithm hmac. The
last command block defines the traffic profile aclx as any packet with protocol,
source address and destination address equal to gre, 3.3.3.3 and 4.4.4.4,
respectively.

Part of an ANTLR grammar for recognizing the above file is:

commands: command NL (rest=commands | EOF)
->ˆ(COMMAND command $rest?);

command: (’interface’) => interface_cmd
|(’crypto’) => crypto_cmd
|(’ip’) => ip_cmd
|unparsed_cmd;

interface_cmd: ’interface’ ID (LEADINGWS interface_subcmd) *
-> ˆ(’interface’ ID interface_subcmd *)

interface_subcmd:
’ip’ ’address’ a1=ADDR a2=ADDR -> ˆ(’address’ $a1 $a2)
|’crypto’ ’map’ ID -> ˆ(CRYPTO_MAP ID)
|unparsed_subcmd;

The first grammar rule states that commands is a sequence of one or more com-
mand blocks. The ˆ symbol is a directive to construct the abstract syntax tree whose
root is the symbol COMMAND, whose first child is the command block just read, and
second child is the tree representing the sequence of subsequent command blocks.
The next rule states that a command block begins with the keywords interface,
crypto, or ip. The symbol = > means no backtracking. The last line in this
rule states that if a command block does not begin with any of these identifiers, it is
skipped. Skipping is done via the unparsed cmd symbol. Grammar rules defin-
ing it skip all tokens till the beginning of the next command block. The last two
rules define the structure of an interface command block. ANTLR produces a
parser that processes the above file and outputs an abstract syntax tree. This tree
is then analyzed to create the tables below. Note that the ipsec table assembles
information from the interface, crypto map, crypto ipsec, and ip
access-list command blocks.
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ipAddress Table

Host Interface Address Mask

router1 Ethernet0 1.1.1.1 255.255.255.0

ipsec Table

Host SrcAddr DstAddr EncryptAlg HashAlg Filter

router1 1.1.1.1 3.3.3.3 esp-3des hmac aclx

acl Table

Host Filter Protocol SrcAddr DstAddr Perm

router1 Aclx gre 3.3.3.3 4.4.4.4 permit

IP Assure’s vendor-neutral schema captures much of the configuration information
for protocols it covers. Its skipping idea allows one to parse a file without recogniz-
ing the structure of all possible commands and command blocks. However, the idea
is quite hard to get right in the ANTLR framework. One is trying to avoid writing a
grammar for the skipped part of the language, yet the only method one can use is to
write rules defining unparsed cmd.

9.4.2 Requirement Library

9.4.2.1 Requirements on Integrity of Logical Structures

A very useful class of requirements is on the integrity of logical structures associ-
ated with different protocols. Before a group of components executing a protocol
can accomplish an intended joint goal, various logical structures spanning these
components must be set up. These structures are set up by making component con-
figurations satisfy definite constraints. For example, before packets flowing between
two interfaces can be secured via IPSec, the lPSec tunnel logical structure must be
set up. This is done by setting IPSec configuration parameters at the two interfaces
and ensuring that their values satisfy definite constraints. For example, the two in-
terfaces must use the same hash and encryption algorithms, and the remote tunnel
endpoint at each interface must equal the IP address of its counterpart.

An Hot Standby Routing Protocol (HSRP) [44] router cluster is another example
of a logical structure. It allows two or more routers to behave as a single router by
offering a single virtual IP address to the outside world, on a given subnet. This
address is mapped to the real address of an interface on the primary router. If this
router fails, another router takes over the virtual address. Before the cluster correctly
functions, however, the same virtual address and HSRP group identifier must be
configured on all interfaces and the virtual and all physical addresses must belong
to the same subnet.

Much more complex logical structures are set up for BGP. Different routers in
an autonomous system (AS) connect to different neighboring ASes, giving each
router only a partial view of BGP routes. To allow all routers in an AS to construct
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a complete view of routes, routers exchange information between themselves via
iBGP (internal BGP) sessions. The simplest logical structure for accomplishing
this exchange is a full-mesh of iBGP sessions, one for each pair of routers. But
a full-mesh is impractical for a large AS, since the number of sessions grows
quadratically with the number of routers. Linear growth is accomplished with a
hub-and-spoke structure. All routers exchange routes with a spoke called a route
reflector. If these structures are incorrectly set up, protocol oscillations, forwarding
loops, traffic blackholes, and violation of business contracts can arise [6,31,74]. See
Section 9.6.4 for more discussion of BGP validation.

IP Assure evaluates requirements on integrity of logical structures associated
with all common protocols. These structures include IP subnets, GRE tunnels, IPSec
tunnels, MPLS [60] tunnels, BGP full-mesh or hub-and-spoke structures, OSPF sub-
nets and areas, and HSRP router clusters.

9.4.2.2 Connectivity Requirements

Connectivity (also called reachability) is a fundamental requirement of a network.
It means the existence of a path between two nodes in the network. The most obvi-
ous network is an IP network whose nodes represent subnets and routers and links
represent direct connections between these. But as noted in Section 9.2, connectivity
requirements are also meaningful for many other types of networks such as GRE,
IPSec, and BGP. IP Assure evaluates connectivity for IP, VLANs, GRE, IPSec, BGP,
and MPLS networks.

IP Assure also evaluates reachability in the presence of access-control policies,
or lists, configured on routers or firewalls. An access-control list is a collection of
rules specifying the IP packets that are permitted or denied based on their source
and destination address, protocol, and source and destination ports. These rules
are order-dependent. Given a packet, the rules are scanned from the top-down and
the permit or deny action associated with the first matching rule is taken. Even if a
path exists, a given packet may fail to reach a destination because an access-control
list denies that packet.

9.4.2.3 Reliability Requirements

Reliability in a network means the ability to maintain connectivity in the presence
of failures of nodes or links. A single point of failure for connectivity between two
nodes in a network is said to exist if a single failure causes connectivity between the
two nodes to be lost. Reliability is achieved by provisioning backup resources and
setting up a reliability protocol. This protocol monitors for failures and when one
occurs, finds backup resources and attempts to restore connectivity using those.

Configuration errors may prevent backup resources from being provisioned. For
example, in Section 9.2, some GRE tunnels were only configured in one direction,
not in the other, so they were unavailable for being rerouted over. Even if backup
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resources have been provisioned, configuration errors in the routing protocol can
prevent these resources from being found. For example, in Section 9.2, BGP was
simply not configured to run over some GRE tunnels, so it would not find these
links to reroute over.

The architecture of the fault-tolerance protocol itself can introduce a single point
of failure. For example, a nonzero OSPF area may be connected to OSPF area zero
by a single area-border-router. If that router fails, then OSPF will fail to discover
alternate routes to another area [36] even if these exist. Similarly, unless BGP route
reflectors are replicated, they can become single points of failure [7].

Furthermore, redundant resources at one layer must be mapped to redundant
resources at lower layers. For example, if all GRE tunnels originate at the same
physical interface on a router, then if that interface fails, all tunnels would simulta-
neously fail. Ideally, all GRE tunnels originating at a router must originate at distinct
interfaces on that router.

Single points of failure can also arise out of the dependence between security and
reliability.

As shown in Fig. 9.5, routers R1 and R2 together constitute an HSRP cluster with
R1 as the primary router. This cluster forms the gateway between an enterprise’s
internal network on the right and the WAN on the left. For security, an IPSec tunnel
is configured from R1 to the gateway router C of a collaborating site. However, this
tunnel is not replicated on R2. Consequently, if R1 fails, then R2 would take over
the cluster’s virtual address; however, IPSec connectivity to C would be lost.

Reliability requirements that IP Assure evaluates include absence of single points
of failure in IP networks, with and without access-control policies; absence of
single OSPF area-border-routers; and replication of IPSec tunnels in an HSRP
cluster.

R1

R2

C Internal networkWAN
HSRP
Cluster

IPSec Tunnel 1

IPSec Tunnel 2

X

Fig. 9.5 HSRP cluster
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9.4.2.4 Security Requirements

Typical network security requirements are about data confidentiality, data integrity,
authentication, and access-control. IPSec is commonly used to satisfy the first three
requirements and access-control lists are used to satisfy the last one. Access-control
lists were discussed in Section 9.4.2.2. Components dedicated just to process-
ing access-control lists are called firewalls. IP Assure evaluates requirements for
both these technologies. For IPSec, it evaluates the tunnel integrity requirements
in Section 9.4.2.1. For access-control lists, IP Assure evaluates two fundamental
requirements. First, an access-control list subsumes another in that any packet per-
mitted by the second is also permitted by the first. A related requirement is that
one list is equivalent to another in that any packet permitted by one is permitted by
the other. Two lists are equivalent if each subsumes the other. An enterprise may
have multiple egress firewalls. Access-control lists on these may have been set up
by different administrators over different periods of time. It is useful to check that
the policy governing packets that leave the enterprise are equivalent. The second
requirement that IP Assure evaluates on access-control lists is that a firewall has no
redundant rules. A rule is redundant if deleting it will not change the set of pack-
ets a firewall permits. Deleting redundant rules makes lists compact and easier to
understand and maintain.

9.4.2.5 Performance Requirements

The [19] protocol allows one to specify policies for partitioning packets into differ-
ent classes, and then for according them differentiated performance treatment. For
example, a packet with a higher DiffServ class is given transmission priority over
one with a lower. Typically, voice packets are given highest priority because of the
high sensitivity of voice quality to end-to-end delays. Performance requirements
that IP Assure evaluates are that all DiffServ policies on all routers are identical,
and that any policy that is defined is actually used by being associated with an
interface.

IP Assure also evaluates the requirement that ICMP packets are not blocked. This
is a sufficient condition for avoiding packet loss due to mismatched MTU sizes and
setting of Do Not Fragment bits discussed in Section 9.2.

9.4.2.6 Government Regulatory Requirements

Government regulatory requirements represent “best practices” that have evolved
over a period of time. Compliance to these is deemed essential for connectivity,
reliability, security, and performance of an organization’s network. Compliance
to certain regulations such as the Federal Information Security Management Act
(FISMA) [26] is mandatory for government organizations. Two examples of a
FISMA requirement are (a) alternate communications services do not share a single
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point of failure with primary communication services, (b) all access between nodes
internal to an enterprise and those external to it is mediated by a proxy server. IP
Assure allows specification of a large number of FISMA requirements.

9.4.3 Specification Language

IP Assure’s specification language is that of graphical templates. It offers a menu of
more than 100 requirements in different categories. A user can select one or more
of these to be evaluated. For each requirement, one can specify its parameters. For
example, for a reachability requirement, one can specify the source and destination.
For an access-control list equivalence requirement, one can specify the two lists.
One cannot apply disjunction or quantification operators to requirements. The only
way to define new requirements is to program in Java and SQL.

Figure 9.6 shows a few requirement classes that can be evaluated. These are QoS
(DiffServ), HSRP, OSPF, BGP, and MPLS.

Fig. 9.6 IP Assure requirement specification screen
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9.4.4 Evaluation System

Structural integrity requirements are evaluated with algorithms specialized to
each requirement. In IP Assure, these algorithms are implemented with SQL
and Java. The relevant tuples from the configuration database are extracted with
SQL and analyzed by Java programs. For example, to evaluate whether an IPSec
tunnel between two addresses local1 and local2 is set up, one checks that
there are tuples ipsec(h1, local1, remote1, ea1, ha1, filter1)
and ipsec(h2, local2, remote2, ea2, ha2, filter2) in the con-
figuration database, and that local1 = remote2, remote1 = local2,
ea1 = ea2, ha1 = ha2 and filter1 is a mirror image of filter2.

Reachability and reliability requirements for a network are evaluated by ex-
tracting the relevant graph information from the configuration database with
SQL queries, then applying graph algorithms [63]. For example, given the tuple
ipAddress(host, interface, address, mask), one creates two
nodes, the router host and the subnet whose address is the bitwise-and of
address and mask, and then creates directed edges linking these in both di-
rections. This step is repeated for all such tuples to compute an IP network graph.

To evaluate whether a node or a link is a single point of failure, one removes it
from the graph and checks whether two nodes are reachable. If not, then the deleted
node or link is a single point of failure. To check reachability in the presence of
access-control lists, all edges at which these lists block a given packet are deleted,
and then reachability analysis is repeated for the remaining graph.

Firewall requirements cannot be evaluated by enumerating all possible packets
and checking for subsumption, equivalence, or redundancy. The total number of
combinations of all source and destination addresses, ports, and protocols is as-
tronomical: the total number of IPv4 source and destination address, source and
destination port, and protocol combinations is 2^104 (32 C 32 C 16 C 16 C 8).
Instead, symbolic techniques are used. Each policy is represented as a constraint
on the following fields of a packet: source and destination address, protocol, and
source and destination ports. The constraint is true precisely for those packets that
are permitted by the firewall, taking rule ordering into account. Let P1 and P2 be
two policies and C1 and C2 be, respectively, the constraints representing them. The
constraint can be constructed in time linear in the number of rules. Then, P1 is sub-
sumed by P2 if there is no solution to the constraint C1 ^ :C2. To check that
a rule in P1 is redundant, delete it from P1 and check that the resulting policy is
equivalent to P1.

For example, let a firewall contain the following rules that, for simplicity, only
check whether the source and destination addresses are in definite ranges:

1, 2, 3, 4, deny
5, 6, 7, 8, permit
10, 15, 15, 20, permit
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The first rule states that any packet with source address between 1 and 2 and desti-
nation address between 3 and 4 is denied. Similarly, for the second and third rules.
These are represented by the following constraint C1 on the variables src and dst.

: (1=<src ^ src=<2 ^ 3=<dst ^ dst=<4]) ^
(5=<src ^ src=<6 ^ 7=<dst ^ dst=<8) v

(10=<src ^ src=<15 ^ 15=<dst^ dst=<20)

This constraint states that a packet is permitted if it is not the case that its source
address is in [1, 2] and destination address is in [3, 4] and that these fields are either
in [5, 6] and [7, 8], respectively, or in [10, 15] and [15, 20], respectively.

If there were another firewall with a single rule:

11, 12, 13, 14, permit

then the constraint C2 representing it would be

(11=<src^src=<12 ^ 13=<dst^dst=<14)

To check whether the first firewall subsumes the second, check that C2^:C1
is unsolvable. A constraint solver will confirm that this is so. On the other
hand, the solver will compute a solution to the constraint C1^:C2 as src = 5,
dst = 7. Such constraints are solved by the ConfigAssure [51] system described
in Section 9.5.

9.4.4.1 Proactive Evaluation

From just the configurations, IP Assure tries to guess requirements that the ad-
ministrator intended and evaluates these. When its guess is correct, it saves the
administrator the effort of explicitly specifying that requirement. When the guess
is incorrect, the administrator can ignore the “false positive.” For example, if IPSec
is configured on an interface, then it is a good guess that IPSec should be con-
figured on the remote endpoint of the tunnel. Then, the IPSec structural integrity
requirement is evaluated. This approach has been implemented for a number of pro-
tocols. The intent for some requirements cannot be guessed. For example, in the
FISMA requirement that all communication between internal and external subnets
must pass through a firewall, one cannot guess what internal and external subnets
are. IP Assure allows these to be explicitly specified.

9.4.4.2 Visualization

For visualization, IP Assure displays logical structures the way they are set up by
configuration. Then, their integrity and defects both stand out. This approach has
worked well for structures such as subnets, GRE tunnels, IPSec tunnels, OSPF ar-
eas, BGP full-meshes and hub-and-spoke structures, and HSRP router clusters. The
relevant nodes and edges are extracted from the configuration database with SQL
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Fig. 9.7 Visualization of an IP network

queries and the Graphviz [30] layout tool is used. For example, in Fig. 9.7, nodes
are routers and subnets, a link is only between a router and a subnet and represents
that fact that the router has an interface on that subnet.

In Fig. 9.8, a link from a router to an area identifier means that the router has
an interface in that area. This clearly shows that Area 10 has two border routers
LOSANGELES and CHICAGO linking it to Area 0. Thus, there is no single point
of failure due to a single ABR discussed above. However, the figure also shows
that Area 17 has only a single ABR. This is a single point of failure as outlined in
Section 9.4.2.3.

9.5 Logic-Based Techniques for Creating a Validation System

This section describes a suite of logic-based techniques that are particularly use-
ful for creating a validation system. They simplify configuration acquisition and
requirement specification. They allow firewall subsumption, equivalence, and rule
redundancy analysis. Finally, they provide an efficient approach for solving the hard
problem of configuration error repair. These techniques are the languages Prolog
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Fig. 9.8 OSPF topology visualization

and Datalog [53, 67] and arithmetic quantifier-free forms [51], the Kodkod [41]
constraint solver for first-order logic, the minimum-cost ZChaff [73] SAT solver
for Boolean logic, and Ordered Binary Decision Diagrams [12].

The Prolog language combines a rule-based programming language and a
database into a single system. Its interpreter is based on the top-down SLD-
resolution [53] inference procedure. Modern Prolog implementations are highly
efficient and also have tight interfaces to external languages like C, CCC, and Java.
Algorithms that are best encoded in these languages can be so encoded, and then
called from Prolog. Prolog databases of several million tuples can be efficiently
queried [66]. Datalog is a restriction of Prolog to exclude data structures.

Kodkod is a Java API for solving a first-order logic constraint. While a Boolean
constraint only contains Boolean variables, a first-order logic constraint can con-
tain variables denoting data objects, relationships between these variables, and
quantifiers on these variables. Kodkod solves a first-order logic constraint, in fi-
nite domains, by compiling it into a Boolean logic constraint, solving it with a
SAT solver, and reflecting a solution back into a solution of the first-order logic
constraint. If the constraint is unsolvable, Kodkod also computes a proof of unsolv-
ability, inherited from the SAT solver. Typically, this is an unsolvable constraint
that is much smaller than the original. The ZChaff SAT solver can solve millions of
Boolean constraints in millions of Boolean variables in seconds. If costs are associ-
ated with the setting of a Boolean variable to true, then ZChaff can also be used to
compute a minimum-cost solution to a constraint.
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Any Boolean constraint can be transformed into a unique, equivalent form called
an Ordered Binary Decision Diagram. Thus, equivalence between two Boolean con-
straints can be checked by checking that their OBDDs are identical. An OBDD also
has the interesting property that if it is not trivially false, then it is satisfiable. The
check for satisfiability is built into the algorithm to transform a Boolean constraint
into its OBDD. However, OBDDs are efficiently constructed only for constraints
with a few hundred Boolean variables although this size is ample for reasoning
about firewalls.

The Service Grammar system used Prolog directly for specification and valida-
tion [50,58]. The ConfigAssure [51] system integrates Prolog with Kodkod. It allows
fields in tuples in a configuration database to be variables. It computes values of
these variables so that a given requirement becomes true of the database. It does so
by transforming that requirement into an equivalent arithmetic quantifier-free form
or QFF. A QFF is a Boolean combination of constraints formed from configuration
variables, integers, the operators C, �, < , D<, D, >, >D, and bitwise logic oper-
ators. This QFF is then efficiently solved by Kodkod. If ConfigAssure is unable to
find a solution, it outputs a proof of unsolvability, inherited from Kodkod. This proof
is interpreted as a root-cause and guides configuration repair. Arithmetic quantifier-
free forms constitute a good intermediate language between Boolean logic and
first-order logic. Not only is it easy to express requirements in it, but it can also
be efficiently compiled into Boolean logic. ConfigAssure was designed to avoid,
where possible, the generation of very large intermediate constraints in Kodkod’s
transformation of first-order logic into Boolean.

If the fields that are responsible for making a requirement false are known, then
one way to repair these is as follows: replace these fields with variables and use
ConfigAssure to find new values of these variables that make the requirement true.
Two approaches can be used to narrow down these fields. The first exploits the
proof of unsolvability of the falsified requirement to compute a type of root-cause.
The second exploits properties of Datalog proofs and ZChaff to compute that set of
fields whose cost of change is minimal. The second approach has been developed in
the MulVAL [35,55,56] system. More generally, MulVAL is a system for enterprise
security analysis using attack graphs.

Ordered Binary Decision Diagrams are an alternative to SAT solvers for evalu-
ating firewall policy subsumption and rule redundancy with a method conceptually
similar to that in Section 9.4.4.

The use of these techniques for building different parts of a validation system is
now illustrated with concrete examples based on the case study in Section 9.2.

9.5.1 Configuration Acquisition by Querying

When the structure of a configuration file is simple, as it is for Cisco’s IOS, then
it is not necessary to write a grammar with ANTLR or PADS/ML [47]. Instead,
the structure can be put into a command database and then queried to construct the
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configuration database. The query needs to refer only to that part of the command
database necessary to construct a given table. All other parts are ignored. This idea
provides substantial resilience to insertion of new command blocks, insertion of
new subcommands in a known command block, and insertion of new keywords in
subcommands.

This idea is illustrated using Prolog, although any database engine could be used.
Each command block is transformed into an ios cmd tuple or Prolog fact, with the
structure

ios_cmd(FileName, MainCommand, ListOfSubCommands)

where MainCommand and each item in ListOfSubCommands is of the form
[NestingLevel j ListOfTokens]. [AjB] means the list with head A and tail
B. For example, the IOS file of Section 9.4.1, named f here, is transformed into the
following Prolog tuples:

ios_cmd(f, [0, hostname, router1], []).
ios_cmd(f,

[0, interface, ’Ethernet0’],
[ [1, ip, address, ’1.1.1.1’, ’255.255.255.0’],

[1, crypto, map, mapx] ]).
ios_cmd(f,

[0, crypto, map, mapx, 6, ’ipsec-isakmp’],
[ [1, set, peer, ’3.3.3.3’],

[1, set, ’transform-set’, transx],
[1, match, address, aclx]]).

ios_cmd(f,
[0,crypto,ipsec,’transform-set’,

transx,’esp-3des’,hmac], []).
ios_cmd(f,

[0, ip, ’access-list’, extended, aclx],
[ [1, permit, gre, host, ’3.3.3.3’,

host, ’4.4.4.4’]]).

Note the close correspondence between the structure of command blocks in the IOS
file and associated ios cmd tuples. One can now write Prolog rules to construct the
configuration database. For instance, to construct rows for the ipAddress table,
one can use:

ipAddress(H, I, A, M):-
ios_cmd(File, [0, hostname, H|_], _),
ios_cmd(File, [0, interface, I|_], Args),
member(SubCmd, Args),
subsequence([ip, address, A, M], SubCmd).

The syntactic convention followed in Prolog is that identifiers beginning with capital
letters are variables, otherwise they are constants. The :- symbol is a shorthand for
if. All variables are universally quantified. The rule states that ipAddress of an
interface I on host H is A with mask M if there is a File containing a hostname
command declaring host H, an interface command declaring interface I, and
a subcommand of that command declaring its address and mask to be A and M,
respectively.
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Note that this definition is unaffected by subcommands of the interface com-
mand that are not of interest for computing ipAddress, or that are defined in
a subsequent IOS release. It only tries to find a subcommand containing the se-
quence [ip, address, A, M]. It does not require that the subcommand be in
a definite position in the block, or that the sequence address A, M appear in def-
inite position in the ip subcommand. Now, where H, I, A, M are variables, the
query ipAddress(H, I, A, M)will succeed with the solution H = f, I =
’Ethernet0’, A = ’1.1.1.1’ and M = ’255.255.255.0’. Here f is
a host, I is an interface on this host, and A and M its address and mask, respectively.

ipsec is more complex but querying simplifies the assembly of information
from different parts of a configuration file. For each interface, one finds the name
of a crypto map Map applied to that interface, and then finds the correspond-
ing crypto map command, from which one can extract the peer address Peer,
the filter Filter, and transform-set Transform. These values are used to se-
lect the crypto ipsec command from which the Encrypt and Hash values
are extracted. Thus, the ipSecTunnel(H, Address, Peer, Encrypt,
Hash, Filter) is constructed.

ipsec(H, Address, Peer, Encrypt, Hash, Filter):-
ios_cmd(File, [0, interface, I |_], Args),
member([_, crypto, map, Map |_], Args),
ios_cmd(File, [0, hostname, H |_], _),
ipAddress(H, I, Address, _),
ios_cmd(File, [0, crypto, map, Map |_], CArgs),
member([_, set, peer, Peer |_], CArgs),
member([_, match, address, Filter|_], CArgs),
member([_, set, ’transform-set’,

Transform |_], CArgs),
ios_cmd(File, [0, crypto, ipsec,

’transform-set’, Transform, Encrypt, Hash],_).

The ipAddress and ipsec tuples are constructed in all possible ways via Prolog
backtracking. Together, these form the configuration database for these protocols.

9.5.2 Specification Language

This section shows how Prolog can be used to specify the types of requirements in
the case study of Section 9.2. It has already been used to validate VPN and BGP
requirements [50, 58]

As shown in Fig. 9.9, routers RA and RB are in the same COI but RX is in a
different COI. RA’s configuration violates two security requirements and one con-
nectivity requirement. First, RA has a GRE tunnel into RX. Second, RA has a default
static route using which it can forward packets destined to RX, to the WAN. Third,
RA does not have a GRE tunnel into RB. All these violations need to be detected
and configurations repaired.
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Fig. 9.9 Network violating security and connectivity requirements

A configuration database for the above network is represented by the following
Prolog tuples:

static_route(ra, 0, 32, 400).
gre(ra, tunnel_0, 100, 300).
ipAddress(ra, eth_0, 100, 0).
ipAddress(rb, eth_0, 200, 0).
ipAddress(rx, eth_0, 300, 0).
coi([ra-coi1, rb-coi1, rx-coi2]).

The first tuple states that router ra has a default static route with a next hop of ad-
dress 400. Normally, a mask is a sequence of 32 bits containing a sequence of ones
followed by a sequence of zeros. In the ipAddress tuple, a mask is represented
implicitly as the number of zeros at the end of the sequence. This simplifies the
computations we need. The route is called “default” because any address matches
it. The second states that router ra has a GRE tunnel originating from GRE in-
terface tunnel 0 with local physical address 100 and remote physical address
300. The third tuple states that router ra has a physical interface eth 0 with ad-
dress 100 and mask 0. Similarly, for the fourth and fifth tuples. The last tuple
lists the community of interest of each router. Requirements are defined with Prolog
clauses, e.g.:

good:-gre_connectivity(ra, rb).
gre_connectivity(RX, RY):-

gre_tunnel(RX, RY),
route_available(RX, RY).
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gre_tunnel(RX, RY):-
gre(RX, _, _, RemoteAddr),
ipAddress(RY, _, RemoteAddr, _).

route_available(RX, RY):-
static_route(RX, Dest, Mask, _),
ipAddress(RY, _, RemotePhysical, 0),
contained(Dest, Mask, RemotePhysical, 0).

contained(Dest, Mask, Addr, M):-
Mask>=M,
N is ((2ˆ32-1)<< Mask)/\Dest,
N is ((2ˆ32-1)<< Mask)/\Addr.

bad:-gre_tunnel(ra, rx).
bad:-route_available(ra, rx).

The first clause states that good is true provided there is GRE connectivity between
routers ra and rb since they are in the same COI. The second clause states that
there is GRE connectivity between any two routers RX and RY provided RX has a
GRE tunnel configured to RY and a route available to RY. The third clause states
that a GRE tunnel to RY is configured on RX provided there is a GRE tuple on
RX whose remote address is that of an interface on RY. The fourth clause states
that a route to RY is available on RX provided an address RemotePhysical on
RY is contained within the address range of a static route on RX. The fifth clause
checks this containment. < < is the left-shift operator and /n is the bitwise-and
operator, not to be confused with the conjunction operator. The sixth clause states
that bad is true provided there is a gre tunnel between ra and rx since ra and rx
are not in the same COI. The last clause states that bad is also true provided a route
on ra is available for packets with a destination on rx.

We now show how to capture requirements containing quantifiers. To capture the
requirement all good that between every pair of routers in a COI there is GRE
connectivity, we can write:

all_good:-not(same_coi_no_gre).
same_coi_no_gre:-same_coi(X, Y), not(gre_connectivity (X, Y)).
same_coi(X, Y):-coi(L), member(X-C, L), member (Y-C, L).

The first rule states all good is true provided same coi no gre is false. The
second rule states that same coi no gre is true provided there exist X and Y that
are in the same COI but for which gre connectivity(X, Y) is false. The last
rule states that X and Y are in the same COI provided there is some COI C such that
X-C and Y-C are in the COI association list L.

Similarly, we can capture the requirementno bad that no router contains a route
to a router in a different COI.

As previously mentioned, the MulVAL system has proposed the use of Dat-
alog for specification and analysis of attack graphs. Datalog is a restriction of
Prolog in which arguments to relations are just variables or atomic terms, i.e., no
complex terms and data structures. This restriction means, in particular, that predi-
cates such as all good and all pairs gre cannot be specified and neither can
subnet id since it needs bitwise operations. However, the first five Prolog tuples
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above and the first three rules can be specified. This restriction, however, permits
MulVAL to perform fine-grained analysis of root-causes of configuration errors and
to compute strategies for their repair. This is discussed in the next section.

9.5.3 Evaluation for Repair

If a configuration database and requirements are expressed in Prolog, then its query
capability can be used to evaluate whether requirements are true. For example,
the query route available(ra, rb) is evaluated to be true by clauses for
route available, static route, and contained. The query bad suc-
ceeds for two reasons. First, the static route on ra is a default route. It forwards
packets to any destination, including to destinations in a different COI. Second,
a GRE tunnel to router rx is configured on ra even though rx is in a differ-
ent COI. On the other hand, the query good fails. This is because the predicate
gre tunnel(ra, rb) fails. The only GRE tunnel configured on ra is to rx,
not to rb.

If requirement evaluation against a configuration database is the only goal, then
a Prolog-based validation system is practical on a realistic scale. However, if a re-
quirement is false for a configuration database and the goal is to change some fields
in some tuples so that the requirement becomes true, then Prolog is not adequate.
The Prolog query (good,not(bad)), representing the conjunction of good
and not(bad), will simply fail. Prolog will not return new values of these fields
that make the query true.

In order to efficiently compute new values of these fields, a constraint solver
with the capability to compute a proof of unsolvability is needed. Such a capability
is provided by the ConfigAssure system. ConfigAssure allows one to replace some
fields in some tuples in a configuration database with configuration variables. These
variables are unrelated to Prolog variables. ConfigAssure also allows one to specify
a requirement R as an equivalent QFF RC on these configuration variables. Solving
RC would compute new values of these fields, in effect repairing the fields.

For example, suppose we suspect that the query (good,not(bad)) fails be-
cause addresses and the static route mask are incorrect. We can replace all these
with configuration variables to obtain the following database:

static_route(ra, dest(0), mask(0), 400).
gre(ra, tunnel_0, gre_a_local(0), gre_a_remote(0)).
ipAddress(ra, eth_0, ra_addr(0), 0).
ipAddress(rb, eth_0, rb_addr(0), 0).
ipAddress(rx, eth_0, rx_addr(0), 0).
coi([ra-coi1, rb-coi1, rx-coi2]).

Here, dest(0), mask(0), gre a local(0), gre a remote(0),
ra addr(0), rb addr(0), rx addr(0) are all configuration variables.
In order that this database satisfy (good ^ not(bad)), these configuration
variables must satisfy the following constraint RC:
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:gre a remote(0)=rx addr(0)^
:contained(dest(0),mask (0),

rx addr(0),0)

^ gre a remote(0)=rb addr(0)

^ contained(dest(0),mask(0),rb addr(0),0)

^ : ra addr(0)=rb addr(0) ^ :rb addr(0)=rx addr(0) ^
:rx addr(0)=ra addr(0)

The constraint on the first two lines is equivalent to not(bad). It states that ra
should neither have a GRE tunnel nor a static route to rx. The constraint on the
next two lines is equivalent to good. It states that ra should have both a GRE tun-
nel and a static route to rb. The constraint on the last line states that all interface
addresses are unique. Solving this constraint would indeed find new values of con-
figuration variables and hence repair the fields. However, one may change fields,
such as ra addr(0), unrelated to the failure of (good,not(bad)). To change
fields only related to failure, one can exploit the proof of unsolvability that Confi-
gAssure automatically computes when it fails to solve a requirement. This proof is
a typically small and unsolvable part of the requirement, and can be taken to be a
root-cause of unsolvability.

The idea is to generate a new constraint InitVal that is a conjunction of equa-
tions of the form x = c where x is a configuration variable that replaced a field
and c is the initial value of that field. Now try to solve RC^InitVal. Since R is
false for the database without variables, ConfigAssure will find RC^InitVal to be
unsolvable and return a proof of unsolvability. If, in this proof, there is an equation
x = c that is also in InitVal, then relax the value of x by deleting x = c from
InitVal to create InitVal’. Reattempt a solution to RC^InitVal’ to find a
new value of x. More than one such equation can be deleted in a single step. For
example, the definition of InitVal for above configuration variables is:

dest(0)=0

^ mask(0)=32

^ gre a local(0)=100

^ gre a remote(0)=300

^ ra addr(0)=100

^ rb addr(0)=200

^ rx addr(0)=300

Submitting RC^InitVal to ConfigAssure generates a proof of unsolvability that
ra should have a tunnel to rb but instead has one to rx:

gre a remote(0)=rb addr(0) ^ gre a remote(0)=300 ^ rb addr(0)=200

Deleting the second equation from InitVal to obtain InitVal’ and solving
RC^InitVal’ we obtain another proof of unsolvability that ra has a static route
to rx:

rx addr(0)=300 ^ dest(0)=0 ^ mask(0)=32 ^
:contained
(dest(0),mask(0),rx addr(0),0)



304 S. Narain et al.

Deleting the second and third equations and solving, we obtain a solution that fixes
both the GRE tunnel and the static route on ra:

dest(0)=200
mask(0)=0
gre_a_remote(0)=200
gre_a_local(0)=100
ra_addr(0)=100
rb_addr(0)=200
rx_addr(0)=300

Values of just the first three variables needed to be recomputed. Values of others do
not need to be. Note that ra addr(0) never appeared in a proof of unsolvability
even though it did in RC. Thus, its value definitely does not need to be recomputed.
This is not obvious from RC. Note also that repair is holistic in that it satisfies both
good and not(bad).

The remaining task is generation of the constraint RC. It is accomplished by
thinking about specification as a method of computing an equivalent quantifier-free
formula, i.e., defining the predicate eval(Req, RC) where Req is the name of a
requirement and RC is a QFF equivalent to Req. The original Prolog specification
of Req in Section 9.5.2 is no longer needed. It is replaced by a metalevel version as
follows:

eval(bad, or(C1, C2)):-
eval(gre_tunnel(ra, rx), C1),
eval(route_available(ra, rx), C2).

eval(gre_tunnel(RX, RY), RemoteAddr=Addr):-
gre(RX, _, _, RemoteAddr),
ipAddress(RY, _, Addr, _).

eval(route_available(RX, RY), C):-
static_route(RX, Dest, Mask, _),
ipAddress(RY, _, RemotePhysical, _),
C=contained(Dest, Mask, RemotePhysical, 0).

eval(addr_unique, C):-
andEach([not(ra_addr(0)=rb_addr(0)),

not(rb_addr(0)=rx_addr(0)),
not(rx_addr(0)=ra_addr(0))], C).

eval(topReq, C):-
eval(good, G),
eval(bad, B),
eval(addr_unique, AU),
andEach([G, B, AU], C).

These rules capture the semantics of the Prolog rules. The first states that
a QFF equivalent to bad is the disjunction of C1 and C2 where C1 is the
QFF equivalent to gre tunnel(ra, rx) and C2 is the QFF equivalent to
route available(ra, rx). The second rule states that the QFF equiva-
lent to gre tunnel(RX, RY) is RemoteAddr= Addr where RemoteAddr
is the remote physical address of a GRE tunnel on RX and Addr is the ad-
dress of an interface on RY. The third rule states that the QFF equivalent to
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route available(RX, RY) is C provided C is the constraint that RX con-
tains a static route for an address on RY. The fourth rule computes the QFF for all
interface addresses being unique. The last rule computes the QFF for the top-level
constraint topReq.

Now, the Prolog query eval(topReq, RC) computes RC as above. As has
been shown in [51], QFFs are much more expressive than Boolean logic, so it is not
hard to write requirements using the eval predicate.

9.5.4 Repair with MulVAL

The MulVAL system proposes an alternative, precise method of computing the fields
that cause the success of an undesirable requirement provided that requirement is
expressed in Datalog. A requirement, such as bad, is said to be undesirable if it
enables adversary success. This method is based on the observation that any tuple
in a proof of an undesirable requirement is responsible for the truth of that require-
ment. These tuples contain all the fields that need to be replaced by configuration
variables. For example, one proof of bad with the original Prolog specification in
Section 9.5.2 is:

bad
gre_tunnel(ra, rx)

gre(ra, tunnel 0, 100, 300) ^ ipAddress(rx, eth 0, 300, 0)

Here, each condition is implied by its successor by the use of a rule in the Prolog
specification. The second proof of bad is:

bad
route_available(ra, rx)
static route(ra,0,32,400) ^ ipAddress(rx, eth 0,300,

0) ^ contained(0,32,300,0)

The tuples that contribute to the proof of bad are:

gre(ra, tunnel_0, 100, 300) -- from the first proof
ipAddress(rx, eth_0, 300, 0) -- from the first proof
static_route(ra, 0, 31, 400) -- from the second proof

The following tuples do not contribute to the proof of bad:

ipAddress(ra, eth_0, 100, 0).
ipAddress(rb, eth_0, 200, 0).

The three tuples in the proof of bad contain all the fields that need to be replaced by
configuration variables. Note that the address of interfaces at ra and rb do not need
to be replaced.
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The MulVAL system does not actually compute new values of fields. It only
computes the set of tuples that should be disabled to disable all proofs of the unde-
sirable property. A tuple can be disabled by changing its fields to different values
or deleting it. But, MulVAL computes the set in an optimal way. It first derives a
Boolean formula representing all the ways in which tuples should be disabled, then
solves this with a minimum-cost SAT solver. A solution represents a set of tuples to
disable. For example, the Boolean formula for the above two proofs is:

: gre(ra, tunnel 0, 100, 300) _ :ipAddress(rx, eth 0,300, 0) ^
: ipAddress(rx, eth 0, 300, 0) _ :static route(ra, 0, 32, 400)

The first formula states that to disable the first proof, either the gre tuple or the
ipAddress tuple must be disabled. The second formula states that to disable the
second proof, either the ipAddress or the static route tuple must be dis-
abled. Costs are associated with disabling each tuple. The minimum-cost SAT solver
computes that set of tuples whose cost of disabling is a minimum. For example, the
cost of disabling the ipAddress tuple may be high because many requirements
depend on this tuple. The cost of disabling the static route and gre tuples
may be a lot lower. It is not, in general, simple to assign cost to disabling a tuple. Fur-
thermore, this approach only computes how to disable an undesirable requirement.
It does not guarantee that disabled tuples will also not disable desirable require-
ments, unless these latter requirements are also expressed in Boolean logic and the
combined constraint is solved.

9.5.5 Evaluating Firewall Requirements with Binary
Decision Diagrams

Hamed et al. [34] evaluate firewall subsumption and rule redundancy using Ordered
Binary Decision Diagrams [12]. Their algorithm is conceptually the same as in Sec-
tion 9.4.4. It first transforms firewall policies into Boolean constraints upon source
and destination addresses, source and destination ports, and the protocol. These con-
straints are true only for those packets that are permitted by the firewall. These fields
are represented as sequences of Boolean variables, e.g., an address field as a se-
quence of 32 variables and a port field as a sequence of 16 bits. The algorithm then
checks whether combinations of constraints for evaluating subsumption and redun-
dancy have a solution. Since constraints are represented as Ordered Binary Decision
Diagrams, this check is straightforward. By contrast, ConfigAssure represents the
above fields as integer variables and represents a policy as an arithmetic quantifier-
free form constraint. It lets Kodkod transform this into a Boolean constraint and use
a SAT solver to check satisfiability.
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9.6 Related Work

9.6.1 Configuration Acquisition by Type Inference

Another approach to parsing configuration files is with the use of PADS/ML system
[47]. Based on the functional language ML, PADS/ML describes the accepted lan-
guage as if it were a type definition. PADS/ML supports the generation of parser,
printer, data structure representation, and a generic interface to this representation.
The generated code is in OCAML [43] language and additional tools, written in
OCAML, then manipulate the internal data structure. This internal data structure
is traversed to populate the relational database in the same way that the ANTLR
abstract syntax tree is traversed.

Adaptive parsers are reported in [17]. These can modify the language they
recognize when given examples of legal input. The inference system recognizes
commands that are only handled in the abstract, much as the ANTLR grammar of
IP Assure skips over some commands. Repeated instances of commands are used
to generate new PADS/ML types, which are then further refined to provide access
to fields in the commands. This means that as the IOS language evolves, the parser
can evolve to provide an ever richer internal representation.

9.6.2 Symbolic Reachability Analysis

Instead of performing reachability analysis for each packet, a system for reachability
analysis for sets of packets is described in Xie et al. [72]. This makes it possible to
evaluate a requirement such as “a change in static routes at one or more routers does
not change the set of packets that can flow between two nodes.” It is not feasible to
evaluate such a requirement by enumerating all packets and checking reachability.
In this system, the reachability upper bound is defined to be the union of all pack-
ets permitted by each possible forwarding path from the source to the destination.
This bound models a security policy that denies some packets (i.e., those outside the
upper bound) under all conceivable operational conditions. The reachability lower
bound is defined to be the common set of packets allowed by every feasible forward-
ing path from the source to the destination. This bound models a resilience policy
that assures the delivery of some packets despite network faults, as long as a backup
forwarding path exists. Algorithms are created for estimating the reachability up-
per and lower bounds from a network’s packet filter configurations. Moreover, the
work shows that it is possible to jointly reason about how packet filters, routing, and
packet transformations affect reachability.

An interesting implementation of reachability analysis for sets of packets is found
in the ConfigChecker [3] system. It represents the network’s packet forwarding be-
havior as a giant state machine in which a state defines what packets are at what
routers. However, the state-transition relation is not represented explicitly but rather
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symbolically as a constraint that must be satisfied by two states for the network
to transition between these. This constraint itself is represented as an Ordered Bi-
nary Decision Diagram and input to a symbolic model checker [48]. Reachability
requirements such as that above are expressed in Computational Tree Logic [48]
and the symbolic model checker used to evaluate these. The transition-relation also
takes into account features such as IPSec tunnels, multicast, and network address
translation.

9.6.3 Alloy Specification Language

Alloy [2, 39] is a first-order relational logic system. It lets one specify object types
and their attributes. It also lets one specify first-order logic constraints on these at-
tributes. These are more expressive than Prolog constraints. Alloy solves constraints
by compiling these into Kodkod and using Kodkod’s constraint solver. The use of
Alloy for network configuration management was explored in [49].Alloy’s speci-
fication language is very appropriate for specifying requirements. All the require-
ments in Section 9.2 can be compactly expressed in Alloy. However, its constraint
solver is inappropriate for evaluating requirements. This is because the compilation
of first-order logic into Boolean logic leads to very large intermediate constraints.
Kodkod addresses this problem by its partial-model optimization that exploits
knowledge about parts of the solution. If the value of a variable is already known, it
does not appear in the constraint that is submitted to the SAT solver. ConfigAssure
follows a related approach but at a higher layer. The intuition is that given a require-
ment, many parts of it can be efficiently solved with non-SAT methods. Solving
these parts and simplifying can yield a requirement that truly requires the power of
a SAT solver. This plan is carried out by transforming a requirement into an equiv-
alent quantifier-free form by defining the eval predicate for that requirement. QFFs
have the property that not only is it easy to write eval rules, but also that QFFs are
efficiently compiled and solved by Kodkod. Evaluation of parts of requirements and
simplification are accomplished in the definition of eval.

9.6.4 BGP Validation

The Internet is, by definition, a “network of networks,” and the responsibility for
gluing together the tens of thousands of independently administered networks falls
to the Border Gateway Protocol (BGP) [59, 64]. A network, or AS uses BGP to
tell neighboring networks about each block of IP addresses it can reach; in turn,
neighboring ASes propagate this information to their neighbors, allowing the entire
Internet to learn how to direct packets toward their ultimate destinations. On the
surface, BGP is a relatively simple path-vector routing protocol, where each router
selects a single best route among those learned from its neighbors, adds its own AS
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number to the front of the path, and propagates the updated routing information to
its neighbors for their consideration; packets flow in the reverse direction, with each
router directing traffic along the chosen path in a hop-by-hop fashion.

Yet, BGP is a highly configurable protocol, giving network operators significant
control over how each router selects a “best” route and whether that route is dis-
seminated to its neighbors. The configuration of BGP across the many routers in an
AS collectively expresses a routing policy that is based on potentially complex busi-
ness objectives [15]. For example, a large Internet Service Provider (ISP) uses BGP
policies to direct traffic on revenue-generating paths through their own downstream
customers, rather than using paths through their upstream providers. A small AS
like a university campus or corporate network typically does not propagate a BGP
route learned from one upstream provider to another, to avoid carrying data traffic
between the two larger networks. In addition, network operators may configure BGP
to filter unexpected routes that arise from configuration mistakes and malicious at-
tacks in other ASes [14,52]. BGP configuration also affects the scalability of the AS,
where network operators choose not to propagate routes for their customers’ small
address blocks to reduce the size of BGP routing tables in the rest of the Internet.
Finally, network operators tune their BGP configuration to direct traffic away from
congested paths to balance load and improve user-perceived performance [25].

The routing policy is configured as a “route map” that consists of a sequence of
clauses that match on some attributes in the BGP route and take a specific action,
such as discarding the route or modifying its attributes with the goal of influenc-
ing the route-selection process. The BGP defines many different attributes, and the
route-selection process compares the routes one attribute at a time to ultimately
identify one “best” route. This somewhat indirect mechanism for selecting and
propagating routes, coupled with the large number of route attributes and route-
selection steps, makes configuring BGP routing policy immensely complicated and
error-prone. Network operators often use tools for automatically configuring their
BGP-speaking routers [11, 21, 29]. These tools typically consist of a template that
specifies the sequence of vendor-specific commands to send to the router, with pa-
rameters unique to each BGP session populated from a database; for example, these
parameters might indicate a customer’s name, AS number, address block(s), and the
appropriate route-maps to use. When automated tools are not used, the network
operators typically have configuration-checking tools to ensure that the sessions
are configured correctly, and that different sessions are configured in a consistent
manner [16, 24].

Configuring the BGP sessions with neighboring ASes, while important, is not the
only challenge in BGP configuration. In practice, an AS consists of multiple routers
in different locations; in fact, a large ISP may easily have hundreds if not thou-
sands of routers connected by numerous links into a backbone topology. Different
routers connect to different neighbor ASes, giving each router only a partial view
of the candidate BGP routes. As such, large ISPs typically run BGP inside their
networks to allow the routers to construct a more complete view of the available
routes. These internal BGP (iBGP) sessions must be configured correctly to ensure
that each router has all the information it needs to select routes that satisfy the AS’s
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policy. The simplest solution is to have a “full-mesh” configuration, with an iBGP
session between each pair of routers. However, this approach does not scale, forcing
large ISPs to introduce hierarchy by configuring route reflectors or confederations
that limit the number of iBGP sessions and constrain the dissemination of routes.
Each route reflector, for instance, selects a single “best route” that it disseminates to
its clients; as such, the route-reflector clients do not learn all the candidate routes
they would have learned in a full-mesh configuration.

When the “topology” formed by these iBGP sessions violates certain properties,
routing anomalies like protocol oscillations, forwarding loops, traffic blackholes,
and violations of business contracts can arise [6, 31, 74]. Fortunately, static anal-
ysis of the iBGP topology, spread over the configuration of the routers inside the
AS, can detect when these problems might arise [24]. Such tools check, for in-
stance, that the top-level route reflectors are fully connected by a “full-mesh” of
iBGP sessions. This prevents “signaling partitions” that could prevent some routers
from learning any route for a destination. Static analysis can also check that route
reflectors are “close” to their clients in the underlying network topology, to ensure
that the route reflectors make the same routing decisions that their clients would
have made with full information about the alternate routes. Finally, these tools can
validate an ISP’s own local rules for ensuring reliability in the face of router fail-
ures. For instance, static analysis can verify that each router is configured with at
least two route-reflector parents. Collectively, these kinds of checks on the static
configuration of the network can prevent a wide variety of routing anomalies.

For the most part, configuration validation tools operate on the vendor-specific
configuration commands applied to individual routers. Configuration languages vary
from one vendor to another, – for example, Cisco and Juniper routers have very dif-
ferent syntax and commands, even for relatively similar configuration tasks. Even
within a single company, different router products and different generations of the
router operating system have different commands and options. This makes configu-
ration validation an immensely challenging task, where the configuration-checking
tools much support a wide range of languages and commands. To address these
challenges, research and standards activities have led to new BGP configuration
languages that are independent of the vendor-specific command syntax [1, 71], par-
ticularly in the area of BGP routing policy. In addition to abstracting vendor-specific
details, these frameworks provide some support for configuring entire networks
rather than individual routers. For example, the Routing Policy Specification Lan-
guage (RPSL) [1] is object-oriented, where objects contain AS-wide policy and
administrative information that can be published in Internet Routing Registries [37].
Routing policy can be expressed in terms of user-friendly keywords for defining ac-
tions and groups of address blocks or AS number. Configuration-generation tools
can read these specifications to generate vendor-specific commands to apply to the
individual routers [37]. However, while RPSL is used for publishing information in
the IRRs, many ISPs still use their own configuration tools (or manual processes)
for configuring their underlying routers.

In summary, the configuration of BGP takes place at many levels – within a single
router (to specify a single end point of a BGP session with the appropriate route-
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maps and addresses), between pairs of routers (to ensure consistent configuration of
the two ends of a BGP session), across different sessions to the same neighboring
AS (to ensure consistent application of the routing policy at each connection point),
and across an entire AS (to ensure that the iBGP topology is configured correctly).
In recent years, tools have emerged for static analysis of router-configuration data to
identify potential configuration mistakes, and for automated generation of the con-
figuration commands that are sent to the routers. Still, many interesting challenges
remain in raising the level of abstraction for configuring BGP, to move from the
low-level focus on configuring individual routers and BGP sessions toward config-
uring an entire network, and from the specific details of the BGP route attributes
and route-selection process to a high-level specification of an AS’s routing policy.
As the Internet continues to grow, and the business relationships between ASes be-
come increasingly complex, these issues will only become more important in the
years ahead.

9.6.5 Other Validation Systems

Netsys was an early software product for configuration validation. It was first ac-
quired by Cisco Systems and then by WANDL Corporation. It contained about a
100 requirements that were evaluated against router configurations. OPNET offers
validation products NetDoctor and NetMapper. These are not standalone but rather
modules that need to be plugged into the base IT Sentinel system [54]. For more
description of these, see [23]. None of these products offer configuration repair, rea-
soning about firewalls, or symbolic reachability analysis. The Smart Firewalls work
[13] was an early attempt at Telcordia to develop a network configuration valida-
tion system. A survey of system, not network, configuration is found in [4]. Formal
methods for jointly reasoning about IPSec and firewall polices are described in [32].
A high-level configuration language is described in [45].

9.7 Summary and Directions for Future Research

To set up network infrastructure satisfying end-to-end requirements, it is not only
necessary to run appropriate protocols on components but also to correctly configure
these components. Configuration is the “glue” for logically integrating components
at and across multiple protocol layers. Each component has a finite number of con-
figuration parameters, each of which can be set to a definite value. However, today,
the large conceptual gap between end-to-end requirements and configurations is
manually bridged. This causes large numbers of configuration errors whose adverse
effects on security, reliability, and high cost of deployment of network infrastructure
are well documented. See also [57, 62].
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Thus, it is critical to develop validation tools that check whether a given con-
figuration is consistent with the requirements it is intended to implement. Besides
checking consistency, configuration validation has another interesting application,
namely network testing. The usual invasive approach to testing has several lim-
itations. It is not scalable. It consumes resources of the network and network
administrators and has the potential to unleash malware into the network. Some
properties such as absence of single points of failure are impractical to test as they
require failing components in operational networks. A noninvasive alternative that
overcomes these limitations is analyzing configurations of network components.
This approach is analogous to testing software by analyzing its source code rather
than by running it. This approach has been evaluated for a real enterprise.

Configuration validation is inherently hard. Whether a component is correctly
configured cannot be evaluated in isolation. Rather, the global relationships into
which the component has been logically integrated with other components have
to be evaluated. Configuration repair is even harder since changing configurations
to make one requirement true may falsify another. The configuration change should
be holistic in that it should ensure that all requirements concurrently hold.

This chapter described the challenges of configuring a typical collaboration
network and the benefits of using a validation system. It then presented an ab-
stract design of a configuration validation system. It consists of four subsystems:
configuration acquisition system, requirement library, specification language, and
evaluation system. The chapter then surveyed technologies for realizing this de-
sign. Configuration acquisition systems have been built using three approaches:
parser generator, type inference, and database query. Classes of requirements in
their Requirements Library are logical structure integrity, connectivity, security, re-
liability, performance, and government regulatory. Specification languages include
visual templates, Prolog, Datalog, arithmetic quantifier-free forms, and Computa-
tional Tree Logic. Evaluation systems have used graph algorithms, the Kodkod
constraint solver for first-order logic constraints, the ZChaff SAT solver for Boolean
constraints, Binary Decision Diagrams, and symbolic model checkers. Visualization
of not just the IP topology but also of various other logical topologies provides use-
ful insights into network architecture. Logic-based languages are very useful for
creating a validation system, particularly for solving the hard problems of configu-
ration repair and symbolic reasoning about requirements.

Future research needs to focus on all four components of a validation system.
Robust configuration acquisition systems are critical to automated validation. The
accumulated experience of building large networks is vast but largely unformal-
ized. Formalizing these in a Requirement Library would not only raise the level of
abstraction at which network requirements are written but also improve their pre-
cision. New classes of requirements, one on VLAN optimization and another on
configuration complexity, are reported in [28, 65] and in [9], respectively. Specifi-
cation languages that are easy to use by network administrators are also critical for
broad adoption of validation systems. Logic-based languages are a good candidate
despite the perception that these are too complex for administrators. These are clos-
est in form to the natural language requirements in network design documents. The
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configuration languages administrators use are already declarative in that they do
not contain side-effects and the ordering of commands is unimportant. Introducing
logical operators, data structures, and quantifiers into these is a natural step toward
making these much more expressive. See [71] for a recent example of using the
Haskell functional language for specifying BGP policies. High-level descriptions
of component configurations could then again be composed by logical operators
to describe network-wide requirements. In the nearer term, even making an imple-
mentation of the Requirement Library available as APIs in system administration
languages like Perl or Python should vastly improve configuration debugging. Much
greater understanding is needed of useful ways to visualize logical structures and
relationships in networks. One might derive inspiration from works such as [70]. Fi-
nally, a good framework for repairing configurations was described in Section 9.5.3,
but it needs to be further explored. For example, one needs to understand how the
convergence of the repair procedure is affected by choice of configuration variable
to relax, and how ideas of MulVAL can be generalized and combined with those of
ConfigAssure. Creating the trust in network administrators before they allow auto-
mated repair of their component configurations is an open problem.
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Chapter 10
Measurements of Data Plane Reliability
and Performance

Nick Duffield and Al Morton

10.1 Introduction

10.1.1 Service Without Measurement: A Brief History

Measurement was not a priority in the original design of the Internet, principally
because it was not needed in order to provide Best Effort service, and because the
institutions using the Internet were also the providers of this network. A techni-
cal strength of the Internet has been that endpoints have not needed visibility into
the details of the underlying network that connects them in order to transmit traf-
fic between one another. Rather, the functionality required for data to reach one
host from another is separated into layers that interact through standardized inter-
faces. The transport layer provides a host with the appearance of a conduit through
which traffic is transferred to another host; lower layers deal with routing the traffic
through the network, and the actual transmission of the data over physical links. The
Best Effort service model offers no hard performance guarantees to which confor-
mance needs to be measured. Basic robustness of connectivity – the detection of
link failures and rerouting traffic around them – was a task of the network layer, and
so need not concern the endpoints.

The situation described above has changed over the intervening years; the com-
plexity of networks, traffic, and the protocols that mediate them, the separation of
network users from network providers, coupled with customer needs for service
guarantees beyond Best Effort now require detailed traffic measurements to man-
age and engineer traffic, and to verify that performance meets required goals, and
to diagnose performance degradations when they occur. In the absence of detailed
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network monitoring capabilities integrated with the network, many researchers,
developers, and vendors jumped into the void to provide solutions. As measurement
methodologies become increasingly mature, the challenge for service providers be-
comes how to deploy and manage measurement infrastructure scalably. Indeed,
to meet this need, sophisticated measurement capabilities are increasingly being
found on network routers. Furthermore, all parties concerned with the provenance
and interpretation of measurements – vendors of measurement systems, software
and services, service providers and enterprises, network users and customers – need
a consistent way to specify how measurements are to be conducted, collected,
transmitted, and interpreted. Many of these aspects for both passive and active
measurement are now codified by standard bodies.

We continue this introduction by briefly setting out the type of passive and ac-
tive measurements that are the subject of this chapter, then previewing the broader
challenges that face service providers in realizing them in their networks.

10.1.2 Passive and Active Measurement Methods

This chapter is concerned with two forms of dataplane measurement: passive and
active measurements. These two types of measurement have generally focused on
different aspects of network behavior, support different applications, and are accom-
plished by different technical means.

� Passive measurement comprises recording information concerning traffic as it
passes observation points in the network. We consider three categories of passive
measurement:

– Link utilization statistics as provided by router interface counters; these are
retrieved from a managed device by a network management station using the
SNMP protocol.

– Flow-level measurements comprising summaries of flows of packets with
common network and transport header properties. These are commonly com-
piled by routers, then exported to a collector for storage and analysis. These
statistics enable detailed breakdown of traffic volumes according to network
and transport header fields, e.g., IP addresses and TCP/UDP ports.

– Inspection of packet payloads in order to provide application-level flow mea-
surements, or to support other payload-dependent applications such as net-
work security and troubleshooting.

	 In active measurement, probe traffic is inserted into the network, and the probe
traffic, or the response of the network to it, is subsequently measured. Compar-
ing the probe and response traffic provides a measure of network performance,
as experienced by the probes. Active probing has been conducted by standalone
tools such as ping and traceroute [53] that utilize or coerce IP proto-
cols for measurement functionality. These and other methods are used for active
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measurement between hosts in special purpose measurement infrastructures, or
between network routers, or from these to other endpoints such as application or
other servers.

Although the correspondence between methods and applications – passive mea-
surement for traffic analysis and active measurement for performance – has been
the norm, it is not firm: passive measurement is used to observe probe packets, and
there are purely passive approaches to performance measurement.

10.1.3 Challenges for Measurement Infrastructure
and Applications

We now describe challenges facing design and deployment of active and passive
measurement infrastructure by service providers and enterprises. As we discuss
passive and active measurement methodologies in the following sections, we shall
discuss their strengths and weaknesses in meeting these challenges. As one would
expect, weaknesses in some of the more mature methods that we discuss have often
provided the motivation for subsequent methods.

� Speed Increasingly fast line rates challenge the ability of routers to perform
complex per packet processing, including updating flow statistics, and packet
content inspection.

� Scale The product of network speed times the large number of devices produc-
ing measurements, gives rise to an immense amount of measurement data (e.g.,
flow statistics). In addition to consuming resources at the observation points,
these data require transmission, storage, and processing in the measurement in-
frastructure and back-end systems.

� Granularity Service providers and their customers increasingly require a de-
tailed picture of network usage and performance. This is both to support indi-
vidualized routine reporting, and also to support detailed retrospective studies of
network behavior. These requirements reduce the utility of aggregate usage mea-
surements, such as link-level counters, and simple performance measurement
tools, such as ping and traceroute.

� Scope For passive measurement: not all routers support granular measurement
functionality, e.g, reporting flow statistics; or, the functionality may not be en-
abled due to resource constraints at the observation point or in the measurement
collection infrastructure. When measurements are performed, information about
protocol layers below IP (such as MPLS), or optical layer attributes (such as the
physical link of an IP composite link) may be incompletely reported or even ab-
sent. Information above the network layer may be hidden as a result of endpoint
encryption. For active measurement: not all network paths or links may be di-
rectly measured because of cost or other limitations in the deployment of active
measurement hosts.
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� Timeliness Measurement applications increasingly require short temporal gran-
ularity of measurements, either because it is desirable to measure events of short
duration, such as traffic microbursts and sub-second timescale routing events, or
because the reporting latency must be short, e.g., in real-time anomaly detection
for security applications. The concomitant increase in measurement reporting or
polling frequency increases load on measurement devices and increases the num-
ber of measurement data points.

� Accuracy In passive measurement, reduction of data volumes through sam-
pling, in order to meet the challenges of speed and scale, introduces statistical
uncertainty into measurements. In active measurement, bandwidth and scale
constraints place a limit on active probing frequency and hence measurement
accuracy is inherently dependent on the duration of the measurement period.

� Management There are several challenges for the management and administra-
tion of measurement infrastructure.

– Reliability Measurement infrastructure components are subject to failure
or outage, resulting in loss or corruption of measurements. The effects of
component failure can be mitigated (i) at the infrastructure level (providing
redundant capacity with fast detection of failure resulting in failover to backup
subsystems), (ii) by employing reporting paradigms (e.g., sequence numbers)
that facilitate automated checking, flagging, or workarounds for missing data,
and (iii) reporting measurement uncertainty due to missing data or sampling
to the consumer of the measurements.

– Correlation Measurement applications may require correlation of measure-
ments generated by different measurement subsystems, for example, passive
and active traffic measurements, logs from application servers, and authen-
tication, authorization, and accounting subsystems. A common case is when
measurements are to be attributed to an entity such as an end host, but the
mapping between measurement identifier (such as source IP address) and en-
tity is dynamic (e.g., dynamic DHCP mappings). Correlation of multiple data
sets presents challenges for data management, e.g., due to data size, diverse
provenance, physical locations, and access policies. The measurement infras-
tructure must facilitate correlation by measures including the synchronization
of timestamps set by different measurement subsystems.

– Consistency The methodologies, reporting and interpretation of measure-
ments must be consistent across different equipment and network manage-
ment software vendors, service providers, and their customers.

In this chapter, Sections 10.2–10.6 cover passive measurement, including link-
level aggregates, flow measurement, sampling, packet selection, and deep packet
inspection (DPI). Sections 10.7–10.10 cover active measurements, including stan-
dardization of performance metrics, service level agreements, and deployment
issues for measurement infrastructures. We conclude with an outlook on future chal-
lenges in Section 10.11. We shall make use of and refer to other chapters in this
book that deal with specific applications of measurements, principally Chapter 5 on
Network Planning and Chapter 13 on Network Security.
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10.2 Passive Traffic Measurement

As previewed in Section 10.1.2, we consider three broad types of passive measure-
ment: link statistics, flow measurements, and DPI. These encompass methods that
are currently employed in provider networks, and also describe some newer ap-
proaches that have been proposed or may be deployed in the medium term. We now
motivate and outline in more detail the material on passive measurement.

Section 10.3 describes SNMP measurements, or, more precisely, interface packet
counters maintained in a router’s Management Information Base (MIB) that are
retrieved using the Simple Network Management Protocol (SNMP). The remote
monitoring capabilities supported by the RMON MIB are also discussed.

SNMP measurements provide an undifferentiated view of traffic on a link. By
contrast, measurement applications often need to classify traffic according to the
values occurring in protocol header fields that occur at different levels of the pro-
tocol stack. They must determine the aggregate traffic volumes attributable to each
such value, for example, to each combination of the network layer IP addresses and
transport layer TCP/UDP ports. This information, and that relating to encapsulating
protocols such as MPLS, has come to be known as “packet header” information.
This is contrasted with “packet payload” or “packet content” information, which in-
cludes higher layer application and protocol information. This information may be
spread across multiple network level packets.

The major development in passive traffic measurement over the last roughly
20 years, that serves these needs, has been traffic flow measurement. Traffic flows
are sets of packets with common network/transport header values observed locally
in time. Routers commonly compile summary statistics of flows (total packets,
bytes, timing information) and report them, together with the common header val-
ues and some associated router state – but without any payload information – in a
flow record that is exported to a collector. Cisco’s NetFlow is the prime example.
Flow records provide a relatively detailed representation of network traffic that sup-
ports many applications. Several of these are covered in detail in other chapters of
this book: generation of traffic matrices and their use in network planning is de-
scribed in Chapter 5; analysis of traffic patterns and anomalies for network security
is described in Chapter 13. Related applications are the routine reporting of traffic
matrices and trending of traffic volumes and application mix for customers and for
service provider’s network and business development organizations (see e.g. [5]).

Section 10.4 describes traffic flow measurement, including the operational for-
mation of flow statistics, protocols for the standardization of flow measurement,
flow measurement collection infrastructure, the use of sampling both packets and
flow records themselves in order to meet the challenges of speed and scale and its
impact on measurement accuracy, some recent proposals for traffic flow measure-
ment and aggregation, and concludes with some applications of flow measurements.

Uniform packet sampling is one member of a more general class of packet selec-
tion primitives, that also includes filtering and more general sampling operations.
In Section 10.5, we describe standardization of packet selection operations, their
realization in routers, and applications of combined selection primitive for network
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management. We describe in detail the hash-based selection primitive, which al-
lows for consistent selection of the same packet at different observation points, and
discuss new measurement applications that this enables.

Packet header-based flow measurements provide little visibility into properties of
the packet payload. However, network- and transport-level packet headers provide
only a partial indication of traffic properties for the purposes of application char-
acterization, security monitoring and attack mitigation, and software and protocol
debugging. Section 10.6 reviews technologies for DPI of packet payload beyond the
network- and transport-level headers, and shows how it serves these applications.

10.3 SNMP, MIBs, and RMON

In this section, we discuss traffic statistics that are maintained within routers and
the methods and protocols for their recovery. A comprehensive treatment of these
protocols and their realization can be found in [25].

10.3.1 Router Measurement Databases: MIBs

A MIB is a type of hierarchical database maintained by devices such as routers.
MIBs have been defined by equipment vendors and standardized by the IETF.
Currently, over 10,000 MIBs are defined. The MIB most relevant for traffic measure-
ment purposes is MIB-II [60] that maintains counters for the total bytes and numbers
of unicast and multicast packets received on an interface, along with discarded and
errored packets. The Interface-MIB [59] further provides counts of multicast pack-
ets per multicast address. Protocol-specific MIBs, e.g., for MPLS [76], also provide
counts of inbound and outbound packets per interface that use those protocols.

10.3.2 Retrieval of Measurements: SNMP

SNMP [77] is the Internet Protocol used to manage MIBs. A SNMP agent in the
managed device is used to access the MIB and communicate object values to or from
a network management station. SNMP has a small number of basic command types.
Read commands are used to retrieve objects from the MIB. Write commands are
used to write object values to the MIB. Notify commands are used to set conditions
under which the managed device will autonomously generate a report. The most
recent version of SNMP, SNMPv3, offers security functionality, including encryp-
tion and authentication, that were weaker or absent in earlier versions. For traffic
measurement applications, the MIB interface-level packet and byte counters are re-
trieved by periodic SNMP polling from the management station; a polling interval
of 5 min is common. The total packets and bytes transmitted between successive
polls are then obtained by subtraction.
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10.3.3 Remote Monitoring: RMON

The RMON MIB [81] supports a more detailed capability for remote monitor-
ing than MIB-II, enabling the aggregation and notification over relatively complex
events, e.g involving multiple packets. The original focus of RMON was in remote
monitoring of LANs; resource limitations make RMON generally unsuitable for
monitoring high rate packet streams in the WAN context, e.g., to supply greater
detail than presented by SNMP/MIB-II measurements. Indeed, the limitations of
RMON motivate the alternate flow and packet measurement paradigm in which
samples or aggregates of packet header information are exported from the router
to a collector which supports reporting, analysis, and alarming functionality, rather
than the router performing these functions itself. We explore this paradigm in more
detail in the following sections.

10.3.4 Properties and Applications of SNMP/MIB

We now review how SNMP/MIB measurements align with the general measure-
ment challenges described in Section 10.1.3. Scope: The major strength of SNMP
measurements is their ubiquitous availability from router MIBs. Scale: From the
data management point of view, SNMP statistics have the advantage of being rel-
atively compact, routinely comprising a fixed length data collected per interface at
each polling instant, commonly every 5 min. Granularity: The main limitation of
SNMP measurement is that they maintain packet and byte counters per interface
only. Timeliness: The externally chosen and relatively infrequent polling times for
SNMP measurements limit their utility for real-time or event-driven measurement
applications.

Historically, SNMP measurements have been a powerful tool in the management
of networks with undifferentiated service classes. SNMP statistics have been used to
trend link utilization, and network administrators have used these trends to plan and
prioritize link deployment and upgrades, on the basis of heuristics that relate link
utilization to acceptable levels of performance. Active performance measurements
using the ping and traceroute tools can also inform these decisions.

Although SNMP measurement do not directly report any constituent details
within link aggregates, network topology and routing in practice constrain the set of
possible edge-to-edge traffic flows that can give rise to the collection of measured
traffic rates over all network links. This leads to the formulation of an inverse prob-
lem to recover the edge-to-edge traffic matrices from the link aggregates. A number
of approaches have been proposed and some are sufficiently accurate to be of op-
erational use; for further detail see Chapter 5. Knowledge of the traffic matrices
provides powerful new information beyond simple trending, because it allows the
prediction of link utilization under different scenarios for routing, topology, and
spatially heterogeneous changes in demand.
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10.4 Traffic Flow Measurement

This section describes traffic flow measurement, including the operational formation
of flow statistics, protocols for the standardization of flow measurement, flow
measurement collection infrastructure, the use of sampling both packets and flow
records themselves in order to meet the challenges of speed and scale and its impact
on measurement accuracy, some recent proposals for traffic flow measurement and
aggregation, and concludes with some applications of flow measurements.

10.4.1 Flows and Flow Records

10.4.1.1 Flow and Flow Keys

A flow of traffic is a set of packets with a common property, known as the flow key,
observed within a period of time. A set of interleaved flows is depicted in Fig. 10.1.
Many routers construct and export summary statistics on flows of packets that pass
through them. A flow record can be thought of as summarizing a set of packets aris-
ing in the network through some higher-level transaction, e.g., a remote terminal
session, or a web-page download. In practice, the set of packets that are included in
a flow depends on the algorithm used by the router to assign packets to flows. The
flow key is usually specified by fields from the packet header, such as the IP source
and destination address and TCP/UDP port numbers, and may also include informa-
tion from the packet’s treatment at the observation point, such as router interface(s)
traversed. Flows in which the key is specified by individual values of these fields are
often called raw flows, as opposed to aggregate flows in which the key is specified
by a range of these quantities. As we discuss further in Section 10.4.3.2, routers
commonly create flow records from a sampled substream of packets.

10.4.1.2 Operational Construction of Flow Records

Flow statistics are created as follows. A router maintains a cache comprising entries
for each active flow, i.e., those flows currently under measurement. Each entry in-
cludes the key and summary statistics for the flow such as total packets and bytes,

Fig. 10.1 Flows of observed packets, key indicated by shading
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and times of observation of the first and last packets. When the router observes a
packet, it performs a cache lookup on the key to determine if the corresponding
flow is active. If not, it instantiates a new entry for that key. The flow statistics are
then updated accordingly. A router terminates the recording of a flow according to
criteria describe below; then the flow’s statistics are exported in a flow record, and
the associated cache memory released for use by new flows. Flow termination cri-
teria include: (i) inactive flow or interpacket timeout: the time since the last packet
observed for the flow exceeds some threshold; (ii) protocol-level information, e.g., a
TCP FIN packet that terminates a TCP connection; (iii) memory management: ter-
mination to release memory for new flows; and (iv) active flow timeout: to prevent
data staleness, flows are terminated after a given elapsed time since the arrival of
the first packet of the flow.

The summary information in the flow record may include, as well as the flow
key, and summary statistics of packet timing and size, other information relating to
the packet treatment in the router, such as interfaces traversed, next hop router, and
routing state information. Additionally, lower layer protocol information from the
packet header may be included. For example, Cisco’s NetFlow has a partial ability
to report the MPLS label stack: it can report up to three labels from the MPLS label
stack, with position in stack configurable. NetFlow can in some cases report the
loopback address of the certain tunnel endpoints.

10.4.1.3 Commercial and Standardized Flow Reporting

The idea of modeling traffic as packets grouped by a common property seems first to
have appeared in [54], and the idea was taken up in support of internet accounting
in [62], and systematized as a general measurement methodology in [22]. Early
standardization efforts within the Real Time Flow Measurement working group of
the Internet Engineering Task Force (IETF) has now been supplanted by the work
of the IP Flow Information eXport working group (IPFIX) [49]. In practice flow
measurement has become largely identified with Cisco’s NetFlow [18] due to (i)
the large installed base; (ii) its emulation in other vendors’ products, and (iii) its
effective standardization by the use of NetFlow version 9 [23] as the starting point
for the IPFIX protocol. NetFlow v9 offers the ability to administrators to define
and configure flow keys, aggregation schemes, and the information reported in flow
records.

An alternative reporting paradigm is provided by sFlow [71], in which header-
level information from a subset of sampled packets are exported directly without
aggregating information from packet bearing the same key. sFlow reports include a
position count of the sampled packet within the original traffic stream; this facilitates
estimating traffic rates.
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10.4.2 Flow Measurement Infrastructure

10.4.2.1 Generation and Export of Flow Records

Cisco originated NetFlow as a by-product of IP route caching [17], but it has
subsequently evolved as a measurement and reporting subsystem in its own right.
Other router vendors now support the compilation of flow statistics, e.g., Juniper’s
JFlow [55], with the flow information being exported using the NetFlow version
9 format or according to the IPFIX standard. Note that implementation differences
may lead to different information being reported across different routers. Standalone
monitoring devices as discussed in Section 10.6.2 may also compile and export flow
records.

Cisco Flexible NetFlow [14] provides the ability to instantiate and separately
configure multiple flow compilers that operate concurrently. This allows a single
router to serve different measurement applications that may have different require-
ments: traffic can be selected by first filtering on header fields; parameters such as
sampling granularity, spatial and temporal aggregation granularity, reporting detail
and frequency, and collector destination can be specified for each instantiation. We
discuss packet selection operations more generally in Section 10.5.

10.4.2.2 Collection and Mediation of Flow Records

Flow records are exported from the observation point, either directly to a collector,
or through a mediation device. NetFlow collection systems are available commer-
cially [15] or as freeware [10], either in a basic form that receives and writes flow
records to storage, or as part of larger traffic analysis system to support network
management functions [5, 69], or focused on specific applications such as secu-
rity [68]. Although export of flow records may take place directly to the ultimate
collector, there are two architectural reasons that favor inserting mediation devices
in the export path: scalability and reliability. The primary reason is scalability. Even
with the compression of information that summarizes a set of packets in a fixed
length flow record, the volumes of flow records produced by large-scale network in-
frastructure are enormous. As a rough example, a network comprising 100 10 Gb/s
links that are 50% loaded in each direction, and in which each flow traverses ten
routers, each of which compiles flow statistics after packet sampling at a rate of 1 in
several hundred (see Section 10.4.3.2), would produce 1Gb/s of flow records, i.e.,
roughly 10 TeraBytes per day.

A secondary reason for using mediation boxes has been transmission reliabil-
ity. Until recently, NetFlow has exclusively used UDP for export, in part to avoid
the need for buffer flow records at the exporter, as would be required by a reliable
transport protocol. But the use of UDP exposes flow records to potential loss in
transit, particularly over long WAN paths. Due to skew in flow length distributions
(see Section 10.4.3.3) uncontrolled loss of the records of long flows could severely
reduce measurement accuracy.
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Fig. 10.2 Flow measurement collection infrastructure: hardware elements, their resources, and
sampling and aggregation operations that act on the measurements

Mediation devices can address these issues and provided additional benefits:

� Data Reduction By aggregating and sampling flow records, then exporting the
reduced data to a central collector.

� Reliable Staging The mediator can receive flow records over a LAN with con-
trolled loss characteristics, then export flow records (or samples or aggregates)
to the ultimate collector using a reliable transport protocol such as TCP. NetFlow
v9 and the IPFIX protocol both support SCTP [78] for export, which gives ad-
ministrators flexibility to select a desired trade-off between reliability and buffer
resource usage at the exporter.

� Distributed Query The mediation devices may also support queries on the
flow records that traverse them, and thus together constitute a distributed query
system.

� Selective Export Multiple streams of flow records selected according to speci-
fied criteria may be exported to collectors serving different applications.

An example of such an architecture is illustrated in Fig. 10.2; see also [39]. In each
of a number of geographically distributed router centers, a mediation device receives
flow records from its colocated routers; aggregates and samples are then exported to
ultimate collector. Protocols for flow mediators are currently under standardization
in the IPFIX working group of the IETF [49].

10.4.2.3 Collection and Warehousing of Flow Records

The final component of the collection infrastructure is the repository that serves to
receive and store the flow records, and serve as a database for reporting and query
functions. Concerning the attributes of a data store:

� Capacity Must be extensive; even with packet and flow sampling, a large ser-
vice provider network may generate many GB of flow records per day.
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� DataBase Management System Must be well matched to the challenges of large
datasets, including rapid ingestion and indexing, managing large tables, a high-
level query language to support complex queries, transaction logging, and data
recovery. The Daytona DBMS is an example of such a system in current use;
see [44].

� Data Sources Interpretation of flow data typically requires joining with other
datasets, which should also be present in the management system, including but
not limited to, topology and configuration data, control plane measurements (see
Chapter 11 for a description of routing state monitoring), MIB variables acquired
by SNMP polling, network elements logs from authentication, authorization, and
accounting servers, and logs from DHCP and other network servers.

� Data Quality Data may be corrupt or missing due to failures in the collection
and reporting systems. The complexity and volume of measured data necessitate
automated mechanisms to detect, mark, and mitigate unclean data; see e.g. [30].

� Data Security and Customer Privacy Flow measurements and other data listed
should be considered as sensitive customer information. Service provider policies
must specify practices to maintain the integrity of the data, including controlled
and auditable access restricted to individuals needing to work with the data,
encryption, anonymization, and data retention policies.

10.4.3 Sampling in Flow Measurement and Collection

10.4.3.1 Sampling as a Data Reduction Method

In the previous sections, we have touched on the fact that the speed of communi-
cations links provides a challenge for the formation of flow records at the router,
and both speed and the scale of networks – the large number of interfaces that can
produce flow records – provide a challenge for the collection and storage of flow
records. Figure 10.2 illustrates the relevant resources at the router, mediator, and
collector. To meet these challenges, data reduction must be performed. The reduc-
tion method must be well matched to the uses to which the reduced data is put.
Three reduction methods are usually considered:

� Aggregation Summarizing measurements that share common properties. In the
context of traffic flow measurement, header-level information on packets with the
same key is aggregated into flows. Subsequent aggregation of flow records into
predefined aggregates (e.g., aggregate traffic to each routing prefix) is a powerful
tool for routine reporting.

� Filtering Selection of a subset of measurement that matches a specified crite-
rion. Filtering is useful for drill down (e.g., to a traffic subset of interest).

� Sampling Selection of data points according to some nondeterministic
criterion.
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A limitation for aggregation and filtering as general data reduction methods is the
manner in which they lose visibility into the data: traffic not matching a filter is dis-
carded; detail within an aggregate is lost (while flow records aggregate packets over
time, they need not aggregate spatially, i.e., over packet header values). Of the three
methods, only sampling retains the spatial granularity of the original data, and thus
retains the ability to support arbitrary aggregations of the data, include those formu-
lated after the measurements were made. This is important to support exploratory,
forensic, and troubleshooting functions, where the traffic aggregates of interest are
typically not known in advance. The downside of sampling is the statistical uncer-
tainty in the resulting measurements; we address this further in Section 10.4.3.4.

We now discuss sampling operations used during the construction and re-
covery of flow measurements. As illustrated in Fig. 10.2, packet sampling (see
Section 10.4.3.2) is used in routers in order to reduce the rate of the stream of
packet header information from which flow records are aggregated. The complete
flow records are then subjected to further sampling (see Section 10.4.3.3) and aggre-
gation within the collection infrastructure, at the mediator to reduce data volumes,
or in the collector, for example, dynamically sampling from a flow record database
in order to reduce query execution times, or permanently in order to select a rep-
resentative set of flow records (or their aggregates) for archiving. We discuss the
ramifications of sampling for measurement accuracy in Section 10.4.3.4, and some
more recent developments in stateful sampling and aggregation the straddle the
packet and flow levels in Section 10.4.3.5. Finally, we look ahead to Section 10.5,
which sets random packet sampling in the broader context of packet selection oper-
ations and their applications, including filtering, both in the sense understood above,
and also consistent packet selection as exemplified by hash-based sampling.

10.4.3.2 Random Packet Sampled Flows

The main resource constraint for forming flow records is at the router flow cache
in which the keys of active flows are maintained. To lookup packet keys at the full
line rate of the router interfaces would require the cache to operate in fast, expen-
sive memory (SRAM). Moreover, routers carry increasingly large numbers of flows
concurrently, necessitating a large cache. By sampling the packet stream in advance
of the construction of flow records, the cache lookup rate is reduced, enabling the
cache to be implemented in slower, less expensive, memory (DRAM).

A number of different sampling methods are available. Cisco’s Sampled NetFlow
samples packets every N th packet systematically, where N is a configurable param-
eter. Random Sampled NetFlow [21] feature employs stratified sampling based on
arrival count: one packet is selected at random out of every window on N consec-
utive arrivals. Although these two methods have the same average sampling rate,
there are higher-order differences in the way multiple packets are sampled; for
example, consecutive packets are never selected in Sampled NetFlow, while they
can be in Random Sampled NetFlow. However, the effect of such differences on
flow statistics is expected to be small except possibly for flows which that represent
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noticeable proportion (greater than 1=N ) of the load, since the position of a given
flow’s packets in the packet arrival order at an interface is then effectively random-
ized by the remaining traffic. In distinction, Juniper’s J-flow [55] offers the ability
to sample runs of consecutive packets.

Sampling and other packet selection methods have been standardized in the
PSAMP working group of the IETF [24,32,33,82]. We review these in greater detail
in Section 10.5. PSAMP is positioned as a protocol to select packets for reporting at
an observation point, with IPFIX as the export protocol. For example, selected pack-
ets could be reported on as single packet flow records, using zero active timeout for
immediate reporting.

If sampling 1 out of N packets on average, then from a flow with far fewer than
N packets, if any packets are sampled, typically only one packet will be sampled. In
this case one might just as well sample packets without constructing flow records;
this would save resources at the router since there would be no need to cache the sin-
gle packet flows until expiration of the interpacket timeout. Indeed, there are many
short flows: web traffic is a large component of Internet traffic, in which the aver-
age flow length is quite short, around 16 packets in one study [42]. However, there
are several reasons to expect that longer flows will continue to account for much
traffic. First, several prevalent applications and application classes predominantly
generate long-lived flows, for example, multimedia downloads and streaming, and
VoIP. Secondly, tunneling protocols such as IPSEC [56] may aggregate flows be-
tween multiple endpoints into a packet stream in which the endpoint identities are
not visible in the network core; from the measurement standpoint, the stream will
thus appear as a single longer flow. For these reasons, unless packet sampling peri-
ods becomes comparable with or larger than the number of packets in these flows,
flow statistics will still afford useful compression of information.

10.4.3.3 Flow Record Sampling

Sampling flow records present a challenge, because of the highly skewed distribu-
tion of flow sizes found in network traffic. Experimental studies have shown that
the distribution of flow lengths is heavy tailed; in particular, a large proportion of
the total bytes and packets in the traffic stream occur in a small proportion of the
flows; see, e.g. [42]. This makes the requirements for flow record sampling funda-
mentally different to those for packet sampling. While packets have a bounded size,
uniform and uncontrolled sampling due to transmission loss are far more problem-
atic for flow records than for sampled packets, since omission of a single flow report
can have huge impact on measured traffic volumes. This motivates sampling depen-
dent on the size of the flow reported on. A simple approach would be to discard flow
records whose byte size falls below a threshold. This gives a conservative, and hence
biased measure of the total bytes, and is susceptible to subversion: an application or
user that splits its traffic up into small flows could evade measurement altogether.
This would be a weakness for accounting and security applications.



10 Measurements of Data Plane Reliability and Performance 333

Smart Sampling can be used to avoid the problems associated with uniform sam-
pling of flow records. Smart Sampling is designed with the specific aim of achieving
the optimal trade-off between the number of flow records actually sampled, and the
accuracy of estimates of underlying traffic volumes derived from those samples.

In the simplest form of Smart Sampling, called Threshold Sampling [36], each
flow record is sampled independently with a probability that depends on the reported
flow bytes: all records that report flow bytes greater than a certain threshold z are
selected; those below threshold are selected with a probability proportional to the
flow bytes. Thus, the probability to sample a flow record representing x bytes is

pz.x/ D minf1; x=zg

The desired optimality property described above holds in the following sense. Sup-
pose X bytes are distributed over some number m of flows of size x1; : : : ; xm so
that X D Pm

iD1 xi . We consider unbiased estimates bX of X , i.e., bX is a random
quantity whose average value is X . Suppose bX is an unbiased estimate of X ob-
tained from a random selection of a subset of n < m of the original flows, having
sizes x1; : : : ; xn, where selection is independent according to some size-dependent
probability p.x/. A standard procedure to obtain unbiased estimates is to divide the
measured value by the probability that it was sampled [47]. Thus in our case each
sampled flow size is normalized by its sampling rate, so that bX D Pn

iD1 xi =p.xi /

is an unbiased estimate of X . We express the optimal trade-off as trying to minimize
a total “cost” that is a linear combination

Cz D z2EŒn� C VarŒbX�

of the average number of samples and the estimation variance, where z is a parameter
that expresses the relative importance we attach to making the number of samples
small versus making the variance small. For example, when z is large, making EŒn�

small has a larger effect on reducing Cz. It is proved in [36] that the cost Cz is
minimized for any set of flow sizes x1; : : : ; xm by using the sampling probabilities
p.x/ D pz.x/. With the probabilities pz, each selected flow xi gives rise to an
estimate xi=pz.xi / D maxfxi ; zg.

Although optimal as stated, Threshold Sampling does not control the exact num-
ber of samples taken. For example, if the number of flows doubles during a burst,
then on average, the number of samples also doubles (assuming the same flow size
distribution). However, exact control may be required in some applications, e.g.,
when storage for samples has a fixed size constraint, or for sampling a specified
number of representative records for archiving. A variant of Smart Sampling, called
Priority Sampling [37], is able to achieve a fixed sample of size n < m, as follows.
Each flow of size xi is assigned a random priority wi D xi =ai where ai is a uni-
formly distributed random number in .0; 1�. Then the k flows of highest priority are
selected for sampling, and each of them contributes an estimate maxfxi ; z0g where z0
is now a data-dependent threshold z0 set to be .k C 1/st largest priority. It is shown
in [37] that this estimate is unbiased.
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Priority Sampling is well suited for back-end database applications serving
queries that require estimation of total bytes in an arbitrary selection of flows (e.g.,
all those in a specific matrix element) over a specified time period. A random prior-
ity is generated once for each flow, and the records are stored in descending order of
priority. Then an estimate based on k flows proceeds by reading k C 1 flow records
of highest priority that match the selection criterion, forming an unbiased estimate
as above. Because the flow records already are in priority-sorted order, selection is
very fast (see [4]).

10.4.3.4 Estimation and the Statistical Impact of Sampling

Whether sampling packets or flow records, the measured numbers of packet, bytes,
or flows must be normalized in order to give an unbiased estimate of the actual traffic
from which they were derived; we saw how this was done for threshold sampling in
Section 10.4.3.3. For 1 in N packet sampling, byte estimates from selected packets
are multiplied by N . The use of sampling for measuring traffic raises the question of
how accurate estimates of traffic volumes will be. The statistical nature of estimates
might be thought to preclude their use for some purposes. However, for many sam-
pling schemes, including those described above, the frequency of estimation errors
of a given size can be computed or approximated. This can help answer questions
such as “if no packets matching a given key were sampled, then how likely is it that
there were X or more bytes in packets with this key that were missed”.

A rough indication of estimation error is the relative standard deviation (RSD),
i.e, the standard deviation of the estimator bX divided by the true value X . The RSD
for estimating an aggregate of X bytes of traffic using independent 1 in N packet
sampling is bounded above by

p
Nxmax=X where xmax is the maximum packet size.

For flow sampling with threshold z, the RSD is bounded above by
p

z=X . Observe
the RSD decreases as the aggregate size increases. In cases where multiple stages
of sampling and aggregation are employed – for example, packet sampled NetFlow
followed by Threshold Sampling of flow records – the sampling variance is additive.
In the example, the RSD becomes

p
.z C Nxmax/=X

As an example, consider 1 in N D 1;000 sampling of packets of maximum size
xmax D 1;500 bytes with a flow sampling threshold of z D 50 MB. In this case z 

Nxmax D 1:5 MB , and so Smart Sampling contributes most of the estimation error.
With these sampling parameters, estimating the 10 min average rate of a 1 Gb/s
backbone traffic stream on a backbone would incur a typical relative error of 3%. In
fact, rigorous confidence intervals for the true bytes in terms of the estimated values
can be derived (see [26, 79]), including for some cases of multistage sampling.

Using an analysis of the sampling errors, the impact of flow sampling on usage-
based charging, and ways to avoid or ameliorate estimation error, are described in
[35]. The key idea is that a combination of (i) systematic undercounting of customer
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traffic by a small amount, and (ii) using sufficiently long billing periods, can reduce
the likelihood over over-billing customers to an arbitrarily small probability.

10.4.3.5 Stateful Packet Sampling and Aggregation

The dichotomy between packet sampling on a router and flow sampling in the mea-
surement infrastructure, while architecturally simple, does not necessarily result in
the best trade-off between resource usage and measurement accuracy. We briefly re-
view some recent research that proposed to maintain various degrees of router state
in order to select and maintain flow records for subsets of packets.

� Sample and Hold [41] All packets arriving at the router whose keys are not
currently in the flow cache are subjected to sampling; packets that are selected in
this manner have a corresponding flow cache entry created, and all subsequent
packets with the same key are selected (subject to timeout). Thus, long flows are
preferentially sampled over short flows, since the flow cache tends to be pop-
ulated only by the longer flows. This achieves similar aims to Smart Sampling
but in a purely packet-based solution. While the cache can be made smaller than
would be required to measure all flows, a cache lookup is still required for each
packet.

� Adaptive Sampling Methods Both NetFlow and Sample and Hold can be made
adaptive by adjusting their underlying sampling rate and flow termination criteria
in response to resource usage, e.g., to control cache occupancy and flow record
export rate. Now recall from Section 10.4.3.3 that construction of unbiased esti-
mators required normalization of sample bytes and packet counts by dividing by
the sampling rate. Adjustment of the sampling rate requires matching renormal-
ization in estimators in order to maintain unbiasedness. Partial flow records may
be resampled (and further renormalized) and may be discarded in some cases (see
[40]). In one variant of this approach the router maintains and exports a strictly
bounded number of flow records, providing unbiased estimates of the original
traffic bytes.

� Stepping Methods Stepping is an extension of the adaptive method in which,
when downward adjustments of the sampling rate occur, estimates of the total
bytes in packets of a given key that arrived since the previous such adjustment –
the steps – are sampled and exported from the flow cache. Such exports can take
place from the flow cache into DRAM, where the steps can be aggregated. The
payoff is higher estimation accuracy, because once exported, the steps are not
subject to loss (see [27]).

� Run-Based Estimation In its simplest form, run-based estimation involves
caching in SRAM only the key of the last observed packet. If the current packet
matches the key, the run event is registered in a cache in DRAM. Using a time-
series model, the statistics of the original traffic are estimated from those of the
runs. A generalization of the approach can additionally utilize longer runs [45].
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10.5 Packet Selection Methods for Traffic Flow Measurement

10.5.1 Packet Selection Primitives and Standards

In Section 10.4.3.2 random packet sampling was presented as a necessity for reduc-
ing packet rates prior to the formation of flow statistics; moreover, random sampling
has significant advantages over filtering and aggregation as a continuously operating
general data reduction method. In this chapter we shift the emphasis somewhat and
consider a set of packet selection primitives, and their ability to serve a variety of
specific measurement applications. Following [33] we classify selection primitives
as follows:

� Filtering Selection of packets based deterministically on their content. There
are two important subcases:

– Property Match Filtering Selection of a packet if a field or fields match a
predefined value.

– Hash-Based Selection A hash of the packet is calculated and the packet is
selected if it falls in a certain range.

� Sampling Selection of packets nondeterministically.

Some primitives of this type are provided by Cisco Flexible NetFlow [14] that
allows combinations of certain random sampling and property match filters. The
framework above was standardized in the Packet Sampling (PSAMP) working group
of the IETF [33]. A collection of sampling primitives is described in [82], including
but not limited to the fixed rate sampling from Section 10.4.3.2. Property match
filtering can be based on packet header fields (such as IP address and port) and the
packet treatment by the router, including interfaces traversed, and the routing state
in operation during the packet’s transit of the router. Hash-based selection, including
specific hash functions, is also standardized in [82]. We describe the operation and
applications of hash-based selection in Section 10.5.2.

From both at the implementation and standards viewpoint, packet selection is
positioned as a front-end process that passes selected packets to a process that com-
piles and exports flow statistics. Thus, a PSAMP packet selector passes packets to
an IPFIX flow reporting process. A flow record can report on single selected packets
by setting the inactive flow timeout to zero. A key development in support of net-
work management is the ability of routers and other measurement devices to support
simultaneous operation of multiple independent measurements, each of which is
composed of combinations of packet selection primitives. This type of capability is
already present in Cisco Flexible NetFlow [14] and standardized in PSAMP/IPFIX.
Each packet selection process can, in principle, be associated with its own inde-
pendently configurable flow reporting process. The ability to dynamically configure
or reconfigure packet selection provides a powerful tool for a variety of applica-
tions, from low-rate sampling of all traffic to supply routine reporting for Network
Operation Center (NOC) wallboard displays, to targeted high-rate sampling that
drills down on an anomaly in real time (see Fig. 10.3).
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Fig. 10.3 Concurrent combinations of sampling and filtering packet selection primitives

10.5.2 Consistent Packet Sampling and Hash-Based Selection

The aim of consistent packet sampling (also called Trajectory Sampling) is to sam-
ple a subset of packets at some or all routers that they traverse. The motivation is
new measurement applications that are enabled or enhanced; see below. Consistent
packet sampling can be implemented through hash-based selection. Routers calcu-
late a hash of packet content that is invariant along the packet path, and the packet is
selected for reporting if the hash values falls in a specified range. When all routers
use the same hash function and range, the sampling decisions for each packet are
identical at all points along its path. Thus, each packet signals implicitly to the router
whether it should be sampled. Information on the sampled packet can be reported
in flow records, potentially one per sampled packet. In order to aid association of
different reports on the same packet by the collector, the report can include not only
packet header fields, but also a packet label or digest, taking the form of a hash (dis-
tinct from that used for selection) whose input includes part of the packet payload.

An ideal hash function would provide the appearance of uniform random sam-
pling over the possible hash input values. This is important both for accurate traffic
estimation purposes, and for integrity: network attackers should not be able to pre-
dict packet sampling outcomes. Use of a cryptographic hash function with private
parameter provides the strongest conformance to the ideal. In practice, implemen-
tation constraints on computational resources may require weaker hash functions to
be used. Hash-based packet selection has been proposed in [38], with further work
on its applications passive performance monitoring in [34, 83]. Security ramifica-
tions of different hash function choices are discussed in [43]. Hash-based sampling
has been standardized as part of the PSAMP standard in the IETF [82].
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Applications of consistent sampling include:

� Route Troubleshooting Direct measurements of packet paths can be used to
detect routing loops and measure transient behavior of traffic paths under rout-
ing changes. This detailed view is not provided by monitoring routing protocols
alone. Independent packet sampling at different locations does not provide such
a fine timescale view in general, since a given packet is typically not sampled at
multiple locations.

� Passive Performance Measurement Correlating packet samples at two or more
points on a path enables direct measurement of the performance experienced by
traffic on the path, such as loss (as indicated by packets present at one point on
the path that are missing downstream) and latency (if reports on sampled packets
include measurement timestamps from synchronized clocks). This is an attractive
application for service providers since it can alert performance degradation at the
level of individual customers, reflecting the same packet transit performance that
customers themselves experience.

10.6 Deep Packet Inspection

Sections 10.4 and 10.5 are concerned with the measurement and characterization
of traffic at the granularity of a flow key that depends on the packet only through
header fields. However, there are important network management tasks that depend
on knowledge of packet payloads, and hence for which traffic flow monitoring is
insufficient. The term DPI denotes measurement and possible treatment of packets
based on their payload. We describe some broad designs policy issues associated
with the deployment of DPI in Section 10.6.1; specific technologies for DPI devices
are described in Section 10.6.2, and three applications of DPI for network man-
agement in Section 10.6.3: application-specific bandwidth management, network
security monitoring, and troubleshooting.

10.6.1 Design and Policy Issues for DPI Deployment

DPI functions are not uniformly featured in routers, and hence some uses will re-
quire additional infrastructure deployment. DPI is extremely resource intensive due
to the need to access and process packet payload at line rate. This makes DPI expen-
sive compared with flow measurement, which hinders its widespread deployment.
A limited deployment may be restricted to important functional sites, or at a repre-
sentative subset of different site types, e.g., a backbone link, an aggregation router,
or in front of datacenter.

Like all traffic measurements, DPI must maintain privacy and confidentiality of
customer information throughout the measurement collection and analysis process.
Although flow measurements already encode patterns of communications through
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source and destination IP addresses, DPI of packet payload may also encompass
the content of the communications. Service provider policies must specify practices
to maintain the privacy of the data, including controlled and auditable access re-
stricted to individuals needing to work with the data, encryption, anonymization,
and data retention policies. See also the discussion specific to DPI for security mon-
itoring in Section 13.4. Furthermore, any use of DPI data must be conducted in
accordance with legal regulations in force. Similar issues exist for providers of host-
based services as opposed to communications services, where servers intrinsically
have access to user-specific data that may be presented by the customer in the course
of using those services, e.g., email, search, or e-commerce transactions.

10.6.2 Technologies for DPI

DPI functionality is realized in dedicated general-purpose traffic monitors [28], and
within vendor equipment targeted at specific applications such as security moni-
toring [68] and application-specific bandwidth management [19]. As the value of
DPI-based applications for service providers grows, DPI functionality has also ap-
peared in some routers and switches [16]. General-purpose computing platforms
have been used for DPI, e.g., using Snort [74], an open-source intrusion detection
system. Some DPI devices operate in line where they perform network management
functions directly, such as security-based filtering or application bandwidth man-
agement. Others act purely as monitors and require a copy of the packet stream to
be presented at an interface. There are several ways by which this can be accom-
plished: (i) by copying the physical signal that carries the packets, e.g., with an
optical splitter; (ii) by attaching the monitor to a shared medium carrying the traffic,
or (iii) by having a router or switch copy packets to an interface on the monitor.

The architectural challenges for all DPI platforms are: (i) the high incoming
packet rate; (ii) the large number of distinct signatures against which each packet
is to be matched – Snort has several hundred – and (iii) signatures that match over
multiple packets, and hence require flow-level state to be maintained in the measure-
ment device. These factors have tended to favor the use of dedicated DPI devices
ahead of router-based integration in the past. They also drive architectural design
for DPI devices in which aggregation and analysis if pushed down as close to the
data stream as possible.

Coupled with general-purpose computational platforms, tcpdump [52] is a public
domain software that captures packets at an interface of the host on which it exe-
cutes. Tcpdump has been widely used as both a diagnostic tool, and also to capture
packet header traces in order to conduct reproducible exploratory studies. However,
the enormous byte rates of network data in comparison with storage and transmis-
sion resources, generally preclude collecting packet header traces longer than a few
minutes or perhaps hours. A number of anonymized packet header traces have been
made available by researchers; see e.g., ([9]). Software for removal of confidential
information from packet traces, including anonymization, is available (see [63]).
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10.6.3 Applications of DPI

In this section, we motivate the importance of DPI by describing network manage-
ment applications that require detail from packet payload: application characteriza-
tion and management, network security, and network debugging.

10.6.3.1 Application Demand Characterization and Bandwidth Management

Applications place diverse service requirements on the network. For example, real-
time applications such as VoIP require relatively small bandwidth but have stringent
latency requirements. Video downloads require high throughput but are elastic in
terms of latency. Service providers can differentiate resources among the different
service classes according to the size of the demands in each class. Hence a crucial
task for network planning is to characterize and track changes in the traffic mix
across application classes.

In the past, application and application class could be inferred reasonably well
from TCP/UDP port numbers on the basis of IANA well-known port assignments
[50]. However, purely port-based identification is becoming less easy due to factors
including (i) lack of adherence to port conventions by application designers, (ii) pig-
gybacking of applications on well-known ports, such as HTTP port 80, in order to
facilitate firewall traversal; and (iii) separation of control and data channels with
dynamic allocation of data port during control level handshaking (see Chapter 5
for further details). On the other hand, knowledge of application operation can be
used to develop packet content-level signatures. In some cases, this would involve
matching strings of an application-level protocol across one or more network pack-
ets. For applications that use separate data and control channels, this could entail
(a) matching a signature of the control channel in the manner just described with
further inspection, then (b) identifying the data channel port communicated in the
control channel, (c) using the identified data channel port to classify further packet
or flow level measurements taken (see [80]).

Application-based classification can be used purely passively. Knowledge of the
mix and relative growth between different application classes is necessary for net-
work planning. It can also be used actively to apply differentiated resource allocation
policies to different application classes, concerning traffic shaping, dropping of out-
of-profile packets, or restoration priority after failures. As an example, access to
a customer access channel can be prioritized so that the performance of delay-
sensitive VoIP traffic is not impaired by other traffic. A number of vendors supply
equipment with such capabilities (see e.g. [19, 75]).

10.6.3.2 Network Security

While some network attacks can be identified based on header-level information
this is not true in general. As a counterexample, the well-known Slammer worm
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[64] was evident due to (i) its rapid growth leading to sharp increases in traffic
volume; (ii) the increase was associated with particular values of the packet header
field, and (iii) contextual information that the application exploited predominantly
exchanges traffic across LANs or intranets rather than across the WAN. This combi-
nation of factors made it relatively easy to identify the worm and block its spread by
instantiating header-level packet filters, without significantly impacting legitimate
traffic.

However, these conditions do not hold in general. Many network attacks exploit
vulnerabilities in common applications such email, chat, p2p, and web-browsing
mediated by network communications that, in contrast with the Slammer example
[64], (i) are relatively stealthy, not exhibiting large changes in network traffic vol-
ume at least during the acquisition phase, (ii) are not distinguished from legitimate
traffic by specific header field values, and hence (iii) blend into the background of
legitimate traffic at the flow level. Examples include installation of malware such
as keystroke loggers, or the acquisition and subsequent control of zombie hosts
in botnets.

To detect and mitigate these and other attacks, packet inspection is a powerful
tool to enable matching against known signatures of malware, including viruses,
worms, trojans, botnets. Indeed, a sizable proportion of the attack detection sig-
natures commonly used in the public domain Snort packet inspection system [74]
match only on the packet payload rather than the header.

Similarly to Section 10.6.3.1, a network security tool may operate purely pas-
sively in order to gain information about unwanted traffic, or may be coupled to
filtering functions that block specific flows of traffic (see Chapter 13 for further
details).

10.6.3.3 Debugging for Software, Protocols, and Customer Support

Both networking hardware and software that implement services can contain subtle
dependencies and display unexpected behavior that, despite pre-deployment test-
ing, only becomes evident in the live network. DPI permits network operators to
monitor, evaluate, and correct such problems. To troubleshoot specific network
or service layer issues, DPI devices could be deployed at a concentration point
where specific protocol exchanges or application-layer transactions can be moni-
tored for correctness. Operators might also use portable DPI devices, which would
allow them deploy devices in specific locations to investigate suspected hardware or
software bugs. Similarly, DPI enables technicians to assist customers in debugging
customer equipment, and software installations and configurations. This can enable
technicians to rapidly determine the nature of problems rated to network transmis-
sions, rather than rely on potentially incomplete knowledge derived from customer
dialogs.
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10.7 Active Performance Measurement

This section is concerned with the challenges and design aspects of providing ac-
tive performance measurement infrastructures for service providers. The four metric
areas of common interest are:

� Connectivity Can a given host be reached from some set of hosts?
� Loss What proportion of a set of packets are lost on a path (or paths) between

two hosts? Loss may be considered in an average sense (all packets over some
period of loss) or granular in time (burst loss properties) or space (broken down,
e.g., by customer or application).

� Delay The network latency over a path (or paths) between two hosts, viewed at
the same granularity as for loss measurements.

� Throughput Bytes or packets successfully transmitted between two hosts,
potentially broken down by application or protocol (e.g., TCP vs. UDP).

Historically, active measurement tools such as ping and traceroute have
long been used to baseline roundtrip loss and delay and map IP paths, either as stan-
dalone tools, or integrated into performance measurement systems. Bulk throughput
has been estimated using the treno tool [58], which creates a probe stream that
conforms to the dynamics of TCP. There is a large body of more recent research
work proposing improved measurement methods and analysis (see, e.g., [29]). How-
ever, the focus of the remainder of this chapter concerns more the design and
deployment issues for the components of an active measurement and reporting in-
frastructure of the type increasingly deployed by service providers and enterprise
customers. Specifically:

� Performance Metric Standardization This is required in order for all parties
involved in the measurement, dissemination and interpretation of results to
agree on the methods of acquiring performance measurements, and their mean-
ing. Such parties include network service providers, their customers, third-party
measurement service providers, and measurement system vendors. Performance
metric standardization is described in Section 10.8.

� Service Level Agreements Service providers must offer specific performance
targets to their customers, based upon agreed metrics. Section 10.9 describes
processes for establishing SLAs between service providers and customers.

� Deployment of Active Measurement Infrastructures Deployment issues for
large-scale active measurement infrastructures are discussed in Section 10.10,
together with some examples of different deployment modes.

10.8 Standardization of IP Performance Metrics

In this section, we give an overview of standardization activities on IP performance
metrics. There are not one, but two standard bodies that provide the authoritative
view of IP network performance and on packet performance metrics in general.
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They are the IETF (primarily the IP Performance Metrics IPPM working group),
and the International Telecommunications Union - Telecommunications Sector
Study Group 12 (ITU-T SG 12, specifically the Packet Network Performance
Question 17). Although there are some differences in the approaches and the metric
specifications between these two bodies, they are relatively minor.

The critical advantage of using standardized metrics is the same as for any good
standard: the metrics can be implemented from unambiguous specifications, which
ensure that two measurement devices will work the same way. They will assign
timestamps at the same defined instants when a packet appears at the measurement
point (such as first bit in, or the last bit out). They will use a waiting time to dis-
tinguish between packets with long delays and packets that do not arrive (because
one cannot wait forever to report results, and for many applications a packet with
extremely long delay is as good as lost). They will perform statistical summary cal-
culations the same way, and when presented with identical network conditions to
measure, they produce the same results.

The ITU-T has defined its IP performance metrics in one primary Recom-
mendation, Y.1540. The general approach is to define basic sections bounded by
measurement points, which are

� Hosts at the source and destination(s)
� Network Sections (composed of routers and links, and usually defined by admin-

istrative boundaries)
� Exchange Links (between the other entities)

The next step is to define packet transfer reference events at the various section
boundaries. There are two main types of reference events:

� Entry event to a host, exchange link, or network section
� Exit event from a host, exchange link, or network section

Then, the fundamental outcomes of successful packet transfer and lost packet are
defined, followed by performance parameters that can be calculated on a flow of
packets (referred to using the convention “population of interest”). ITU-T’s metrics
are useful in either active or passive measurement, and do not specify sampling
methods.

The IETF began work on network performance metrics in the mid-1990s, by first
developing a comprehensive framework for active measurement [70]. The frame-
work RFC established many important conventions and notions, including:

� The expanded use of the metric definition template developed in earlier IETF
work on Benchmarking network devices [6].

� The general concept of “packets of Type-P” to reflect the possibility that packets
of different types would experience different treatment, and hence, performance
as they traverse the path. A complete specification of Type-P and the source
and destination addresses are usually equivalent to the ITU-T’s “population of
interest”.
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� The notion of “wiretime”, which recognizes that physical devices are needed to
observe packets at the IP-layer, and these devices may contribute to the observed
performance as a source of error. Other important time-related considerations are
detailed, too.

� The hierarchy of singletons (“atomic” results), samples (sets of singletons), and
statistics (calculations on samples).

A series of RFCs followed over the next decade, one for each fundamental metric
that was identified. The IETF wisely put the various metric RFCs (RFC 2679 [2]
and RFC 2680 [3]) on the Standards Track, so that the implementations could be
compared with the specifications and used to improve their quality (and narrow-
down some of the flexibility) over time. RFC 2330 [70] and RFC 3432 [72] specify
Poisson and Periodic sampling, respectively. Throughput-related definitions are in
RFC 5136 [12].

One area in which IETF was extremely flexible was its specification for delay
variation, in RFC 3393[31]. This specification applies to almost any form of de-
lay variation imaginable, and was endowed with this flexibility after considerable
discussion and comparisons between the ITU-T preferred form and other methods
(some of which were adopted in other IETF RFCs). This flexibility was achieved
using the “selection function” concept, which allows the metric designer to com-
pare any pair of packets (as long as each is unambiguously defined from a stream
of packets). Thus, this version of the delay variation specification encouraged prac-
titioners to gain experience with different metric formulations on IP networks, and
facilitated comparison between different forms by establishing a common frame-
work for their definition. A common selection function uses adjacent packets in the
stream, and this is called “Inter-Packet Delay Variation”.

In contrast, the ITU-T Recommendations of the early 1990s (for ATM networks)
used essentially the same form of delay variation metric as in Y.1540 and as used
today in Recommendations for the latest networking technologies. It is called the
“2-point Packet Delay Variation” metric. This metric defines delay variation as the
difference between a packet’s one-way delay and the delay for a single reference
packet. The recommended reference is the packet with the minimum delay in the test
sample, removing propagation from the delay distribution and emphasizing only the
variation. This definition differs significantly from the inter-packet delay variation
definition. Fortunately, an IETF project has rather completely investigated the two
main forms of delay variation metrics, and is available to provide guidance on the
appropriate form of metric for various tasks [66]. The comparison approach was to
define the key tasks (such as de-jitter buffer size and queuing time estimation) and
challenging measurement circumstances for delay variation measurements (such as
path instability and packet loss), and to examine relevant literature. In summary, the
ITU-T definition of “2-point Packet Delay Variation” was the best match to all tasks
and most circumstances, but with a requirement for more stable timing being its
only weakness.
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10.9 Performance Metrics in Service-Level Agreements

In this section, we discuss Service-Level Agreements, or SLA, and how the key
metrics defined above contribute to a successful relationship between customers
and their service providers.

10.9.1 Definition of a Service-Level Agreement (SLA)

For our purposes, we define a Service-Level Agreement as:

A binding contract between Customer and Service Provider that identifies all important as-
pects of the service being delivered, constrains those aspects to a satisfactory performance
level which can be objectively verified, and describes the method and format of the verifi-
cation report.

This definition makes the SLA-supporting role and design of active measurement
systems quite clear. The measurement system must assess the service on each of the
agreed aspects (metrics) according to the agreed reporting schedule and determine
whether the performance thresholds have been met. The details of the SLA may
even specify the points where the active measurement system will be connected to
the network, the sending characteristics of the synthetic packets dedicated for ver-
ification testing, and the confidence interval beyond which the results conclusively
indicate that the threshold was met/not met.

10.9.2 Process to Develop the Elements of an SLA

This section describes a process to develop the critical performance aspects of an
SLA. Typically, a network operator establishes a standard set of SLAs for a network
service by conducting this process internally, using a surrogate for the customer.
The specific details of the SLA may differ for different services, e.g., an enterprise
Internet access service might have a different SLA from a premium VPN service. An
SLA might specify performance metrics such as data delivery (the inverse of packet
loss), site-to-site latency by region or location, delay variation or jitter, availability,
etc. as well as a number of nonperformance metrics such as provisioning intervals.
There are also cases in which a network operator may develop a customized SLA
for a particular customer (e.g., because the size of their network or other special
circumstances demand it). The process that a service provider and the customer
would go through to develop a customized SLA illustrates the issues that need to be
addressed when developing an SLA. We present an example of such a process here.

In principle, the SLA represents a common language between the customer and
service provider. The process involves collection of requirements and a meeting of
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peers to compare the view from each side of the network boundaries. One set of
steps to create agreeable requirements is given below.

1. The customer identifies the locations where connectivity to the communications
service is required (Customer–Service Interfaces), and the service provider com-
pares the location list with available services.

2. The customer and service provider agree on the performance metrics that will
be the basis for the SLA. For example, a managed IP network provides a very
basic service – packet transfer from source to destination. The SLA is based
on packet transfer performance metrics, such as delay, delay variation, and loss
ratio. If higher-layer functions are also provided (e.g., domain name to address
resolution), then additional metrics can be included.

3. The customer must determine exactly how they plan to use a communications
network to conduct business, and express the needs of their applications in terms
of the packet performance metrics. The performance requirements may be de-
rived from analysis of the component protocols of each customer application,
from tests with simulated packet transfer impairments, or from prior experience.
Sometimes, the service provider will consult on the application modeling.

4. In parallel, the service provider collects (or estimates) the levels of packet trans-
fer performance that can be delivered between geographically dispersed service
interfaces. Active measurements often serve this aspect of the process, by reveal-
ing the network performance possible under current conditions.

5. When the customer and service provider meet again, the requested and feasible
performance levels for all of the performance metrics are compared. Where the
requested performance levels cannot be met, revised network designs or a plan
to achieve interim and long-term objectives in combination with deployment of
new infrastructure may be developed, or the customer may relax specific require-
ments, or a combination of the two.

6. Once the performance levels of the SLA are agreed upon, it remains to decide
on the formal reporting intervals and how the customer might access the ongoing
measurement results. This aspect is important because formal reporting intervals
are often quite long, on the order of a month.

7. If the customer needs up-to-date performance status to aid in their troubleshoot-
ing process, then monthly reports might be augmented with the ability to view
a customized report of recent measurements. The active measurement system
would communicate measured results on a frequent basis to support this moni-
toring function, as well as longer-term SLA reports.

There are several process complexities worth mentioning. First, the customer
may be able to easily determine the performance requirements for a single appli-
cation flow, but the service providers’ measurements will likely be based on a test
flow, which experiences the same treatment as the rest of the flows. The test packet
flow may not have identical sending characteristics as customer flows, and will cer-
tainly represent only a small fraction of the aggregate traffic. Thus, the active test
flow performance will represent the customer flow performance only on a long-term
basis. Second, active measurements of throughput may have a negative affect on live
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traffic while they are in-progress. As a result, the throughput metric may be specified
through other means, such as the information rate of the access link on each service
interface, and not formally verified through active measurement.

10.10 Deployment of Active Measurement Infrastructures

In this section, we describe several ways in which active measurement systems can
be realized. One of the key design distinctions is the measurement device topology.
We describe and contrast several of the topologies that have seen deployment, as
this will be an important consideration for any system the reader might devise. We
categorize the topologies according to where the devices conducting measurements
are physically located.

10.10.1 Geographic Deployment at Customer–Service Interfaces

In this topology, measurement devices (or measurement processes in multipurpose
devices) are located as close as possible to the service interfaces. Figure 10.4a

a

b

c

Fig. 10.4 Deployment scenarios for active measurement infrastructure. MP D measurement point.
(a) MP at ends of path in point-to-point service. (b) MP at network edge; no coverage of access
links. (c) MP at central location with connectivity to remote locations
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depicts this topology for a point-to-point service, with a Measurement Point (MP)
at each end of the path. The Cisco Systems IP SLATM product embeds an active
measurement system at routers and switches that often resides in close proximity
to the Customer–Service Interfaces. The measurement results can be collected by
accessing specific MIB modules using SNMP. The utility of IP SLATM capabilities
was recognized for multi-vendor scenarios, and the Two-way Active Measurement
Protocol (TWAMP) [46] standardizes a fundamental test control and operation
capability.

The primary advantage of this topology is that the measurement path covers the
entire service in a single measurement, so the active test packets will experience con-
ditions very similar to customer traffic. However, the measurement device/process
must be located at a remote (customer) site to provide such coverage, so their cost
is not shared across multiple services and it must be managed (and have results col-
lected) remotely. The scale of the measurement system is also an issue. A full-mesh
of two-way active measurements grows exponentially with the number of nodes, N ,
according to N � .N � 1/=2.

10.10.2 Geographic Deployment at Network Edges

In Fig. 10.4b, the MPs move to intermediate nodes along the point-to-point path,
the edge of the network providing service. In this scenario, the measurement de-
vices/processes are located at the edge of the network providing service and the
access links may not be covered by the measurements or the SLAs. We also show a
third MP within the network cloud, which can be used to divide the path into seg-
ments. This topology makes it possible to share the measurement devices and the
measurements they produce with overlapping paths that support different services,
different customers, or parts of other point-to-point paths for the same customer. Of
course, a process is needed to combine the results of segment measurements to esti-
mate the edge-to-edge performance, and this problem has been successfully solved
[51, 65, 67]. The key points to note are the following:

� The interesting cases are those where impairments are time-varying, thus we ex-
pect to estimate features of time distributions, and not specific values (singletons)
at particular times.

� Some performance metric statistics lend themselves to combination, such as
means and ratios, so these should be selected for measurement and SLAs. For
example, measurements of the minimum delay of path segments can usually be
taken as additive when estimating the complete path performance. Average one-
way delay is also additive, but somewhat more prone to estimation errors when
the segment distributions are bimodal or have wide variance (a long tail).

� There must be a reasonable case made that (for each metric used) performance
on one path segment will be independent of the other, because correlation causes
the estimation methods to fail. An obvious correlation example is any metric
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that evaluates packet spacing differences – the measurement is dependent on the
original spacing, and that spacing will change when there is any delay variation
present on the path segments.

We note that it is also possible to obtain complete path coverage using this topol-
ogy, with assistance from low-cost test reflector devices/processes located at the
service interfaces (such as those described in RFC 5357 [46]) (see [13] for more
details).

10.10.3 Centralized Deployment with Remote Connectivity

As alternative to remote deployment of measurement devices/processes, Fig. 10.4c
shows all MPs moved to a central location with connectivity to strategic locations
in the network (such as the network edges in key cities). This topology offers the
advantage of easy access to the measurement devices at the central location, thus af-
fording rapid reconfiguration and upgrade. However, reliable remote access links are
needed between this single location and every network node that requires testing.
Also, even if the remote access links are transparent from a packet loss perspective,
they will still introduce delay that is not present on the customer’s path through the
network. The mere cost of the remote access links may make remote device deploy-
ment in Fig. 10.4b more attractive. Thus, topologies like this have been deployed
for remote connectivity monitors when the devices implementing a network tech-
nology do not have sufficient native support for remote device deployment (e.g.,
Frame Relay networks).

A system exploiting this approach is described in [8] where tunneling is used
to steer measurement packets on round-trip paths from a central host, via the ac-
cess links. In this sense, virtual measurements are conducted between different pairs
of hosts in the network core. A related approach for multicast VPN monitoring is
described in [7].

10.10.4 Collection for Infrastructure Measurements

When measurement devices are geographically dispersed, there must be a means to
collect the results of measurements and make them available for monitoring, report-
ing, and SLA compliance verification. This requires some form of protocol to fetch
either the per-packet measurements, or the processed and summarized results for
each intermediate measurement interval (e.g., 5–15 min). Once the measurement
results have been collected at a central point, they should be stored in a database
system and made available for on-going display, detailed analysis, and SLA verifi-
cation/reporting.
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10.10.5 Other Types of Infrastructure Measurements

10.10.5.1 Independent Measurement Networks

Measurement service vendors, such as Keynote [57], station measurement devices
in locations of ISPs representing, e.g., typical customer access points, and conduct a
variety of measurements between measurement devices or between them and service
hosts, including, web and other server response times, access bandwidth, VoIP, and
other access performance. Comparative performance measures are published and
detailed results are made available through subscription.

10.10.5.2 Cross Provider and Network-Wide Measurements

End-to-end paths commonly traverse multiple service providers. Thus, it is natu-
ral to measure the inter-provider components to performance. The most prominent
example is the RIPE network [73], which has stationed measurement devices in a
number of participating ISPs, conducts performance measurements between them,
and disseminates selected views to the participants. Novel active measurement in-
frastructure is being deployed in advanced research and development networks (e.g.,
MeasurementLab/PlanetLab [61]), including work in developing architectures for
managing access to and data recovery from measurement infrastructures.

10.10.5.3 Performance Measurement and Route Selection

Router measurement capabilities may also be coupled to the operation of rout-
ing protocols themselves. Cisco Performance Routing [20] enables routers in a
multiply-homed domain to conduct performance measurements to external net-
works. The measurements are then compared in order to determine the best egress
to that network and adjust route parameters accordingly.

10.11 Outlook

The challenges described in Section 10.1.3 will grow with network size and com-
plexity. The fundamental challenges for passive measurement, that of large data
volumes caused by network scale and speed, are usually addressed by sampling.
Going forward, there are three related trade-offs for the measurement infrastructure.
Unless the capacity of the measurement infrastructure grows commensurate with the
growth in network speed and scale grows, sampling rates must decrease in order to
fit the measurements within the current infrastructure. But decreasing sampling rates
reduces the ability to provide an accurate fine-grained view the traffic. Although loss
of detail and accuracy can be ameloriated by aggregation, that would go against the
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increasing demand for detailed measurements differentiated by customer, applica-
tion, and service class. On the other hand, growing the infrastructure and retaining
current sampling rates present its own challenges, and not just for in equipment and
administration costs. Distributed measurement architectures are an attractive way
to manage scale, enabling local analysis and aggregation rather than requiring re-
covery of data to a single central point. Then, the challenge becomes the design
of distributed analysis and efficient communication methods between components
of measurement infrastructure. This is particularly challenging for network security
applications, which need a network-wide view in order to identify stealthy unwanted
traffic.

Active measurement presents analogous challenges in viewing network per-
formance differentiated by, e.g., customer, application, traffic path, and network
element. Aggregate performance measurements are no longer sufficient. There are a
number of approaches to target probe packets on or onto particular paths: (i) the
probe may craft the packet in order that network elements select the packet on the
desired path; this approach was taken in [7,8], or (ii) passively measuring customer
traffic directly, e.g., by comparing timestamps between different points on the path
to determine latency (see Section 10.5.2). Both these approaches require knowledge
of the mapping between the desired entity to be measured from (customer, service
class) and the observable parts of the packets. A challenge is that this mapping may
be difficult to elucidate, or depend on network state that may become unstable pre-
cisely at the time a performance problem needs to be diagnosed.

Tomographic methods have been proposed to infer performance on links from
performance on sets of measured path that traverse them (see [1, 11]), typically
under simplifying independence assumptions concerning packet loss, latency, and
link failure. These approaches aim to supply indirectly, performance measurements
that are not available directly. It remains a challenge to bring the early promise of
these methods to fruition in production-level tools under general network conditions
(see e.g. [48]). The relative utility of performance tomographic approaches will de-
pend on the extent to which the detailed network performance measurements can be
provided directly by router-based measurements in the future.

This outlook stands in contrast to the state described in the opening section,
where little measurement functionality was provided in the network infrastructure.
As the best ideas in measurement research and development mature into standard
equipment features, the challenge will be to manage the complexity and scale of the
infrastructure and the data itself.
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Chapter 11
Measurements of Control Plane Reliability
and Performance

Lee Breslau and Aman Shaikh

11.1 Introduction

The control plane determines how traffic flows through an IP network. It consists
of routers interconnected by links and routing protocols implemented as software
processes running on them. Routers (or more specifically routing protocols) com-
municate with one another to determine the path that packets take from a source to
a destination. As a result, the reliability and performance of the control plane is crit-
ical to the overall performance of applications and services running on the network.
This chapter focuses on how to measure and monitor the reliability and performance
of the control plane of a network.

The original Internet service model supported only unicast delivery. That is, a
packet injected into the network by a source host was intended to be delivered to a
single destination. Multicast, in which a packet is replicated inside the network and
delivered to multiple hosts was subsequently introduced as a service. While certain
multicast routing protocols leverage unicast routing information, unicast and multi-
cast have very distinct control planes. They are each governed by a different set of
routing protocols, and measurement and monitoring of these protocols consequently
take different forms. Therefore, we cover unicast and multicast control plane moni-
toring separately in Sections 11.2 and 11.3, respectively.

We start Section 11.2 with a brief overview of how unicast forwarding works, de-
scribing different routing protocols and how they work to determine paths between
a source and a destination. We then look at two key components of performance
monitoring: instrumentation of the network for data collection in Section 11.2.2,
and strategies and tools for data analysis in Section 11.2.3. More specifically, the
instrumentation section describes what data we need to collect for route monitoring
along with mechanisms for collecting the data needed. The analysis section focuses
on various techniques and tools that show how the data is used for monitoring the
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performance of the control plane. While the focus of the section is on management
and operational aspects, we also describe some of the research enabled by this data
that has played a vital role in enhancing our understanding of the control plane be-
havior and performance in real life. We follow this up with a description of the
AT&T OSPF Monitor [1] in Section 11.2.4 as a case study of a route monitor in
real life. In Section 11.2.5, we describe control plane monitoring of MPLS, which
has been deployed in service provider networks in the last few years and is a key
enabler of Traffic Engineering (TE) and Fast Re-route (FRR) capabilities, as well as
new services such as VPN and VPLS.

Section 11.3 follows a similar approach in its treatment of multicast. We begin
with a motivation for and historical perspective of the development and deployment
of multicast. In Section 11.3.1, we provide a brief overview of the multicast rout-
ing protocols commonly in use today, PIM and MSDP. We then outline some of
the challenges specific to monitoring the multicast control plane in Section 11.3.2.
Section 11.3.3 provides detailed information about multicast monitoring. This in-
cludes an overview of early multicast monitoring efforts, a discussion of the in-
formation sources available for multicast monitoring, and a discussion of specific
approaches and tools used in multicast monitoring.

At the end of the chapter, in Section 11.4, we provide a brief summary and
avenues for future work.

11.2 Unicast

In this section, we focus on monitoring of unicast routing protocols. We begin by
providing a brief overview of how routers forward unicast packets and the routing
protocols used for determining the forwarding paths before delving into details of
how to monitor these protocols.

11.2.1 Unicast Routing Overview

Let us start with the description of how routing protocols enable the forwarding of
unicast packets in IP networks. With unicast, each packet contains the address of
the destination. When the packet arrives at a router, a table called the Forwarding
Information Base (FIB), also known as the forwarding table, is consulted. This ta-
ble allows the router to determine the next-hop router for the packet, based on its
destination address. Packets are thus forwarded in a hop-by-hop fashion, requiring
look-ups in the forwarding table of each router hop along its way to the destination.
The forwarding table typically consists of a set of prefixes. Each prefix is repre-
sented by an IP address and a mask that specifies how many significant bits of a
destination address need to match the address of the prefix. For example, a prefix
represented as 10.0.0.0/16 would match a destination address whose first 16 bits
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are the same as the first 16 bits of 10.0.0.0 (i.e., 10.0). Thus, the address 10.0.0.1
matches this prefix, so do 10.0.0.2 and 10.0.1.1. It is possible, and is often the case
that, more than one prefix in a FIB match a given (destination) address. In such a
case, the prefix with the highest value of the mask length is used for determining
the next-hop router. For example, if a FIB contains 10.0.0.0/16 and 10.0.0.0/24, and
the destination is 10.0.0.1, prefix 10.0.0.0/24 is used for forwarding the packet even
though both prefixes match the address. For this reason, IP forwarding is based on
the longest prefix.

Routers run one or more routing protocols to construct their FIBs. Every routing
protocol allows a router to learn the network topology (or some part of it) by ex-
changing messages with other routers. The topology information is then used by a
router to determine next hops for various prefixes, i.e., the FIB.

Learning Topology Information

Depending on how much topology information each router learns, the routing pro-
tocols can be divided into two main classes: distance-vector and link-state.

In a distance-vector routing protocol at each step, every router learns the dis-
tance of each adjacent router to every prefix. Every prefix is connected to one or
more routers in the network. The distance from a router to a prefix is the sum of
weights of individual links on the path, where the weight of every link is assigned
in the configuration file of the associated router. A router, upon learning distances
from neighbors, chooses the one that is closest to a given prefix as its next-hop,
and subsequently propagates its own distance (which is equal to the neighbor’s dis-
tance plus the weight of its link to the neighbor) to the prefix to all other neighbors.
When a router comes up, it only knows about its directly connected prefixes (e.g.,
prefixes associated with point-to-point or broadcast links). The router propagates
information about these prefixes to its neighbors, allowing them to determine their
routes to them. The information then spreads further, and ultimately all routers in
the network end up with next-hops for these prefixes. In a similar vein, the newly
booted router also learns about other prefixes from its neighbors, and builds its
entire FIB. The distance-vector protocols essentially implement a distributed ver-
sion of the Bellman Ford shortest-path algorithm [2]. RIP [3] is an example of a
distance-vector protocol. EIGRP, a Cisco-proprietary protocol, is another example.
It contains mechanisms (an algorithm called DUAL [4]) to prevent forwarding loops
that can be formed during network changes when routers can become inconsistent in
their views of the topology. A subclass of distance-vector, called path-vector proto-
cols include the actual path to the destination along with the distance in the updates
sent to neighbors. The inclusion of the path helps in identifying and avoiding poten-
tial loops from forming during convergence. BGP [5] is an example of a path-vector
protocol.

With link-state routing protocols, each router learns the entire network topol-
ogy. The topology is conceptually a directed graph – each router corresponds to
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a node in this graph, and each link between neighboring routers corresponds to a
unidirectional edge. Just like distance-vector protocols, each link also has an admin-
istratively assigned weight associated with it. Using the weighted topology graph,
each router computes a shortest-path tree with itself as the root, and applies the re-
sults to compute next-hops for all possible destinations. Routing remains consistent
as long as all the routers have the same view of the topology. The view of the topol-
ogy is built in a distributed fashion, with each router describing its local connectivity
(i.e., set of links incident on it along with their weights) in a message, and flooding
this message to all routers in the network. OSPF [6] and IS-IS [7] are examples of
link-state protocols.

Autonomous Systems (ASes) and Hierarchical Routing

The Internet is an inter-network of networks. By design, these networks are envi-
sioned to be administered by independent entities. In other words, the Internet is
a collection of independently administered networks. Roughly speaking, such net-
works are known as Autonomous Systems (ASes). Each autonomous system consists
of a set of routers and links that are usually managed by a single administrative
authority. Every autonomous system can run one or more routing protocols of its
choice to route packets within the system. RIP, EIGRP, OSPF and IS-IS are typically
used for routing packets within an AS and are, therefore, known as intradomain
or Interior Gateway Protocols (IGPs). In addition, a routing protocol is needed to
forward packets between ASes. BGP is used for this purpose and is known as an
interdomain or an Exterior Gateway Protocol (EGP).

Next, we present an overview of BGP and OSPF as they come up a lot in the
subsequent discussions. For details on other routing protocols, please refer to [8].

11.2.1.1 BGP Overview

As mentioned in Section 11.2.1.1, BGP is the de facto routing protocol used to ex-
change routing information between ASes. BGP is a path-vector protocol (a subset
of distance-vector protocols). In path-vector protocols, a router receives routes from
its neighbors that describe their distance to prefixes, as well as the path used to reach
the prefix in question. Since BGP is used to route packets between ASes, the path is
described as a sequence of ASes traversed along the way to the prefix, the sequence
being known as an ASPath. Thus, every route update received at a router contains
the prefix and the ASPath indicating the path used by the neighbor to reach the pre-
fix. The distance is not explicitly included; rather it implicitly equals the number of
ASes in the ASPath.

Apart from ASPath, BGP routes also contain other attributes. These attributes
are used by a router to determine the most preferred route from all received routes
to a destination prefix. Figure 11.1 shows the steps of a decision process that a
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Fig. 11.1 The decision
process used by BGP to select
the best route to every prefix.
Vendor-dependent steps are
not included

1. Highest Local Preference
2. Shortest ASPath Length
3. Lowest Origin Type
4. Lowest MED
5. Prefer Closest Egress (based on IGP distance)
6. Arbitrary Tie Breaking

BGP-speaking router follows to select its most preferred route. The process is run
independently for each prefix, and starts with all the available routes for the prefix in
question. At every step, relevant attributes of the routes are compared. Routes with
the most preferred values pass onto the next step while other routes are dropped
from further consideration. At the end of the decision process, a router ends up
with a single route for every prefix, and uses it to forward data traffic. Note that the
second step of the decision process compares the length of ASPath of the routes that
survived the first step, keeps the ones with the shortest ASPaths, while discarding
the rest. We will not go into details of other steps except to point out that if faced
with more than one route in step 5, the router selects route(s) which minimize the
IGP distance a packet will have to travel to exit its AS. This process of preferring
the closest egress is known as hot-potato or closest-egress routing.

A router forms BGP sessions with other routers to exchange route updates. The
two ends of a session can either belong to the same AS or a different AS. When
the session is formed between routers in the same AS, it is known as an inter-
nal BGP (IBGP) session. In contrast, when the routers are in different ASes, the
session is known as an external BGP (EBGP) session. For example, in Fig. 11.2,
which shows multiple interconnected ASes and routers in them, solid lines depict
IBGP sessions, whereas dashed lines represent EBGP sessions. The EBGP sessions
setup between routers in neighbor ASes allow them to exchange routes to various
prefixes. The routes learned over EBGP sessions are then distributed using IBGP
sessions within an AS. For example, AS 2 in Fig. 11.2 learns routes from ASes 1, 3,
and 4 over EBGP sessions, which are then distributed among its routers over IBGP
sessions.

In order to disseminate all routes learned via EBGP to every router, routers inside
an AS like AS 1 need to form a full-mesh of IBGP sessions. A router receiving a
route update over an EBGP session propagates it to all other routers in the mesh,
however, route updates received over IBGP sessions are not forwarded back to the
routers in the mesh (see [9] for full details). An IBGP full-mesh does not scale for
ASes with a large number of routers. To improve scalability, large ASes use an IBGP
hierarchy such as route reflection [10]. Route reflection allows the re-announcement
of some routes learned over IBGP sessions. However, it sacrifices the number of
candidate routes learned at each router for improved scalability. For example, AS 2
in Fig. 11.2 employs a route reflector hierarchy.
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AS 3
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BGP Router

BGP Route Reflector

Fig. 11.2 Example topology with multiple ASes and BGP sessions

11.2.1.2 OSPF Overview

As noted in Section 11.2.1.1, OSPF is a link-state protocol, which is widely used to
control routing within an Autonomous System (AS).1 With link-state routing pro-
tocols, each router learns the entire view of the network topology represented as a
weighted graph, uses it to compute a shortest-path tree with itself as the root, and
applies the results to construct its forwarding table. This assures that packets are for-
warded along the shortest paths in terms of link weights to their destinations [11].
We will refer to the computation of the shortest-path tree as an SPF computation,
and the resultant tree as an SPF tree.

For scalability, an OSPF network may be divided into areas determining a two-
level hierarchy as shown in Fig. 11.3. Area 0, known as the backbone area, resides
at the top level of the hierarchy and provides connectivity to the non-backbone areas
(numbered 1, 2, etc.). OSPF assigns each link to one or more areas.2 The routers that
have links to multiple areas are called border routers. For example, routers C , D,
and G are border routers in Fig. 11.3. Every router maintains a separate copy of the
topology graph for each area to which it is connected. The router performs the SPF
computation on each such topology graph and thereby learns how to reach nodes in
all adjacent areas.

A router does not learn the entire topology of remote areas. Instead, it learns the
total weight of the shortest paths from one or more border routers to each prefix in

1 Even though an IGP like OSPF is used for routing within an AS, the boundary of an IGP domain
and an AS do not have to coincide. An AS may consist of multiple IGP domains; conversely, a
single IGP domain may span multiple ASes.
2 The original OSPF specification [6] required each link to be assigned to exactly one area, but a
recent extension [12] allows a single link to be assigned to multiple areas.
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Fig. 11.3 An example OSPF topology, the view of the topology from router G, and the shortest-
path tree calculated at G. Although we show the OSPF topology as an undirected graph here for
simplicity, the graph is directed in reality

remote areas. Thus, after computing the SPF tree for each area, the router learns
which border router to use as an intermediate node for reaching each remote node.
In addition, the reachability of external IP prefixes (associated with nodes outside
the OSPF domain) can be injected into OSPF (e.g., X and Y in Fig. 11.3). Roughly,
reachability to an external prefix is determined as if the prefix was a node linked
to the router that injects the prefix into OSPF. The router that injects the prefix into
OSPF is called an AS Border Router (ASBR). For example, router A is an ASBR in
Fig. 11.3.

Routers running OSPF describe their local connectivity in Link State Advertise-
ments (LSAs). These LSAs are flooded reliably to other routers in the network. The
routers use LSAs to build a consistent view of the topology as described earlier.
Flooding is made reliable by mandating that a router acknowledge the receipt of
every LSA it receives from every neighbor. The flooding is hop-by-hop and hence
does not itself depend on routing. The set of LSAs in a router’s memory is called
the link-state database and conceptually forms the topology graph for the router.

Two routers are neighbor routers if they have interfaces to a common network
(i.e., they have a direct path between them that does not go through any other router).
Neighbor routers form an adjacency so that they can exchange LSAs with each
other. OSPF allows a link between the neighbor routers to be used for forwarding
only if these routers have the same view of the topology, i.e., the same link-state
database for the area the link belongs to. This ensures that forwarding data packets
over the link does not create loops. Thus, two neighbor routers make sure that their
link-state databases are in sync by exchanging out-of-sync parts of their link-state
databases when they establish an adjacency.
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11.2.2 Instrumentation for Route Monitoring

As mentioned, routers exchange information about the topology with other routers
in the network to build their forwarding tables. As a result, understanding con-
trol plane dynamics requires collecting these messages and analyzing them. In this
section, we focus on the collection aspect, leaving analysis for the next section. We
first focus on how to instrument a single router, before turning our attention to the
network-wide collection of messages.

11.2.2.1 Collecting Data from a Single Router

Even though the kind of information exchanged in routing messages varies from
protocol to protocol, the flow of messages through individual routers can be modeled
in the same manner, as depicted in Fig. 11.4. Every router basically receives mes-
sages from its neighbors from time to time. These messages are sent by neighbors in
response to events occurring in the network or expiration of timers; again, the exact
reasons are protocol specific. As described in Section 11.2.1, the message describes
some aspect of the network topology or reachability to a prefix along with a set of
attributes. Upon receiving the message, the router runs its route selection procedure
taking the newly received message into account. The procedure can change the best
route to one or more prefixes in the FIB. A router also sends messages to neighbors
as network topology and/or reachability to prefixes change – the trigger and contents
of the messages depend on the protocol. Given this, to understand routing dynamics
of a router would require instrumenting the router to collect (i) incoming messages
into a router over all its links, (ii) the changes induced to the FIB, and (iii) outgoing
messages to all the neighbors.

Some protocols such as BGP allow routers to apply import policies to incoming
messages; applying these policies results in either dropping of messages or modifi-
cations to the attributes. In such a scenario, it might be beneficial to collect incoming
messages before and after application of import policies. In a similar vein, BGP

Outgoing Routing Message

Outgoing Routing Message

Incoming Routing Message

Incoming Routing Message

Incoming Routing Message

Router

Best Route

FIB

Route Selection Process

Fig. 11.4 Message flow through a router
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applies export policies to outgoing messages before they are sent to neighbors in
which case messages can be collected before and after the application of export
policies.

Ideally, one would like the router to “copy” every incoming and outgoing
message, as well as changes to the FIB to a management station. In reality, no
standardized way for achieving this exists, and as a result no current router im-
plementations support it. Despite this, one could get an approximate version of the
required information in several different ways. One such way is to use splitters to
read messages directly off a link. Unfortunately, this option is often impractical,
expensive, and does not scale beyond a few routers and links. For this reason, this
option is rarely used in practice. Another option is to log into the router through its
CLI (Command Line Interface) or query SNMP MIBs [13] to extract the required
information. Routers and (routing protocols running on them) often store a copy of
the most recently received and transmitted messages in memory and allow them to
be queried via CLI or SNMP MIBs. Thus, a network management station can peri-
odically pull the information out of a router. Unfortunately, it is almost impossible
to capture every incoming/outgoing message this way since even the most frequent
polling supportable by routers fall far short of the highest frequency at which rout-
ing messages are exchanged. Even so, this option is used in practice at times since
it provides a fairly inexpensive and practical way of getting some information about
the routing state of a router. For example, the Peer Dragnet [14] tool uses infor-
mation captured via the CLI to analyze inconsistent routes sent by EBGP peers of
an AS.

A third option to collect routing messages is to establish a routing session with
a router just like any other router. This forces the router to send messages as it
would to any other router.3 Obviously, this approach does not give information about
incoming messages and changes to the FIB. Even for an outgoing message, the man-
agement station does not receive the message at the time a router sends it to other
neighbors. Despite this, the approach provides valuable information about route dy-
namics. For distance-vector protocols, the outgoing message is usually the route
selected by the router and for link-state protocols, these messages describe updates
to the topology view of the router. As a result, this approach is used quite extensively
in practice. For example, RouteViews [15] and RIPE [16] collect BGP updates from
several ASes and their routers, as does the OSPF Monitor described in [1], and later
in Section 11.2.4. One serious practical issue with this approach is the potential
injection of routing messages from the management station, which could disrupt
the functioning of the control plane. For protocols that allow import policies (e.g.,
BGP) one could apply a policy to drop any incoming messages from the manage-
ment station, but for other protocols (e.g., OSPF, IS-IS) the only way to protect
against injection of messages is to rely on the correctness of the software running
on the management station.

3 A router running a distance-vector protocol sends its selected route for a given prefix to all its
neighbors, except the next-hop of the route when split horizon [8] is implemented. It is this selected
route that we are interested in, and will receive, at the management station.
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11.2.2.2 Collecting Network-Wide Data

In Section 11.2.2.1, we discussed ways in which routing messages can be collected
from a single router. In this section, we expand our focus to the entire network. The
key question we focus on is: how many routers does one need to collect routing
messages from? The naive answer is: from all routers of the network. Indeed, if the
aim is to learn about each and every message flowing between routers and the exact
state of routers at every instance of time, then there is no choice but to collect mes-
sages from all routers. In reality, collecting messages from all routers is extremely
challenging due to scale issues. Thus, in practice the answer depends on the kind of
routing protocol and the analysis requirement. Let’s go into some details.

The kind of routing protocol – whether link-state or distance-vector – plays a ma-
jor role in deciding how many routers one needs to collect data from. In a link-state
protocol, every router learns the entire view of the network topology, and so col-
lecting messages from even a single router is enough to determine the overall state
of the network topology. As we will see later in Sections 11.2.3 and 11.2.4, even
this seemingly “limited” data enables a rich set of management applications. Some
examples are (and we will talk about these in more detail in subsequent sections):
(i) ability to track network topology and its integrity (against design rules) in real-
time, (ii) ability to determine events such as router/link up/downs and link weight
changes as they unfold, (iii) ability to determine how forwarding paths evolve in
response to network events, and (iv) ability to determine workload imposed by the
routing messages. We should emphasize here that for all the applications, the data is
providing the “view” from the router from which the data is being collected at that
point of time. Other routers’ views can be somewhat different due to message propa-
gation and processing delays. The exact nature of these delays, how they are affected
by other events in the network, and their implications for the analysis/application at
hand are poorly understood. Our belief is that these delays are small (on the or-
der of milliseconds) in most cases, and thus can be safely ignored for all practical
purposes.

The story is different for distance-vector protocols since every router gets a par-
tial view of the topology: only the distance of prefixes from neighbors. As a result,
one often needs views from multiple, if not all, routers. The exact set depends on
the network configuration and on the kind of analysis being performed. For exam-
ple, if one wants to learn external routes coming into an AS, it suffices to monitor
BGP routes from the routers at the edge of the network. In fact, numerous studies on
BGP dynamics, inter-AS topology and relationships between ASes have been car-
ried out based on BGP data collected from a fairly small set of ASes at RouteViews
and RIPE. Although the completeness and representativeness of these studies is de-
batable, there is no doubt that such studies have tremendously increased awareness
about BGP and its workings in the Internet. Furthermore, by combining routing data
collected from a subset of routers with other network data, one can often determine
routing state of other routers – at least in steady state once routing has converged
after a change. For example, a paper by Feamster and Rexford [17] describes a
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methodology to determine BGP routes at every router inside an AS based on routes
learned at the edge of the network, and configuration of IBGP sessions.

11.2.3 Applications of Route Monitoring

In this section, we demonstrate the utility of the data collected by route monitors. We
first describe the basic functionality enabled by the data. We then describe how this
basic functionality can be used in various network management tasks. Finally, we
describe how the data has been used in advancing the understanding of the behavior
of routing protocols in real life.

11.2.3.1 Information Provided by Route Monitors

Routing State and Dynamics Route monitors capture routing messages, and so
they naturally provide information about the current state of routing and how it
evolves over time. This information is useful for a variety of network management
tasks such as troubleshooting and forensics, capacity planning, trending, and traffic
engineering to name a few. For link-state protocols, the routing messages provide
information about the topology (i.e., set of routers, links and link weights), whereas
for distance-vector protocols, the information consists of route tables (i.e., set of
destinations and the next-hop and distance from the router in question). Both pieces
of information are useful. Furthermore, calculating routing tables from topology is
straightforward: one just needs to emulate route calculation for every router in the
topology. Going in the other direction from routing tables to topology is easy if
information from all routers (running the distance-vector protocol) is available. In
practice though, information is often collected from a subset of routers, in which
case, deriving a complete topology view may not be possible.

End-to-End Paths Knowing what path traffic takes in the network (from one router
to another) is crucial for network management tasks such as fault localization and
troubleshooting. For example, a link failure can affect performance of all paths
traversing the link. If the only way of detecting such failures is through end-to-
end active probing, then knowing paths would allow operators to quickly localize
the problem to the common link. Routing messages collected by route monitors al-
low one to determine these paths and how they evolve in response to routing events.
Note that active probes (e.g., traceroute) also allow one to determine end-to-end
paths in the network. However, tracking path changes in response to network events
using active probing suffers from major scalability problems. First of all, the num-
ber of router pairs in a large network can be in the range of hundreds of thousands
to millions. This makes probing every path at a fine time scale prohibitively expen-
sive. A second problem arises due to the use of multiple equal cost paths (known as
ECMP) between router pairs. ECMP arises when more than one path with smallest
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weight exist between router pairs. Most intradomain protocols such as OSPF use
all the paths by spreading data traffic across them.4 Since service providers often
have redundant links in their networks, router pairs are more likely to have multiple
paths than not. ECMP unfortunately exacerbates the scalability problem for active
probing. Furthermore, engineering probes so that all ECMPs are covered is next to
impossible since how routers would spread traffic across multiple paths is almost
impossible to determine a priori.

11.2.3.2 Utility of Route Monitors in Network Management

The data provided by route monitors and the basic information gleaned from them
aid several network management tasks such as troubleshooting and forensics, net-
work auditing, and capacity planning. Below we provide a detailed account of how
this is done for each of these three tasks.

Network Troubleshooting and Forensics Route monitors provide a view into
routing events as they unfold. This view can be in the form of topology, routing ta-
bles, or end-to-end paths as mentioned in the previous sections; which form proves
useful often depends on the specific troubleshooting task at hand. For example, if a
customer complains about loss of reachability to certain parts of the Internet, look-
ing at BGP routes and their history can provide clues about causes of the problems.
Similarly, if performance issues are seen in some parts of the network, knowing
what routing events are happening and how they are affecting paths can provide an
explanation for the issues. Note that the route monitors’ utility not only stems from
the current view of routing they provide (after all operators can always determine
the current view by logging into routers), but from the historical data they provide
which allows operators to piece together sequence of events leading to the prob-
lems. Routers do not store historical state, and so cannot provide such information.
Going back to the debugging of customer complaining about lost reachability, it is
rarely enough to determine the current state of the route, especially if no route exists
to the prefix. To effectively pinpoint the problem, the operator might also need to
know the history of route announcements and withdrawals for the prefix, and that
data can only be provided by route monitors. Figure 11.5 shows snapshot of a tool
that allows operators to view sequence of BGP route updates captured by a monitor
deployed in a tier-1 ISP.

Network Auditing and Protocol Conformance Another use of route monitors is
for auditing the integrity of the networks and conformance of routing protocols to
their specifications. To audit the integrity of the network, one needs to devise rules
against which the actual routing behavior can be checked. For example, network
administrators often have conventions and rules about weights assigned to links.

4 The exact algorithm for spreading traffic across ECMPs is implemented in the forwarding engine
of routers.
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BGP Route History for 0.0.0.0/0 and its Subnets

Count Time (GMT) Router Event Prefix ASPath Local Pref Origin MED Next-hop

1 Wed Apr 1 18:32:50 2009 10.0.0.1 WITHDRAW 192.168.0.0/24 -- -- -- -- --

2 Wed Apr 1 18:32:50 2009 10.0.0.1 ANNOUNCE 172.16.3.0/23 65001 65010 65145 90 IGP 0 10.0.1.3

3 Wed Apr 1 18:32:52 2009 10.0.0.1 ANNOUNCE 10.1.123.0/12 65001 65126 80 IGP 25 10.0.1.8

4 Wed Apr 1 18:32:55 2009 10.0.0.1 ANNOUNCE 192.168.3.0/18 65001 65324 65002 65121 65084 80 IGP 0 10.0.2.1

5 Wed Apr 1 18:32:58 2009 10.0.0.1 ANNOUNCE 192.168.0.0/24 65001 65223 65145 65 IGP 100 10.0.1.1

6 Wed Apr 1 18:33:31 2009 10.0.0.1 ANNOUNCE 172.23.4.0/21 65001 65132 90 IGP 10 10.0.2.1

7 Wed Apr 1 18:33:44 2009 10.0.0.1 ANNOUNCE 10.231.34.64/20 65001 65010 65192 65034 65 IGP 12 10.0.1.45

8 Wed Apr 1 18:33:47 2009 10.0.0.1 ANNOUNCE 192.168.0.0/24 65001 65023 65145 90 IGP 0 10.0.1.1

9 Wed Apr 1 18:34:08 2009 10.0.0.1 ANNOUNCE 172.22.73.0/25 65001 65420 65321 65005 70 IGP 0 10.0.2.12

10 Wed Apr 1 18:34:21 2009 10.0.0.1 ANNOUNCE 172.172.72.0/21 65001 65014 65105 110 IGP 10 10.0.1.109

Fig. 11.5 Screen-shot of a tool to view BGP route announcement/withdrawals

It then becomes necessary to monitor the network for potential deviations (that hap-
pen intentionally or due to mistakes) from these rules. Since (intradomain) routing
messages provide current information about link weights, they provide a perfect
source for checking whether network’s actual state conforms to the design rules or
not. Checking that the network state matches the design rules is especially crucial
during maintenance windows when a network undergoes significant change. Sim-
ilar to network auditing, routing messages can also be used to verify that protocol
implementations conform to the specifications. At the very least, one could check
whether message format is correct as per the specifications or not. Another check is
to compare the rate and sequence of messages against the expected behavior. The
“Refresh LSA bug” caught by the OSPF Monitor [1] where OSPF LSAs were being
refreshed much faster than the recommended value [6] is an instance of this.

Capacity Planning Capacity planning, where network administrators determine
how to grow their network to accommodate growth, is another task where routing
data is extremely useful. In particular, the data allows planners to see how routing
traffic is growing over time, which can then be used to predict resources required in
the future. As such, the growth of two parameters is very important: the number of
routes in the routing table, and the rate at which routing messages are disseminated.
The former has significant bearing on the memory required on the routers, whereas
the latter affects the CPU (and sometimes bandwidth) requirements for routers. For
service providers, accurately knowing how long current CPU/memory configuration
on routers can last, and when upgrades will be needed is extremely important for op-
erational and financial planning. The growth patterns revealed by routing data play
a key role in forming these estimates. These estimates also allow service providers
to devise optimization techniques to reduce resource consumption. For example,
consider layer-3 MPLS VPN [18] service, which allows enterprise customers to in-
terconnect their (geographically distributed) sites via secure, dedicated tunnels over
a provider network. Over the last few years, this service has witnessed a widespread
deployment. This has led to tremendous growth in the number of BGP routes a
VPN service provider has to keep track of, resulting in heavy memory usage on its
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routers. Realizing this scalability problem, Kim et al. [19] have proposed a solution
that allows a service provider to tradeoff direct connectivity between sites (e.g.,
from any-to-any to a more restricted hub-and-spoke where traffic between two sites
now has to go through one or more hub sites) with number of routes that need to
be stored. The data collected by the route monitors was crucial in this work: first,
to realize that there is a problem, and next, to evaluate the efficacy of the scheme
in realistic settings. In particular, Kim et al. show 90% reduction in the memory us-
age while limiting path stretch between sites to only a few hundred miles, and extra
bandwidth usage by less than 10%.

11.2.3.3 Performance Assessment of Routing Protocols

Routing data is key to understanding how routing protocols behave and perform in
real life. We have already talked about one aspect of this behavior above, namely
conformance to the specifications. Here we would like to talk about other aspects
of the performance such as stability and convergence, which are key to quantify-
ing the overall performance of the routing infrastructure. For example, numerous
BGP studies detailing its behavior in the Internet have been enabled thanks to the
data collected by RouteViews [15], RIPE [16], and other BGP monitors. We briefly
describe some studies to illustrate the point.

Route updates collected by BGP monitors have led to several studies analyz-
ing the stability (or lack thereof) of BGP routing in the Internet.5 Govindan and
Reddy [20] were the first to study the stability of BGP routes back in 1997 – a
couple of years after commercialization of the Internet started. Their study analyzed
BGP route updates collected from a large ISP and a popular Internet exchange point
(where several service providers are interconnected to exchange routes and traffic).
The study found a clear evidence of deteriorating stability of BGP routes which it at-
tributed to the rapid growth – doubling of the number of ASes and prefixes in about
2 years – of the Internet. Subsequently, Labovitz et al. [21] observed a higher than
expected number of BGP updates in the data collected at five US public Internet
exchange points. The real surprising aspect of their study was the finding that about
99% of these updates did not indicate real topological changes, and had no reason
to be there. The authors found that some of these updates were due to bugs in the
BGP software of a router vendor at that time. Fixing of these bugs by the vendor led
to an order of magnitude reduction in the volume of BGP route updates [22].

Convergence, the time taken by a routing protocol to recalculate new paths after
a network change, is another critical performance metric. Labovitz et al. [23] were
the first to systematically study this metric for BGP in the Internet. They found
that BGP often took tens of seconds to converge – an order of magnitude more
than what was thought at that time. The problem as they showed stems from the

5 The term stability refers to the stability of BGP routes, which roughly corresponds to how
frequently they undergo changes.
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inclusion of ASPath in BGP route announcements (i.e., the very thing that makes
BGP a path-vector protocol). The purpose of including the ASPath is to prevent
loops and “count-to-infinity” problem6 that BGP’s distance-vector brethren (e.g.,
RIP) suffer from. However, this leads to “path exploration” as shown by Labovitz
et al., where routers might cycle through multiple (often transient) routes with dif-
ferent ASPaths before settling on the final (stable) routes, thereby exacerbating the
convergence times. Several ways of mitigating this problem have been proposed
since then, essentially by including more information in BGP routes [24–28], but
none of them have seen deployment to date.

Mao et al. [29] tied hitherto independently explored stability and convergence
aspects of BGP together by showing how route flap damping (RFD) [30] used for
improving stability of BGP could interact with path exploration to adversely im-
pact convergence of BGP. RFD is a mechanism that limits propagation of unstable
routes, thereby mitigating adverse impact of persistent flapping of network elements
and mis-configurations, which improves overall stability of BGP, and was a recom-
mended practice [31] in early 2000. Unfortunately, as Mao et al. showed, RFD can
also suppress relatively stable routes by treating route announcements received dur-
ing path exploration as evidence of instability of a route. Specifically, the study
showed that a route needs to be withdrawn only once and then re-announced for
RFD to suppress it for up to an hour in certain circumstances. This work coupled
with manifold increase in router CPU processing capability resulted in a recommen-
dation by RIPE [32] to disable RFD.

Routing data is not only valuable in analyzing performance of protocol sep-
arately, but also useful for understanding how they interact with one another as
Teixeira et al. [33] did by focusing on how OSPF distance changes in a tier-1
ISP affected BGP routing. Their study showed that despite the apparent separation
between intra and interdomain routing protocols, OSPF distance changes do affect
BGP routes due to what is known as the “hot-potato routing”. 7 The extent of the im-
pact depended on several factors including location and timing of a distance change.
Even more surprisingly, BGP route updates resulting from such changes could lag
by as much as a minute in some cases, resulting in large delays in convergence.

In closing, these and numerous other studies have not only enhanced our knowl-
edge of how routing protocols behave in the Internet, but have also led to im-
provements in their performance (such as reduction in unwarranted BGP updates
or disabling of RFD as mentioned earlier).

6 With distance-vector protocols, two or more routers can get locked into a cyclical dependency
where each router in the cycle uses the previous router as a next-hop for reaching a destination.
The routers then increment their distance to the destination in a step-wise fashion until all of them
reach infinity, which is termed as “counting to infinity”. For more details, refer to [8].
7 As explained in Section 11.2.1.1, hot-potato routing refers to BGP’s propensity to select the
shortest way out of its local AS to a prefix when presented with multiple equally good routes
(i.e., ways out of the AS). This allows an AS to hand off data packets as quickly as possible to its
neighboring AS much like a hot potato.
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11.2.4 Case Study of a Route Monitor: The AT&T OSPF Monitor

Several route monitoring systems are available both as academic/research endeavors
as well as commercial products. RouteViews [15] and RIPE [16] collect BGP route
updates from several ISPs and backbones around the world. The data is used ex-
tensively for both troubleshooting and academic studies of the interdomain routing
system. The corresponding web sites also list several tools for analysis of the data.
On the intradomain side, a paper by Shaikh and Greenberg [1] describes an OSPF
monitor. The paper provides detailed description of the architecture and design of
the system and follows it up with a performance evaluation and deployment expe-
rience. On the commercial side, Packet Design’s Route Explorer [34] and Packet
Storm’s Route Analyzer [35] are route monitoring products. The Route Explorer
provides monitoring capability for several routing protocols including OSPF, IS-IS,
EIGRP and BGP, whereas Route Analyzer provides similar functionality for OSPF.

Out of various route monitoring systems mentioned above, we focus on the OSPF
Monitor described by Shaikh and Greenberg [1] as a case study in this section since
the paper provides extensive details about system architecture, design, functionality,
and deployment. This is something not readily available for other route monitoring
systems, especially the architecture and design aspects, which are key to under-
standing how control plane monitoring is realized in practice. From here on, we will
refer to the OSPF Monitor described in [1] as the AT&T OSPF Monitor, and go into
details of the system in terms of data collection and analysis aspects next.

The AT&T OSPF Monitor separates data (specifically, LSAs) collection from
data analysis. The main reasoning behind this is to keep data collection as passive
and simple as possible due to the collector’s proximity to the network. The compo-
nent used for LSA collection is called an LSA Reflector (LSAR). The data analysis on
the other hand is divided into two components: LSA aGgregator (LSAG) and OSPF-
Scan. The LSAG deals with LSA streams in real time, whereas OSPFScan provides
capabilities for off-line analysis of the LSA archives. This three component archi-
tecture is illustrated in Fig. 11.6. We briefly describe these three components now.

The LSAR supports three modes for capturing LSAs: the host mode, the full
adjacency mode, and the partial adjacency mode. With the host mode, which only
works on a broadcast media such as Ethernet LAN, the LSAR subscribes to a multi-
cast group to receive LSAs being disseminated. This is a completely passive way of
capturing LSAs, but suffers from reliability issues, slow initialization of link-state
database and only works on broadcast media. With the full adjacency mode, the
LSAR establishes an OSPF adjacency with a router to receive LSAs. This allows
LSAR to leverage OSPF’s reliable flooding mechanism, thereby overcoming both
the disadvantages of the host mode. However, the main drawback of this approach
is that instability of LSAR or its link to the router can trigger SPF calculations in
the entire network, potentially destabilizing the network. The reason for SPF cal-
culation stems from the fact that with a full adjacency, the router includes a link to
the LSAR in its LSA sent to the network. The partial adjacency mode of collecting
LSAs provides a way to circumvent this problem while retaining all the benefits of
having an adjacency. In this mode, the LSAR establishes adjacency with a router,
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Fig. 11.6 The architecture of the AT&T OSPF monitor described in [1]

but only allows it to proceed to a stage where LSAs can be received over it from the
router, but it cannot be included in the LSA sent by the router to the network. To
keep the LSAR-router adjacency in the intermediate state, the LSAR describes its
own Router-LSA8 to the router during the link-state database synchronization pro-
cess but never actually sends it out to the router. As a result, the database is never
synchronized, the adjacency stays in OSPF’s loading state [6], and is never fully
established. Keeping the adjacency in the loading state protects the network from
the instability of the LSAR or its link to the router.

Having described data collection by the LSAR, let us now turn our attention to
the LSAG, which processes LSAs in real time. The LSAG populates a model of
the OSPF network topology as it processes the LSAs. The model captures elements
such as OSPF areas, routers, subnets, interfaces, links, and relationship between
them (e.g., an area object consists of a set of routers that belong to the area, a router
object in turn consists of a set of interfaces belonging to the router, etc.). Using
the model as a base, the LSAG identifies changes (such as router up/down, link
up/down, link cost changes, etc.) to the network topology and generates messages
about them. Even though there are only about five basic network events, about 30

different types of messages are generated by the LSAG because of how broadcast
media (such as Ethernet) are supported in OSPF, how a change in one area prop-
agates to other areas, and how external information is redistributed into OSPF. In
addition to identifying changes to the network topology, the LSAG also identifies
elements that are unstable, and generates messages about such flapping elements.
The LSAG also generates messages for non-conforming behavior, such as when

8 A Router-LSA in OSPF is originated by every router to describe its outgoing links to adjacent
routers along with their associated weights.
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refresh LSAs are observed too often. Apart from using the topology model to iden-
tify changes, the LSAG also uses it to produce snapshots of the topology periodically
and when network changes occur. One use of these snapshots is for performing an
audit of link weights as described in Section 11.2.3.2.

Finally, we turn our attention to OSPFScan, which supports off-line analysis of
LSA archives. One thing worth mentioning about the AT&T OSPF Monitor is that
the capabilities supported by OSPFScan for off-line analysis are mostly a superset of
the ones supported in real time by the LSAG with the underlying idea being anything
that can be done in real time can be performed off-line as a playback. In terms of
processing of LSAs, OSPFScan follows a three-step process: parse the LSA, test
the LSA against a user-specified query expression, and analyze the LSA according
to user interest if it satisfies the query. The parsing step converts each LSA record
into what is termed a canonical form to which the query expression and subsequent
analysis is applied. The use of a canonical form makes it easy to adapt OSPFScan
to support LSA archive formats other than the native one used by the LSAR.

The query language resembles C-style syntax; an example query expression is
“areaid == ‘0.0.0.0”’. When a query is specified, OSPFScan matches every LSA
record against the query, carrying out subsequent analysis for the matching records,
while filtering out the non-matching ones. For example, the expression above would
result in the analysis of only those LSAs that were collected from area 0.0.0.0.

In terms of analysis, OSPFScan provides the following capabilities:

1. Modeling Topology Changes Recall that OSPF represents the network topol-
ogy as a graph. Therefore, OSPFScan allows modeling of OSPF dynamics as a
sequence of changes to the underlying graph where a change represents addi-
tion/deletion of vertices/edges to this graph. Furthermore, OSPFScan allows a
user to analyze these changes by saving each change as a single topology change
record. Each such record contains information about the topological element
(vertex/edge) that changed along with the nature of the change. For example,
a router is treated as a vertex, and the record contains the OSPF router-id to iden-
tify it. We should point out that the topology change records and LSAG message
logs essentially describe the same thing, but the former is geared more for com-
puter processing, whereas the latter is aimed at humans.

2. Emulation of OSPF Routing OSPFScan allows a user to reconstruct a routing
table of a given set of routers at any point of time based on the LSA archives. For
a sequence of topology changes, OSPFScan also allows the user to determine
changes to these routing tables. Together, these allow calculation of end-to-end
paths through the OSPF domain at a given time, and see how this path changed in
response to network events over a period of time. The routing tables also facilitate
analysis of OSPF’s impact on BGP through hot-potato routing [33].

3. Classification of LSA Traffic OSPFScan allows various ways of “slicing-
and-dicing” of LSA archives. For example, it allows isolating LSAs indicating
changes from the background refresh traffic. As another example, it also al-
lows classification of LSAs (both change and refresh) into new and duplicate
instances. This capability was used in a case study that analyzed one month LSA
traffic for an enterprise network [36].
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11.2.5 MPLS

Recall that MPLS has been deployed widely in service provider networks over the
last few years. It has played a key role in evolving best-effort service model of
IP networks by enabling traffic engineering (TE), fast reroute (FRR), and class of
service (CoS) differentiation. In addition, MPLS has also allowed providers to offer
value-added services such as VPN and VPLS.

Unlike traditional unicast forwarding in IP networks where routers match des-
tination IP address to the longest matching prefix, MPLS uses a label switching
paradigm. Each (IP) packet is encapsulated in an MPLS header, which contains
among other things the label which is used by a router to determine the outgoing
interface. The value of the label changes along every hop. Thus, while determining
the outgoing interface, the router also determines the label with which it replaces
the incoming label of the packet. This means that a router running MPLS has to
maintain an LFIB (Label Forwarding Information Base), which contains mapping
between incoming label and (outgoing interface, outgoing label) pairs. The sequence
of routers an MPLS packet follows is known as an LSP (Label Switched Path). The
first router along the LSP encapsulates a packet into an MPLS header, while the last
router removes the MPLS header and forwards the resulting packet based on the
underlying header.

The LFIB used for MPLS switching is populated by its control plane. This is done
by creating and distributing mapping between a label and an FEC or a Forwarding
Equivalence Class. An FEC is defined as a set of packets that need to receive the
same forwarding treatment inside an MPLS network. A router running MPLS first
generates a unique label for each FEC it supports, and uses one of the control plane
protocols to distribute the label-FEC mappings to other routers. The dissemination
of this information allows each router to determine incoming and outgoing labels
and outgoing interface for each FEC, and thereby populate its LFIB.

MPLS currently uses three routing protocols for distributing label-FEC map-
pings: LDP (Label Distribution Protocol) [37], RSVP-TE (Resource reSerVation
Protocol) [38], and BGP [39, 40]. With LDP, a router exchanges label-FEC map-
pings with each of its neighbors using a persistent session. FECs, in case of LDP,
are generally IP prefixes. The labels learned from the neighbors allow the router to
determine mapping between incoming and outgoing labels. To determine the out-
going interface, LDP relies on the IGP (such as OSPF, IS-IS etc.) running in the
underlying IP network. Thus, LSPs created by LDP follow the paths calculated by
the IGP from source router to the destination prefix. RSVP, on the end, is used for
“explicitly” created and routed LSPs between two end points; the path need not
follow the IGP path. The first router of the LSP initiates path setup by sending an
RSVP message. The message propagates along the (to be established) LSP to the
last router. Every intermediate router processes the message, creating an entry in
its LFIB for the LSP. RSVP also allows reservation of bandwidth along the LSP,
making it ideal for TE and CoS routing. Finally, BGP is used for distributing prefix
to label mappings (mostly) in the context of VPN services. With VPNs, different
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customers of a VPN service provider can use overlapping IP address blocks, and
BGP-distributed label to prefix mapping allows a provider’s egress edge router to
determine which customer a given packet belongs to.

The flow of control messages through individual routers running LDP and RSVP-
TE can be modeled in the same manner as traditional unicast routing protocols as
shown in Fig. 11.4. Thus, to monitor these protocols, one needs to collect incoming
messages, outgoing messages, and changes occurring to the LFIB at every router. As
a result, various techniques described in Section 11.2.2 for data collection apply to
these protocols as well. One caveat applies to RSVP though since it does not have a
notion of a protocol session. Given this, it is not possible to collect information about
RSVP messages through a session with an RSVP router. To collect information
about RSVP dynamics thus requires some mechanism for routers to send messages
to a monitoring session when tunnels are setup and torn down – SNMP traps defined
in RFC 3812 [41] provide such a capability.

Once routing data is collected from LDP or RSVP routers, it can be used in
similar fashion as described in Section 11.2.3. For example, knowing label binding
messages sent by LDP routers allows an operator to know if LSPs are established
correctly or not. As another example, knowing the size of an LFIB (i.e., the number
of LSPs traversing a router) and how it is evolving can be a key parameter in capacity
planning.

11.3 Multicast

Throughout its relatively brief but rapidly evolving history, the Internet has primarily
provided unicast service. A datagram is sent from a single sender to a single receiver,
where each endpoint is identified by an IP address. Many applications, however,
involve communication between more than two entities, and often the same data
needs to be delivered to multiple recipients. As examples, software updates may
be distributed from a single server to multiple recipients, and streaming content,
such as live video, may be transmitted to many receivers simultaneously. When the
network layer only supports one-to-one communication, it is the responsibility of
the end systems to replicate data and transmit multiple copies of the same packet.
This solution is inefficient both with respect to processing overhead at the sender
and bandwidth utilization within the network.

Multicast [42], on the other hand, presents an efficient mechanism for network
delivery of the same content to multiple destinations. In IP multicast, the sender
transmits a single copy of a packet into the network. The network layer replicates
the packet at appropriate routers in the network such that copies are delivered to
all interested receivers and at most one copy of the packet traverses any network
link. Multicast is built around the notion of a multicast group, which is a 32-
bit identifier taken from the Class D portion of the IP address space (224.0.0.0 –
239.255.255.255). In multicast packets, the group address is contained in the des-
tination IP address field in the header. Receivers make known their interest in
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receiving packets sent to the group address via a group membership protocol such as
IGMP [43], and multicast routing protocols enable multicast packets to be delivered
to the interested receivers.

Multicast was first proposed in the 1980s and was deployed on an experimental
basis in the early 1990s. This early deployment, known as the MBone [44] (for Mul-
ticast Backbone), consisted of areas of the Internet in which multicast was deployed.
These areas were connected together using IP-in-IP tunnels enabling multicast pack-
ets to traverse unicast-only portions of the Internet. The predominant applications
used in the MBone, videoconferencing and video broadcast, primarily supported
small group collaboration and broadcast of technical meetings and conferences.

After rapid initial growth, the MBone peaked and then began to flounder. The
technology, while initially promising, did not find its way into service provider
networks. Several reasons have been given for this. These include the lack of a
clear business model (i.e., who would be charged for packets that are replicated
and delivered to many receivers), security concerns (i.e., the original any-to-any IP
multicast service model allowed any host in the network to transmit packets to a
multicast group), and concerns about manageability (i.e., lack of tools to monitor,
troubleshoot and debug this new technology).

More recently, deployment of network layer multicast service within IP networks
has been increasing. This deployment has occurred primarily in enterprise networks,
in which some of the earlier concerns with multicast (e.g., security, business model)
are more easily mitigated. Common multicast applications in enterprise networks in-
clude software distribution and dissemination of financial trading information. The
deployment of multicast within enterprise networks has also driven deployment in
service provider networks in order to support the needs of Virtual Private Network
(VPN) customers who use multicast in their networks. The Multicast VPN solution
defined for the Internet [45, 46] requires customer multicast traffic to be encapsu-
lated in a second instance of IP multicast for transport across the service provider
backbone. Finally, the widespread deployment of IPTV, an application that benefits
greatly from multicast service, is creating further growth of IP multicast.

Forwarding multicast packets within a network makes use of a separate FIB from
the unicast FIB and depends on a new set of routing protocols to create and maintain
these FIB entries. As such, the set of tools used to monitor unicast routing cannot be
used. In this section, we review the basics of multicast routing, identify issues that
make monitoring and managing multicast more difficult than monitoring unicast
routing, and finally describe tools and strategies for monitoring this technology.

11.3.1 Multicast Routing Protocols

A multicast FIB entry is indexed by a multicast group and a source specification,
where the latter consists of an address and mask. Packets that match the group ad-
dress and source specification will be routed according to the FIB entry. The FIB
entry itself contains an incoming interface over which packets matching the source
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and group are expected to arrive, and a set of zero or more outgoing interfaces over
which copies of the packets should be transmitted. The union of FIB entries pertain-
ing the same group and source(s) across all routers forms a tree, denoting the set of
links over which a packet is forwarded to reach the set of interested receivers. It is
the job of multicast routing protocols to establish the appropriate FIB entries in the
routers and thereby form this multicast tree.

Over the last two decades, several multicast routing protocols have been pro-
posed and in some cases implemented and deployed. These include DVMRP [47],
MOSPF [48], CBT [49], MSDP [50], and PIM [51, 52]. In this section, we give an
overview of PIM and MSDP as they are the most widely deployed multicast routing
protocols.

11.3.1.1 PIM

Protocol Independent Multicast, or PIM, is the dominant multicast routing protocol
deployed in IP networks. PIM does not exchange reachability information in the
sense that unicast routing protocols, such as OSPF and BGP, do. Rather, it lever-
ages information in the unicast FIB in order to construct multicast trees, and it is
agnostic as to the source of the unicast routing information. There are multiple vari-
ants of PIM, including PIM Sparse Mode (PIM-SM), PIM Dense Mode (PIM-DM),
Source Specific PIM (PIM-SSM), and Bidirectional PIM (PIM-Bidir). In this sec-
tion, we present a brief overview of the basic operation of PIM-SM and PIM-SSM,
as they are the most commonly deployed variants of PIM, in order to motivate the
challenges in multicast monitoring and their solutions.

Before turning to PIM we discuss one key aspect of multicast trees and the pro-
tocols that construct them. Multicast trees can be classified as shared trees or source
trees. A shared tree is one that is used to forward packets from multiple sources.
In this case, the multicast routing entry is denoted by a group and a set of sources
(e.g., using an address and a mask). For a shared tree, the set of sources usually
includes all sources, and the routing table entry is denoted by the .�; G/ pair, where
G denotes the multicast group address and ‘*’ denotes a wildcard (indicating all
sources). A source tree, on the other hand, is used to forward packets from a single
source, and is denoted as .S; G/, where G again refers to the multicast group and S

refers to a single source.
PIM-SM uses both shared and source trees, depending on both the variant and

how it is configured. In both cases, multicast trees are constructed by sending Join
messages from the leaves of the tree (the routers that are directly connected to hosts
that want to receive packets transmitted to the multicast group) toward the root of
the tree. In the case of a source tree, the root is a source that transmits data to the
multicast group and the Join message is referred to as an .S; G/ Join. For a shared
tree, the root is a special node referred to as a Rendezvous Point, or RP, and the Join
message is referred to as a .�; G/ Join. The RP for a group, which can be configured
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statically at each router or determined by a dynamic protocol such as BSR [53], must
be agreed upon by all routers in a PIM domain.9

PIM Join messages are transmitted hop-by-hop toward the root of the tree. At
each router, the next hop is determined using the unicast FIB. Specifically, the Join
message is transmitted to the next hop on the best route (as determined by the unicast
routing table) toward the root (i.e., source or RP). As such, the Join message follows
the shortest path from the receiver to the root of the tree. At each hop, the router
keeps track of the neighbor router from which the Join message was received and
the neighbor router to which it was forwarded. The latter is denoted as the upstream
neighbor in the multicast FIB and the former is denoted as a downstream neighbor.
When subsequent multicast data packets are received from the upstream neighbor,
they will be forwarded to the downstream neighbor.

When a router receives a subsequent .�; G/ or .S; G/ Join message for a FIB en-
try that already exists, the router from which the Join message is received is added
to the list of downstream neighbors. However, the Join message need not be for-
warded upstream as a Join message will have already been forwarded toward the
root of the tree. In this way, Join messages from multiple downstream neighbors
are merged, and when data packets are received, they will be replicated with a copy
forwarded to each downstream neighbor. PIM uses soft state, so that Join messages
are retransmitted hop-by-hop periodically, and state that is not refreshed is deleted
when an appropriate timer expires.

In PIM-SM, all communication begins on a shared tree. Last hop routers transmit
Join messages toward the RP, forming a shared tree with the RP at the root and last
hop routers as leaves. This process is depicted in Steps 1–3 in Fig. 11.7a, in which
router R2 transmits a Join message toward the RP. This message is then forwarded
by R1 to the RP. R3 subsequently transmits a Join message toward the RP, which is
received by R1 and not forwarded further. When a source wants to transmit packets
to the group, it encapsulates these packets in PIM Register messages transmitted
using unicast to the RP. The RP decapsulates these packets and transmits them on
the shared tree, so that they are delivered to all routers that joined the tree. The RP
then sends an .S; G/ Join message toward the source, building a source tree from
the source to the RP. Steps 4–5 in Fig. 11.7a depict a Register message from a source
S to the RP followed by a subsequent Join from the RP to S. Once this source tree
is established, packets are sent using native multicast from the source to the RP and
from the RP to the leaf routers, as shown in Fig. 11.7b. When multiple sources have
data to send to the multicast group, each will send PIM Register messages to the RP,
which in turn will send PIM Join messages to the sources, thereby creating multiple
.S; G/ trees.

While all communication, in PIM-SM begin on shared trees, the protocol allows
for the use of source trees. Specifically, when a last hop router receives packets from
a source, it has the option to switch to a source tree for that source. It does this by

9 A PIM domain is defined as a contiguous set of routers all configured to operate within a common
boundary. All routers in the domain must map a group address to the same RP.
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Fig. 11.7 Example PIM Operation: (a) Sequence of control messages for shared tree creation.
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sending an .S; G/ Join toward the source, joining the source tree (just as the RP did
in the description above). Once it has received packets on the source tree, it then
sends a Prune message for the source on the shared tree, indicating that it no longer
wants to receive packets from that source on the shared tree. The Join messages
needed to switch from the shared to source tree are shown in Fig. 11.7c, and the
resulting flow of data packets is shown in Fig. 11.7d. Source trees allow for more
efficient paths from the source to receiver(s) at the expense of higher protocol and
state overhead.

PIM-SSM (Source Specific Multicast) does away with the need for RPs, thereby
simplifying multicast tree construction and maintenance while using a subset of
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the PIM-SM protocol mechanisms. PIM-SSM only uses source trees. The source of
traffic is known to hosts interested in joining the multicast group (e.g., via an out-of-
band mechanism). These receivers signal their interest in the group via IGMP, and
their directly connected routers send .S; G/ Join messages directly to the source,
thereby building a source tree rooted at the sender.

11.3.1.2 MSDP

In PIM-SM, there is a single RP that acts as the root of a shared tree for a given
multicast group. (Note that a single router may act as an RP for many groups.)
This provides a mechanism for rendezvous and subsequent communication between
sources and receivers without either having any pre-existing knowledge of the other.
However, there are two situations in which multiple RPs for a group may be de-
sirable. The first involves multicast communication between domains. Specifically,
two or more service providers may wish to enable multicast communication between
them. If there is only a single RP for a group, failure of the RP in one provider’s
network may impact service in the other’s network, even if all of the sources and
receivers are located in the latter’s network. Service providers may not be willing
to depend on a critical resource (e.g., the RP) located in another service provider’s
network for what may be purely intradomain communication. Further, even without
RP outages, performance may be suboptimal if purely intradomain communication
is required to follow interdomain paths. That is, a multicast tree between senders
and receivers in one ISP’s network may traverse another ISP’s network. Thus, each
provider may wish to have an RP located within its own domain.

The second situation in which multiple RPs may be useful involves communi-
cation within a single PIM domain. Specifically, redundant RPs provide a measure
of robustness, and this can be implemented using IP anycast [54]. Each RP is con-
figured with the same IP address, and the RP mapping mechanism identifies this
anycast address as the RP address. Each router wishing to join a shared tree sends
a .�; G/ Join message toward the RP address. By virtue of anycast routing, which
uses unicast routing to route the message to the “closest” RP, the router will join a
shared tree rooted at a nearby RP. As a result, multiple disjoint shared trees will
be formed within the domain. Similarly, when a source transmits a PIM Regis-
ter message to an anycast RP address, this message will only reach the nearest
RP. As such, sources and receivers will only communicate with those subsets of
routers closest to the same RP, and the required multicast connectivity will not be
achieved.

The problem of enabling multicast communication when multiple RPs exist for
the same group (whether within or between domains) is solved by the Multicast
Source Discovery Protocol (MSDP) [50]. MSDP enables multicast communication
between different PIM-SM domains (e.g., operated by different service providers) as
well as within a PIM-SM domain using multiple anycast RPs. MSDP-speaking RPs
form peering relationships with each other to inform each other of active sources.
Upon learning about an active source for a group for which there are interested
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receivers, an RP joins the source tree of that source so that it can receive packets
from the source and transmit them within its own domain or on its own shared tree.

We give a brief overview of MSDP. Each RP forms an MSDP peering relation-
ship with one or more other RPs using a TCP connection. These MSDP connections
form a virtual topology among the various RPs. RPs share information about sources
as follows. For each source from which it receives a PIM Register message, an RP
transmits an MSDP Source-Active (SA) message to its MSDP peers. This SA mes-
sage, which identifies a source and the group to which it is sending, is flooded across
the MSDP virtual topology so that it is received by all other MSDP-speaking RP
routers.

Upon receipt of an SA message, an RP (in addition to flooding the message to its
other MSDP peers) determines whether there are interested receivers in its domain.
Specifically, if the RP has previously received a Join message for the shared tree
indicated by the group in the SA message, the RP will transmit a PIM Join message
to the source. In this way, the RP joins the source tree rooted at the source in ques-
tion, receives multicast packets from it, and multicasts these packets on the shared
tree rooted at the RP. Thus, multicast communication is enabled when multiple RPs
exist for the same group, whether within or across domains.

11.3.2 Challenges in Monitoring Multicast

In the early days of multicast, one of the often cited reasons for its slow deployment
was the difficulty of monitoring and managing the service; commercial routers im-
plemented the protocols, but network operators had little way of knowing how the
service was working when they deployed it. While this was by no means the only
impediment to its deployment, it did present a significant challenge to network op-
erators. To some degree, the problems cited early on with multicast management
remain true today. Before turning to specific tools and techniques used to monitor
and manage multicast in order to provide a stable and reliable network service, we
identify some of the generic challenges for managing the technology, while defer-
ring some of the protocol-specific issues to Section 11.3.3.

While multicast is by no means a new technology, it is not yet mature. Because
it has only been deployed in a significant way in the last few years, there does not
yet exist the experience and knowledge surrounding it as exists with unicast service.
This manifests itself in two related ways. First, engineers and operators in many
cases are unfamiliar with the technology and face a steep learning curve in trou-
bleshooting and monitoring multicast. Second, due to a rather limited deployment
experience, the kinds of tools that have evolved in the unicast world and that have
been essential in route monitoring do not yet exist for multicast.

Putting aside the relative newness of the technology, there are aspects of multicast
that make it inherently more challenging to manage than unicast. Most obviously,
the nature of what constitutes a route followed by a packet has changed. In unicast
routing, the path taken by a packet from source to destination consists of a sequence
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of routers (usually no more than 20 or 30). This path is easily identifiable (e.g., using
tools such as traceroute) and can be presented to a network operator in a way that
is easy to understand. In multicast routing, a packet no longer traverses an ordered
sequence of routers, but rather follows a tree of routers from a source to multiple
destinations. The tree can be very large, consisting of hundreds of routers. Identify-
ing the tree becomes more challenging, and perhaps more significantly, presenting
it to a network operator in a useful manner is difficult.

In addition to being large, multicast trees are not static. That is, they are driven
by application behavior, and the set of senders and receivers may change during
the lifetime of an application. As such, branches may be added to and pruned from
multicast trees over time, and these changes can happen on short timescales. Thus,
understanding the state of multicast is made more difficult by the dynamic nature of
the multicast trees.

Finally, the multicast routing state used to forward a packet from a source to a
set of receivers can be data driven. That is, the state may not be instantiated until an
application starts sending traffic or expresses interest in receiving it. In contrast, with
unicast routing, the FIB entries used to route a packet from a source to a destination
are independent of the existence of application traffic. Thus, routing table entries can
be queried (either directly with SNMP or indirectly with a utility like traceroute) in
order to discover or verify a route. With multicast the analogous routing state may
not exist until applications are started. Using PIM-SM as an example, the shared tree
from the RP to receivers is formed as a result of receivers joining a multicast group.
Similarly, the state needed to route a packet from a source to the RP is not created
until the source sends a PIM Register message to the RP and the RP subsequently
sends an .S; G/ Join to the source. Given this, answering such questions (as one
might want to do in advance of a streaming broadcast) as “how would packets be
routed from the source to receivers” is problematic.

Given the inherent difficulties in monitoring and managing multicast routing,
there exists a need for new tools, methods and capabilities to assist in this process.
We now turn to the challenges of monitoring specific protocols and the ways in
which these challenges can be met.

11.3.3 Multicast Route Monitoring

Multicast routing involves complex protocols. In order to understand, troubleshoot
and debug the state of multicast in a network, operators need to be able to answer
several key questions. These include:

� What is the FIB entry for a particular source and group at a router?
� What is the multicast tree for a .S; G/ or .�; G/ pair?
� What route will a packet take from a source to one or more receivers? (As will

be explained below, this question differs subtly from the preceding one.)
� Are multicast trees stable or dynamic?
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� Are packets transmitted by source S to group G being received where they should
be?

� Is multicast routing properly configured in the network?

Answering these and other questions about multicast requires a new set of manage-
ment tools and capabilities. In this section, we describe how monitoring tools can
be used to answer these questions. Before doing so, we briefly review the network
management capabilities developed during earlier experiences with multicast.

11.3.3.1 Early MBone Tools

The MBone grew from a few dozen subnets in 1992 to over 3,000 four years
later [55]. At its inception, it connected a small community of collaborating re-
searchers, but it expanded to include a much broader set of users and applications. It
was initially maintained by a few people who knew administrators at all the partic-
ipating sites. Therefore, monitoring and debugging of the infrastructure developed
in an ad hoc manner.

As the MBone grew, it faced an increasing set of management challenges. To
meet these challenges, the researchers who managed and used it developed a broad
set of tools. While we avoid an exhaustive review of these tools we give a few
representative examples here which encompass both application and network layer
tools.

� mrinfo discovered the multicast topology by querying multicast routers for their
neighbors.

� mtrace was used to discover the path packets traversed to reach a receiver from
a source.

� rtpmon was an application-level monitoring tool that provided end-to-end per-
formance measurements for a multicast group.

� The DVMRP Route Monitor [56] monitored routing exchanges between multi-
cast routers in the MBone.

The tools mentioned here, and the many others that were developed (see [57,58]
for a more complete list) provided great value to the early MBone users. They ad-
dressed real problems and allowed operators and users to understand, monitor, and
troubleshoot the experimental network. While in many cases they provided insight
and lessons, which inform current efforts, they are unable to form the basis for
a current multicast management strategy. Many of the tools use RTCP and moni-
tor application performance. Others were built specifically to monitor mrouted, the
public domain multicast routing daemon used in the early MBone. Neither of these
support the needs of large ISPs to monitor their multicast infrastructure. Instead, to-
day’s multicast management and monitoring strategy must be built around tools that
work in the context of the multi-vendor commercial routers managed by the ISPs.
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11.3.3.2 Information Sources

While the earlier experience with the MBone provided some valuable insight as
to the challenges with managing multicast, it also showed the need for tools that
worked with commercial routers and that could be deployed by service providers
at scale. Such tools must work in the confines of the capabilities available on the
routers that support multicast. We discuss the options for gathering information
about multicast in this section, in order to motivate the kinds of solutions described
later.

As described in Section 11.2.3, route monitors provide enormous capability
with respect to monitoring unicast routing. BGP monitors peer with BGP speak-
ing routers to collect routing updates and thereby monitor network reachability and
stability, possibly from multiple vantage points. Similarly, OSPF monitors collect
flooded LSAs to learn the topology of a network and emulate its route computation.
Unfortunately, analogous route monitoring is more difficult with multicast.

PIM is not a conventional routing protocol per se. That is, PIM routers do not
exchange reachability information, nor do they flood information about their local
topology or routing state. Instead, PIM makes use of the routes computed by another
routing protocol, such as OSPF. Specifically, PIM uses the routes in a unicast FIB to
forward PIM Join messages toward the root of a multicast tree. These Join messages
cause the router to instantiate the multicast FIB entries needed to forward multicast
packets.

We do note that in contrast, MSDP is amenable to monitoring akin to what is fea-
sible with unicast. It is built upon information exchanges over peering connections
(themselves using TCP). These advertisements are flooded to all MSDP speakers,
therefore an MSDP monitor could collect (possibly from multiple other routers) and
analyze these exchanges.

Since a route monitor cannot collect information about a PIM domain, other
sources of information are needed upon which to build appropriate multicast mon-
itoring and management capabilities. We review the two most readily available
sources of information here: SNMP and CLI.

SNMP provides a mechanism upon which to build multicast management ap-
plications. It is an Internet standard presenting a common interface upon which to
access information from routers. Service providers use it in other network man-
agement functions. Therefore, libraries, pollers and related expertise are abundant.
Several multicast-related MIBs have been defined providing extensive information
about multicast routing (e.g. [59, 60]). These MIBs provide information about in-
terfaces on which multicast is enabled, multicast routing adjacencies, and multicast
FIB entries.

SNMP is not without its shortcomings. We identify three in particular. First, ex-
cept for a relatively small number of traps defined in multicast-related MIBs, all
SNMP-related information must be polled. Hence, changes in multicast routing
entries, as occur when a tree changes, can only be discovered through polling.
Learning about such changes in a timely and scalable manner may be challeng-
ing. Second, while SNMP is defined as an Internet standard, vendors can define
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and implement their own proprietary MIBs. By availing themselves of this option,
vendors make the development of vendor-independent management tools more dif-
ficult. Finally, a single vendor may support different MIBs on different devices,
as can be the case when a vendor undergoes a major revision of its operating
system.

Scripts that directly access the command line interfaces of routers present an al-
ternative way of collecting multicast related information from routers. However, the
command line interface does not return information in a structured machine read-
able format (as SNMP does) and therefore requires parsing of the output to obtain
specific items. Further, because the command line interfaces are not standardized,
building portable vendor-independent tools (and even tools that work with different
platforms of a single vendor) can be difficult.

11.3.3.3 Multicast Monitoring

SNMP is generally a more useful and flexible platform upon which to base
multicast-related management and monitoring tools. Using SNMP, monitoring
tools can retrieve relevant multicast routing information from routers and produce
the kinds of reports and output that one might get from a conventional route mon-
itor. In this section, we present examples of the kind of functionality that can be
implemented.

As a first example, SNMP-based tools can discover the multicast topology, i.e.,
the contiguous set of routers that implement PIM within a domain. Specifically, each
PIM router will report its set of PIM neighbors (those adjacent routers that also run
PIM). By starting at any router within a domain and recursively querying for lists
of PIM neighbors, the entire topology can be discovered. The multicast topology
can be used to verify that multicast is configured as expected (e.g., all routers are
reachable in the multicast topology) and to track topology changes as they occur.

As a next example, multicast-related MIBs can be mined to report and explore
specific multicast FIB entries at a router. When multicast was first deployed on
commercial routers, a common monitoring and debugging technique employed by
operators was to logon to a router and to use the command-line interface to observe
routing table entries. In particular, the show ip mroute command provides detailed
information about one or more .S; G/ or .�; G/ entries. This includes informa-
tion about the upstream router, outgoing interfaces by which downstream neighbors
are reached, the RP (in the case of PIM-SM), and various timers related to the
entry. In fact, much of the information provided by the command line is also ex-
ported in MIBs. Gathering the information in machine-readable format provides an
ability to emulate the existing command-line output, while at the same time aug-
menting it and producing more valuable output using a graphical or web-based
interface. Further, when gathering MIB data from a router, output need not be con-
strained to the format provided on router command lines. Groups can be filtered, for
example, based on their importance, traffic volume or dynamicity, and automatic
reports on critical information can be generated. Figure 11.8 depicts an example of
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Router: attga-rtr1 (10.20.1.1)
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, s - SSM Group
       C - Connected, L - Local, P - Pruned
       R - RP-bit set, F - Register Flag, T - SPT-bit set, J - Join SPT
Timers: Uptime/Expires
Interface state: Interface, Next-Hop, State/Mode
Application: Customer 1 VPN
(*, 239.1.23.5), uptime 49d17h, expires 00:02:56, AnycastRP is stlmo-rtr3 (10.21.3.2) 
  Incoming interface: POS15/0, RPF neighbor attga-rtr2 (10.21.17.1) 
  Outgoing interface list:
    Loopback0, Forward/Sparse, 49d17h/00:00:00
Source: attga-rtr1
(10.20.1.1, 239.1.23.5), uptime 49d17h, expires 00:03:29
  Incoming interface: Loopback0, RPF neighbor 0.0.0.0
  Outgoing interface list:

attga-rtr2 (POS0/0), Forward/Sparse, 42d15h/00:02:51
attga-rtr3 (POS15/0), Forward/Sparse, 44d12h/00:03:10

Fig. 11.8 SNMP-generated (*, G) and (S, G) multicast routing table entries

SNMP-generated multicast routing state at a router. Adjacent routers in the display,
as well as the Rendezvous Point, are clickable, yielding the analogous routing state
at those routers.

While viewing multicast routing information gathered from a single router is
valuable, the real power of SNMP comes from its ability to collect and synthesize
data from multiple routers simultaneously. In the case of multicast, it can be used to
discover multicast distribution trees in the network. This is critical in giving opera-
tors the ability to understand their networks, locate problems and develop solutions.
The automated collection of information from many routers simultaneously enables
tree discovery at a scale not feasible using a manual router-by-router approach.

Multicast tree discovery works as follows. A management application using
SNMP can gather local state for a multicast FIB entry starting at any router on
the tree (the router can be a known source, receiver, or a transit router such as an
RP). The key pieces of state here include the upstream neighbor of the router, the
downstream routers to which it will forward packets, and perhaps the identity of the
RP (in the case of shared trees as in PIM-SM). Beginning from this initial router,
the entire tree can be discovered by repeating queries recursively at upstream and
downstream routers until the source and all leaf routers are reached. An example
of the output of such a tree discovery is shown in Fig. 11.9. The routers in this tree
display are clickable, allowing the user to drill down to router-specific state for the
group (like that shown in Fig. 11.8).

The ability to easily discover an entire tree is invaluable. It enables operators to
see how packets will be forwarded, and in the case of problems, provides guidance
as to where faults may be located and troubleshooting should begin. In the case of
very large trees, graphical displays (like that shown in Fig. 11.10) are needed. In
addition, zooming, panning and searching become critical as the number of routers
on a tree exceeds a few tens.
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--cgcil-rtr2 (10.20.14.27) *Anycast RP (10.21.3.2)*

  |
  +--seawa-rtr1 (10.20.121.12)
  |  |
  |  +--ptdor-rtr4 (10.20.33.15)

  |  |  |
  |  |  +--ptdor-rtr7 (10.20.33.87)

  |  |
  |  +--seawa-rtr8 (10.20.52.119)
  |  |  |
  |  |  +--seawa-rtr10 (10.20.51.42)
  |  |
  |  +--ptdor-rtr6 (10.20.16.100)
  |     |
  |     +--ptdor-rtr15 (10.20.61.115)

  |
  +--cgcil-rtr2 (10.20.122.14)
     |
     +--nycny-rtr1 (10.20.14.188)
        |
        +--nycny-rtr6 (10.20.4.110)
           |
           +--nycny-rtr5 (10.20.121.106)
              |
              +--nycny-rtr10 (10.20.52.27)

Initial Router: nycny-rtr1 (10.20.167.22)

Source: 0.0.0.0

Group: 239.16.88.39

Application: Customer 2 VPN

Fig. 11.9 SNMP-generated multicast tree

Monitoring PIM-SM presents challenges beyond discovering a single multicast
tree. Recall that receivers join a shared tree rooted at an RP and that the RP indepen-
dently joins a source-specific tree rooted at each source. Thus, for a single multicast
group, multiple FIB entries may exist at each router, corresponding to one or more
.S; G/ pairs and a .�; G/ entry. Each entry may have different sets of incoming
and outgoing interfaces. Since the packet forwarding rules are extremely complex,
it may not always be easily understood how a particular packet will be forwarded.
A packet may initially be forwarded along a source-specific tree, and then be repli-
cated and transition to a shared tree at one or more points.

This challenge can be addressed through the simultaneous discovery and display
of multiple multicast trees, as shown in Fig. 11.11. This shows the source tree from
a single sender to multiple RPs and shared trees from each of the RPs to associated
last hop routers. Note that the trees may overlap and in many cases branches from
different trees will flow in different directions on the same link. Use of a display
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dlstx-rtr4
(RP)

dlstx-rtr6 dlstx-rtr11 phmaz-rtr4 houtx-rtr6

attga-rtr4 losca-rtr6

attga-rtr9

attga-rtr7

sffca-rtr6

sffca-rtr11

phmaz-rtr7 houtx-rtr11 houtx-rtr4

ormfl-rtr4

ormfl-rtr11

Fig. 11.10 Graphical display of a multicast tree

attga-rtr4
(SRC)

attga-rtr2

stlmo-rtr8 dlstx-rtr8

stlmo-rtr2
(RP)

nsvtn-rtr2 kcymo-rtr5

dlstx-rtr2
(RP)

dlstx-rtr5 phmaz-rtr2 houtx-rtr8

attga-rtr8

attga-rtr5

phmaz-rtr4 houtx-rtr5 houtx-rtr2

Fig. 11.11 Tree display depicting a single source tree (dashed lines) and two shared trees (solid
lines) for a single multicast group

like this can show how packets are transmitted from a sender to a receiver, and can
illustrate where problems in the tree(s) exist.

The multicast-related MIBs provide a level of detail not available with unicast.
Specifically, whereas unicast MIBs provide information about destination networks,
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the multicast MIB entries, identified by the combination of a source and a group, or
just a group, provide information about a particular application since at any point in
time, a multicast group is generally used by a single application instance. This level
of detail would be akin in the unicast world to a MIB entry per TCP connection.
Hence, instead of asking a router about unicast routes to a destination, we can look
at multicast routes used by a particular application.

Such fine-grained information will clearly present scaling challenges as the scope
of multicast deployment continues. However, it also presents real opportunities in
the area of multicast monitoring. This becomes especially relevant as network oper-
ators transition from viewing their jobs as monitoring routers and links to managing
end-to-end services.

Given the ability to associate a multicast group with an application, the provider
can perform application-specific monitoring. In fact, the tools outlined above al-
ready do this to some extent – the multicast trees being discovered and displayed
give information about routing for the specific applications that use them. In ad-
dition, traffic or performance monitoring is also possible. That is, a provider can
monitor a well-known application to verify both that multicast routing state exists,
and that traffic is being received. For example, in an IPTV network, each TV chan-
nel is generally transmitted on its own multicast group. If the network is engineered
so that groups are statically joined at certain routers, or if routers are monitored to
dynamically determine where channels are being distributed, group-specific MIB
variables, such as packet and byte counters, can be gathered to monitor application
performance.

While the majority of attention in the area of multicast management is focused
on PIM, the deployment of MSDP will likely expand, as multicast grows within do-
mains and as providers explore interdomain multicast. As a protocol, MSDP bears
some resemblance to BGP (in the sense that routers form explicit peering connec-
tions), and lessons and techniques that have evolved in the management of BGP
can be applied to MSDP. Recall that MSDP routers share information about active
sources across domains. MSDP speaking routers in different domains form peer-
ing relationships and exchange information over reliable TCP connections (as with
BGP). An MSDP router (which is generally also an RP), sends SA messages to its
peers, informing them of the active sources for each group in the domain. These
messages are flooded throughout the virtual topology formed by the MSDP peering
relationships so that all MSDP routers have global information.

An MSDP monitor can form a peering relationship with one or more MSDP
speaking routers. The peering relationships would be entirely passive, so that the
monitor learns information, but does not inject announcements into the network. The
monitor could thus learn about active sources in other domains. This dynamically
learned information could be used to drive other monitoring functions, such as tree
discovery or per-application monitoring. In addition, peerings with multiple MSDP
speakers could be used to verify the consistency of views at different vantage points
in the network.
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11.4 Summary and Future Directions

In this chapter, we have described tools and techniques to monitor the control plane
for unicast as well as multicast services. The control plane, consisting of the routing
protocols running in the network, determines how packets flow from a source to a
destination. The proper functioning of the control plane is key to the overall func-
tioning of the Internet, and as a result it is critical to monitor its performance on an
ongoing basis. This chapter in particular focused on what data needs to be collected
and how it can be used for effective monitoring of the control plane.

Although we have come a long way from the early days of the Internet when
routing protocols were deployed with little thought given to their management,
many challenges remain. This is due in part to the fact that network management
needs to continually catch up with a constantly evolving infrastructure. The advent
of MPLS and multicast are cases in point. Control plane monitoring for these new
services could borrow techniques and lessons learned from earlier experiences, but
they present their own unique requirements as well. Similarly, while we expect to-
day’s tools to provide a foundation to support future control plane monitoring as the
Internet evolves, new challenges demand additional tools and strategies. We provide
a few examples of what we see as likely future challenges and requirements before
closing the chapter.

As the Internet continues its explosive growth, scale remains a major challenge.
The number of routing table entries and messages in the control plane has been in-
creasing rapidly as more and more people and businesses come online. This growth
not only poses scalability challenges to the control plane itself, but also to the sys-
tems that monitor and manage it. Imagine monitoring and maintaining end-to-end
paths between hundreds of thousands of router pairs in real time, and updating them
as the network undergoes changes. Similarly, consider current SNMP-based tools
that can query the entire multicast routing tables of a router. As the use of multicast
expands and consequently multicast routing tables grow (e.g., to rival the size of
unicast routing tables), the existing tools and techniques will not scale. The ability
of network operators to gain information about individual groups and applications
will diminish, and existing tools will need to be extended or replaced.

Another challenge, related in part to scale, lies in the area of inter-provider
monitoring. Most control plane monitoring today takes place within the context
of a single provider. There do exist facilities like RouteViews [15] for monitor-
ing interdomain BGP changes across providers. However, understanding control
plane behavior across providers could benefit from advances in tools to support
inter-provider monitoring. Such tools would, of necessity, preserve privacy across
providers and adhere to strict security requirements.

The Internet’s best-effort service model works well for applications such as file
transfer and electronic mail. However, many new applications running on the Inter-
net have significantly more stringent performance requirements. These performance
requirements place additional requirements on the control plane as well. For exam-
ple, as we saw in this chapter, traditional unicast routing protocols often take several
tens of seconds to converge after a change. This, unfortunately, is totally inadequate



392 L. Breslau and A. Shaikh

for applications such as VoIP and IPTV. To fill this gap, service providers have
attempted to improve the convergence time of existing routing protocols through
better implementation and configurations. In addition, they have introduced new
technologies such as IP and MPLS-based fast reroute (FRR) schemes. As providers
deploy technology aimed to improve routing protocol behavior, there is a corre-
sponding need for more advanced tools to monitor the performance and reliability
of the control plane so that the results of routing protocol changes can be verified or
measured.

During the last decade we have made substantial progress in our ability to moni-
tor and measure the performance of the control and data planes. An exciting avenue
for future work lies in closing the feedback loop by automatically adjusting network
configuration to optimize its performance as information is gleaned from the moni-
toring systems. Achieving this will require sophisticated models to represent current
network performance, and its performance under various “what-if” scenarios. These
models then need to be translated into mechanisms for reliably and scalably ad-
justing device configurations and resource allocations, as well as for redesigning
and re-architecting networks at various timescales in an automated fashion. Apart
from application performance and resource usage, an automated “measure-model-
control” loop will be crucial in running the networks in a more efficient and reliable
manner.
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Chapter 12
Network Management: Fault Management,
Performance Management, and Planned
Maintenance

Jennifer M. Yates and Zihui Ge

12.1 Introduction

As the Internet grew from a fledgling network interconnecting a few University
computers to a massive infrastructure deployed across the globe, the focus was
primarily on providing connectivity to the masses. And IP has certainly achieved
this. IP is used today to connect businesses and consumers across the globe. An
increasingly diverse set of services have also come to use IP as the underlying
communications protocol, including e-commerce, voice, mission-critical business
applications, TV (IPTV), as well as e-mail and Internet web browsing. Nowadays,
even people’s lives depend on IP networks – as IP increasingly supports emergency
services and other medical applications.

This tremendous diversity in applications places an equally diverse set of re-
quirements on the underlying network infrastructure, particularly with respect to
bandwidth consumption, reliability, and performance. At one extreme, e-mail is
resilient to network impairments – the key requirement being basic connectivity.
E-mail servers continually attempt to retransmit e-mails, even in the face of poten-
tially lengthy outages. In contrast, real-time video services typically require high
bandwidth and are sensitive to even very short-term “glitches” and performance
degradations.

IP is also a relatively new technology – especially if we compare it with tech-
nology such as the telephone network, which has now been around for over 130
years. As IP technology has matured over recent years, network availability has
been driven up – a result of maturing hardware and software, as well as continued
improvements in network management practices, tools, and network design. These
improvements have enabled a shift in emphasis to focus beyond availability and
faults to managing performance – for example, eliminating short-term “glitches,”
which may not be at all relevant to many applications (e.g., e-mail), but can cause
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degradation in service quality to applications such as video streaming and online
gaming. The transformation of IP from a technology designed to support best-effort
data delivery to one that supports a diverse range of sensitive real-time and mission-
critical applications is a testament to the industry and to the network operators who
have created technologies, automation, and procedures to ensure high reliability and
performance.

In this chapter, we focus on the network management systems and the tasks
involved in supporting the day-to-day operation of an ISP network. The goal of
network operations is to keep the network up and running and performing at or
above designed levels of service performance. Achieving this goal involves respond-
ing to issues as they arise, proactively making network changes to prevent issues
from occurring, and evolving the network over time to introduce new technolo-
gies, services, and capacity. We can loosely classify these tasks into categories using
traditional definitions discussed within the literature – namely, fault management,
performance management, and planned maintenance.

At a high level, fault management is easy to understand: it includes the
“break/fix” functions – if something breaks, fix it. More precisely, fault man-
agement encompasses the systems and workflows necessary to ensure that faults are
rapidly detected, the root causes are diagnosed, and the faults are rapidly resolved. It
can also include predicting failures before they occur, and remediating the problem
before it actually happens.

Performance management can be defined in several different ways: for example,
(1) designing, planning, monitoring, and taking action to prevent and recover from
overload conditions once they happen, and (2) monitoring both end-network per-
formance and per element performance and taking actions to address performance
degradation. Performance can be measured and managed on the links between net-
work elements (e.g., bandwidth utilization), on the network elements themselves
(e.g., CPU utilization), on the traffic flow (e.g., packet loss, latency, or jitter), or on
the quality of the service transactions (e.g., voice call quality or time to deliver a text
message). The first definition focuses on traffic management and encompasses roles
executed by network engineering organizations (capacity planning) and operations
(real-time responses to network conditions). In this chapter, we will focus on the sec-
ond definition of performance management: monitoring network performance and
taking appropriate actions when performance is degraded. This performance degra-
dation may be the result of an unplanned surge in traffic that exceeds engineered
capacity (whether legitimate traffic or “attack traffic” from a Distributed Denial-
of-Service attack), loss of available capacity (e.g., owing to a hardware failure),
intermittent problems that cause high bit error rates on a link, or logical problems
such as incorrect configurations or software errors that create a “black hole.”

Both network faults and degraded performance may require intervention by
network operations, and the line between fault and performance management is
blurred in practice. Sometimes, a fault can occur with no performance degrada-
tion, such as when a circuit board fails but its function is taken over by a redundant
card. Alternatively, a performance problem can occur without any corresponding
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hardware fault, such as when a surge of customer traffic exceeds available capacity.
Then in other situations, a fault can occur and result in degraded performance, such
as when a link fails and results in the network’s inability to carry all customer traffic
without traffic loss or degradation. In this chapter, we refer to a network condition
that may require the intervention of network operations as a network event. Events
are triggered by an underlying incident; a single incident can result in multiple net-
work events (e.g., link down, congestion, and packet loss). The events in question
may have a diverse set of causes, including hardware failures, software bugs, exter-
nal factors (e.g., flash crowds, outages in peer networks), or combinations of these.
The impact resulting from different incidents also varies drastically, ranging from
outages during which affected customers have no connectivity for lengthy periods
of time (known as “hard outages”), through to those which result in little or no cus-
tomer impact (e.g., loss of network capacity where traffic re-routes around it). In
between these two extremes lie incidents which result in customers experiencing
degraded performance to differing extents – e.g., sporadic packet loss, or increased
delay and/or jitter.

In addition to rapidly reacting to issues that arise, daily network operation also
incorporates taking planned actions to proactively ensure that the network contin-
ues to deliver high service levels, and to evolve network services and technologies.
We refer to such scheduled activities as planned maintenance. Planned mainte-
nance includes a wide variety of activities, such as changing a fan filter in a router,
hardware or software upgrades, capacity augmentation, preventive maintenance, or
rearranging connections in response to external factors, including even highway
maintenance being carried out where cables are laid. Such activities are usually
performed at a specific, scheduled time, typically during nonbusiness hours when
network utilization is low and the impact of the maintenance activity on customers
can be minimized.

This chapter covers both fault and performance management, and planned main-
tenance. Section 12.2 focuses on fault and performance management – predicting,
detecting, troubleshooting, and repairing network faults and performance impair-
ments. Section 12.3 examines how process automation is incorporated in fault and
performance management to automate many of the tasks that were originally exe-
cuted by humans. Process automation is the key ingredient that enables a relatively
small operations group to manage a rapidly expanding number of network elements
and customer ports, and growing network complexity. Section 12.4 discusses track-
ing and managing network availability and performance over time, looking across
large numbers of network events to identify opportunities for performance improve-
ments. Section 12.5 then focuses on planned maintenance. Finally, in Section 12.6,
we discuss opportunities for new innovations and technology enhancements, includ-
ing new areas for research. We conclude Section 12.7 with a set of “best practices.”
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12.2 Real-Time Fault and Performance Management

Fault and performance management comprise a large and complex set of functions
that are required to support the day-to-day operation of a network. As mentioned in
the previous section, network events can be divided into two broad categories: faults
and performance impairments. The term fault is used to refer to a “hard” failure –
for example, when an interface goes from being operational (up) to failed (down).
Performance events denote situations where a network element is operating with
degraded performance – for example, when a router interface is dropping packets,
or when there is an undesirably high loss and/or delay experienced along a given
route. We use the term “event management” to generically define the set of func-
tions that detect, isolate, and repair network malfunctions – covering both faults and
performance events.

The primary goal of event management is to rapidly respond to network incidents
as they occur so that any resulting customer impact can be minimized. However,
achieving this within the complex environment of ISP networks today requires a
carefully designed and scalable event management framework. Figure 12.1 presents
a simplified view of such a framework. The goal of the design is to enable rapid and
reliable detection and notification of network events, so that action can be taken to
troubleshoot and mitigate them. However, as anyone who has experience with large
networks can attest, this is in itself a challenging problem.
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Fig. 12.1 Simplified event management framework
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At the base of the event management framework lies an extensive and diverse
network instrumentation layer. The instrumentation layer illustrated in Fig. 12.1
collects network data from both network elements (routers, switches, lower-layer
equipment) and network monitoring systems designed to monitor network perfor-
mance from vantage points across the network. The measurements collected are
critical for a wide range of different purposes, including customer billing, capac-
ity planning, event detection and notification, and troubleshooting. The latter two
functions are critical parts of daily network operations. With regard to this, the goal
is to ensure that the wide range of potential fault and performance events are reli-
ably detected and that there are sufficient measurements available to troubleshoot
network incidents.

Both the routers and the collectors contained within the instrumentation layer
detect events that can trigger notifications to the central event management system.
Events detected include faults (e.g., link or router down) and performance impair-
ments (such as excessive network loss or delay). These performance events are
identified by looking for anomalous, “bad” conditions among the mounds of per-
formance data, and logs collected within the instrumentation layer.

Given the diversity of the instrumentation layer, any given network incident will
likely be observed as multiple different events. For example, a fiber cut (the inci-
dent) could result in events detected in the lower layer (e.g., SONET layer failures)
and in events detected in the IP/MPLS network layer (router links failing and po-
tentially congestion, packet loss, and excessive end-to-end delay). Each event, in
turn, could be detected by multiple monitoring points. Thus, it is likely that a single
incident will result in a deluge of event notifications, which would swamp the oper-
ations personnel trying to investigate. Significant automation is thus introduced in
the event management system to suppress and correlate multiple event notifications
associated with the same incident. The resulting correlated event is used to trigger
the creation of a ticket in the network ticketing system – these tickets are used to
notify operations personnel about the occurrence of the incident.

Once notified of an issue, operations personnel are responsible for troubleshoot-
ing, restoration, and repair. Troubleshooting, restoration, and repair have two
primary goals: (1) restoring customer service and performance, and (2) fully re-
solving the underlying issue and returning network resources into service. These
two goals may or may not be distinct – where redundancy exists, the network is typ-
ically designed to automatically reroute around failed elements, thus negating the
need for manual intervention in restoring customer service. Troubleshooting and re-
pair can then instead focus on returning the failed network resources into service
so that there is sufficient capacity available to absorb future failures. In other situ-
ations, operations must resolve the issue to restore customer service. Rapid action
from operations personnel is then imperative – until they can identify what is caus-
ing the problem and repair it, the customer may be out of service or experiencing
degraded performance. This typically occurs at the edge of a network, where the
customer connects to the ISP and redundancy may be limited. For example, if the
nonredundant line-card to which a customer connects fails, the customer may be out
of service until a replacement line-card can be installed.
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We next delve into each of the different layers and functions of the event man-
agement framework in greater detail.

12.2.1 Instrumentation Layer, Event Detection,
and Event Notification

The foundation of an event management system is the reliable detection and notifi-
cation of network faults and performance impairments. We thus start by considering
how these network events are detected, and how the corresponding event notifica-
tions are generated.

The primary goal is to ensure that the event management system is timely and
reliably informed of network events. But each underlying incident may trigger a
number of different events, and may occur anywhere across the vast network(s) be-
ing monitored. Depending on the impairments at hand, it may be that the routers
themselves observe the events and report them accordingly. However, limitations
in router monitoring capabilities, the inability to incorporate new monitoring ca-
pabilities without major router upgrades, and the need for independent network
monitoring have driven a wide range of external monitoring systems into the net-
work. These systems have the added benefit of being able to obtain different
perspectives on the network when compared with the individual routers. For ex-
ample, end-to-end performance monitoring systems obtain a network-wide view of
performance; a view not readily captured from within a single router.

Chapters 10 and 11 have discussed the wide range of network monitoring
capabilities available in large-scale operational IP/MPLS networks. These are incor-
porated within the instrumentation layer to support a diverse range of applications,
ranging from network engineering (e.g., capacity planning), customer billing, to
fault and performance management. Within fault and performance management,
these measurements support real-time event detection, as well as other tasks such as
troubleshooting and postmortem analysis, which are discussed later in this chapter.

The instrumentation layer, as illustrated in Fig. 12.1, is responsible for collect-
ing measurements from both network elements (e.g., routers) and from external
monitoring devices, such as route monitors and application/end-to-end performance
measurement tools. Although logically depicted as a single layer, the instrumenta-
tion layer actually consists of multiple different collectors, each focused on a single
monitoring capability. We next discuss these collectors in more detail.

12.2.1.1 Router Fault and Event Notifications

Network routers themselves have an ideal vantage point for detecting failures local
to them. They are privy to events that occur on inter-router links terminating on
them, and also to events that occur inside the routers themselves. They can thus
identify all sorts of hardware (link, line–card, and router chassis failures) and
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software issues (including software protocol crashes and routing protocol failures).
Routers themselves detect events and notify the event management systems – one
can view the instrumentation layer for these events as residing directly within the
routers themselves as opposed to in an external instrumentation layer.

In addition to creating notifications about events detected in the router, routers
also write log messages, which describe a wide range of events observed on the
router. These are known as syslogs; they are akin to the syslogs created on servers.
The syslog protocol [1] is used to deliver syslog messages from network elements
to the syslog collector depicted in Fig. 12.1. These syslog messages report a diverse
range of conditions observed within the network element, such as link and protocol-
related state changes (down, up), environment measurements (voltage, temperature),
and warning messages (e.g., denoting when customers send more routes than the
router is configured to allow). Some of these events relate to conditions that are then
reported to the event management system, while others provide useful information
when it comes to troubleshooting a network incident. Syslog messages are basically
free-form text, with some structure (e.g., indicating date/time of event, location, and
event priority). The form and format of the syslog messages vary between router
vendors. Figure 12.2 illustrates some example syslog messages taken from Cisco
routers – details regarding Cisco message formats can be found in [2].

12.2.1.2 External Fault Detection and Route Monitoring

Router fault detection mechanisms are complemented by other mechanisms to
identify issues that may not have been detected and/or reported by the routers –
either because the routers do not have visibility into the event, their detection
mechanisms fail to detect it (maybe due to a software bug), or because they are
unable to report the issue to the relevant systems. For example, basic periodic ICMP

Mar 15 00:00:06 ROUTER_A 627423: Mar 15 00:00:00.554: %CI-6-
ENVNORMAL:+24 Voltage measured at 24.63
Mar 15 00:00:06 ROUTER_B 289883: Mar 15 00:00:00.759: %LINK-3-      
UPDOWN: Interface Serial13/0.6/16:0, changed state to up 
Mar 15 00:00:13 ROUTER_C 2267435: Mar 15 00:00:12.473:
 %CONTROLLER-5-UPDOWN: Controller T3 10/1/1 T1 18, changed state to 
DOWN 
Mar 15 00:00:06 ROUTER_D 852136: Mar 15 00:00:00.155: %PIM-6-
INVALID_RP_JOIN: VRF 13979:28858: Received (*, 224.0.1.40) Join from  
1.2.3.4 for invalid RP 5.6.7.8
Mar 15 00:00:07 ROUTER_E 801790: -Process= "PIM Process", ipl= 0, pid=218
Mar 15 00:25:26 ROUTER_Z bay0007:SUN MAR 15 00:25:24 2009 [03004EFF] 
MINOR:snmp-traps:Module in bay 4 slot 6, temp 65 deg C at or above minor 
threshold of 65 degC.

Fig. 12.2 Example (normalized) syslog messages
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“ping” tests are used to validate the liveness of routers and their interfaces – if a
router or interface becomes unexpectedly unresponsive to ICMP pings, then this
warrants concern and an event notification should be generated.

Route monitors, as discussed in Chapter 11, also provide visibility into control-
plane activity; activity that may not always be reported by the routers. IGP monitors,
such as OSPFmon [3], learn about link and router up/down events and can be used
to complement the same events reported by routers. However, route monitors extend
beyond simple detection of link up/down events, and can provide information about
logical routing changes affecting traffic routing. Even further, the route(s) between
any given source/destination can be inferred using routing data collected from route
monitors. This information is vital when trying to understand the events that have
affected a given traffic flow.

12.2.1.3 Router-Reported Performance Measurements

Although hardware faults have traditionally been the primary focus of event man-
agement systems, performance events can also cause significant customer distress,
and thus must be addressed. The goal here is to identify and report when network
performance deviates from desired operating regions and requires investigation.
However, the reliable detection of performance issues is really quite different from
detecting faults. Performance statistics are continually collected from the network;
from these measurements, we can then determine when performance departs from
the desired operating regions.

As discussed in Chapter 10, routers track a wide range of different performance
parameters – such as counts of the number of packets and bytes flowing on each
router interface, different types of interface error counts (including buffer overflow,
malformatted packets, CRC check violations), and CPU and memory utilization on
the central router CPU and its line-cards. These performance parameters are stored
within the router in the Simple Network Management Protocol (SNMP) Manage-
ment Information Bases (MIBs). SNMP [4] is the Internet community’s de facto
standard management protocol. SNMP was defined by the IETF, and is used to con-
vey management information between software agents on managed devices (e.g.,
router) and the managing systems (e.g., event management systems in Fig. 12.1).

External systems poll router MIBs on a regular basis, such as every 5 minutes.
Thus, with a 5-min polling interval, the CPU measurement represents the average
CPU utilization over a given 5-min interval; in polling packet counts, the poller can
create measurements representing the total number of packets that have flowed on
the interface in the given 5-min interval.

The SNMP information collected from routers is used for a wide variety of
purposes, including customer billing, detecting anomalous network conditions
that could impact or risk impacting customers (congestion, excessively high CPU
utilization, router memory leaks), and troubleshooting network events.
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12.2.1.4 Traffic Measurements

While SNMP measurements provide aggregate statistics about link loads – e.g.,
counts of total number of bytes or equivalently link utilization over a fixed time
interval (e.g., 5 min), they provide little insight into how this traffic is distributed
across different applications or different source/destination pairs. Instead, as dis-
cussed in Chapter 10, Netflow and deep packet inspection (DPI) are used to obtain
much more detailed measurements of how traffic is distributed across applications,
network links, and routes. These measurement capabilities are especially critical in
troubleshooting various network conditions. DPI, in particular, can be used to ob-
tain unique visibility into the traffic carried on a link, which is useful in trying to
understand what and how traffic may be related to the given network issues. For
example, DPI could be used to identify malformed packets and where they came
from, or identify what traffic is destined to an overloaded router CPU.

12.2.1.5 End-to-End Network, Application and Service Monitoring

Although monitoring the state and performance of individual network elements
is critical to managing the overall health of the network, it is not in itself suffi-
cient to understanding the performance as perceived by customers. It is imperative
to monitor and detect events based on the end-to-end network and service-level
performance.

End-to-end measurements – even as simple as that achieved by sending test traf-
fic across the network from one edge of the network to another – provide the closest
representation of what customers experience as can be measured from within the ISP
network. End-to-end measurements were discussed in more detail in Chapter 10. In
the context of fault and performance management, they are used to identify anoma-
lous network conditions, such as when there is excessive end-to-end packet loss,
delay, and/or jitter. These events are reported to the event management system, and
used to trigger further investigation.

As discussed in Chapter 10, performance monitoring can be achieved using ei-
ther active or passive measurements. Active measurements send test probes (traffic)
across the network, collecting statistics related to the network and/or service perfor-
mance. In contrast, passive measurements examine the performance of traffic being
carried across the network, such as customer traffic. Ideally, such measurements
would be taken out as close to the customers as possible, even into the customer
domains. However, this is not always possible, particularly if the ISP does not have
access to the customer’s end device or domain.

End-to-end performance measurements can be used both to understand the
impact of known network incidents, and to identify events that have not been
detected via other means. When known incidents occur, end-to-end performance
measurements provide direct performance measures, which present insight into the
incident’s customer impact. In addition end-to-end measurements also provide an
overall test of the network health, and can be used to identify the rare but potentially
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critical issues (e.g., faults) which the network may have failed to detect. When it
comes to faults, these are known as silent failures, and have historically been an
artifact of immature router technologies – where the routers simply fail to detect
issues that they should have detected. For example, consider an internal router fault
(e.g., corrupted memory on a line-card), which is causing a link to simply drop all
traffic. If the router fails to detect that this is occurring, then it will fail to reroute the
traffic away from the failed link, and to report this as a fault condition. Thus, traffic
will continue to be sent to a failed interface and be dropped – a condition known
as black-holing. End-to-end measurements provide a means to proactively detect
these issues; in the case of active measurements, the test probes will be dropped
along with the customer traffic – this would be detected and appropriate notifica-
tions would be generated. Thus, the event can be detected even when the network
elements fail to report them and (hopefully!) before customers complain.

In addition to auditing the integrity of the network, simple test probes can also be
used to estimate service performance (e.g., estimating how well IPTV services are
performing). However, extrapolating from simple network loss and delay measures
to understand the impact of a network event on any given network-based application
is most often an extremely complex, if not impossible, task involving the intimate
details of the application in question. For example, understanding how packet loss,
delay and jitter impact the video streams is an area of active research.

Ideally, we would like to directly measure the performance of each and every ap-
plication that operates across a network. This may be an impossible task in networks
supporting a plethora of different services and applications. However, if a network
is critical to a specific application – such as IPTV – then that application also needs
to be monitored, and appropriate mechanisms must be in place to detect issues. Af-
ter all, the goal is to ensure that the service is operating correctly – ascertaining this
requires direct monitoring of the service of interest.

12.2.1.6 Event Detection and Notification

The instrumentation layer thus provides network operators with an immense volume
of network measurements. How do we transform these data to identify network
issues that require investigation and action?

Let us start by identifying the events that we are interested in detecting. We
clearly need to detect faults – conditions that may be causing customer outages or
taking critical network resources out of service. We also aim to detect performance
issues that may be causing degraded customer experiences. And finally, we wish to
detect network element health concerns, which are either impacting customers or
are risking customer impact.

The majority of faults are relatively easy to detect – we need to be able to detect
when network elements or components are out of service (down). It gets a little
more complicated when it comes to defining performance impairments of interest.
If we are too sensitive in the issues identified – for example, reporting very mi-
nor, short conditions – then operations personnel risk expending tremendous effort
attempting to troubleshoot meaningless events, potentially missing events that are
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of great significance among all the noise and false alarms. Short-term impairments,
such as packet losses or CPU anomalies, are often too short to even enable real-time
investigation – the event has more often than not cleared before operations person-
nel could even be informed about it, let alone investigate. And short-term events
are expected – no matter how careful network planning and design is, occasional
short-term packet losses, for example, will occur. However, even a transient prob-
lem might warrant attention if it is recurring and/or a leading indicator of a more
serious incident that is likely to occur.

Instead, we need to focus on identifying events that are sufficiently large, chronic
(recurring), or persist for a significant period of time. Simple thresholding is typ-
ically used to achieve this – an event is identified when a parameter of interest
exceeds a predefined value for a specified period of time. For example, an event
may be declared when packet loss exceeds 0.3% over three consecutive polling pe-
riods across an IP/MPLS backbone network. However, note that more complicated
signatures can be and are indeed used to detect some conditions. Section 12.4.1 dis-
cusses this in more detail, including how appropriate thresholds can be identified.

Once we have detected an issue – whether it is a fault or performance im-
pairment – our goal is to report it so that appropriate action can be taken. Event
notification is realized through the generation of an alarm or an alert, which is sent
to the event management platform as illustrated in Fig. 12.1. We distinguish between
these two – an alarm traditionally describes the notification of a fault, while an alert
is a notification of a performance event. Alarms and alerts themselves have a life
span – they start with a SET and typically end through an explicit CLEAR. Thus,
explicit notifications of both the start of an event (the SET) and the end of an event
(CLEAR) generally need to be conveyed to the event management system.

SNMP traps or informs (depending on the SNMP version) are used by routers to
notify the event management system of events. Given the predominance of SNMP
in IP/MPLS, this same mechanism is also often used between other collectors in
the instrumentation layer and the event management layer. Traps/informs repre-
sent asynchronous reports of events and are used to notify network management
systems of state changes, such as links and protocols going down or coming up.
For example, if a link fails, then the routers at either end of the link will send
SNMP traps to the network management system collecting these. These traps typ-
ically include information about the source of the event, the details of the type
of event, the parameters, and the priority. Figure 12.3 depicts logs detailing traps
collected from a router. The logs report the time and location of the event, the
type of event that has occurred and the SNMP MIB Object ID (OID). In this par-
ticular case, we are observing the symptoms associated with a line-card failure,
where the line-card contains a number of physical and logical ports. Each port is
individually reported as having failed. This includes both the physical interfaces
(denoted in the Cisco router example below as T3 4/0/0, T3 4/0/1, Serial4/1/0/3:0,
Serial4/1/0/4:0, Serial4/1/0/5:0, Serial4/1/0/23:0, Serial4/1/0/24:0, Serial4/1/0/25:0
and the logical interfaces (denoted in the example below as Multilink6164 and
Multilink6168). In the example shown in Fig. 12.3, the OID that denotes the link
down event is “4.1.3.6.1.6.3.1.1.5.3.1.3.6.1.4.1.9.1.46 0” – and can be seen on each
event notification.
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1238081113 10 Thu Feb 21 03:10:07 2009 Router_A- Cisco LinkDown Trap on In-
terface T3 4/0/0;4.1.3.6.1.6.3.1.1.5.3.1.3.6.1.4.1.9.1.46 0

1238081117 10 Thu Mar 26 15:25:17 2009 Router_A - Cisco LinkDown Trap on In-  
terface T3 4/0/1;4.1.3.6.1.6.3.1.1.5.3.1.3.6.1.4.1.9.1.46 0

1238081118 10 Thu Mar 26 15:25:18 2009 Router_A - Cisco LinkDown Trap on In- 
terface Serial4/1/0/3:0;4.1.3.6.1.6.3.1.1.5.3.1.3.6.1.4.1.9.1.46 0

1238081118 10 Thu Mar 26 15:25:18 2009 Router_A - Cisco LinkDown Trap on In-  
terface Serial4/1/0/4:0;4.1.3.6.1.6.3.1.1.5.3.1.3.6.1.4.1.9.1.46 0

1238081119 10 Thu Mar 26 15:25:19 2009 Router_A - Cisco LinkDown Trap on In-   
terface Serial4/1/0/5:0;4.1.3.6.1.6.3.1.1.5.3.1.3.6.1.4.1.9.1.46 0

1238081124 10 Thu Mar 26 15:25:24 2009 Router_A - Cisco LinkDown Trap on In-   
terface Serial4/1/0/23:0;4.1.3.6.1.6.3.1.1.5.3.1.3.6.1.4.1.9.1.46 0

1238081124 10 Thu Mar 26 15:25:24 2009 Router_A - Cisco LinkDown Trap on In-  
terface Serial4/1/0/24:0;4.1.3.6.1.6.3.1.1.5.3.1.3.6.1.4.1.9.1.46 0

1238081125 10 Thu Mar 26 15:25:25 2009 Router_A - Cisco LinkDown Trap on In-   
terface Serial4/1/0/25:0;4.1.3.6.1.6.3.1.1.5.3.1.3.6.1.4.1.9.1.46 0

1238081125 10 Thu Mar 26 15:25:25 2009 Router_A  - Cisco LinkDown Trap on In   
terface Multilink6164;4.1.3.6.1.6.3.1.1.5.3.1.3.6.1.4.1.9.1.46 0

1238081125 10 Thu Mar 26 15:25:25 2009 Router_A - Cisco LinkDownTrap on In-    
terface Multilink6168;4.1.3.6.1.6.3.1.1.5.3.1.3.6.1.4.1.9.1.46 0

Fig. 12.3 Example logs from (anonymized) SNMP traps

12.2.2 Event Management System

The preceding section discussed the vast monitoring infrastructure deployed in
modern IP/MPLS networks and used to detect network events. However, the num-
ber of event notifications created by such an extensive monitoring infrastructure
would simply overwhelm a network operator – completely obscuring the real in-
cident in an avalanche of alarms and alerts. Manually weeding out the noise from
the true root cause could take hours or even longer for a single incident – time dur-
ing which critical customers may be unable to effectively communicate, watch TV,
and/or access the Internet. This is simply not an acceptable mode of operation.

By way of a simple example, consider a fiber cut impacting a link between two
adjacent routers. The failure of this link (the fault) will be observed at the physical
layer (e.g., SONET) on the routers at both ends of the link. It will also be observed
in the different protocols running over that link – for example, in PPP, in the in-
tradomain routing protocol (OSPF or IS-IS), in LDP and in PIM (if multicast is
enabled), and potentially even through BGP. These will all be separately logged via
syslog messages; failure notifications (traps) would be generated by the routers at
both ends of the link in question to indicate that the link is down. The same incident
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would be captured by route monitors (in this case, by the intradomain route protocol
monitors [3]). Network management systems monitoring the lower-layer (e.g., layer
one/physical layer) technologies will also detect the incident, and will alarm. Fi-
nally – should congestion result from this fault – performance monitoring tools may
report excessively high load and packet losses observed from the routers, end-to-end
performance degradations may be reported by the end-to-end performance monitor-
ing, and application monitors would send alerts if customer services are impacted.
Thus, even a single fiber cut can result in a plethora of event notifications. The last
thing we need is for the network operator to manually delve into each one of these
to identify the one that falls at the heart of the issue – in this case, the alarm that
denotes a loss of incoming signal at the physical layer.

Instead, automated event management systems as depicted in Fig. 12.1 are used
to automatically identify both an incident’s origin and its impact from among the
flood of incoming alarms. The key to achieving this is event correlation – taking the
incoming flood of event notifications, automatically identifying which notifications
are associated with a common incident, and then analyzing them to identify the
most likely explanation and any relevant impact. The resulting correlated events are
input to the ticket creation process; tickets are used to notify operations personnel
of an issue requiring their attention. In the above example, the event’s origin can
be crisply identified as being a physical layer link failure; the impact of interest to
the network operator being any resulting congestion and the extent to which any
service and/or network performance degradation is impacting customers, and how
many and which customers are impacted. The greater the impact of an event, the
more urgent is the need for the network operator to instigate repair.

12.2.2.1 Managing Event Notification Floods: Event Correlation

So how can we effectively and reliably manage this onslaught of event notifications?
First of all, not all notifications received by an event management system need to be
correlated and translated into tickets to trigger human investigation. For example,
expected notifications corresponding to known maintenance events can be logged
and discarded – there is no need to investigate these, as they are expected side-
effects of the planned activities. Similarly, duplicate notifications can be discarded –
if a notification is received multiple times for the same condition, then only one of
these notifications needs to be passed on for further analysis. Thus, as notifications
are received by the event management system, they are filtered to identify those
which should be forwarded for further correlation.

Similarly, notifications of one off events that are very short in nature – effectively
“naturally” resolving themselves – can often be discarded as there is no action to be
taken by the time that the notification makes it for further analysis. Thus, if an event
notification SET is followed almost immediately by a CLEAR, then the event man-
agement system may chose to discard the event entirely. Such events can occur,
for example, because of someone accidentally touching a fiber in an office, caus-
ing a very rapid, one off impairment. There is little point to expending significant
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resources investigating this event – it has disappeared and is not something that
someone in operations can do anything about – unless it continues to happen. Short
conditions that continually reoccur are classified as chronics, and do require inves-
tigation. Thus, if an event keeps occurring, then a chronic event is declared and a
corresponding ticket is created so that the incident can be properly investigated.

Event correlation, sometimes also referred to as root cause analysis1 within the
event management literature, follows the event filtering process. Put simply, event
correlation examines the incoming stream of network event notifications to identify
those which occur at approximately the same time and are physically or logically
related, and can be associated with a common explanation. These are then grouped
together as being a correlated event. The goal here is to identify the originating
event – effectively identifying the type and location of the underlying incident being
reported. Note that the originating event may not have been directly observed – it is
entirely possible that only symptoms of the incident were reported, without a direct
event reporting the origin. For example, consider a router line-card that supports
multiple different interfaces. It may not actually be possible to directly detect a line-
card failure. Instead, a line-card failure may be inferred from the observation of
multiple (or all) interfaces failing within that line-card. The events reported to the
event management system are thus the individual interface failures; the originating
event is the line-card failure and must be inferred through event correlation.

There are numerous commercial products available that implement alarm corre-
lation for IP/MPLS networks, including HP’s Operations Center (previously Open-
View) [5], EMC’s Ionix [6], and IBM’s Tivoli [7]. The basic idea behind these tools
is the notion of causal relationships – understanding what underlying events cause
what symptoms. Building this model requires detailed real-time knowledge and un-
derstanding of the devices and network behavior, and of the network topology. Given
that network topology varies over time, the topology must be automatically derived.
An event correlation engine then uses the discovered causal relationships to corre-
late the event notifications received. However, how the products implement event
correlation varies. Some tools use defined rules or policies to perform the correla-
tion. The rules are defined as “if condition(s) then conclusion” – conditions relate
to observed events and information about the current network state, while the con-
clusion here for any given rule is the correlated event. These rules capture domain
expertise from humans and can become extremely complex.

The Codebook approach [8, 9] applies experience from graphs and coding to
event correlation. A codebook is precalculated based on network topology and
models of network elements and network behavior to model the signatures of
different possible originating events. The event notifications received by an event
management system implemented using codebooks are referred to as symptoms.

1 Note that although root cause analysis is a term often used by event management system vendors,
we prefer to use the term “event correlation” here, as root cause more generally implies a far more
detailed explanation than can be provided by event management systems. More details are provided
later in this chapter.
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These symptoms are compared against the set of known signatures; the signature
that best matches the observed symptoms is selected to identify the originating
event.

Event signatures are created by determining the unique combination of event
notifications that would be received for each possible originating event. This can be
inferred by looking at the network topology and how components within a router and
between routers are connected. A model of each router is (automatically) created –
denoting the set of line-cards deployed within a router, the set of physical ports
in existence on a line–card, and the set of logical interfaces that terminate on a
given physical port. The network topology then indicates which interfaces on which
line-cards on which routers are connected together to form links. In large IP/MPLS
networks, such information is automatically discovered. Once the set of routers in
the network is known (either through external systems or via autodiscovery), SNMP
MIBs can be walked to identify all the interfaces on the router, and the relationships
between interfaces (for example, which interfaces are on which port and which ports
are on which line-card).

Given knowledge of router structure and topology, event signatures can be iden-
tified by examining which symptoms would be observed upon each individual
component failure. To illustrate this, let us consider the simple four-node scenario
depicted in Fig. 12.4. In this example, we consider what would be observed if
line-card C1 failed on router 2. Such a failure would be observed on all of the
four interfaces contained within the first line-card on router 2 (card C1), and also
on interface I1 on port P1 and interface I1 on port P2 on card C1 of router 1, and
on interface I2 on port P1 and interface I2 on port P2 on card C1 of router 3. These
are all interfaces that are directly connected to interfaces on the failed line-card on
router 2. If the failure of line-card C1 on router 2 were to happen, then alarms would
be generated by the three routers involved and sent to the event management system.
This combination of symptoms thus represents the signature of the line-card failure
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on router 1. This signature, or combination of event notifications, is unique – if this
is observed, we conclude that the incident relates to the failure of line-card 1 on
router 2.

Let us now return to the SNMP traps provided in Fig. 12.3. This example de-
picted the traps sent by an ISP router Router A to the event management system
upon detecting the failure of a set of interfaces. Traps were sent corresponding to
eight physical interfaces and two logical (multilink) interfaces – in this example, all
of these interfaces connect to external customers, as opposed to other routers within
the ISP. The ISP thus has visibility into only the local ISP interfaces (the ones re-
ported in the traps in Fig. 12.3), and does not receive traps from the remote ends of
the links – the ends within customer premises. Thus, the symptoms observed for the
given failure mode are purely those coming from the one ISP router – nothing from
the remote ends of the links as was the case for the previous example illustrated in
Fig. 12.4. This set of received alarms is compared with the set of available signa-
tures; comparison will provide a match between this set of alarms (symptoms) and
the signature associated with the failure of a line-card (Serial4) on Router A. The
resulting correlated event output from the event management system identifies the
line-card failure, and incorporates the associated symptoms (namely the individual
interface failures). Figure 12.5 depicts an example log of the correlated event that
would have been output by an event management system for this failure example.
The format of the alarm log here is consistent with alarms generated by a produc-
tion event management system. In this particular example, slot (line-card) Serial4
on Router A was reported to be down. Supporting information included in the alarm
log indicates that ten out of a total of ten configured interfaces on this line–card were
down. This is a critical alarm, indicating that immediate attention was required.

Correlation can also be used across layers or across network domains to ef-
fectively localize events for more efficient troubleshooting. Consider the example
illustrated in Fig. 12.6. Let us consider an example of a fiber cut – this occurs in
the layer one (L1) network, which is used to directly interconnect two routers. If
the layer one and the IP/MPLS networks are maintained by different organizations
(a common situation), then there is little that can be done in the IP organization to
repair the failure. However, the IP routers both detect the issue. From an IP per-
spective, cross-layer correlation can be used to identify that the incident occurred
in a different layer; the IP organization should thus be notified, but with the clari-
fication that this is informational – another organization (layer one) is responsible
for repair. Such correlations can save a tremendous amount of unnecessary resource
expenditure, by accurately and clearly identifying the issue, and notifying the ap-
propriate organization of the need to actuate repair.

03/26/2009 15:25:28: Incoming Alarm: Router_A:Interfaces|Slot Threshold 
Alarm: Router_A:Serial4 Down.  There are 10 out of 10 interfaces down.  
Down Interface List: Serial4/0/0, Serial4/0/1, Serial4/1/0/3:0, Seri-
al4/1/0/4:0, Serial4/1/0/5:0, Serial4/1/0/23:0, Serial10/1/0/24:0, Seri-
al10/1/0/25:0, Multilink6164, Multilink6168|Critical

Fig. 12.5 Correlated event associated with the traps illustrated in Fig. 12.3
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The correlated (originating) event output by the event management system
effectively identifies approximately where an event occurred and what type of event
it was. However, this is still a long way from identifying the true root cause of
an incident, and thus being able to rectify it. If we consider the example depicted
in Fig. 12.4, event correlation is able to successfully isolate the problem as being
related to line-card 1 on router 2. However, we still need to determine how and why
the line-card failed. Was the problem in hardware or software? What in the hard-
ware or software failed and why? Tremendous work is still typically required before
reaching true issue resolution. Assuming that human investigation is required, this
is achieved by automatically opening a ticket.

12.2.3 Ticketing

Tickets are used to notify operations personnel of events that require investigation,
and to track ongoing investigations. Tickets are at the heart of troubleshooting net-
work events, and record actions taken and their results.

If the issue being reported has been detected within the network, then the tickets
are automatically opened by the event management systems. However, if the issue
is, for example, first reported by a customer before it has been detected by the event
management systems, then the ticket will likely have been opened by a human, pre-
sumably the customer or a representative from the ISP’s customer care organization.

The tickets are opened with basic information regarding the event at hand, such
as the date, time, and location of where the issue was observed, and the details of
the correlated events and original symptoms that triggered the ticket creation. From
there, operations personnel carefully record in the ticket the tests that they execute in
troubleshooting the event, and the observations made. They record interactions with
other organizations, such as operations groups responsible for other technologies in
the network, or employees from equipment manufacturers (vendors). Clearly, care-
fully tracking observations made while troubleshooting a complex issue is critical
for the person(s) investigating. Moreover, the tickets also serve the purpose of al-
lowing easy communication about investigations across personnel, such as between
the network management team and the customer service team, or to hand off across,
say, a change of shift.
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Once an investigation has reached its conclusion and the issue has been rectified,
the corresponding ticket is closed. A resolution classification is typically assigned,
primarily for use in tracking aggregate statistics and for offline analysis of overall
network performance. Network reliability modeling is discussed in more detail in
Chapter 4 and in Section 12.4 of this chapter.

Tickets provide the means to track and communicate issues and their current
status. However, the real challenge lies in troubleshooting these issues.

12.2.4 Troubleshooting

Troubleshooting a network issue is analogous to being a private investigator –
hunting down the offender and taking appropriate action to rectify the issue. Drilling
down to root cause can require keen detective instincts, knowing where to look and
what to look for. Operations teams often draw upon vast experience and domain
knowledge to rapidly delve into the vast depths of the network and related network
data to crystallize upon the symptoms, and theorize over potential root causes. This
is often under extreme pressure – the clock is ticking; customer service may be
impaired until the issue is resolved.

The first step of troubleshooting a network incident is to collect as much in-
formation about the event as possible that may help with reasoning about what is
happening or has happened. Clearly, a fundamental part of this involves looking
at the event symptoms and impact. The major symptoms are generally provided in
the correlated event that triggered the ticket’s creation. Additional information can
be collected as the result of tests that the operator performs in the network during
further investigation of the issue. This can also be complemented by historical data
pulled from support systems or from analysis of actions taken previously within the
network (e.g., maintenance activities) that could be related.

The tests invoked by the network operator range considerably in nature, depend-
ing on the type of incident being investigated. In general, they may include ping
tests (“ping” a remote end to see if it is reachable), different types of status checks
(executed as “show” commands on Cisco routers, for example), and on-demand end-
to-end performance tests. In addition to information about the event, it may also be
important to find out about potentially related events and activities – for example,
did something change in the network that could have invoked the issue? This could
have been a recent change, or something that changed a while ago, waiting like a
ticking time bomb until conditions were ripe for a dramatic appearance.

Armed with this additional information, the network operator works toward iden-
tifying what is causing the event, and how it can be mitigated. In the majority of
situations, this can be achieved quickly – leading to rapid, permanent repair. How-
ever, some incidents are more complex to troubleshoot. This is when the full power
of an extended operations team comes into force.

Let us consider a hypothetical example to illustrate the process of troubleshooting
a complex incident. In this scenario, let us assume that a number of edge routers
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across the network fail one after another over a short period of time. As these are
the routers that connect to the customers, it is likely that the majority of customers
connected to these routers are out of service until the issue is resolved – the pressure
is really on to resolve the issue as fast as possible!

Given that we are assuming that routers are failing one after another, it takes
two or more routers to fail before it becomes apparent that this is a cascading issue,
involving multiple routers. Once this becomes apparent, the individual router issues
should be combined to treat the event as a whole.

As discussed earlier, the first goal is to identify how to bring the routers back
to being operational and stable so that customer service is restored. Achieving this
requires at least some initial idea about the incident’s underlying root cause. Then,
once the routers have been brought back in service, it is critical to drill down to fully
understand the incident and root cause so that permanent repair can be achieved –
ideally permanently eliminating this particular failure mode from the network.

The first step in troubleshooting such an incident is to collect as much in-
formation as possible regarding the symptoms observed, identify any interesting
information that may shed light on the trouble, and create a timeline of events detail-
ing when and where they occurred. This information is typically collated from the
alarms, alerts, and tickets, by running diagnostic commands on the router, and from
information collected within the various collectors contained within the instrumen-
tation layer. Syslogs provide a huge amount of information about events observed
on network routers. This information is complemented by that obtained from route
monitors and performance data collected over time, and from logs detailing actions
taken on the router by operations personnel and automated systems.

The biggest challenge now becomes how to find something useful among
the huge amount of data generated by the network. Operations personnel would
painstakingly sift through all these data, raking through syslogs, examining critical
router statistics (CPU, memory, utilization, etc.), identifying what actions were
performed within the network during the time interval before the event, and exam-
ining route monitoring logs and performance statistics. Depending on the type of
incident, and whether the routers are reachable (e.g., out of band), diagnostic tests
and experimentation with potential actions to repair the issue are also performed
within the network.

In a situation where multiple elements are involved, it is also important to fo-
cus on what the routers involved have in common and how they may be different
from other routers that were not impacted. Are the impacted routers all made by
a common router vendor, are they a common router model? Do they share a com-
mon software version? Are they in a common physical or logical location within
the network? Do they have similar number of interfaces, or load, or anything that
may relate to the issue at hand? Has there been any recent network changes made on
these particular routers that could have triggered the incident? Are there customers
that are in common across these routers? Identifying the factors that are common
and those that are not can be critical in focusing into what may be the root cause of
the issue at hand. For example, if the routers involved are from different vendors,
then it is less likely to be a software bug causing the issue. And if there is a common
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customer associated with all the impacted routers, then it would make sense to look
further into whether there is anything about the specific customer that may have in-
duced the issue or contributed in some way. For example, was the customer making
any significant changes at the time of the incident?

The initial goal is to extract sufficient insight into the situation at hand to indi-
cate how service can be restored. Once this is achieved, appropriate actions can be
taken to rectify the solution. However, in many situations, such as those induced
by router bugs, the initial actions may restore service, but do not necessarily solve
the underlying issue. Further (lengthy) analysis – potentially involving extensive lab
reproduction and/or detailed software analysis – may be necessary to truly identify
the real root cause. This is often known as postmortem analysis.

Large ISPs typically maintain labs containing scaled down networks containing
the same types of hardware and software configurations as are operating in produc-
tion. The labs provide a controlled environment in which to experiment without the
risk of impacting customer traffic. The labs are used both to extensively test the hard-
ware and software before it is deployed in the production network, and to understand
issues as they arise in the production network. When it comes to troubleshooting is-
sues, testers use the lab environment to reproduce the symptoms observed in the
field, evaluate the conditions under which they occur and take additional measure-
ments in a bid to uncover the underlying root cause. The lab environment is also
often used to experiment with potential solutions to address the issue, and to certify
solutions before they are deployed in the production network.

Detailed analysis of software and hardware designs and implementations can
also provide tremendous insight into why problems are occurring and how they can
be addressed. These are typically done by or in collaboration with the vendor in
question.

12.2.5 Restore Then Repair

As discussed previously, recovering from an incident typically involves two goals:
(1) restoring customer service and performance, and (2) fully resolving the under-
lying issue and returning network resources into service. These two goals may or
may not be distinct – where redundancy exists, the network is typically designed to
automatically reroute around failures, thus negating the need for manual interven-
tion in restoring customer service. Troubleshooting and repair can instead focus on
returning the failed network resources into service so that there is sufficient capacity
available to absorb future failures. In other situations, customer service restoral and
failure resolution may be one and the same. Let us consider two examples in more
detail.

12.2.5.1 Core Network Failure

Consider the example of a fiber cut impacting a link between two routers in the
core of an IP/MPLS network. IP network cores are designed with redundancy and



12 Fault Management, Performance Management, and Planned Maintenance 417

A

B

C D

E
F

G

H
I

IP/MPLS
network

Fig. 12.7 Core network fiber cut

spare capacity, so that traffic can be rerouted around failed network resources.
This rerouting is automatically initiated by the routers themselves – the exact de-
tails of which depend on the mechanisms deployed, as discussed in Chapter 2. In the
example in Fig. 12.7, traffic between the routers E and D is normally routed via
router C. However, in the case where the link between routers C and D fails, the
traffic is then rerouted via F and H.

Assuming that the network has successfully rerouted all traffic without caus-
ing congestion, the impetus for rapidly restoring the failed resources is to ensure
that the capacity is available to handle future failures and/or planned maintenance
events. If, however, congestion results from the failure, then immediate intervention
is required by operations personnel to restore the customer experience. Immediate
action would likely be taken to reroute or load-balance traffic, in a bid to eliminate
the performance issues while the resources are being repaired – for example, by tun-
ing the IGP weights (e.g., OSPF weight tuning). In the example of Fig. 12.7, if there
were congestion observed on, say, the link between routers F and H, then operations
personnel may need to reroute some of the traffic via routers F, I, and G. Note that
this requires that operations have an appropriate network modeling tool available to
simulate potential actions before they are taken. This is necessary to ensure that the
actions to be taken will achieve the desired result of eliminating the performance
issues being observed.

In this example, permanent repair is achieved when the fiber cut is repaired. This
requires that a technician travel to the location of the cut, and resplice the impacted
fiber(s).

12.2.5.2 Customer-Facing Failure

Let us now consider the failure of a customer-facing line-card in a service provider’s
edge router. We focus on a customer that has only a single connection between the
customer router and the ISP edge router, as illustrated in Fig. 12.8.

Cost-effective line-card protection mechanisms simply do not exist for router
technologies today. Instead, providing redundancy on customer-facing interfaces
requires that an ISP deploy a dedicated backup line-card for each working line-card.
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However, this may be prohibitively expensive; instead customers that need higher
reliability can choose a multihomed redundancy option where the customer pur-
chases two separate connections to either a common ISP or two different ISPs. In
situations where redundancy is not deployed and customers are not multihomed, a
failure of the ISP router line-card facing the customer will result in the customer
being out of service until the line-card can be returned to service.

If the line-card failure is caused by faulty hardware, the customer may be out of
service until the failed hardware can be replaced, necessitating a rapid technician
visit to the router in question. However, if the issue is in software, for example,
service can potentially be restored via software rebooting of the line-card. Although
this apparently fixes the issue and restores customer service, it is not a permanent re-
pair. If this is likely to occur again, then the issue must be permanently resolved – the
software must be debugged, recertified (tested) for network deployment, and then
installed on each relevant router network-wide before permanent repair is achieved.
This could involve upgrading potentially hundreds of routers – a major task, to say
the least. In this case, the repair of the underlying root cause takes time, but is nec-
essary to ensure that the failure mode does not occur again within the network.
If the issue is extreme and a result of a newly introduced software release on the
router, then the software may be “rolled back” to a previous version that does not
suffer from the software bug. This can provide a temporary solution while the newer
software is debugged.

12.3 Process Automation

The previous section described the basic systems and processes involved in
detecting and troubleshooting faults and performance impairments. These issues
often need to be resolved under immense time pressure, especially when customers
are being directly impacted.

However, humans are inherently slow at many tasks. In contrast, computer
systems can perform well-defined tasks much more rapidly, and are necessary
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to support the scale of a large ISP network. Although human reasoning about
extremely complex situations is often difficult, if not impossible, to automate;
automation can be used to support human analysis and to aid in performing simple,
well-defined and repetitive tasks. This is referred to here as process automation.

Process automation is widely used in many aspects of network management, such
as in customer service provisioning. Relevant to this chapter, it is also applied to the
processes executed in network troubleshooting and even repair. Process automation
in combination with the event filtering and correlation discussed in Section 12.2.2.1
are what enable a small operations team to manage massive networks that are
characterized by tremendous complexity and diversity. The automation also speeds
trouble resolution, thereby minimizing customer service disruptions, and eliminates
human errors, which are a fact of life, no matter how much process is put in place
in a bid to minimize them.

Over time, operations personnel have identified a large number of tasks that are
executed repeatedly and are very time-consuming when executed by hand. Where
possible, these tasks are automated in the process automation capabilities illustrated
in the modified event management framework of Fig. 12.9.

The process automation system lies between the event management system and
the ticketing system. One of its major roles is to provide the interface between these
two systems – listening to incoming correlated events and opening, closing, and
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Fig. 12.9 Event management framework incorporating process automation
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updating tickets. But rather than simply using the output of the event management
system to trigger ticket creation and updates, process automation can take various
actions based on network state and the situation at hand. The system implementing
the process automation collects additional diagnostic information, and reasons about
relatively complex scenarios before taking action. On creating or updating a ticket,
the process automation system automatically populates the ticket with relevant in-
formation that it collected in evaluating the issue. This means that there is already
a significant amount of diagnostic information available in the ticket as it is opened
by a human being to initiate investigation into an incident. This can dramatically
speed up incident investigation, by eliminating the need for humans to go out and
manually execute commands on the network elements to collect initial diagnostic
information.

The process automation system interfaces with a wide range of different systems
to execute tasks. In addition to the event management and ticketing systems, a
process automation system also interacts closely with network databases and with
the network itself (either directly, or indirectly through another system). For ex-
ample, collecting diagnostic information related to an incoming event will likely
involve reaching out to the network elements and executing commands to retrieve
the information of interest. This could be done either directly by the process au-
tomation system, or via an external network interface, as is illustrated in Fig. 12.9.

Process automation is often implemented using an expert system – a system that
attempts to mimic the decision-making process and actions that a human would ex-
ecute. The logic used within the expert system is defined by rules or policies, which
are created and managed by experts. The number of rules in a complex process au-
tomation system is typically in the order of 100s–1,000s given the complexity and
extensive range of the tasks at hand. Rules are continually updated and managed by
the relevant experts as new opportunities for automation are conceived and imple-
mented, processes are updated and improved, and the technologies used within the
network evolve and change.

Figure 12.10 depicts an example that demonstrates the process automation steps
executed upon receipt of a basic notification that a slot (or line card) is down (failed).
A slot refers to where a single line card is housed within a router; the line-card in
turn is assumed to support multiple interfaces. Each active interface terminates a
connection to a customer, peer, or adjacent network router. As can be seen from
this example, the system executes a series of different tests and then takes different
actions depending on the outcome(s) of each test. The tests and actions executed are
specific to the type of event triggering the automation, and also to the router model
in question. Note that in this particular case, the router in question is a Cisco router,
and thus Cisco command line interface (CLI) commands are executed to test the
line-card.

The process automation example in Fig. 12.10 is for supporting the network op-
erations team. This team is focused on managing the network elements and is not
responsible for troubleshooting individual customer issues – those are handled by
the customer care organization. Thus, a primary goal of the process automation
in this context is to identify issues with network elements; weeding out individual
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customer issues (and not creating tickets on them for this particular team). In this
example of a customer-facing line-card with multiple customers carried on different
interfaces on the same card, the automation ensures that there are multiple interfaces
that are simultaneously experiencing issues, as opposed to being associated with a
single customer. This makes it likely that the issue at hand relates to the line-card
(part of the network), rather than the customer(s).

The results of the tests executed by the process automation system are presented
to the operations team through the ticket that is created or updated. Thus, as an
operations team member opens a new ticket ready to troubleshoot an issue, he/she
is immediately presented with a solid set of diagnostic information, eliminating the
trouble and delay associated with logging into individual routers and running these
same tests. This significantly reduces the investigation time, the customer impact,
and the load on the operations team.

In addition to ensuring that only relevant tickets are created, process automa-
tion also distinguishes between new issues and new symptoms associated with an
existing, known problem. Thus, if a ticket has already been created for a current
incident, when a new symptom is detected for this same ongoing event, the process
automation will associate the new information with the existing ticket, as opposed
to creating a new ticket.

For a more complex scenario, now consider a customer-initiated ticket, created
either directly by the customer or by a customer’s service representative. The pro-
cess automation system picks up the ticket automatically and, with support from
other systems, launches tests in an effort to automatically analyze the issue. If the
system can localize the issue, it may either automatically dispatch workforce to
the field or refer the ticket to the appropriate organization, which may even be
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another company (e.g., where another telecommunications provider may be pro-
viding access). On receiving confirmation that the problem has been resolved, the
process automation system also executes tests to validate, and then closes the ticket
if all tests succeed. If the expert system is unable to resolve the issue, it then col-
lates information regarding the diagnostic tests and creates a ticket to trigger human
investigation and troubleshooting.

The opportunity space for process automation is almost limitless. As technolo-
gies and modeling capabilities improve, automation can and is being extended into
service recovery and repair and even incident prevention. We refer to this as adap-
tive maintenance. Although it is clearly hard to imagine automated fiber repairs in
the near future, there are scenarios in which actions can be automatically taken to re-
store service. For example, network elements or network interfaces can be rebooted
automatically should such action likely restore service. Consider one scenario where
this may be an attractive solution – a known software bug is impacting customers
and the operator is waiting for a fix from the vendor; in the meantime, if an is-
sue occurs, then the most rapid way of recovering service is through the automated
response – not waiting for human investigation and intervention.

As another example, let us consider errors in router configurations (misconfig-
urations), which can be automatically fixed via process automation. Consider a
scenario where regular auditing such as that discussed in Chapter 9 identifies what
we refer to as “ticking time bombs” – misconfigurations that could cause significant
customer impact under specific circumstances. These misconfigurations are auto-
matically detected, and can also be automatically repaired – the “bad” configuration
being replaced with “good” configuration, thereby preventing the potentially nasty
repercussions.

While adaptive maintenance promises to greatly reduce recovery times and elim-
inate human errors that are inevitable in manual operations, a flawed adaptive
maintenance capability can create damage at a scale and speed that is unlikely to
be matched by humans. It is thus crucial to carefully design and implement such an
adaptive maintenance system, and ensure that safeguards are introduced to prevent
potentially larger issues from arising with the wrong automated response. Meticu-
lous tracking of automated actions is also critical, to ensure that automated repair
does not hide underlying chronic issues that need to be addressed. However, even
with these caveats and warnings, automation often offers an opportunity for far more
rapid recovery from issues than a human being could achieve through manually ini-
tiated actions.

The value of automation throughout the event management process (from event
detection through to advanced troubleshooting) is unquestionable – reducing mil-
lions of event notifications to a couple of hundred or fewer tickets that require human
investigation and intervention. This automation is what allows a small network
operations team to successfully manage a massive network, with rapidly growing
numbers of network elements, customers, and complexity.
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12.4 Managing Network Performance Over Time

The event management systems discussed in Section 12.2 and 12.3 primarily focus
on real-time troubleshooting of individual large network events that persist over
extended periods of time, such as link failures, or recurring intermittent (chronic)
flaps on individual links. However, this narrow view of looking at each individual
event in isolation risks leaving network issues flying under the event management
radar, while potentially impacting customers’ performance.

Let us consider an analogy of financial management within a large corporate or
government organization. In keeping a tight reign over a budget, an organization
would likely be extremely careful about managing large transactions – potentially
going to great lengths to approve and track each of the individual large purchases
made across the organization. However, tracking large transactions without consid-
ering the broader picture can result in underlying issues flying under the radar. A
single user’s individual transaction may appear fine in isolation, but analysis over
a longer time interval may uncover an excessively large number of such transac-
tions – something that may justify further investigation. Focusing only on the large
transactions, and allowing smaller transactions to proceed without attention allows
the system to scale – it would simply be impractical to have each individual request
approved, independent of its cost. However, if no one is tracking the bottom line –
the total expenditure – it may well be that the small expenditures add up consider-
ably, and could lead to financial troubles in the long run. Instead, careful tracking
of how money is spent across the board is critical, characterizing at an aggregate
level how, where, and why this money is spent, whether it is appropriate and (in
situations where money is tight) where there may be opportunities for reductions
in expenditure. New processes or policies may well be introduced to address is-
sues identified. However, this can only be seen with careful analysis of longer-term
spending patterns covering both large and small expenditures.

Returning to the network, carefully managing network performance also re-
quires examining network events holistically – exploring series of events – large
and small – instead of purely focusing on each large event in isolation. The end goal
is to identify actions that can be taken to improve overall network performance and
reliability. Such actions can take many forms, including software bug fixes, hard-
ware redesigns, process changes, and/or technology changes.

An important step toward driving network performance is to carefully track per-
formance over time, with periods of poor performance identified so that intervention
can be initiated. For example, if it is observed that the network has recently been
demonstrating unacceptably high unavailability due to excessive numbers of line-
card failures, then investigation should be initiated in an effort to determine why
this is occurring, and to take appropriate actions to rectify the situation. However,
we do not need to wait for performance to degrade – regular root cause analysis
of network impairments can identify areas for improvements, and potentially even
uncover previously unrecognized yet undesirable network behaviors that could be
eliminated. For example, consider a scenario where ongoing root cause analysis of
network packet loss uncovered chronic slower-than-expected recovery times in the
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face of network failures. Once identified, efforts can be initiated to identify why
this is occurring (router software bug?, hardware issue?, fundamental technology
limitations?), and to then drive either new technologies or enhancements to existing
technologies into the network to permanently rectify this situation.

Tracking network performance over time and drilling into root causes of network
impairments typically involves delving into large amounts of historical network
data. Exploratory Data Mining (EDM) is thus used to complement real-time event
management through detailed analysis across large numbers of events, identifying
patterns in failures and performance impairments and in the root causes of these
network events. However, this is clearly a challenging goal; the volumes of net-
work data are tremendous, the data sources are very diverse, and the patterns to be
identified can be complex.

12.4.1 Trending Key Performance Indicators (KPIs)

So let us start by asking a seemingly simple question – how well is my network
performing? The first step here is to clearly define what we mean by network perfor-
mance, so that we can provide metrics that can be evaluated using available network
measurements. We refer to these metrics as Key Performance Indicators, or KPIs.

When tracking how well the network is performing, it is important to ensure that
metrics obtain a view that is as close as possible to what customers are experiencing.
However, how well the network is performing is in the eye of the beholder – and
different beholders have different vantage points, and different criteria. Some appli-
cations (e.g., e-mail or file transfers) are extremely resilient to short outages while
others, such as video, are extremely sensitive to even very short-term impairments.
Thus, KPIs need to capture and track a range of different performance metrics,
which reflect the diversity of applications being supported. KPIs should track ap-
plication measures, such as the frequency and severity of video impairments that
would be observable to viewers. However, network-based metrics are also critical,
particularly in networks where there is a vast array of different applications being
supported. Thus, KPIs should include, but not be limited to, metrics tracking net-
work availability (DPM – see Chapter 3 for details), application performance, and
end-to-end network performance (packet loss, delay, and jitter).

KPIs can also capture noncustomer-impacting measures of network health, such
as the utilization of network resources. These provide us with the ability to track
network health before we hit customer-impacting issues. There are many limited
resources in a router – link capacity is an obvious one; router processing power and
memory are two other key examples. Link capacity is traditionally tracked as part
of the capacity management process discussed in Chapter 5, and is therefore not
discussed further here. However, router CPU and memory utilization – both on the
router’s central route processor and on individual line-cards – are also limited yet
critical resources that are often less well analyzed than link capacity. One of the most
critical functions that the central route processor is responsible for is control-plane
management – ensuring that routing updates are successfully received and sent by



12 Fault Management, Performance Management, and Planned Maintenance 425

the router, and that the internal forwarding within the router is appropriately config-
ured to ensure successful routing of traffic across the network. Thus, the integrity of
the network’s control plane is very much dependent on router CPU usage – if CPUs
become overloaded with high-priority tasks, the integrity of the network control
plane could be put at risk. Router memory is similarly critical – if memory becomes
fully utilized within a router, then the router is at risk of crashing, causing a nasty
outage. Thus, these limited resources must be tracked to ensure that they are not
approaching exhaust either over the long-term, or over shorter periods of time.

KPIs must be measurable – thus, a given KPI must map to a set of measure-
ments that can be made on an ongoing basis. Availability-based KPIs can be readily
calculated based on logs from the event management system and troubleshooting
analyses. Chapters 3 and 4 discuss availability modeling and associated metrics;
they are thus not discussed further here.

Application-dependent performance metrics can be obtained through extensive
monitoring at the application level. Such measurements can be implemented ei-
ther using “test” measurements executed from sample devices strategically placed
across the network (active measurements), or by collecting statistics from net-
work monitors or from user devices where accessible (passive measurements). Such
application measurements are a must for networks that support a limited set of crit-
ical applications – such as an IPTV distribution network. However, it is practically
impossible to scale this to every possible application type that may ride over a
general-purpose IP/MPLS backbone, especially if application performance depends
on a plethora of different customer end devices.

Instead, end-to-end measurements of key network performance criteria, namely
packet loss, delay, and jitter, are the closest general network measures of
customer-perceived network performance. These measurements provide a generic,
application-independent measure of network performance, which can (ideally) be
applied to estimate the performance of a given application.

End-to-end packet loss, delay, and jitter would likely be captured from an end-
to-end monitoring system, such as described in Chapter 10 and [10]. In an active
monitoring infrastructure, for example, large numbers of end-to-end test probes
are sent across the network; loss and delay measurements are calculated based
on whether these probes are successfully received at each remote end, and how
long they take to be propagated across the network. From these measurements, net-
work loss, delay, and jitter can be estimated over time for each different source
and destination pair tested. By aggregating these measures over larger time inter-
vals, we can calculate a set of metrics, such as average or 95th percentile loss/delay
for each individual source/destination pair tested. These can be further aggregated
across source/destination pairs to obtain network-wide metrics. However, how loss
is distributed over time can really matter to some applications – a continuous period
of loss may have greater (or lesser) impact on a given application than the same total
loss distributed over a longer period of time. KPIs can thus also examine other char-
acteristics of the loss beyond simple loss rate measurements – for example, tracking
loss intervals (continuous periods of packet loss). Metrics that track the number of
“short” versus “long” duration outages may be used to characterize network perfor-
mance and its impact on various network-based applications.
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Ideally, end-to-end measurements should extend out as far to the customer as
possible, preferably into the customer domain. However, this is often not practi-
cal – scaling to large numbers of customers can be infeasible, and the customer
devices are often not accessible to the service provider. Thus, comprehensive end-
to-end measurements are often only available between network routers, leaving the
connection between the customer and the network beyond the scope of the end-
to-end measurements. Tracking performance at the edge of the ISP network thus
requires different metrics. One popular metric is BGP flap frequency aggregated
over different dimensions (e.g., across the network, per customer, etc.). However, it
is important to note that by definition the ISP/customer and ISP/peer interfaces cross
trust domains – the ISP often only has visibility and control over its own side of this
boundary, and not the customer and peer domains. It is actually often extremely
challenging to distinguish between customer/peer-induced issues and ISP-induced
issues. Thus, without knowing about or being responsible for customer and peer ac-
tivities on the other side of trust boundaries, BGP event measures and other similar
metrics can be seriously skewed. A customer interface that is flapping incessantly
can significantly distort these metrics, making it extremely challenging to distin-
guish patterns that may be attributed to the ISP.

Once we have defined our key metrics, we can then track how these change
over time. This is known as trending. Trending of KPIs is critical for driving the
network to higher levels of reliability and performance, and for identifying areas
and opportunities for improvement. The goal is to see these KPIs improve over
time, corresponding to network and service performance improvements. However,
if KPIs turn south, indicating worsening network and service conditions, investiga-
tion would likely be required. KPIs can thus be used to focus operations’ attention
to areas that need most immediate attention.

Let us consider a simple example of end-to-end loss. If the loss-related KPIs
(e.g., average loss) degrade, then investigation would be required to understand the
underlying root cause(s) and to (hopefully) initiate action(s) to reverse the negative
trend. Obviously, the actions taken depend on the root cause(s) identified – but could
include capacity augments, elimination of failure modes (e.g., if loss may be intro-
duced by router hardware or software issues), or may even require the introduction
of a new technology, such as faster failure recovery mechanisms.

Careful tracking of KPIs over time can also enable the detection of anomalous
network conditions – thereby detecting issues that may be flying under the radar
of the event management systems described in Section 12.2. Let us consider an ex-
ample where the rate of protocol flaps has increased within a given region of the
network. The individual flaps are too short to report on – each event has cleared
even before a human can be informed of it, let alone investigate. Thus, the real-
time event management system would only detect an issue if the number of flaps
occurring during a given time duration and in a given location exceeds a predefined
threshold, upon which the flapping is defined to be chronic. If the number of flaps
on individual interfaces does not cross this threshold, then an aggregate increase in
flaps across a region may go undetected by the event management system. How-
ever, this aggregate increase could be indicative of an unexpected condition, and be
impacting customers. It would thus require investigation.
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Careful trending and analysis of KPIs can also be used to identify new and
improved event signatures, which can be incorporated in the real-time event man-
agement system discussed in Section 12.2. These new signatures are designed to
better detect individual events that should be reported to operations personnel. The
identification of new signatures is a continual process, typically leveraging the vast
and evolving experience gained by network operators as they manage the network
on a day-to-day basis. However, this human experience can be complemented by
data mining. It is far from easy to specify what issues should be reported amidst
the mound of performance data collected from the routers. For example, under what
conditions should we consider CPU load to be excessive, and thus alarm on it to trig-
ger intervention? At what point does a series of “one off” events become a chronic
condition that requires immediate attention?

Individual performance events used to trigger event notifications are typically de-
tected using simple threshold crossings – an event is identified when the parameter
of interest exceeds a predefined value (threshold) for a given period of time. How-
ever, even selecting this threshold is often extremely challenging. How bad and for
how long should an event persist before operations should be informed for immedi-
ate investigation? Low level events often clear themselves; if we are overly sensitive
at picking up events to react to, then we risk generating too many false alarms, caus-
ing operations personnel to spend most of their time chasing false alarms and risking
them missing the critical issues among the noise. If we are not sensitive enough, then
critical issues may fly under the radar and not be appropriately reacted to in a timely
fashion. Analysis of vast amounts of network data can be key to selecting suitable
thresholds so as to carefully manage the rate of false positives and false negatives.
However, note that the thresholds selected may not actually be constant values – in
some cases they could vary over time, or may vary over different parts of the net-
work. Thus, it may actually be sensible to have these thresholds be automatically
learned and adjusted as the network evolves over time.

Simple thresholding techniques can also be complemented by more advanced
anomaly detection mechanisms. For example, consider a router experiencing a pro-
cess memory leak. In such a situation, the available router memory will (gradually)
decrease – the rate of decrease being indicative of the point at which the router will
hit memory exhaust and likely cause a nasty router crash. Under normal conditions,
router memory utilization is relatively flat; a router with a memory leak can be
detected with a nonzero gradient in the memory utilization curve. Predicting the
impending issue well in advance provides network operations with the opportunity
to deal with the issue before it becomes customer impacting. These are known as
predictive alerts, and can be used to nip a problem in the bud, thereby entirely pre-
venting a potentially nasty issue. Again, detailed analysis of vast amounts of data is
required to identify appropriate anomaly detection schemes, which can accurately
detect issues, with minimal false alerts. There is a vast array of publications focused
on anomaly detection on network data [11–15], although much of the work focuses
on traffic anomalies.
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12.4.2 Root Cause Analysis

KPIs track network performance; they do not typically provide any insight into
what is causing a condition or how to remediate it. However, driving network im-
provements necessitates understanding the root cause of recurring network issues –
potentially down to the smallest individual events.

Characterizing the root causes of network events (e.g., packet loss) and then
creating aggregate views across many such events can enable insights into the
underlying behavior of the network and uncover opportunities for longer-term
improvements. However, investments made in improving network performance
should ideally be focused on the opportunities with the greatest impact. By quanti-
fying the contribution of different root causes for a given type of recurring network
event (e.g., packet loss), a network operator can identify the most common root
causes, and focus energies on addressing these. In the case of packet loss, for ex-
ample, if a significant portion of the loss was determined to be congestion-related,
then additional network capacity may be required. If significant loss was alterna-
tively attributed to a previously unidentified issue within the network elements (e.g.,
routers), then the response will ideally involve actions that could permanently elim-
inate the issue. A Pareto analysis [16, 17] is a formal technique used to guide this
process – it evaluates the benefits of potential actions, and identifies those that have
the maximal possible impact.

Troubleshooting individual network events was discussed in detail in
Section 12.2.4. To identify the root causes of a class of events, such as hard-
ware failures, packet losses, or protocol flaps, we need to drill down into multiple
individual events in a bid to come up with the best explanation of their likely root
causes. Root cause analysis here is similar to that described in Section 12.2.4 –
with a couple of important distinctions. Specifically, we are typically examining
large numbers of individual events, as opposed to a single large event, and we are
typically examining historical events, as opposed to real-time events.

As with troubleshooting individual real-time issues, root cause analysis of re-
curring events typically commences with a detailed analysis of available network
data. Scalable data mining techniques are key to effectively making the most of the
wealth of available data, given the large number of events generally involved, and
the diversity of possible root causes. But data mining alone does not always reveal
the underlying root cause(s) – especially in scenarios where anomalous network
conditions or unexpected network behaviors are identified. Instead, such analysis
would be complemented by targeted network measurements, lab reproduction, and
detailed software and/or hardware analysis.

Targeted network measurements can be used to complement the regular network
monitoring infrastructure in situations where the general monitoring is insufficiently
fine-grained or focused to provide the detailed information required to troubleshoot
a specific recurring issue. Obtaining additional measurements – particularly when
trying to capture recurring events with very short symptoms (e.g., short bursts of
packet losses) – may involve establishing an ad hoc measurement infrastructure or
augmenting an existing infrastructure to make targeted measurements pursuant to
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the issue being investigated. For example, when troubleshooting a recurring issue
related to router process (CPU) management, very fine-grained CPU measurements
may be temporarily obtained from a small subset of network routers through tar-
geted measurements (e.g., recording measurements every 5 seconds instead of every
5 minutes). Such measurements could not be obtained across the entire network on
an ongoing basis (simply due to scale), but could be critical in getting to the bottom
of an elusive recurring issue. As another example, if malformed packets are causing
erroneous network behavior, then detailed inspection of specific traffic carried over
a network link could identify what this traffic is and where it is coming from, in-
formation which is likely to be critical to troubleshooting the issue. However, such
measurements are not going to be collected on a regular basis; they simply do not
scale and are too targeted to a specific issue. Note also that targeted measurements
will likely need to be taken during the occurrence of an event of interest – which
could be challenging to capture for an intermittent issue with very short symptoms
(e.g., short bursts of packet loss). But once such measurements are available, they
can complement the regularly collected data and be fed into the network analyses.

Lab testing and hardware/software analysis to troubleshoot recurring issues are
similar to that discussed in Section 12.2.4 for troubleshooting individual issues.
However, lab testing and detailed software/hardware analysis are more often than
not immense and extremely time-consuming efforts, which should not be entered
into lightly. It is thus critical to glean as much information from available network
data as possible to effectively guide these other efforts. EDM techniques are at the
heart of this. We thus return our focus to how we can effectively use EDM in ana-
lyzing recurring network conditions.

12.4.2.1 Data Integration

Constructing a good view of what is happening in a network requires looking across
a wide range of different data sources, where each data source provides a different
perspective and insight. Manually pulling all these data together and then applying
reasoning to hypothesize about an individual event’s root cause is excessively chal-
lenging and time-consuming. The data are typically available in a range of different
tools, as depicted in Fig. 12.11. These tools are often created and managed by differ-
ent teams or organizations, and often present information in different formats and
via different interfaces. In the example in Fig. 12.11, performance data collected
from SNMP MIBs is accessed via one web site, router syslogs may be obtained
from an archive stored on a network server, a different server collates workflow
logs, and end-to-end performance data are available in yet another web site. Thus,
manually collecting data from all these different locations and then correlating it
to build a complete view of what was happening in any given situation can be a
painstaking process, to say the least. This situation may be further complicated in
scenarios that involve multiple network layers or technologies, which are managed
by different organizations. It is entirely possible that information across network
layers/organizations is only accessible via human communication with an expert in
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Fig. 12.11 Troubleshooting network events is difficult if data are stored in separate “data silos”

the other organization. For example, obtaining information about lower-layer net-
work performance (e.g., SONET network) may involve reaching out via the phone
to a layer one specialist. Of course, different data sources also use different con-
ventions for timestamps (e.g., different time zones) and in naming network devices
(e.g., router names may be specified as IP addresses, abbreviated names, or use
domain name extensions). These further compound the complexity of correlating
across different data sources. Thus, analyzing even a single event could potentially
take hours by hand – simply in pulling the relevant data together. This is barely
practical when troubleshooting an individual event, but becomes completely im-
practical when troubleshooting recurring events with potentially large numbers of
root causes. However, it has historically been the state of the art.

Data integration and automation is thus absolutely critical to scaling data mining
in support of root cause analysis. It would be difficult to overstate the importance of
data integration: making all the relevant network and systems data readily accessi-
ble. The data should be made available in a form that makes it easy to correlate
significant numbers of very diverse data sources across extended time intervals.
AT&T Labs have taken a practical approach to achieving this [18] – collecting data
from large numbers of individual “data silos” and integrating them into a common
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Fig. 12.12 Scaling network troubleshooting and root cause analysis

database. Above this common database is a set of tools and applications. This archi-
tecture is illustrated in Fig. 12.12. Scalable and automated feed management and
database management tools [19, 20] are used to amass data into a common in-
frastructure and to load data into a massive data warehouse. The data warehouse
archives data collected from various configuration-, routing-, fault-, performance-,
and application-measurement tools, across multiple networks. Above the data ware-
house resides a set of scalable and reusable analysis and reporting modules, which
provide core capabilities in support of various applications. These components in-
clude a reporting engine (used for making data and more complex analyses available
via web reports to end-users), anomaly detection tools, and different correlation
capabilities (rules-based correlations and techniques for correlation testing and
learning [18, 21, 22]). Above the reusable components lie a rapidly expanding set
of data mining applications – ranging from web reports designed simply to expose
the data to operations through a set of integrated data browsing and visualization
tools, through to sophisticated trending reports and advanced statistical correlation
testing and automated learning for root cause analysis [18].

The key to the infrastructure is scale – both in terms of the amount and the diver-
sity of the network data being collated, and the range of different applications being
supported. One of the key ingredients to achieving this is simple normalization of
the incoming data, which is performed as the data are ingested into the database.
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This normalization ensures, for example, that a common time zone is used across
all data sources, and common naming conventions are used to describe network el-
ements, networks, etc. By performing data normalization and preprocessing as the
data is ingested into the database, it removes the burden and corresponding complex-
ity of continual data conversions by applications and human users alike. Although
an enormous undertaking, such an infrastructure enables scale in terms of the very
diverse analyses that can be performed [18–22].

12.4.2.2 Scaling Root Cause Analysis

So let us now return to the challenge of scaling root cause analyses for a series of
recurring events. We specify these events as a time series, referred to as a “symptom
time series.” This time series is characterized by temporal and spatial information
describing when and where an event was observed and event-specific information.
For example, a time series describing end-to-end packet loss measurements would
have associated timing information (when each event occurred and how long it
lasted), spatial information (the two end points between which loss was observed)
and event-specific information (e.g., the magnitude of each event – in this case, how
much loss was observed). Note that the infrastructure depicted in Fig. 12.12 allows
such a time series to be formed using a simple database query.

The most likely root cause of each of our symptom events is then identified by
correlating each event with the set of diagnostic information (time series) available
in the data warehouse. Domain knowledge is used to specify which events should
be correlated and how. If we consider our packet loss example, then we would cor-
relate loss observations with events such as congestion, traffic reroutes, and internal
router conditions known to cause loss. The correlations would be constrained to
those which could have caused each observed loss event – namely those events
along the path of the traffic experiencing the loss. The analysis then effectively be-
comes an automation of what a person would have executed – taking each symptom
event in turn and applying potentially very complex rules to identify the most likely
explanation from within the mound of available data. Aggregate statistics can then
be calculated across multiple events, to characterize the breakdown of the different
root causes. Appropriate remedies and actions can then be identified. Again, the data
infrastructure depicted in Fig. 12.12 makes scaling this root cause analysis far more
practical, as the root causes are typically identified from a wide range of different
data sources; a common data warehouse with normalized naming conventions en-
sures that the analysis infrastructure does not need to be painfully aware of the data
origins and conventions.

However, it is often far from clear as to what all the potential causes or impacts
of a given set of symptom events are. Take, for example, anomalous router CPU
utilization events. Once CPU anomalies are defined (a challenge unto itself), we are
then faced with the question of what causes these anomalous events, and what im-
pacts – if any – do they have. Causes and impacts can also be further categorized as
“expected” versus “unexpected.” For example, we may know a priori to expect that
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a given router upgrade would result in an increase in average router CPU, or that
other newly implemented features or services may increase CPU load. In contrast,
unexpected causes of CPU anomalies may include software bugs or improper router
configuration changes. As to impact – CPU anomalies should not result in any cus-
tomer impact. If they have gotten to the point where routing protocols are timing
out, for example, then immediate attention is imperative. However, identifying that
such impact is occurring among the enormous number of ongoing events that are
observed in large-scale networks is far from an easy task.

Domain knowledge can be heavily drawn upon in identifying potential causes
and impacts – network experts can often deduce from both knowledge of how things
should work and from their experience in operating networks to create an initial list.
However, network operators will rapidly report that networks do not always operate
as expected nor as desired – routers are complicated beasts with bugs which can
result in behaviors that violate the fundamentals of “networking 101” principles.
Examination of real network data, and lots of them, is necessary to truly understand
what is really happening.

Domain knowledge can be successfully augmented through EDM, which can be
used to automatically identify these relationships – specifically, to learn about the
root causes and impacts associated with a given event time series of interest. Such
analyses are instrumental in advancing the effectiveness of network analyses, both
for troubleshooting recurring conditions and revealing issues that are flying under
the radar. Although there are numerous data mining techniques available [23, 24],
one approach that is being applied within AT&T Labs is to identify relationships
or correlations between different time series and across different spatial domains
[21, 22]. This approach identifies those time series that are statistically correlated
with a given symptom time series; these are likely to be the root causes or impacts
of the time series of interest (the symptoms). However, given the enormous set of
time series and potential correlations involved here, domain knowledge is generally
necessary to guide the analysis – where to look and under what spatial constraints
to correlate events (e.g., testing correlations of events on a common router, common
path, common router interface). When looking for anomalous or unexpected corre-
lations, the real challenge is in defining what is normal/desired behavior and what
is not.

Let us consider another hypothetical example here, this time to illustrate how
we can use statistical correlation testing to automatically identify the root causes
of a particular recurring event – in this case, BGP session flaps (where the BGP
session goes down and then comes up again shortly afterwards). We focus here on
the connectivity between customers and an ISP – specifically, between a customer
router (CR) and a provider edge router (PER). In particular, we focus on customers
who use the BGP routing protocol to share routes with the ISP, and thus establish
a BGP session between the CR and the PER. BGP may be used here, for example,
in the case where customers are multihomed; in the event of a failure of the link
between the CR and PER, BGP reroutes traffic onto an alternate route.

The physical connectivity between the CR and PER is provided over metropoli-
tan and access networks as illustrated in Fig. 12.13. These networks in turn may be
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made up of a variety of layer one and layer two technologies (see Chapter 2). We
refer to these as the lower-layer networks. These metro/access networks often have
built-in mechanisms for rapidly and automatically recovering from failures. Thus,
in these situations, failure recovery mechanisms may exist at both the upper layer
(through BGP rerouting) and the lower layers. It is highly desirable to ensure that
failure recovery is not invoked simultaneously at both layers [25]. This is achieved in
routers today using timers – the IP routers are configured with a delay timer designed
to allow the lower layer to attempt to recover from an issue first. If the lower layer
restores connectivity within the defined timeout (e.g., 150 ms), then the routers do
not react. However, if the lower layer fails to recover from the issue within the de-
fined time interval, then the routers will attempt to restore service at the IP layer.

We can use correlation testing to help us investigate the potential root causes of
BGP session flaps between PERs and CRs. Specifically, we can test the statistical
correlation between the symptom time series (BGP session flaps) and a wide range
of other time series, which correspond to a variety of other network events. We refer
to these other events as diagnostic events. The goal is to identify those diagnostic
time series that are statistically correlated with our symptom time series (BGP ses-
sion flaps). However, rather than testing all possible time series across the entire
network (an impractically large number of time series), we typically constrain our
correlations to those in the same locality. In this case, we examine events either
on the same router or on the same router interface as the BGP session flaps. Our
diagnostic symptoms can be drawn from a range of different sources – workflow
commands, router syslogs, lower-layer events, router performance events (e.g., high
CPU, memory utilization, link loads, packet losses) and so on. The primary result
of the correlation testing is a list of time series that are statistically correlated to the
BGP session flaps; the idea being that these will reveal the root causes and impacts
of the BGP session flaps.
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So now let us consider a situation in which there is an underlying issue such
that BGP sessions flap even when lower-layer failure recovery mechanisms rapidly
recover from failures. This breaks the principle of layered failure recovery used
here – as discussed, recovery actions at the lower layer should prevent IP links
and BGP sessions between routers from failing during these events. Thus, domain
knowledge would conclude that lower-layer failure recovery actions would not be
related (correlated) to BGP session flaps. However, in the scenario we consider here,
correlation testing would expose that the BGP session flaps are often occurring at
the same time as lower-layer failure recovery events associated with the same link
between the PER and the CR – more often than could be explained as pure coinci-
dences. This would be revealed via strong statistical correlation between BGP flaps
and failure recovery events on the corresponding lower layer – a correlation that
violates normal operating behavior, and is indicative of erroneous network behav-
ior. Correlation testing is in essence revealing that the network is not operating as
designed – reality differs from intent. Erroneously failing the IP layer link and cor-
responding BGP session results in unnecessary customer impact – instead of seeing
a few tens of milliseconds break in connectivity as the lower-layer recovery is per-
formed, the customer may now be impacted for up to a couple of minutes. Also note
the need here to bring in spatial constraints – we are explicitly interested in behavior
happening across layers for each individual link between a PER and a given CR –
it is this correlation that is not expected and indicates undesirable network behav-
ior. It is entirely expected that failure recovery on a given PER – CR link correlates
with BGP flaps on other links. This would be a result of a common lower-layer
failure impacting both IP links that use lower-layer failure recovery mechanisms
and those which do not. Those IP links without lower-layer recovery would ex-
perience the failure, causing their associated BGP session to fail. However, those
with lower-layer failure recovery should not experience any impact on the higher
layer protocols. Thus, the BGP failures on the links without failure recovery corre-
late with the lower layer failure recovery on the other, seemingly independent, links.
This highlights the complexity here and the need for detailed domain knowledge and
carefully designed spatial models in executing and analyzing correlation results.

Thus, statistical correlation testing can be used to expose failure modes that might
otherwise go undetected, yet cause significant customer impact over time. Statisti-
cal correlation testing can also be used to delve deeper into network behavior, once
revealed. For example, correlation testing can be used to identify how the strong cor-
relation between BGP session flaps and lower-layer recovery events varies across
technologies. Does it only exist for certain types of lower-layer technologies or
certain types of router technologies (routers, line-cards)? If the same behavior is
observed across lower-layer technologies from multiple vendors, then it is unlikely
to be the result of an erroneous behavior in the lower-layer equipment (for example,
slower than designed recovery actions). If, however, the correlation exists for only
a single type of router, then it would be highly advisable to look closer at the given
router type for evidence of a software bug that could explain the observed behavior.
Thus, analysis of what is common and what is not common across the symptom
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observations can help in guiding troubleshooting. Targeted lab testing and detailed
software analysis can then follow so that the underlying cause of the issue can be
identified and rectified, with the intent that the failure mode will be permanently
driven out of the network.

In general, the opportunity space for EDM is tremendous in large-scale IP/MPLS
networks. The immense scale, complexity of network technologies, tight interaction
across networking layers, and the rapid evolution of network software mean that
we risk having critical issues flying under the radar, and that network issues are ex-
tremely complex to troubleshoot, particularly at scale. Driving network performance
to higher levels will necessitate significant advances in applying data mining to the
extremely diverse network data. This is an area ripe for further innovation.

12.5 Planned Maintenance

The previous sections focused on reacting to events and issues as they are identified.
However, a large portion of the activity in a large operational network is actually a
result of planned events. Managing a large-scale IP/MPLS network indeed requires
regular planned maintenance – the network is continually evolving as network el-
ements are added, new functionality is introduced, and hardware and software are
upgraded. External events, such as major road works, can also impact areas where
fibers are laid, and thus necessitate network maintenance.

There are two primary requirements of planned maintenance: (1) successfully
complete the work required, and (2) minimize customer impact. As such, planned
network maintenance is typically executed during hours when the expected cus-
tomer impact and/or the network load is at its lowest. This typically equates to
overnight and early hours in the morning (e.g., midnight to 6 a.m.). However, the ex-
tent to which customers would be impacted by any given planned maintenance activ-
ity also depends on the location of the resources being maintained, and what main-
tenance is being performed. Redundant capacity would be used to service traffic
during planned maintenance activities – where redundancy exists, such as in the core
of an IP network. However, as discussed in Section 12.2.5, such redundancy does not
always exist and thus some planned maintenance activities can result in a service in-
terruption. This is most likely to occur at the edge of an IP/MPLS network, where
cost-effective redundancy is simply not available within router technologies today.

12.5.1 Preparing for Planned Maintenance Activities

Competing planned maintenance activities occurring across multiple network lay-
ers in a large ISP network could be a recipe for disaster, if not carefully managed.
Meticulous preparation is thus completed in advance of each and every planned
maintenance event, ensuring that activities do not clash, and that there are sufficient
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network and human resources available to successfully complete the scheduled
work. Planning for network activities involves careful scheduling, impact assess-
ment, coordination with customers and other network organizations, and identifying
appropriate mechanisms for minimizing customer impact. We consider these in
more detail here.

Scheduling of planned maintenance activities often requires juggling of a range
of different resources, including operations personnel and network capacity, across
different organizations and layers of the network. For example, in an IP/MPLS
network segment where lower-layer network recovery does not exist, planned main-
tenance within the lower layer will likely impact the IP/MPLS network. If this is
within the core of an IP/MPLS network (i.e., between ISP routers), the impacted
IP/MPLS traffic will be rerouted, requiring spare IP network capacity. This same
network capacity could also be required if, for example, IP router maintenance
should occur simultaneously. This is illustrated in Fig. 12.14, where maintenance
is required both on the link between routers C and D (executed by layer one tech-
nicians) and on router H (executed by layer 3 technicians). Much of the IP/MPLS
traffic normally carried on the link between routers C and D may normally reroute
over to the path E–F–H in the event of the link between C and D being unavailable.
However, should router H also be unavailable (e.g., due to simultaneous planned
maintenance), then this alternate path would not be available. The traffic normally
carried on the link between routers C and D, and that normally carried via router H
would all be competing for the remaining network resources. This has the potential
to cause significant congestion and corresponding customer impact. This is clearly
not an acceptable situation – the two maintenance activities must be coordinated so
that they do not occur simultaneously, unless the network has adequate resources to
successfully support them both. Thus, careful scheduling of planned maintenance
within and across network layers is crucial. Such scheduling also necessitates care-
fully constructed processes to communicate and coordinate maintenance activities
across organizations managing the different network layers.

However, how can a network operations team determine whether there are suffi-
cient network resources to successfully execute planned maintenance activities with
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Fig. 12.14 Competing planned maintenance activities on a network link (between routers C
and D) and a router (router H)
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minimal customer impact? This is particularly complicated within the IP/MPLS
core, where it is a nontrivial task to predict where and how much traffic will be
rerouted in response to network events. Detailed “what if” simulation tools that can
emulate the planned maintenance activities are key to ensuring that adequate re-
sources are available for planned and unplanned activities. Such tools are used to
evaluate the impact of planned activities in advance of the scheduled work, tak-
ing into account traffic, topology, planned activities, and ideally current network
conditions. In situations where the planned maintenance activities would cause un-
acceptable impact, the simulation tools can also be used to evaluate potential actions
that can be taken to ensure survivability (e.g., tweaking network routing).

If the planned maintenance is instead occurring at the provider edge router (the
router to which customers connect), then it may be necessary to coordinate with or
at least communicate the planned maintenance to the impacted customers. This is an
especially important step when serving enterprise customers, who may need to make
alternate arrangements during such activities. This communication is typically done
well in advance of the planned activities – often many weeks. If the work needs to be
repeated across many edge routers, as may occur when upgrading router software
network-wide, then human resources must also be scheduled to manage the work
across the different routers. This can become a relatively complex planning process,
with numerous constraints.

12.5.2 Executing Planned Maintenance

Planning for scheduled maintenance activities generally occurs well in advance of
the scheduled event, ensuring adequate time for customers to react and for internal
network survivability evaluations to be completed. Maintenance can proceed af-
ter a successful last-minute check of current network conditions. However, service
providers go to great lengths to carefully manage traffic in real time so as to further
minimize customer impact. In locations where redundancy exists, such as in the core
of the IP/MPLS network, gracefully removing traffic away from impacted network
links in advance of the maintenance can result in significantly smaller (and poten-
tially negligible) customer impact compared with having links simply fail while still
carrying traffic. Forcing traffic off the links that are due to be impacted by planned
maintenance also eliminates unnecessary traffic reroutes that would result should the
link flap excessively during the maintenance activities. How this rerouting of traffic
is achieved depends on the protocols used for routing traffic. For example, if simple
IGP protocols are alone used, then traffic can be rerouted away from the links by
simply increasing the weight of the links to a very high value. This act is known as
costing out the link. Once the maintenance is completed, the link can be costed in by
reducing the IGP weight back down to the normal value, thereby re-attracting traffic.

Continual monitoring of network performance and network resources is also
critical during and after the planned maintenance procedure, to ensure that any unex-
pected conditions that arise are rapidly detected, isolated, and repaired. Think about
taking your car to a mechanic – how often has a mechanic fixed one problem only to
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introduce another as part of their maintenance activities? Networks are the same –
human beings are prone to make mistakes, even when taking the utmost care. Thus,
network operators are particularly vigilant after maintenance activities, and put sig-
nificant process and automated auditing in place to ensure that any issues that may
arise are rapidly detected and addressed. For example, in the previously discussed
scenario where links are costed out before commencing maintenance activities, it is
critical that monitoring and maintenance procedures ensure that these network re-
sources are successfully returned to normal network operation after completion of
the maintenance activities. Accidentally leaving resources out of service can result
in significant network vulnerabilities, such as having insufficient network capacity
to handle future network failures. Additionally, for the larger-scale planned upgrades
mentioned earlier, KPIs need to be monitored against expected impacts both during
and after deployment. Undesired results, such as unexpectedly high CPU loads, can
then be quickly investigated. Other unexpected results, such as a slow memory leak
due to a bug in newly deployed software, may not be immediately apparent but can
be detected through appropriate monitoring.

12.6 The Importance of Continued Innovation

The past 10 years or so have seen tremendous improvements in IP/MPLS network
fault and performance management. However, there are still opportunities for excit-
ing innovations. We herein outline a few directions in which we believe that further
advances in the state of the art promise great operational benefits.

Router reliability remains an important area where innovation is needed.
Although dramatic improvements have been achieved in recent years, router fail-
ures and maintenance are still the dominant cause of customer service outages.
Router technologies must evolve to allow router software to be upgraded without
impacting customers, to effectively manage control plane resources in the pres-
ence of overload conditions, and to support hardware monitoring and cost effective
redundancy [26, 27] so that outage durations are minimized. Improvements in these
areas depend on a combination of technical disciplines including real-time soft-
ware systems, software engineering, as well as an increased emphasis on hardware
“design for maintainability.”

As demonstrated in earlier sections within this chapter, service providers have
typically mastered the detection, troubleshooting, and repair of commonly occur-
ring faults and performance impairments. However, the same cannot always be
said for dealing with the more esoteric faults and performance issues. Signifi-
cant advancements are crucial in detecting issues that “fly under the radar,” and
in troubleshooting complex network issues. Both of these present opportunities for
advanced exploratory data mining. Tools for effectively and rapidly aiding in trou-
bleshooting complex issues are particularly lacking; significant innovation is well
overdue here. This is primarily because it is a challenging problem and one most
understood by the small teams of highly skilled engineers to which such issues
are escalated. These teams work in a demanding environment – each new line of
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investigation may be different from previous ones, and may (at least initially) defy
understanding. Operations personnel, while under tremendous pressure, have to sift
through immense quantities of data from diverse tools, collect additional informa-
tion, and theorize over potential root causes. Arming these teams with appropriate
data analysis tools for best achieving this is a challenging but necessary advance-
ment. Significantly advancing the state of the art here will likely require a melding
of data mining experts and network experts.

As a final topic, we consider process automation – specifically, how far can we
and should we proceed with automating actions taken by operations teams? As
highlighted in Section 12.3, process automation is already an integral part of at
least some large ISP network operations. The ultimate goal may well be to fully
automate common fault and performance management actions, closing the con-
trol loop of issue detection, troubleshooting, mitigation strategy identification and
evaluation, and actuation of the devised responses in the network (e.g., rerouting
traffic, repairing databases, fixing router configurations). There are vast opportuni-
ties for innovation in identifying new scenarios for such automated recovery and
repair of both networks and supporting systems (e.g., databases, configuration). As
such cases are revealed and proposed, it will undoubtedly often be challenging to
replicate the complex logic that humans execute in identifying courses of actions
to mitigate network issues, particularly dealing with the “corner cases” that arise in
large networks. Creating appropriate safeguards to prevent potentially catastrophic
actions should flawed reasoning be introduced into the system is also a challenge
that must be addressed.

12.7 Conclusions

In this chapter, we described a wide range of network management and operational
tasks designed to ensure that ISP networks operate at high levels of reliability
and performance. We have organized these network operation activities into three
threads, each serving a conceptually different purpose, although they overlap in
practice. The first thread included a series of operations covering monitoring net-
work health and service performance, detecting and notifying operations of fault
and performance issues, localizing and troubleshooting issues, problem mitigation
and service restoration, and finally repair and restoration of the impacted network
resources. These tasks are typically handled in a “real-time” fashion, as they in-
volve an ongoing service impact, pressing for immediate care. The second thread
focused on offline exploratory data analysis for driving continued performance im-
provements. This includes defining and monitoring key performance indicators,
conducting trending analyses to track network performance and health over time,
applying root cause analysis and data mining to uncover underlying issues, conduct-
ing targeted measurement and lab testing to pinpoint the problem, and finally driving
the problem out of the network where possible. These tasks are less time-pressured.
However, they are often more complex as they require advanced analytic systems
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and experienced operations personnel to quickly focus on the anomalous network
behaviors deeply hidden among a vast amount of network data.

While the first two threads deal with detecting and reacting to events that occur
within the network and service, the third thread focused on planned events – ac-
tivities that operations execute to maintain and evolve the network. These planned
maintenance activities involve replacing equipment, upgrading software, and de-
ploying new hardware and network capabilities. The major challenges in planned
maintenance lie in the careful planning and preparation for planned events, and the
prudent execution of these tasks such that customer impact is minimized.

We conclude with some final “best-practice” principles for both fault and perfor-
mance management, and planned maintenance.

Fault and performance management “best-practice” principles for large
IP/MPLS networks:

� Incorporate network management requirements whenever new technolo-
gies are being introduced – do not make network measurement, fault and
performance management an afterthought

� Develop a comprehensive fault and performance data collection infrastruc-
ture

� Carefully design network alarms and alerts to ensure that network issues
are rapidly detected and appropriate notifications are generated

� Deploy a scalable event management system, which effectively filters and
correlates the onslaught of network alarms to rapidly isolate network issues

� Deploy a ticketing system, which is tightly integrated with the event man-
agement and process automation systems. The ticketing system is used to
notify operations personnel of events requiring investigation, and to track
analyses and final root cause

� Automate commonly executed operations tasks to speed issue resolution
and free up staff for more complex tasks – but be careful and incorporate
appropriate safeguards to protect the network

� Arm network operations teams with the necessary tools, network measure-
ments, and skills for troubleshooting network issues

� Create and utilize lab environments for replicating and troubleshooting is-
sues observed within the operational network

� Build close partnerships between vendors for collaborative troubleshooting
of network events, particularly those related to vendor equipment

� Work closely with network engineering teams to ensure that automatic
failure recovery is available where possible – this can (1) improve ser-
vice availability through rapid failure recovery, and (2) remove the need
for operations to respond in real time. Planned maintenance can then be
scheduled at a convenient time

� Dedicate expert staff to ongoing analysis of recurring problems, and bring
their learning back into the mainstream management systems
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� Track and trend element-level and end-to-end key performance indicators
over time – both those that indicate customer impact (e.g., network loss,
delay, key service-level metrics) and those associated with network health
(e.g., router CPU, memory utilization)

� Create scalable root cause analysis techniques and processes for investigat-
ing recurring performance issues

� Data integration: create a scalable infrastructure for exploratory data min-
ing – where data can be readily accessed and correlated across multiple
diverse time series.

Planned maintenance “best-practice” principles for large IP/MPLS
networks:

� Instantiate processes that ensure that human beings “think twice” as they
are touching the network to avoid unnecessary mistakes

� Plan and schedule maintenance activities carefully to minimize customer
impact, including scheduling activities across network layers and across
network organizations where necessary

� Execute careful validation of planned activities to ensure that there is
sufficient spare network capacity to absorb load during core network main-
tenance

� Validate network state before executing planned maintenance to ensure that
maintenance is not executed when the network is already impaired

� Minimize customer impact by taking routers and network resources
“gracefully” out of service where possible (e.g., within the network core)

� Provide appropriate customer notifications (e.g., to enterprise customers)
of upcoming planned maintenance activities, so that customers have the
opportunity to take proactive actions where necessary

� Suppress relevant network alarms during planned maintenance activities to
avoid operations chasing events, which they are in fact knowingly inducing

� Carefully monitor network and service performance before, during, and
after maintenance, ensuring that all resources and services are successfully
returned to operation

� Validate planned maintenance actions after completion (e.g., verify router
configurations) to ensure that the correct actions were taken and that con-
figuration errors or other bad conditions were not introduced during the
activities

� Ensure where possible that mechanisms are available for rapid back out of
maintenance activities, should issues be encountered during maintenance
activities.
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Glossary of Terms and Acronyms

Term Definition

Fault management Set of functions that detect, isolate, and correct faults in
a telecommunications network

Fault “Hard” failure (e.g., link down)
Performance management Set of functions that detect, isolate, and correct

performance issues in a telecommunications network
Performance events Situations where a network element or the network is

operating with degraded performance (e.g., packet loss,
excessive delay)

Event management Set of functions that detect, isolate, and correct events
in a telecommunications network

Incident An occurrence that affects normal network operation
Event A fault or performance anomaly or impairment. A

single incident may result in multiple events
Originating event The event directly associated with a given incident, as

opposed to being a side-effect or symptom of the
incident

Alarm Notification of a fault
Alert Notification of a performance event (e.g., threshold

crossing, traffic anomaly)
Event notification Generic term covering alarms and alerts
Event correlation Taking multiple incoming events (observations related

to an incident) and correlating them to identify a single
correlated event to capture the incident

Event management system A system that collects incoming event notifications, and
filters and correlates these to output correlated events

Correlated event Output from the event correlation
Ticket A document that is used to notify operations of an issue

that requires investigation and to track the analysis
performed in diagnosing the issue

Ticketing system System that manages tickets
Event manager A person who manages event resolutions

(continued)
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Term Definition

Troubleshooting A form of problem-solving applied to diagnosing the
underlying root causes of network impairments

Silent failure A condition where network elements fail to detect and
report an impairment

Black hole Traffic is dropped (lost) within the network. Black holes
are often associated with silent failures

Process automation Automation of process-related tasks
Trending Track how parameters of interest (e.g., KPIs) behave over

time
Key performance indicators Metrics designed to measure network performance and

health
Root cause analysis Identifying the root cause of network event(s)
Pareto analysis Statistical technique in decision-making that is used to

select a limited number of tasks that produce significant
overall effect

Planned maintenance Planned activities in the network, such as for upgrading
hardware and software, scheduled hardware replacements,
and network growth and evolution

Acronym Definition

IP Internet Protocol
MPLS Multi-Protocol Label Switching
ISP Internet Service Provider
ICMP Internet Control Message Protocol
IPTV Internet Protocol Television
IGP Interior Gateway Protocol
OSPF Open Shortest Path First
IS-IS Intermediate System to Intermediate System
BGP Border Gateway Protocol
CPU Central Processing Unit
CRC Cyclic Redundancy Check
SNMP Simple Network Management Protocol
IETF Internet Engineering Task Force
MIB Management Information Base
DPI Deep Packet Inspection
LDP Label Distribution Protocol
PIM Protocol-Independent Multicast
PPP Point-to-Point Protocol
CR Customer Router
PER Provider-Edge Router
KPI Key Performance Indicator
EDM Exploratory Data Mining
DPM Defects Per Million



Chapter 13
Network Security – A Service Provider View

Brian Rexroad and Jacobus Van der Merwe

13.1 Introduction

In keeping with the theme of this book, this chapter on security, explores the actual
and potential impact of security threats and concerns on network stability and ro-
bustness. We specifically take a service provider centric view of network security
by considering the actions a service provider can take to ensure the integrity of the
network and to protect network services and users.1 Many of the security concerns
providers and network users face are related to the fundamental fact that networks
are shared resources, and their purpose is to provide connectivity and the means
of interaction between network users and devices. Unfortunately, this very func-
tionality also provides the means for unwanted interaction and exploitation. As an
enabler for communications, this puts service providers in a unique position to also
protect users and inhibit traffic unwanted by the indended recipient. Indeed pro-
tection against some network security threats, such as distributed denial of service
(DDoS) attacks, is near impossible to achieve without network support.2 Further, se-
curity services are enhanced by being network aware and utilizing network derived
intelligence.

Dealing with security threats in the network by necessity requires monitoring
of network activity and in some instances interfering with, or blocking, unwanted
traffic. Traffic monitoring and manipulation are both important issues that may have
legal and regulatory implications. We acknowledge this tension and argue that “the

B. Rexroad (�) and J. Van der Merwe
AT&T Labs, Florham Park, NJ 07932, USA
e-mail: brian.rexroad@att.com; kobus@research.att.com

1 We explicitly use the term service provider to emphasize the fact that, in addition to Internet
access, other internet protocol (IP) based networks (e.g., virtual private networks (VPNs)) and
IP-based services (e.g., hosting, VoIP, IPTV, content distribution, etc.), all relate to the security
concerns of a provider and are therefore considered in scope.
2 The brute force nature of many DDoS attacks means that access links are often overwhelmed,
which renders premises based protection mechanisms ineffective.
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network”, or more generically cyberspace, has become such a critical part of our
society that finding workable solutions to these non-technical issues is critical.

Our goal for this chapter is to first serve as a practical guide by identifying best-
practices and describing specific monitoring and mitigation mechanisms that can be
utilized. Second, we hope to aid the reader in developing a framework or philosophy
for dealing with security from the point of view of a service provider, i.e., under-
standing which problems are inherent to the current Internet architecture, protocol
suite and trust model, understanding the incentives, strengths and weaknesses of
different role players and developing strategies of where to spend resources going
forward.

Covering the complete network security subject in a single chapter is not feasi-
ble, not even if the coverage is perfunctory. Indeed, many excellent security books
have been written to cover specific subsets of network security problems and solu-
tions. As such we will largely focus on security from a service provider perspective
given the current Internet architecture, set of protocols and business relationships.
Within this context we will cover security related procedures, mechanisms, tools
and services that can be utilized by service providers to protect the network infras-
tructure as well as the services that it enables. In the final section of the chapter we
will, however, deviate somewhat from this near term focus to offer a more forward
looking perspective.

The outline of the chapter is as follows.
In Section 13.2 we provide an exposition of the underlying network security

threats and their causes. Some underlying security causes are technical in nature,
e.g., the Internet best-effort service model. Others are the result of current busi-
ness practices (e.g., service providers being both retail competitors with each other,
as well as interconnection partners) and indeed the development of nefarious uses
such as spam, phishing, data theft, and DDoS related extortion, which are enabled
by broad use of the Internet. Because a single exploit can often be successfully
launched against many Internet users, the economic balance tends to be weighted in
the favor of bad actors.

In Section 13.3 we present an overall framework for service provider network
security. We discuss the seven pillars that make up this framework.

Having the means to know when there is a security threat or incident, and having
the necessary information to then deal with the problem is fundamental to any se-
curity strategy. Section 13.4 addresses the importance of developing good network
security intelligence. We articulate a strategy for monitoring of network activity and
systems to maintain security awareness.

In Section 13.5 we present a number of operational network security systems
used for the detection and mitigation of security threats. A significant challenge for
any network-based security system is the need for scalability. We describe several
highly scalable systems, covering informational, compulsory and supplementary se-
curity services.

We consider the role of security operations as an essential part of the broader
network operations in Section 13.6.
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Finally, in Section 13.7 we summarize important insights and then briefly con-
sider important new and developing directions and concerns in network security as
an indication of where resources should be focused both tactically and strategically.

13.2 What Is the Problem?

Despite, or perhaps because of, its undeniable success and utility, the Internet and
all networks that derive from the Internet architecture and protocols, are suffering
from a litany of security concerns. In the best case these concerns are annoying
and impede progress. However, because of the ever increasing use of networks
for virtually all aspects of modern society, in the worst case, these security con-
cerns have potential to negatively impact economies and governments at a global
scale.

Interestingly the Internet can trace it roots, in part, to a desire to create more
secure communications systems [16,54]. Specifically, concerns for physical attacks
against centralized control systems motivated the conception of distributed commu-
nication networks [16]. Consequently, there was a decision to prioritize availability
of the network over confidentiality and integrity. These protections were left to the
end user to consider.

This and other design goals were articulated in a retrospective paper on the design
philosophy of the DARPA internet protocols [24]. In priority order the design goals
for the Internet architecture were:

1. Internet communication must continue despite loss of networks or gateways.
2. The Internet must support multiple types of communications service.
3. The Internet architecture must accommodate a variety of networks.
4. The Internet architecture must permit distributed management of its resources.
5. The Internet architecture must be cost effective.
6. The Internet architecture must permit host attachments with low level of effort.
7. The resources used in the Internet architecture must be accountable.

Given that its roots were in the defense community, it is not surprising that ro-
bustness against physical loss ranked highest in this list. This external threat model
is, however, quite different from current day attacks, which come from use of the
network. These attacks exploit protocol and architectural characteristics of the net-
work itself and therefore effectively constitute an internal threat model.

Further, while interworking between different network technologies was part of
the architectural thinking right from the start, the Internet predecessors mostly in-
terconnected closed groups of trusted users. The architecture that emerged offered
communication on a best-effort basis, specifically limited the amount of per-flow
information that network elements are required to maintain, instead relying on end
systems to do that [24], and did not require global operational control [54].

While providing a highly scalable system that is robust against physical fail-
ure, these guiding principles are somewhat problematic from a network security
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perspective. Best-effort delivery significantly simplifies the network forwarding
mechanics because the network does not have to be [overly] concerned about drop-
ping packets, i.e., transport protocols (e.g., Transmission Control Protocol (TCP))
take care of reliable delivery from the edge of the network. The fact that end-systems
are entrusted to maintain connection state in effect means that they become part of
the implied network trust model. This works well when end-systems can be trusted
and when all traffic being forwarded to a particular destination is wanted by that
destination, as would be the case in a closed community of trusted users. However,
when end-systems are malicious and generate unwanted traffic, the best-effort deliv-
ery and the lack of per-flow information in network elements effectively becomes a
conduit for delivering denial-of-service (DoS) attacks. Indeed DoS attacks (or their
close cousin distributed denial of service (DDoS) attacks), remain a fundamental
problem for the current Internet.

The fact that IP source addresses are not authenticated and therefore easily
spoofed, exacerbates the situation because the perpetrators of the attack are effec-
tively untraceable and therefore unaccountable. The implication is that the final goal
in the above list has never been achieved. Dealing with unwanted traffic provides a
strong argument for the need of source authentication and accountability. However,
some argue that such measures would result in easy identification of endpoints and
by association users, to which some have expressed privacy concerns. Such identifi-
ability concerns present an inherent tension that will have to be addressed in network
architectures that provide strong accountability [76].

Obviating the need for global operational control and instead allowing for dis-
tributed management was a great equalizer which allowed networks with different
levels of operational sophistication (among other differences) to be interconnected
with relative ease. From a network security perspective, this lack of formal oper-
ational interworking hampers the ability of service providers to deal with major
security incidents. Further, the volume of minor security concerns is such that
providers are left to fend for themselves via local approaches, especially when the
root of the problem originates from a remote network with whom the provider has
no formal relationship nor a vested interest to assist.

In the remainder of this section we will elaborate on these issues by first ex-
amining both the stated and actual Internet threat model, as well as the somewhat
implied trust model of the Internet. We then consider the role of security protocols
before looking at the incentives of different role players in network security, illus-
trating that the economic balance is heavily biased in favor of bad actors. Finally, we
briefly consider the fact that cyberspace has become a critical infrastructure which
impacts virtually all aspects of society, well beyond its cyber limits.

Effectively dealing with many of the concerns identified in this section might
require architectural changes to the Internet, or changes to well entrenched business
practices, and as such is well beyond the scope of this chapter.
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13.2.1 Threat Model

The Internet Engineering Task Force (IETF) is an open international community
concerned with the operation and evolution of the Internet. All IETF documents are
required to specifically address security and the IETF provides guidelines for this
in RFC 3552 [67]. The Internet threat model as defined in RFC 3552 in essence
states that: (i) End-systems are assumed to not be compromised and (ii) attackers
are assumed to have near complete control over the communication channel over
which communication takes place.

This threat model is clearly unrealistic. First, security vulnerabilities in oper-
ating systems and applications (e.g., browsers) result in end-systems that are in
fact routinely compromised and unwittingly utilized for nefarious activities. Despite
end-system security receiving significant attention by operating system vendors and
communities, the openness of these platforms and the plethora of applications that
it enables suggest that end-system vulnerability will continue to be a concern for
the foreseeable future.3 Software piracy, among other things, exacerbates this sit-
uation since pirated software typically will not be updated with vendor patches.
Consequently, vulnerabilities remain which can be exploited by attackers. Further,
the ease with which end users can be lured into installing malware themselves, e.g.,
by downloading and executing electronic postcards from illegitimate websites [48],
suggests that the social engineering aspect of the problem might be the most difficult
challenge.

Second, while complete control of the communication channel by attackers re-
mains a possibility, this has in practice proved to be much more difficult and unusual.
Yes, end-systems and network elements, such as routers, contain software that are
subject to flaws and bugs and are therefore not inherently more secure than end-
systems. However, in general, commercial network providers have a vested interest
to be more cautious [than end users] when deploying new software and more vigilant
in working with vendors to identify and correct vulnerabilities. After all, commer-
cial providers’ business not only depends on the network, it is the network.

More realistic threat assumptions, from a service provider point of view
would be:

� End-points (broadly defined) can and will be compromised and used to launch
attacks against the network, its users and the services it provides.

� Necessary precautions must be taken to ensure the security of network elements
that are under control of the provider.

These assumptions lead to a threat model where everything outside the periphery
of the provider network is assumed to be potentially hostile and untrustworthy, while
the objective is to make everything inside the network to be secure and trustworthy.

This simplistic threat model is, however, only part of the picture. In the In-
ternet any single provider is only part of a set of interconnected networks that

3 Data from the National Vulnerability Database (nvd.nist.gov), show a 25-fold increase in the
annual number of published software flaws across all software systems from 1997 to 2007.
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provide end-to-end connectivity. Therefore, to enable the most basic communica-
tion services between arbitrary hosts on the Internet, a provider has to trust, to some
extent, entities that are outside of its sphere of control. We consider this somewhat
implied trust model next.4

13.2.2 Trust Model

There is, somewhat surprisingly, no formal trust model for the Internet. However,
by virtue of providing the means to communicate between different parties and
across networks operated by different organizations there is an implied trust model.
This implied trust model is largely defined first by the business and functional re-
lationships between all involved parties and second by the underlying architecture,
protocols and technologies.

13.2.2.1 Business and Functional Relationships

The Internet is a largely unaffiliated and loosely coupled set of organizations that
interwork to realize its functionality. As such, every organization involved in the
end-to-end delivery of a packet has to be relied upon to do “the right thing”:

� Network equipment are assumed to be configured correctly and operators are
assumed to follow best practice guidelines.

� Network equipment software is assumed to operate correctly and be bug free.
� Protocol endpoints are assumed to be who they claim to be.
� Internet users are assumed to act in good faith.

We know that these assumptions are not realistic. Incorrect network configuration
routinely result in network incidents. For example, in a well known YouTube hijack-
ing incident, an attempt by Pakistan Telecom to locally block access to YouTube
prefixes in effect resulted in YouTube traffic from all over the Internet being redi-
rected to Pakistan [68]. Like all software systems, network equipment software often
has bugs that could have security implications [4]. Finally, while the owners of most
network endpoints do act in good faith, their computers might be controlled by those
who do not. And as a result, the protocol endpoint could exploit the unauthenticated
nature of the IP protocol to claim any identity.

Further, these business and functional relationships are transitive in the sense
that end-customers have to trust their access providers. Access providers (might)
have to trust higher tier providers. All providers have to trust other providers

4 In cases where the complete end-to-end path is under control of a single provider, e.g., in the case
of virtual private network (VPN) services provided by a single provider, the simplified threat and
trust model hold, and this results in higher confidence levels of security of the communications.
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(technically, autonomous systems (ASes)) along the path to the ultimate destina-
tion. This transitive trust exists despite the fact that formal business arrangements
are typically limited to the closest neighbors in this chain.

13.2.2.2 Technology Drivers

At the most basic level, the Internet best-effort unaccountable service model implies
that the network should trust end-users to not send unwanted traffic. We have already
discussed the fallacy of this misplaced trust which enables denial of service attacks.
The inherent and implied Internet trust model can be explored (from an end-user per-
spective) by means of the common-place action of downloading a Web page [38].
First, the domain name system (DNS) is trusted to correctly map the domain name
in the Uniform Resource Locator (URL) of the Web page (e.g., the “www.att.com”
part of http://www.att.com/index.jsp) into an IP address. Second, in establishing a
TCP session with the Web page in question, the Internet routing system is trusted
to route packets along the intended path between the browser and the server. Third,
all intermediate network elements are trusted to faithfully convey packets in transit.
Finally, the end-systems in this interaction, i.e., the user host (client) that runs the
browser and the server that provides the content, are both trusted to not be com-
promised so that the content intended by the content owners/creators (and only that
content) be displayed to the user.

Unfortunately none of the elements in this chain of trust is built on solid ground
as each element is subject to inherent vulnerabilities.

DNS can provide no guarantees about the validity of domain name to IP address
mappings [2,13]. DNS as currently deployed does not have any strong security pro-
tection of messages and is thus subject to modification in transit like all unprotected
Internet protocols. The request/response nature of DNS queries, the fact that most
DNS queries are conducted as connectionless transactions, the relatively small mes-
sage identification space (which can be guessed relatively easily), and the capability
to perform source address spoofing on the Internet allow an attacker to provide bo-
gus responses to legitimate requests. The hierarchical caching nature of the DNS
architecture, means that these types of attacks are particularly problematic as the
(bogus) response may be cached until the time-to-live field in the response expire,
which would typically be set to a long time period by an attacker. In fact, an attacker
may originate the query in an effort to poison the cache of DNS servers with bogus
answers. This is a technique that has been used to redirect victims to phishing sites.

Internet routing protocols and in particular BGP provide no guarantees about
the correctness or validity of routes [17]. BGP messages could be tampered with
in transit as there are no per-message or per-session security mechanisms. More
serious though, is the fact that there is no guarantee that a BGP speaker advertising
a route to a particular destination is authorized to advertise that route, or in fact has
a route to the destination, or would be forwarding packets to the destination if it
has a valid path [20]. In particular, an attacker could hijack a prefix belonging to
another AS, to either intercept the traffic en route to the actual destination, or to

http://www.att.com/index.jsp
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send traffic while taking the identity of the hijacked address space. This would, for
example, allow address-based firewall filters to be bypassed. It has been reported
that this technique is used by email spammers to temporarily create the appearance
that their mail servers are associated with reputable organizations and evade filtering
techniques [66].

TCP provides no guarantees about the actual identity of the system that termi-
nates the TCP connection. For example, TCP connections are routinely terminated
by intermediate devices such as Web proxies, although that is not necessarily an
indication of malicious activity. Further, TCP does not ensure that content is not
tampered with in transit.

Finally, end-system exploits allow the compromise of both clients and servers.
With a compromised server, even if the TCP session is terminated on the intended
server and is not tampered with in transit, it is possible that the content on the
server itself might have been tampered with. Compromised server content might
cause a client’s communication to download both the intended content, but also
unintended content (i.e., malware) from a malicious website. Alternatively, a com-
promised client may be fooled into unknowingly visiting and disclosing data to
a malicious server. (This attack might also be perpetrated via DNS exploits even
when the client system is not compromised.) Finally, a compromised client com-
puter, which is generally operated by someone that is not an IT professional, can be
used as a tool to perform other compromises, to generate unwanted traffic, to serve
as relay points, as temporary illegitimate servers, etc.

13.2.2.3 Towards an Internet Trust Model?

In an ITU recommendation [43] that deals with network security, trust is defined as
follows:

Generally, an entity can be said to “trust” a second entity when it (the first entity) assumes
that the second entity will behave exactly as the first entity expects. This trust may apply
only for some specific function.

Underlying this definition is an assumption that the entities in question can be
reliably identified to be who they claim to be, i.e., can be authenticated. Based on
how this original authentication is performed, three major trust models have been
articulated [7]:

� Direct Trust where the two entities involved validate each other’s credentials
without relying on a third party.

� Transitive Trust where trust between two entities is imputed by virtue of a
third party, or parties, trusted by one of the entities in question, having vali-
dated and established an original trust relationship. I.e., A validates and trusts B ,
B validates and trusts C , therefore A trusts C without performing any validation.

� Assumptive (or Spontaneous) Trust where there is no mandatory explicit
validation of credentials.
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Above we have argued that many of the implied trust assumptions regarding busi-
ness/functional relationships and the underlying technology that makes the Internet
work, are in fact very weak at best. I.e., with respect to the “trust” definition pro-
vided above, many entities cannot be assumed to behave in the expected way. It is
also clear from this discussion that the relationships and dependencies are very com-
plicated so that, perhaps, it is not too surprising that there is no well defined trust
model for the Internet. Depending on the functionality being considered, elements
of all three trust models defined above are present in the Internet. For example, con-
sidering the monetary relationships between participants, service providers typically
have a direct trust relationship with their paying customers and with other providers.
As such there is a transitive trust relationship with the customers of other providers.
However, because of lack of accountability and associated controls, this monetary
relationship may fail to influence the way traffic flows across the Internet, so that an
assumptive trust model will in effect be operational.

Finally, while the above discussion might seem dire, we note that this assumptive
trust model works reasonably well where incentives do align. Specifically, many
service providers generally work hard to do well by each other, thereby ensuring
that the aggregate behavior is good. As we address below, however, assumptive trust
breaks down when incentives are not aligned.

13.2.3 Secure Protocols to the Rescue?

Given the deeply embedded nature of the business/functional relationship com-
ponent of the trust model described above, it is imperative that solutions to the
weaknesses in the technical part be found. Of course the security vulnerabilities
described above are well known in the networking and systems communities and a
variety of counter measures have been developed over many years. Unfortunately,
while solutions or partial solutions exist, they lack deployment for a variety of
reasons.

For example, DNSSEC [11], the secure version of DNS, will eliminate many of
the current known DNS vulnerabilities [13], mature implementations are available
and there exist operational experience from several DNSSEC trials. However,
widespread adoption of DNSSEC has not yet happened. This is due, in part, to tech-
nical and operational concerns: (i) DNSSEC make use of public-key cryptographic
signatures and as such will require significantly more resources than current DNS
systems. (ii) DNSSEC is a much more complex protocol than DNS and will there-
fore require more sophisticated operational support. (iii) There is a chicken-and-egg
dilemma where lack of widespread deployment means the usefulness of DNSSEC
is diminished which in turn hinders further deployment.

In addition, some of the theoretical attributes of DNSSEC may exacerbate several
important practical security considerations. For example, one of the techniques used
by DNS providers to protect users from visiting malicious sites or joining a mali-
cious botnet is using a technique called DNS Sinkhole [70]. When implementing
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a DNS Sinkhole, domain name resolution is overridden from the authoritative
response. DNSSEC will interfere with this protection technique. Other examples
include DDoS attacks toward or related to DNS services, such as DNS amplification
attacks. These attacks are much more insidious and frequently occurring problem
than DNS cache poisoning or spoofing [5]. Since DNSSEC requires more process-
ing resources and also will create larger query responses, it has become a mechanism
to facilitate or worsen similar types of attacks.

Of far greater concern, there are vetting or accountability concerns associated
with the DNS registry. It is well known that many DNS registry entries are incor-
rect [79]. DNSSEC only validates that the resolution of a domain name to IP address
is consistent with what the authoritative name servers intended. Bogus registry in-
formation allows attackers to use domain names for malicious purposes and remain
unaccountable. DNSSEC does little, or nothing, to maintain any enforcement of
registry accuracy or integrity. The threat that the registry providers themselves may
be compromised remains. This suggests a need to both rein-in the hierarchy to
some set of trusted authorities, establishing standards for identity and authority man-
agement for domain names, and setting security standards for management of the
systems that maintain the assignments of fully qualified domain names (FQDNs) to
IP addresses.

Ironically, the greatest stumbling block in DNSSEC deployment, however, has
been the controversial issue of which entity, or entities, would be responsible for
signing of the root zone and how the management of the key signing key would be
handled [52,85]. These issues concern Internet governance which is well beyond the
scope of this chapter. At the time of writing there appears to be increased pressure
for these issues to be resolved to pave the way for DNSSEC deployment.5

The picture is somewhat less promising for finding an imminent solution to the
security concerns of BGP. A number of comprehensive architectures have been
proposed to deal with BGP security [32, 50, 61], however, there currently appears
to be no consensus on which, if any, of these solutions will be adopted [20]. Sim-
ilar to DNS, many of the proposed solutions assume the existence of an accurate
routing registry which would provide information concerning organizations and the
autonomous system (AS) numbers and prefixes that are allocated to them. Unfortu-
nately current registries are known to be highly inaccurate and fixing that presents
significant problems in itself. Similar to DNSSEC, there are concerns about the
processing resources that would be required to accommodate strong security mech-
anisms. In the case of BGP this concern is exacerbated by the dramatic increase
in the number of routes that BGP is required to handle, as well as the fact that the
control processors of deployed routers might be lacking in processing power.

5 This change might have been helped along by recent publicity around the so-called Kaminsky
DNS vulnerability [88]. The vulnerability involves a DNS cache poisoning attack, where an at-
tacker (i) fakes a DNS response, e.g., by guessing the transaction identifier in the response, and
(ii) provide incorrect information in the additional section (or “glue” section) of the response.
While this attack can be mitigated through security analysis of DNS activity, there is no inherent
solution without a change in the DNS protocol itself [81].
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In the absence of comprehensive security mechanisms for critical infrastruc-
ture services like DNS and BGP, end-to-end application level security mechanisms
provide significant protection. Specifically, in the case of client/server Web inter-
action, the use of HTTP over a secure transport protocol (e.g., Transport Layer
Security (TLS)), provide cryptographic protection for Web sessions as well as server
authentication in the form of a digital certificate that is typically signed by a cer-
tification authority. Certification authorities provide different levels of monetary
guarantees for different strengths of certificates, with correspondingly more strin-
gent identity verification by the certification authority.

While secure protocols are clearly needed and can eliminate some of the more
basic problems, ultimately, secure protocols do not make systems secure. For ex-
ample, as described above, a modern browser on an uncompromised host will be
able to verify the validity of certificate issued by a certification authority. However,
with this approach the end user in effect trusts the certification authority to validate
and vouch for the identity of the server, or more correctly the identity of the orga-
nization or individual who buys the certificate. Similarly DNSSEC will be able to
authenticate that a response originated from an authoritative name server, but will
ultimately depend on some form of identity verification to allow DNS mappings to
be entered into the system in the first place. The trust put into these verification steps
then becomes the weakest links in the overall security chain [28].

Finally, the security mechanisms themselves do not necessarily provide iron-clad
protection. For example, the practical feasibility of generating fake certification au-
thority certificates has recently been demonstrated [75]. This, in combination with
falsified DNS or BGP entries, can direct users to counterfeit sites which closely
resemble the real sites and trick the users into providing private information.

13.2.4 Motivations, Incentives and Economics

Having looked at the technical and functional properties that make networks vulner-
able to abuse and attack, we now briefly consider the motivations and incentives of
different role players.

There appear to be at least three motivations for malicious network behavior
namely mischief, economic/financial and political/ideological, perpetrated respec-
tively by script kiddies, hackers/criminals and nation states/cyber terrorists.

From the attacker’s side, early attacks were often performed by technically
savvy villains who carried out their deeds for the associated boasting rights,
or indeed to attack some of their fellow villains in the cyber equivalent of turf
wars [30].

It is clear that there has been a progression from these early mischievous acts to
economically motivated cyber attacks and activities. The prevalence of spam email,
while not a security threat in itself, is evidence of the “success” of questionable
economic practices and is often also the entry point for more serious attacks such as
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identity theft. There is also evidence that social engineering attacks via well crafted
email campaigns have become an effective means for botnet operators to replenish
their armies [48].

Other evidence of an underground economy enabled by the Internet include the
trading of compromised hosts [56] which are then enlisted in botnet armies and
used to attack targets, often with economic consequences for the target. Alterna-
tively, such botnets are used as part of extortion threats against targets where short
disabling attacks are used to convince the target to pay money to prevent a repeat
attack [25]. Other economic incentives for cyber related attacks include the theft of
intellectual property and identity theft. For example, some bots are harvested and/or
purchased with the objective of extracting personal data or to be used as access
points into otherwise closed networks.

We note that a significant factor in the booming underground cyber economy
relates to the fundamental economics of Internet communication which are very
favorable towards villains. Specifically, botnets can be hired cheaply [36] which
translates to very insignificant business costs related to these activities. Flat-rate
service models and the resulting always on-line practices that it enable, mean that
consumer systems are easy targets for botnet recruiting and users are less vigilant
about monitoring their network usage.

This situation is exacerbated by the difficulty of effective law enforcement
against cyber criminals, which often requires an arduous process of coordinating
with law enforcement agencies in different parts of the world. This essentially means
that cyber criminals can operate with very small investment and risk. It is also inter-
esting to note that these economically motivated cyber criminals need the network
to remain operational, or at least to remain operational to the level where it enables
their objectives. I.e., they have no incentive to bring down the network as a whole.

While it is in the interest of economically motivated miscreants to keep the
network operational, the same is not necessarily the case for politically or ideolog-
ically motived cyber crimes. An example concerns multiple massive cyber attacks
against web sites in Estonia in 2007 [82]. These attacks severely disrupted Internet
functions. And they continued and evolved for an extended period of time. These at-
tacks followed street violence after actions by the Estonian authorities which proved
highly controversial with Estonians of Russian decent. For this reason some feared
state involvement or endorsement by Russia. No such linkage has been proved, how-
ever, the incident does serve to illustrate the vulnerability of the Internet, or parts
thereof, to concerted efforts by those with extreme political and ideological moti-
vations. This is unfortunately not an isolated incident as evidenced by similar more
recent cases. For example, in August 2008 Georgia accused Russia of launching
cyber attacks against Georgian web sites [29], and in January 2009 DoS attacks
from computers in Russia were launched against Kyrgyzstan ISPs [55]. Again, no
government involvement has been proven, however, the attacks did coincide with
political tension between the countries.

Since service providers are commercial endeavors, their incentives to deal with
network security are also highly influenced by the fundamental economics involved.
For providers, the economics are a difficult balance between commercial viability,
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flexibility, resiliency, and capacity. For example, while in principle it is feasible
to build a network with enough capacity to withstand DDoS attacks (or more
generally to add mitigation technology to that effect), such a network would be
economically infeasible to operate [84]. Further, service providers need to provide
network services to enable the legitimate traffic on its network, which involves sig-
nificant operational costs. At the same time there are very limited means to prevent
any unwanted/illegitimate traffic from using the same resources. As we will show
in the remainder of this chapter, one way in which this economic imbalance can
be addressed, at least in part, is to offer opt-in network security services which
users pay for. Indeed, security services, like other services provided by a service
provider, are provided in a competitive commercial environment. Like other ser-
vice offers, the business reason for such an investment is typically that it would
provide a competitive advantage and thus attract customers. Some security services
might be provided on a subscription basis, thus directly garnering paying customer.
In other cases, security services might be provided on-demand, e.g., to protect a
customer against a massive DDoS attack. In such cases having the ability to provide
on-demand protection services differentiate providers in the competitive landscape.

13.2.5 Critical Infrastructure Cyber-Security Concerns

We have already mentioned the fact that “the network” has become a critical part of
our everyday lives. The extent to which this is true is well articulated in this quote
from a U.S. Department of Homeland Security report [27]:

Without a great deal of thought about security, the Nation shifted the control of essential
processes in manufacturing, utilities, banking, and communications to networked comput-
ers. As a result, the cost of doing business dropped and productivity skyrocketed. A network
of networks directly supports the operation of all sectors of our economy – energy (elec-
trical power, oil and gas), transportation (rail, air, merchant marine), finance and banking,
information and telecommunications, public health, emergency services, water, chemical,
defense industrial base, food, agriculture, and postal and shipping. The reach of these com-
puter networks exceeds the bounds of cyberspace, They also control physical objects such
as electrical transformers, trains, pipeline pumps, chemical vats, and radars.

This dependency between cyberspace and real world objects is exemplified by
the 2003 power blackout in the northeastern U.S. and Canada [80]. This event was
not caused by a network problem, nor were there any malicious actors, and in-
deed many different factors contributed to the final outcome. However, software
(and hardware) malfunction in the alarm system that was used, were found to have
contributed to the outage. In a more direct cyber/physical security incident, which
fortunately had no ill effect, the Slammer worm was responsible for taking monitor-
ing computers offline at a nuclear power plant [64].

There was a time when telecommunications in the United States was a com-
pletely regulated business. This may have enhanced the ability of the Government
to influence how the telecommunications infrastructure was engineered and oper-
ated to protect it as a critical national infrastructure component. Since the Cold War,
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deregulation and a highly competitive telecommunications market have evolved.
Prices have fallen dramatically. Technology has evolved. Further, in a highly com-
petitive environment where service providers are accountable to their shareholders,
the ability of the government to easily influence the strategic direction of telecom-
munications may be more limited.

The robustness of services is defined by customer preferences and private busi-
ness models that seek maximum return on investment. Markets for telecommuni-
cations services are some of the most competitive. Consequently, the robustness of
the buildings, equipment, software, security measures, bandwidth overhead, testing,
personnel training, and a myriad of other measures becomes a function of the price
and quality standards demanded by customers.

Dealing with these concerns is well beyond the scope of this chapter. However,
the potential impact on national and, by extension, international security suggests
that it is important for all role players to carefully consider the reliance of modern
society on the Internet and the role they should be playing to ensure its continued ro-
bust operation. The way to influence the robustness of services is through purchasing
practices – best services are not necessarily the cheapest.

13.3 Service Provider Network Security

Network security for service providers consists of establishing a basic foundation for
security implementation and correctly executing on the details. The network needs
to be architected and configured in a way to resist the myriad of security threats it
faces. Some lessons are learned from experience. And since security threats evolve
over time, other lessons can be learned through observation of smaller evolving
threats and establishing protection mechanisms on a broad scale to prevent those
threats from becoming customer affecting.

In this section we describe a general framework for service provider network
security. Specifically, we describe a framework for network security that has been
developed over time by the AT&T security organization and articulates some of
AT&T’s philosophy to network security. We elaborate with some of the configura-
tion and protection mechanisms that can be used to help protect the infrastructure.
Since each network environment is unique and depends on the equipment used, the
architecture, the customers or users of the network, defining specific configurations
is out of scope for this text. However, use of the framework should provide a foun-
dation from which a solid network security program can be established. Generally,
the network needs to be configured to be secure against attacks and exploits that
can be prevented or neutralized. Similarly, there will remain inherent shortcomings
in network infrastructure such as weaknesses in BGP that need to be overcome or
compensated for as part of the network security framework.
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13.3.1 A Framework for Network Security

The AT&T framework for network security defines seven pillars: Separation, Test-
ing, Control, Automation, Monitoring, Response & Recovery and Innovation [14].6

These pillars build upon having established security policy standards, engineering
best practices, as well as being informed of network management practices recom-
mended by vendors and operator groups such as NANOG [3]. All of these pillars are
inter-dependent; they are all inter-related to each other. As we discuss the seven pil-
lars below, these co-dependencies will be apparent, illustrating how the true strength
of the approach derives from the framework as a whole.

� Separation This fundamental security principle dictates that things that do not
belong together be separated both in terms of network functionality and in terms
of duties performed by service provider personnel.

� Testing Testing and certification of all network elements and services, both
before and after deployment, is crucial to ensure the functionality is as expected.

� Control The network needs to assure that authorized operators are the only
ones in control of the network. Operators also need the ability to control the
network both in terms of how traffic flows through the network and how the
network is protected against protocol and architectural vulnerabilities.

� Automation The scale and complexity of provider networks, as well as the
consistency and timeliness of actions compel automation of as many aspects as
possible.

� Monitoring Measuring and monitoring network health, changes, and activity
at different levels of granularity and from different viewpoints give operators
insight into the normal and anomalous behavior of elements and traffic on the
network.

� Response and Recovery Knowing what attacks and threats traffic or penetra-
tion attempts present to the network is of limited utility unless operators also
have the necessary tools, mechanisms, and procedures to respond and mitigate
the threats. In order to react to sometimes fast developing security events, 24/7
security analysis and remediation operations are required with well developed
execution plans.

� Innovation Given the continually evolving nature of networking in general and
networking security threats in particular, require a reciprocal continuous invest-
ment by providers in innovation to ensure robust and secure operation of their
networks.

We now consider each pillar in turn.

6 Note that the service provider context implies a broader operational approach compared to the
more traditional CIA security principles of confidentiality, integrity and availability. For example:
both control and response takes into account the need for dynamics in managing the security of a
network, separation not only helps to maintain confidentiality of traffic on the network, but also
helps to provide assurance of network management functions.
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13.3.1.1 Separation

The separation principle finds application along several dimensions in a provider
network. Two major categories are separation of traffic traversing the network and
separation of duties involved in operating the network.

Separation of Traffic Traffic separation is used to maintain priority of various traf-
fic types on the core network. Multi-protocol Label Switching (MPLS) technology
provides a powerful capability to provide traffic separation on the network core.
Separation of management (i.e., network command and control) traffic is the first
priority. As we will discuss later, maintaining control of the network under all
circumstances is a fundamental factor in maintaining services and operational con-
tinuity. MPLS networks can carry different protocol families, e.g., IPv4 and IPv6,
on the same infrastructure while essentially keeping their operation separate. MPLS
can be used to separate virtual private networks (VPNs) from other Internet traffic,
and to provide separation between various customer networks. MPLS can be used
to isolate traffic associated with specialized services such as VoIP and DDoS de-
fense traffic. MPLS can also be used to prioritize delivery of certain traffic in times
of stress (e.g., when segments of the network become overwhelmed with traffic
floods.) Since MPLS provisioning and separation features are implemented logi-
cally in the network with minimal or no physical configuration changes, this lends
itself to performing automation, which we will see is an important security attribute.
Maintaining the separation of traffic sometimes necessitates the deployment of ded-
icated equipment at the edge of the network. For example dedicated equipment is
needed when switching elements (e.g., routers or firewalls) do not provide inherent
separation mechanisms and cannot support the appropriate delivery prioritization,
or might have limited bandwidth and can be overwhelmed with traffic.

Separation of Duties Strict rules are enforced regarding who can view the status
of network elements and who can modify them. With rare exceptions, only oper-
ations teams have direct access to network elements and support systems. Select
development/engineering team members may have read-only access to operational
systems for the purpose of helping to diagnose and reproducing behavior in the lab.
But they are required to work through operations teams for any changes. This model
helps to establish a consistent authorization model, which we will see is important to
maintain secure control of the network and the association support systems. Those
with access need to be appropriately trained and practiced in appropriate network
operations. Similarly, operations teams are held accountable for the reliability and
operations of the network. Therefore, they generally only support elements that have
been “certified” through a battery of tests. Similarly, testing teams should be largely
independent of engineering teams to assure no bias in compliance testing and to add
an additional factor of variability in verification.
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13.3.1.2 Testing

Testing is necessary to verify that the network will operate as expected in terms of
operations and security. Testing applies to the certification of network elements as
well as tests or audits of the configuration and installation environment in actual
practice.

Certification Testing Certification tests are formulated for each element type (e.g.,
device, model, version, and patch) to assure products behave as they are supposed
to. Service providers cannot depend on vendor marketing claims. Nor can vendors
be expected to emulate all of the situations that are encountered in an operational
environment. Therefore, independent tests help to validate devices are interopera-
ble, reliable, maintainable, monitorable, replaceable and securable. Security specific
tests are used to verify security requirements and adherence to security policy can
be satisfied. Examples include, verifying access control and authentication compat-
ibility, controls to limit exposure of management interfaces to user networks work
as expected, and validation that the equipment behaves appropriately to unorthodox
traffic. Naturally, this testing necessitates a reasonable amount of test facilities, ef-
fort, and time. But the effort is well worth it, and there are peripheral benefits such
as the ability to provide rapid lab-reproduction for problems, patches, and instal-
lation processes when needed most. Many product vendors are willing to partner
with large providers to support the testing since the testing process provides signifi-
cant insight into the operational needs and “opportunities for improvement” to their
products.

Configuration Testing and Audits Configuration testing and audits are also regularly
performed on systems as they have been installed in or around the network. Security
tests include vulnerability scanning with commercial security scanning products to
help identify potential exposed access points. Occasional “white-hat” security pen-
etration tests are performed that study the circumstances of installations and try to
identify points of vulnerability that can be exploited. This includes social engineer-
ing exploitation attempts, which is a context that no scanning tool can consider.
Audits come in multiple forms. Some aperiodic regulatory audits validate that the
proper security practices are in place. Large network providers are frequently ex-
posed to this type of audit in the course of providing communications services to
certain industries such as financial and health. Regular system configuration audits
are performed against systems by collecting the configuration of individual devices
and vetting those configurations against expected configurations. Tests include vali-
dation that devices are at proper version and patch levels, appropriate access control
lists (ACLs) are in place, only appropriate services are active, etc. In a very large
network consisting of literally millions of manageable elements and literally thou-
sands of configuration scenarios, there is no choice but to automate these types of
checks.
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13.3.1.3 Control

Network control functions can be categorized into several general and sometimes
overlapping categories:

� Operational availability controls – measures taken to assure operations personnel
have full control of the network at all times in terms of situational awareness and
the ability to make changes to the network.

� Device access controls – measures taken to assure that only authorized network
operations personnel and the tools they employ have access to devices in the
network.

� Passive router controls – measures taken to avoid exposing network forwarding
elements from protocol attacks or other denial of service attacks.

� Traffic flow controls – measures to control where traffic can and cannot go on the
network, especially during security incidents.

Operational Availability Controls To the extent possible, operational tasks are
scripted as Methods and Procedures (M&Ps) to establish and maintain consistency
in practices and maintain positive control of the network. As we will discuss in
the automation section, the need to provide automation of network management
functions presents some important security attributes. However, there are still many
scenarios that cannot be automated and require some form of human judgment and
intervention. For example, when unexpected network events occur, M&Ps estab-
lish appropriate collaboration teams, scenario development, and operational change
guidance to resolve any issue. During a security event, first order of business is to
assure network control and operations are maintained. We detail some structure and
methods for this response capability in Section 13.6.

To ensure operations staff can access network elements under all circumstances,
both out-of-band and in-band access to network elements should be provided. Much
of today’s network management and operational tasks are performed in-band. I.e.,
network management traffic is carried like any other traffic through the network
(possibly with a higher priority) and specifically addressed to an IP address asso-
ciated with the device being managed, typically an interface address of the router.
This arrangement simplifies network management tasks because tools can directly
access routers without having to negotiate the intricacies of out-of-band access. In-
band access to the control plane should, however, be restricted to specific trusted
source address ranges to prevent access from external, untrusted parts of the net-
work. While in-band operational access is preferred, all network devices should also
be reachable via out-of-band means, which should not be dependent on the correct
operation of network being managed. Out-of-band access is needed in cases where
a severe network problem (not necessarily security related), prevents in-band device
access. Typical out-of-band access is provided via dial-in access to terminal servers,
which in turn provide device access via serial ports on network elements.

Devices Access Controls Device access controls are used to protect against the sig-
nificant potential for abuse and service disruption through unauthorized access to
network elements.
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In the first instance this involves appropriate authentication, authorization and
accounting (AAA). Network device access should be limited to authorized users
to allow them to perform (only) the specific functions they are authorized to per-
form. Further, user actions should be logged for auditing and debugging purposes.
The de-facto standard for providing AAA functions is the TACACSC protocol.
TACACSC started out as a vendor proprietary protocol, but has since been widely
adopted [21]. TACACSC simplifies the management of AAA functions by utilizing
a centralized database that defines the functions specific users can perform and fur-
ther can be configured to log all configuration actions. To prevent a single point of
failure, TACACSC servers can be replicated and network elements can be config-
ured to try them in turn.

While remaining a mainstay of network management, older versions of the
simple network management protocol (SNMP), have poor security properties. For
example, for SNMP versions prior to SNMPv3, SNMP access control is provided
by clear text “community strings” which is susceptible to compromise via simple
packet sniffing techniques. These shortcomings have been addressed through secu-
rity mechanisms in SNMPv3, however, not all equipment are SNMPv3 capable. For
such devices, SNMP security limitations can be addressed by: (i) limiting SNMP to
read-only access, (ii) installing access control lists to limit SNMP access from spe-
cific SNMP server addresses and (iii) by compartmentalizing SNMP access between
different SNMP based tools (i.e., providing each tool with separate and functional
specific access).

Network devices generally use telnet as the default access protocol. Like
SNMP community strings, telnet passwords are transmitted in clear text. Using
telnet as an access protocol should be disabled and access should be provided
via encrypted transport like ssh.

Passive Router Controls Network elements are in essence special purpose “com-
puting devices” and are therefore subject to much of the same vulnerabilities as
general purpose computing devices. Specifically, attackers can exploit software or
other vulnerabilities to launch an attack against the functionality of the network el-
ement. At the most basic level protecting the router as a whole requires operators to
explicitly use/allow what is needed while explicitly not using/allowing what is not
needed. For example, because of the diverse services and configurations that they
enable, routers are capable of a myriad of features and protocols and not even the
most sophisticated networks make use of all such features. Routers should therefore
specifically be configured with the services and protocols desired, and those that
are not needed should be disabled. Further, physical router interfaces that are not
currently in use should be explicitly disabled.

The router control plane provides functions that are typically too complicated to
perform on linecards and thus constitute a so-called “slow path” through the router.
As such, the control plane is a potential attack target. For example an attacker can
attempt to exhaust the control plane resources by simply sending large numbers of
packets that require processing in the router control plane. Similarly, an attacker
might send malformed packets in an attempt to trigger bugs in the control plane
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software. Such attacks might cause protocol daemons, or the router itself, to crash,
or might allow the network element to be compromised by allowing unauthorized
access.

To protect the router control plane, again the basic approach is to allow all wanted
and/or needed communication, while prohibiting all other communication. First, ac-
cess control lists should be defined to restrict which network entities and which
protocols are allowed to interact with the control plane. Second, within each al-
lowed protocol, options with security concerns should be explicitly filtered out. For
example, filtering packets with IP options set, filtering all fragmented packets, limit-
ing ICMP to a safe subset of all ICMP packet types (Destination Unreachable, Time
Exceeded, Echo Reply).

While a more obvious target, the router slow path is not the only potential at-
tack target. Specifically, attacks against the router data-plane or “fast path” are also
feasible. These attacks might take the form of resource exhaustion attacks against
network elements that maintain state, e.g., stateful firewalls. Network elements in
core provider networks typically do not maintain such state (by design), and data-
plane attacks are therefore typically limited to edge devices.

In addition to per-router protection mechanisms, filtering, in the form of access
control lists (ACLs), should be performed at the perimeter of the network to protect
both the provider network as well as customers of the provider. Again only the lim-
ited safe subset of ICMP packet types should be allowed to cross the provider edge.
Access to infrastructure IP addresses7 within the provider network should not be al-
lowed from external networks, i.e., from the Internet and from customer networks.
On links from customer networks, source address validation should be performed
to prevent address spoofing. Since network operations’ traffic should only enter the
network from the NOC, source address ranges associated with this function should
be blocked from non-provider networks.

There need to be filters and policy management functions on routes that are re-
ceived from other network providers. BGP filters should be deployed to defend
the network against basic routing exploits. So called “bogon” routes, i.e., the de-
fault route, the loopback network, RFC 1918 routes and IANA-reserved routes [39],
should be filtered out. In the same way, routes with private autonomous system num-
bers (ASNs) should not be accepted or announced. Since in practice AS path lengths
are known to be constrained [78], limiting the acceptable BGP path length provides
basic protection against exploit attempts. Further, as a basic measure against prefix
hijacking, routers should be configured to not accept or announce routes with pre-
fixes longer than a specific length, e.g., /24. (Recall that longer, or more specific,
prefixes are more preferred and if accepted can therefore override legitimate shorter
prefixes.) Similarly, for customer peering, only routes for prefixes that are assigned
to the customer should be accepted. Route processing is compute intensive and uses
memory on the router control plane. To prevent starvation of processor and mem-
ory resources, the rate and number of routes that are accepted from peers should be

7 Infrastructure IP addresses refer to those addresses through which the equipment itself can be
reached as an IP destination.
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limited. Finally, all address space allocated to the provider should be blackholed in
the aggregate (i.e., effectively dropped). Since all used address space will be specifi-
cally advertised via more specific addresses, this practice prevents abuse of currently
unused but allocated address space.

Note that these measures provide a necessary first step in protecting the routing
plane. However, because of the inability to precisely filter routes received across
peering links, significant vulnerabilities remain. This was exemplified by the previ-
ously mentioned YouTube highjacking incident [68], where an incorrect route-map
installed by a local provider caused a more specific route to be leaked to the Internet
as a whole, thereby accidentally hijacking all traffic over the Internet that was des-
tined for the content provider. To address these scenarios, current monitoring and
analysis of routing data should be performed to determine when and where likely
events occur. And operational processes are needed to coordinate the mitigation of
rogue routes within the network as well as coordination with other providers to re-
mediate rogue routes.

A summarization of some of the operational availability, devices access and pas-
sive router controls needed in a network are depicted in Fig. 13.1. The figure shows
the separation of the different functional entities in the overall network operation and
the security controls associated with each entity. While network-based services and
the network operations center (NOC) are in a sense part of “the network”, their spe-
cific higher level functions (compared with the basic packet forwarding functionality
of the network) demands unique security concerns.

Traffic Flow Controls When security events do occur, appropriate dynamic traffic
flow control mechanisms should be available to mitigate and/or eliminate the se-
curity threat. Examples include: Deploying access control lists (ACLs) to prevent
the spread of an impending worm epidemic. Mitigating the effect of a DDoS traf-
fic by dropping DDoS related traffic or redirecting it to a scrubbing complex (see
Section 13.5.2). Adjusting routing policies in response to temporary peering link
overload conditions.
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Fig. 13.1 Securing components of a provider network
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13.3.1.4 Automation

Automation is imperative when operating a large network. Reliability and scalability
are the primary influencing factors that necessitate automation. Operations support
systems are implemented for provisioning, route policy management, billing, audit,
network element scanning, log collection, security analysis and a myriad of other
network operations functions. These systems provide consistency and accuracy to
the process of managing millions of elements that make-up the network. They also
provide a form of separation that assists with security. For example, it should be pos-
sible to designate specific operations support systems that are permitted and need
to perform SNMP probes on network elements. This makes the activity patterns for
the SNMP protocol somewhat predictable, and security analysis algorithms needed
to evaluate the validity of SNMP probes should be relatively straight forward. Sup-
port systems also present security challenges since they tend to hold the keys to the
kingdom. These platforms need to be engineered, tested, and operated with particu-
lar attention to security. Automation allows operators to concentrate on exceptions.
As we outline in later sections, automated responses to security related events can
be particularly challenging since the events are inherently not predictable and may
be deliberately deceiving. In some cases, available network data alone may not be
sufficient to determine if an event is a security issue. For example, distinguishing
between a legitimate flash crowd and a DDoS attack may require application or
services specific information [46].

13.3.1.5 Monitoring

In the context of security, monitoring can be categorized in two primary contexts:
(i) analyzing traffic behavior on the network for security anomalies, (ii) analyzing
control activities to assure there has been no breach of control systems.

Because network traffic monitoring in the context of large provider networks
is a relatively complex subject, we deal with this topic separately in Section 13.4.
Compared to monitoring and analyzing network traffic, monitoring the control activ-
ities of the network is more closely related to security analysis of business enterprise
networks. When monitoring control activities, it is possible, for example, to perform
much more focused checks for policy violations, or to flag specific exceptions to
normal behavior in the latter case.

The AT&T Threat Management Solution is an example control activity monitor-
ing system. This Security Information Management (SIM) system performs security
analysis on data collected from a variety of sources related to network management
and operations systems. A unique aspect of the system involves the use of a highly
scalable data management system called Daytona [1] that allows the system to scale
in depth and breadth. The Daytona technology also provides a means to perform
analytical functions with significant flexibility and performance.

Scalability allows the system to not only collect security event data but also to
collect a variety of other activity event data associated with the network manage-
ment activities. Such inputs include firewall logs, flow data, alarms (e.g., intrusion
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detection systems (IDS) alarms), inputs from subordinate SIMs and syslog data
collected from a variety of network elements. Performing security related analysis
across such a broad range of sources allows the identification of security events that
might go undetected in systems that perform specialized security detection. Scala-
bility is also important to allow online retention of a significant history of activity,
e.g., dating back many months. If there are any suspected events, they might be
learned about weeks or months after the fact. The ability to forensically isolate spe-
cific suspect events can often help to determine the root cause and aid in resolution.
Attackers will try to hide their tracks, but they will have difficult hiding from a sys-
tem that collects and analyzes data from many points in an independent repository.

13.3.1.6 Response and Recovery

From the global nature of today’s economy and the “flat world” nature of interac-
tions on the Internet, it should be apparent that while provider networks experience
well established daily peaks and valleys in terms of demand, these networks carry
significant traffic volumes throughout the day. Providers are therefore required to
have the necessary support in place to provide commensurate response on a 24�7
basis. Further, to ensure any event receives appropriate attention from technical
experts, a tiered support structure is essential. Tiered support allows routine events
to be handled through documented operational procedures, or ideally through au-
tomated operational procedures, thus leaving domain experts free to deal with
unexpected and/or sophisticated events. This subject is explored in greater detail
in Section 13.6.

Further, while to date most security incidents did not constitute disasters, it is
conceivable that a massive security event might develop into the cyber equivalent
of a physical disaster. Service providers should therefore have a well developed
recovery program in place. This topic is dealt with in detail in Chapter 14.

13.3.1.7 Innovation

As we will outline in the remainder of this chapter, the unique requirements of
each provider’s network, service offerings and users, suggest that provider unique
innovations are required to supplement security vendor offerings and to integrate
vendor offerings into a comprehensive security solution.

13.4 Importance of Network Monitoring
and Security Intelligence

A securely configured network is a necessary first step in service provider network
security. Unfortunately, as outlined in Section 13.2 even a perfectly configured net-
work remains vulnerable to attack and exploitation because of, for example, inherent
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protocol vulnerabilities and the fact that different role players and protocol compo-
nents have inherent dependency and trust relationships. To address these concerns,
diligent service providers are required to develop and deploy extensive network
monitoring capabilities and to develop systems and algorithms to derive actionable
intelligence from such data.

In this section we will first expound a number of principles associated with secu-
rity related provider network monitoring. We will then consider sources of security
monitoring and touch on the challenging aspect of implementing reliable monitor-
ing mechanisms and tools. Finally, we will consider the use of network flow records
as a specific source of data from which network intelligence can be derived. We will
show real world examples of network intelligence derived from flow data which il-
lustrates its utility but, more importantly, also shows how network intelligence can
provide early indicators of potential future security events. We end this section by
considering the importance of automated analysis of network intelligence.

13.4.1 Principles of Provider Network Monitoring

Network monitoring is a critical but challenging component in the security arsenal
of network service providers. Below we discuss some of the challenges and opportu-
nities associated with these actions and articulate a number of principles associated
with security related network monitoring. These principles are listed in the text box
titled “Principles of Provider Network Monitoring” and discussed in detail below.

Principles of Provider Network Monitoring

� Providers have broad visibility and coverage.
� Network monitoring is an integral part of network operations.
� Proper base-lining helps prevent false monitoring.
� Combine external information with analysis-derived intelligence.
� Perform only appropriate network monitoring.
� Security monitoring has broader benefits.
� Security monitoring helps providers understand the bigger context.

Providers Have Broad Visibility and Coverage While network monitoring is an es-
sential part of simply keeping the network operational, we note that from a security
perspective service providers are in a strong position to detect and react to secu-
rity concerns. For example, compared to individual users and enterprises, provider
networks with many client users have an entirely different perspective of network
threats such as botnets, which are typically used as the platform for a variety of ne-
farious network activities. In the case of enterprise networks, visibility is typically
restricted to activity in one’s own address space where a relatively small number
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of addresses will generally be active. When a probe or exploit is attempted in this
space, it is difficult to assess whether this is a random attack or whether this is a
targeted attempt against a specific organization. Any statistical measurements could
have significant error due to a lack of sufficient distribution.

Network Monitoring Is an Integral Part of Network Operations Service providers
that do not perform the appropriate network monitoring are essentially blind to what
is happening in their network, with potential dire consequences for them and their
customers. Events such as self propagating network worms, email viruses, mas-
sive exploit events, distributed denial of service (DDoS) flooding attacks, and spam
floods can occur at scales that can potentially congest network services. Many of
these activities are associated with botnets either actively attacking or in the process
of recruiting more bots. As long as botnets are able to generate revenue through
DDoS attack extortion, spam campaigns, and other questionable activities, they will
present a major and growing threat to network services.

Proper Base-Lining Helps Prevent False Monitoring It is crucially important for
service providers to continuously perform network monitoring, not only when a
network event is taking place. In cases where little or no monitoring is performed
until an event happens, everything becomes an event. False monitoring is the re-
sult of not performing necessary monitoring during “normal” network conditions,
which means that there is no baseline for comparing normal against abnormal when
security events occur. The Internet continually has background noise of traffic due
to exploit scans for new and old vulnerabilities, surveys & research probes, DDoS
backscatter, and other unexplained activity. Consequently, it is possible to look at
traffic at any time and conclude an attack is underway. It is important to conduct
some sort of baseline monitoring at all times and assess the relative impact of the
undesired activity to determine if an attack really is underway, or if the activity
should simply be ignored. Ideally, this would be a science. But the Internet is not
ideal, and consequently distinguishing “attack” from “noise” is somewhat of an art.
As with any art, it requires practice and skill, which in the current context translates
to service providers maintaining a staff of well trained security analysts.

Combine External Information with Analysis-Derived Intelligence In the past,
computer attacks targeted select victims that had weak or flawed security. Now, bot-
nets take advantage of anyone with even minor security weaknesses. Some attacks
such as DDoS depend on no basic flaws in the target systems for the attacks to suc-
ceed. There are some sources of threat information based on honeypots/honeynets
such as shadowserver.org and cymru.com. But information available regarding sizes
of botnets and the threats they present are often predicted based on statistical models
rather than actual measurements. There are few reliable sources of data that char-
acterize the threats botnets present to network and application service providers.
To understand the types and sizes of threats, it is necessary to merge externally
available data with specific information about activity on your network. Examples
of external security related data sources include organizations that track sources of
spam, analyze malware or track nefarious activity across the Internet.
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Perform Only Appropriate Network Monitoring It is important to establish a strictly
enforced policy regarding network monitoring. It may not be permissible to perform
traffic content analysis on carrier networks without appropriate justification.8 And
there may be legal differences between using monitoring systems to detect activity
profiles that are indicative of malicious behavior and less discriminative perusal of
traffic [62]. For example, it is a generally accepted (indeed expected) practice for
ISPs to scan email content for virus attachments and/or links to malicious content.
In general users are not complaining about email scanning, which scans content
for virus and spam signatures, because the utility of such actions hugely outweigh
potential customer concerns.

Security Monitoring Has Broader Benefits Some of the benefits of good network
intelligence are somewhat peripheral to the operation of a robust network. The pri-
mary objective of operating a reliable and robust network is maintaining the service.
DDoS attacks can threaten the service by clogging pipes. Spam originating from
user clients can overload email systems and can result in other providers block-
ing email from your customers. On the other hand, phishing, identity theft, and to
some extent network exploit attempts are things that are less likely to affect the net-
work services, but they can have a derogatory affect on customers satisfaction. If
early detection and mitigation results in fewer affected customers/clients, then cus-
tomer satisfaction is improved, and subsequently, customer service calls and service
cancellation may be reduced.

Security Monitoring Helps to Understand the Bigger Context Finally, it is im-
portant to understand the threats that affect services and your customers/users.
Specifically, when a customer is under a DDoS attack it does not necessarily fol-
low that the attack is negatively affecting the customer [84]. For example, large
content providers are typically under constant attack and have to deal with it as part
of staying in business. Unilaterally mitigating such attacks might make the situa-
tion worse, especially since many mitigation strategies have negative side effects.
Also, the type of business customers are conducting will directly impact the type
of traffic they expect to see on their network and will therefore impact the type of
mitigation strategies that would be appropriate. For example, traffic in a corporate
private network can be expected to be more predictable, lending itself to protection
strategies that take advantage of that predictability [47, 59]. The business model of

8 In the U.S, network monitoring is allowed by a provision in the so called wiretap law. Specif-
ically, U.S. Code, Title 18, Chapter 119, � 2511 deals with “Interception and disclosure of wire,
oral, or electronic communications prohibited” and states the following: “(2) (a) (i) It shall not be
unlawful under this chapter for an operator of a switchboard, or an officer, employee, or agent of
a provider of wire or electronic communication service, whose facilities are used in the transmis-
sion of a wire or electronic communication, to intercept, disclose, or use that communication in
the normal course of his employment while engaged in any activity which is a necessary incident
to the rendition of his service or to the protection of the rights or property of the provider of that
service, except that a provider of wire communication service to the public shall not utilize service
observing or random monitoring except for mechanical or service quality control checks.”
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e-commerce and content web sites, on the other hand, is built on the premise of at-
tracting a less predictable audience, requiring alternative mitigation strategies [86].

13.4.2 Network Monitoring

Deriving good network intelligence builds on good basic network monitoring. As
such, we will now in turn look at network monitoring, i.e., the mechanisms and in-
frastructure needed to collect network data, and then discuss how this data is used to
derive network intelligence. We first consider the various sources of network related
monitoring data and then discuss some of the practical issues related to developing
the appropriate infrastructure for collecting such data.

13.4.2.1 Types and Sources of Security Monitoring

There is no single good source for network security data. Further, network security
concerns often impose contradictory requirements on security data. For example, a
global view of the security state of the network demands complete network coverage
of all traffic on the network. Such complete coverage by necessity will have to be
provided through an aggregate view (or a variety of aggregate views). On the other
hand, determining the payload signature of an evolving worm epidemic requires
very detailed monitoring of a subset of the traffic on the provider network. A good
security monitoring approach will include all, or a significant subset, of the data
sources discussed below and summarized in Table 13.1.

Monitoring of network node resources such as link bandwidth utilization, CPU
load, and memory use, are all necessary and useful parts of network health moni-
toring. These SNMP-based monitoring mechanisms also have a purpose in security
since some types of network events that can affect network performance are conse-
quences of malicious activities in large scale. The objective is to recognize potential
performance impact to the network and applications. Ideally, the goal is to recognize

Table 13.1 Types and sources of security related data

Category Example source Information

Infrastructure data Asset databases Node/link locations
Node configuration Configured protocols and services

Traffic dynamics Flow records Network wide traffic
SNMP data Node health
Route monitors Internal and external routing
Packet inspection devices Detailed traffic characterization

Service specific data DNS logs Botnet/phishing activity
Spam traps Spam sources
Honeypots and honeynets Malware characterization
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events as they develop; prior to the point where impact has occurred. Infrastructure
data includes information from asset databases and network element configuration
information.

Other than highly aggregated information, SNMP derived node health data re-
veals little about the traffic dynamics on the network. Flow records collected by
network elements provide significantly more granular information [15]. Specif-
ically, flow based data analysis can provide insight into volume, protocol/port,
source addresses, destination addresses, byte-to-packet ratios, and timing charac-
teristics of events. Flow records can be generated with packet sampling and still
provide useful insight into significant events such as DDoS attacks and network
worms. Identification and characterization of some more subtle events such as net-
work reconnaissance, attack forensics, and botnet controller identification require
unsampled flow data generation. Sampling of flow data is considered in detail in
Chapter 10 and we consider use of flow data to derive network security intelligence
in more detail below in Section 13.4.3.

Given the crucial role of routing in the wellbeing and overall operation of the
network, monitoring all aspects of routing is critically important both for normal
network operations and from a network security perspective. Routing data aids the
analysis of security incidents and supplements other data, i.e., to show where traffic
might have entered or left the network. A number of route monitoring tools with a
range of capabilities exist. In its most basic form monitoring tools partake in routing
exchanges with routers in the network to allow an accurate real time view of routing.
This includes tools to monitor interior gateway routing (IGP), such as OSPF [72] and
ISIS [40]) and interdomain routing. More sophisticated monitoring tools allow the
detection of inconsistent route advertisements across differing peering points from
the same peer [31], looks for more general violations of peering agreements [63]
or attempts to detect prefix hijacking attempts [90]. Route monitoring is covered in
significantly more detail in Chapter 11.

Flow data necessarily does not provide any information regarding payload of
packets. More granular data plane monitoring can be realized through so-called
deep packet inspection (DPI) devices [26]. Such information might be crucial to
understand, for example, the type of payload of a targeted infrastructure attack that
is causing router malfunction [23]. As mentioned earlier, another example where
payload information might be needed would be to understand the exploit method of
an evolving worm outbreak. Unlike flow monitoring, the equipment and operational
cost associated with DPI monitoring make ubiquitous deployment prohibitive. One
approach to address this problem is to deploy DPI equipment at strategic locations
in the network and to then redirect, e.g., by using a very specific BGP prefix, traffic
of interest to these locations for further inspection. This approach has significant
limitations though, as traffic of interest can not always be easily identified and
redirected. An alternative is to utilize a mobile approach, whereby a DPI device
is dynamically deployed to the physical network location from where detailed in-
formation is needed. This approach works best when the data collection of the DPI
device is completely passive. The mobile DPI approach also has limitations be-
cause of the time involved for deployment, however, it could provide a practical
compromise.
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In addition to data derived directly from network traffic, data from network
based services and security specific data sources fill out the quiver of potential
data sources. An example service specific data source is logs from DNS caching
resolvers. DNS is designed to translate domain names into IP addresses. It is much
less effective at reversing the process, i.e., identifying domain names that point to
known IP addresses. Internet registries have different requirements for maintaining
reverse mapping information, reverse DNS is not uniformly implemented, and when
implemented not always well maintained [71]. Attackers use this situation to their
advantage. Botnets use domain names in malware to identify malware update sites
and control points. Phishing sites create domain names that appear legitimate. As
malicious IP addresses are identified and blocked by ISPs, or at enterprise firewalls,
domain names can be pointed to new IP addresses – allowing attacks and operations
to continue. By recording DNS logs or DNS response metadata from the network, it
is possible to map IP addresses to the domain names used in these malicious activi-
ties [49]. It is also possible to perform a variety of analysis such as temporal analysis
of domain names to identify fast-flux and transient domains [41], which can be used
to help discover botnets and phishing activities.

Security specific data sources include various approaches to intentionally attract
unwanted traffic or attacks to a controlled environment where it can be analyzed
to make useful security related observations. Generically, these systems are called
Honeypots and the basic concept is nicely captured by this definition [77]:

A honeypot is an information system resource whose value lies in unauthorized or illicit use
of that resource.

Honeypots present a popular way to gather information about malware. By
hosting computers on the Internet or in enterprise networks with common vulnera-
bilities, eventually attackers will locate the machine and exploits will be executed
against it. By hosting honeypots on many IP addresses, the probability of becoming
a victim of attack increases. The objective is to capture malware, detect the event,
and provide an opportunity to analyze and characterize the malware. This technique
has limited utility if the honeypot does not have the correct vulnerability, or if user
action is a factor in the infection process, as is the case with many application ex-
ploits. For example, the virtual honeypot framework [65] interacts with attack and
exploit attempts only at the network level. This means that the actual end system
software is never compromised, which reduces the risk associated with running the
honeypot, but also limits the amount of information about malicious activity that can
be learned from it. Honeypot technology that understands how to become a victim
of social engineering attacks is still under development and probably will evolve for
sometime to come.

To study attacks, exploits and malware behavior in a more holistic way requires
that attackers be allowed more freedom on the honeypots, i.e., allowing the honey-
pots to become infected. Mechanisms need to be in place to prevent the honeypot
from subsequently conducting attacks as a consequence of the infection. For exam-
ple, Honeynets [37] have been developed as a means to allow honeypot end-systems
to be completely compromised, and for the installed malware to be allowed to
execute in order to study its behavior. This is achieved by selectively allowing
interaction of the compromised honeypot with systems outside the honeynet through
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a filtering device called a honeywall [37]. Approaches to better scale honeynets have
been developed to make use of virtual machines to host a large number of honeypots
on a significantly smaller number of physical machines [87]. Unfortunately, in the
ever evolving cat-and-mouse game between attackers and defenders, newer malware
is capable of detecting execution in a virtual machine environment. This is taken as
indication of a possible detection attempt so that the malware automatically disables
itself [53]. The result is that honeynets had to evolve to detect virtual machine aware
malware and facilitate execution of such malware on non-virtualized hardware [44].

Another form of honeypot is so called spam traps, or spam sinkholes, which cre-
ate email accounts or complete email domains with the express purpose of attracting
spam email [66,77]. Obviously, there is no shortage of spam; roughly 90% of Inter-
net email is characterized as spam [58]. In the effort to manage spam and understand
the relationship to customers, there is value in understanding when characteristics
of spam activity change, how they developed, the purpose or objectives of the spam,
how that activity relates to customers. There are significant efforts by a variety of
organizations to track sources of spam and use that information to identify problem-
atic IP addresses, IP address blocks, and domains (e.g., http://www.spamhaus.org/).
They also characterize attributes of the spam messages themselves for the purpose
of detecting the spam. As a contribution to these efforts, and also for an ISP’s own
use, there is value in creating spam traps within the ISPs email systems.

By creating some proportion of spam trap accounts and seeding account infor-
mation into a variety of places, it is possible to learn valuable information about
spamming activity as it pertains to the ISPs network and email domain. By tracking
spam associated with different account seeding techniques, it may be possible to
determine how email addresses are being harvested by spammers. Spamming activ-
ities may come in surges. In some cases, spamming campaigns will seek to flood
messages to the brink of an email system’s capacity. Measuring changes in the vol-
ume of spam and whether that spam is detected as spam or not will help prepare
appropriate mitigation strategies. It will be possible to quickly recognize the on-set
of new spam campaigns.

Understanding the motives behind those campaigns can be valuable. Spam can be
characterized in categories of malware, phishing, or mundane solicitation. Malware
spam (or email viruses) may contain malware payload or may contain links to
malware drop points. These emails are often cleverly crafted, with content related
to current news events, to lure victims into downloading and executing malware.
Understanding the malware that is being sent to customers will help understand
threats against customers, which may result in customer service calls or could con-
sequently impact the network. Phishing email payload typically contains a URL for
a phishing site that attempts to convince recipients to divulge user credentials (user-
name and password) for misuse. Again it is helpful to understand how customers
are being targeted and how to prepare protections.

In the course of forensic analysis, spam analysis, and botnet analysis, encounter-
ing samples of malware is highly likely. Malware analysis is specialized, difficult,
labor intensive, and time consuming. This challenge is not accidental. Malware
developers are continually creating increasingly sophisticated techniques to hide
their malware, mutate characteristics, change behavior, and prevent being analyzed.
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Anti-virus vendors have developed some of the most advanced capabilities to ana-
lyze malware and the indicators that are left behind on infected computers. However,
as a network provider, some of the most valuable characteristics are going to be the
network observables associated with the malware behavior and activity. Understand-
ing the functional capabilities of the malware such as back-door ports that might
be opened, malware update capabilities, command and control mechanisms, DDoS
tools they might contain and defensive actions the malware might utilize are valu-
able to a service provider. Using such information in conjunction with information
about the quantitative presence of infected devices in and around the network will
provide insights into the threat level they present to offered services. Understand-
ing the command and control mechanisms and characteristics will provide insight
into possible methods to surgically disable these threats without disrupting the ser-
vices customers need. These indicators can also be used to help identify infected
customers for notification and remediation assistance.

13.4.2.2 Implementation Considerations

Complete coverage of all implementation issues related to network security moni-
toring are well beyond the scope of this chapter. However, here we do address some
of the concerns and contradictory requirements presented by a comprehensive secu-
rity monitoring framework.

Perhaps the single most pressing implementation concern for provider based net-
work monitoring is the tension between scalability, fidelity, and coverage. In an
ideal world, fine grained measurements of all parts of the network would be avail-
able instantaneously and be archived over long periods of time. This is clearly not a
feasible goal as the infrastructure needed to realize the monitoring system will be of
similar (if not higher) complexity and cost as the network it is supposed to monitor.

We already mentioned the ubiquity of flow based monitoring. By definition flow
monitoring is aggregated into per-flow measurements. However, despite this aggre-
gation, traffic volumes are such that unsampled flow collection is still problematic,
both from the point of view of the load imposed on network elements, as well as the
capacity requirements of systems that process the flow data. A common approach to
address this concern is to generate flow records based on packet sampled data. E.g.,
one in every 500 or 1,000 packets are used to generate flow records. This approach is
attractive from a scalability point of view, but require caution when interpreting the
data. We consider this in more detail is Section 13.4.3.1. Scalability concerns of the
collected data volume might be significantly magnified when DPI data collection is
utilized in a naive manner.

One of the primary objectives of security monitoring is to improve the relia-
bility and availability of network services, it is therefore desirable to consider a
passive implementation (e.g., physical-layer splitters). This adds other important
attributes as well. Whereas network services require meticulous change control pro-
cesses to maintain high levels of reliability, security monitoring and data analysis
require the capability to remain very flexible and reactive to new attack techniques
and investigation of suspect events. A passive approach provides valuable autonomy
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between the diverse operational requirements of the active network elements and
the passive monitoring elements. The added costs of a passive approach can provide
some clear benefits in a large network where reliability is a primary consideration.

Once captured, there is a trade-off between sending all captured data in unpro-
cessed form to a centralized location for further analysis, versus performing initial
processing locally and only sending processed data to a central point. One of the
factors that play into the centralized versus distributed decision concerns the flexi-
bility that is required in the post processing of the data. For example, if the ultimate
network intelligence that will be extracted from the data is well known and well
understood, it might be relatively simple to partition the work such that a distributed
solution is feasible and provide good scalability properties. On the other hand, dis-
tributed processing invariably leads to a loss of information, and the lost information
might be crucial in analyzing security incidents that are new or not well understood.
While true for all network monitoring systems, flexibility is of particular concern
for network security given the ever changing nature of network threats.

Another scalability concern involves the storage, processing and retention of se-
curity data. In the case of unsampled data, volumes are such that data typically
cannot be stored in unaggregated form for very long periods of time.9 There is a
common tendency to put data into a database and then consider how to process that
data. In many circumstances this is the right approach. But a large network can also
generate a significant amount of metadata about network activity. Consequently, an
attempt to insert and index all of the data can quickly become a task that consumes
all of the available processing resources, and consequently accomplishs nothing.
There is a balance that must be achieved between the types of analysis that are per-
formed and the aspects of that data entered into a database. As a general rule, only
enter data into a database when that data will be retrieved many more times than
it is entered. For example, in the informational security system described in Sec-
tion 13.5.1, no raw flow data is entered into a database as part of the unsampled
flow data analysis. Rather, the flows are processed and then attributes regarding
the volume of activity on each of the ports and protocols are stored in a database.
Raw flows are retained for a short period of time and discarded, but the volumet-
ric attributes are retained in a high-performance database and used for a variety
of analysis functions. Further, off-the-shelf database technologies or naive process-
ing methodologies are typically not sufficient for the data processing that needs to
be performed. Instead specialized database technologies, such as the Daytona data
management system [1], and streaming processing technologies, such as the Gigas-
cope network stream database system [26], are often required.

Metadata is a generic term for data that is derived from other data. There
is no fundamental beginning to metadata, and there is an even more ambiguous
end. As analysis tools develop, the output from one analysis step starts as a re-
port, but it invariably becomes the input to another analysis step. It is valuable to
recognized this early, and consider a relatively standard format for all data that
analysts, researchers, developers and downstream systems are comfortable with.

9 Section 4.3 in Chapter 10 discusses the volume reduction associated with sampling.
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Binary formats are the most compact, but they tend to be less flexible and more
difficult to work with in ad-hoc ways since most Unix tools tend to manipulate
ASCII files. A compromise may be to assure there are sufficient conversion tools to
allow ad-hoc manipulation of data stored in binary format.

Finally, there is typically a trade-off between the robustness and scalability of
a systems versus the flexibility it allows to enable prototyping and ad-hoc inves-
tigations. An ideal realization will allow scalable and reliable processing of well
understood analyses, while at the same time facilitating ad-hoc investigations using
the same data. For example, the informational security system described in Sec-
tion 13.5.1 implemented four phases of analysis that are all connected. (i) Ad-hoc
analysis is needed to perform analytical functions that have never been performed
or need to address a new type of situation. The tools range from simple commands
to use of complex analytical tools. (ii) As analytical needs are better understood and
can be articulated in conceptual terms, researchers can apply mathematical tools
to improve the accuracy and performance of the analysis. (iii) From this point, a
proof-of-concept implementation is used by analysts in actual use to determine how
effective the tool is and assess readiness. (iv) Finally, the tools are migrated to the
production platform for life-cycle support, performance enhancements, and where
applicable, automated reporting. This type of evolutionary model has been very
successful by getting complex capabilities in the hands of analysts in the shortest
possible time.

13.4.3 Network Intelligence

First-order analysis of network activity is to determine when there is an existing
problem. Denial of service events can clog network bandwidths, overwhelm routers,
and/or overwhelm servers on the network. While there has not been a massive net-
work worm for a while, the possibility of events similar to Slammer, Blaster, and
MyDoom still fundamentally exist.10 Monitoring bandwidth usage, router buffer
and CPU usage, firewall state space, and host performance can provide insights into
the health of these resources as part of normal network analysis. These metrics are
fairly reliable indicators of massive network events, whether security related or oth-
erwise. However, by themselves these metrics do not provide enough information
into why events are taking place nor how to mitigate them. Also, smaller events, that
could still be customer impacting, might not necessarily be discernible in these met-
rics. Given the prevalence of flow-based monitoring capabilities in most network
forwarding equipment, flow data is a particularly attractive source to form the basis
of a comprehensive network intelligence infrastructure. In Section 13.4.3.1 we detail
the types of network intelligence that can be readily derived from network flow data.

10 While Conficker worm of 2009 exemplifies the continuing potential for massive network worms
to exist, Conficker generally did not cause the same sort of network disruption as some of the
earlier worms.
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To complement reacting to security knowledge, there are definite benefits to tak-
ing a pro-active approach to the analysis. In Section 13.4.3.2, we present a history of
cases where early indications of exploit development have been identified through
generic traffic profiling of Internet activity. The objective is to detect threats as they
develop rather than wait for events to have adverse effects on network or service
application performance.

Given the massive amounts of monitoring data that large provider networks pro-
duce on a daily basis, automating procedures for deriving network intelligence is
imperative. We discuss this topic in Section 13.4.3.3.

13.4.3.1 Intelligence from Flow Data

Commercial products are on the market to help measure activity on the network us-
ing flow data (e.g., netflow or cflowd). For coarse grained analysis, packet sampled
flow data can be used to measure relative byte traffic levels at various access points
in the network. It is important to realize that sampling results in loss of information.
As a result sampled flow data cannot be used to accurately interpret certain events.
For example, individual events that may have occurred are most likely not in the
data, TCP flag information is not complete, packet and byte counts in individual
flows are not correct. Even interpreting packet sampled or flow sampled records in
aggregate can be difficult. These analysis points seem obvious, but they are easy to
forget, and results from analyzing sampled data can be easily misinterpreted.

Below we describe how flow data can be interpreted to detect some types of secu-
rity and non-security events, namely, DDoS attacks, flash crowds, address scanning
and network worms. When an anomaly is detected (generally a relative increase in
packets or bytes), analysis is used to help determine the origination points and desti-
nation points for the changes. Interpretations of the activity can help diagnose what
might be happening as outlined below.

DDoS Attacks Even with packet sampled flow data, the characteristics of DDoS
attacks are such that most attacks can be detected with reasonably high confi-
dence. The text box “Flow characteristics associated with DDoS attacks” list these
characteristics.

Flow Characteristics Associated with DDoS Attacks

� Large Increase in Packet Rate Changes in packet rate relative to normal
are often an indicator of a denial of service attack. Attacks might use large
packets in an attempt to overwhelm bandwidth resources and/or can use
many connections in an attempt to overwhelm end-host or firewall session
capacity.

� Many Source IPs If there is a high proportion of source IP addresses in a
given address block, then spoofing is likely. Determining a high proportion
depends on a number of factors, so some experience comparing normal and
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attack traffic is helpful. Identifying the presence of spoofed sources helps
to develop greater confidence the activity is an attack (i.e., of malicious
intent).

� Consistent TCP Flag Combinations If nearly all flows have the same
flag combination (e.g., SYN only) in combination with a large increase
in packets, this is a supporting indication of an attack where connections
are generally unsuccessful. However, care should be taken concerning the
interpretations of TCP flags when analyzing packet sampled flows. Some
statistical analysis of many flows can be used to interpret typical TCP flag
activity, but flag combinations for a single flow are obviously subject to
the effects of sampling. I.e., the TCP flag field in a flow record is the log-
ical “OR” of all TCP flags of sampled packets observed by the router and
associated with that flow.

� Consistent Single-Packet Flows If nearly all flows have only one packet
and/or have nearly all the same packet size, this suggests connection at-
tempts are not being acknowledged. This might simply be the result of a
non-DDoS related host failure. However, if the protocol is not TCP, then
this may be the best indicator of a DDoS attack. But this is not a particu-
larly strong indicator unless you can compare with a change from normal
activity. There are protocols that use only one packet in a session and can
have relatively consistent packet sizes in normal operation. DNS (53/udp)
is an example.

� Maximum Size Packets If the attacker’s objective is to flood the byte
bandwidth capacity of the target, the attacker may choose to use maximum
size packets. While maximum size packets are not unusual when transfer-
ring large amounts of data between two points, it is very unusual to see
many long sequences of maximum size packets in UDP and particularly
in ICMP for legitimate purposes. Traditionally, maximum packet size has
been 1500 bytes as defined by Ethernet. Larger sizes will likely become
more popular with higher access speeds.

� Backscatter Backscatter refers to the phenomena of observing unso-
licited response traffic because some DDoS attacks use spoofed IP ad-
dresses [60]. Typical indications are TCP SYN-RST flows or ICMP
“Destination unreachable” response flows sent from a target IP address
and using the spoofed IP address as destination.

Flash Crowds It is not unusual to mistake a flash crowd for a DDoS attack. Flash
crowds are caused by events that are generally not malicious such as a really good
online sale or a very popular webcast. Many flows that appear to be successful con-
nections could suggest a possible flash crowd, i.e., a rush of visitors to a particular
website. Flows with a variety of flag combinations that in combination appear to
show successful connections suggest an innocuous flash-crowd event. But there is a
possibility that it is a DDoS attempt in progress. I.e., with a sufficiently large botnet,
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a sophisticated attacker can emulate user behavior which can not be distinguished
from a flash crowd simply from flow level characteristics.

Address Scanning Flow level information can be used to detect scanning which
is used to identify potentially vulnerable machines on a network. Massive address
scanning is performed by botnets or worms (which are not necessarily distinct sce-
narios). Again these activities have tell tale characteristics which are listed in the
text box “Flow characteristics associated with address scanning”.

Flow Characteristics Associated with Address Scanning

� Many flows from one or possibly many distinct source IP addresses to
many destinations.

� Flows to darkspace (or greyspace) destinations as well as active destina-
tions. (Darkspace refers to IP address blocks with no legitimate hosts but
with advertised BGP routes on the Internet. Greyspace refers to unused
addresses within address blocks that have active addresses.) Activity to
darkspace and greyspace can manifest itself as ICMP “Destination un-
reachable” or ICMP “Time exceeded” backscatter messages from probed
addresses toward the scanning sources.

� Most connections are unsuccessful with only occasional indications of suc-
cessful connections. Successful connections might be determined based on
the types of TCP flag combinations or identification of response traffic to-
ward the IP addresses that are suspected to be scanning.

Network Worms The fundamental distinction between massive address scanning
and a network worm is that worms demonstrate progressive increase in scanning
activity and an increasing number of source addresses performing the scanning.

13.4.3.2 Early Indicators

Network intelligence derived from flow data might not be accurate enough to pin-
point specific security events, e.g., detect with high accuracy a DDoS attack against
a specific customer. However, because of its ubiquitous coverage it serves as a very
effective early warning system regarding the increase of suspicious activity in the
network. Below we describe a number of such early indicators identified in real
exploit scenarios, namely: intent to exploit, exploit trials and worm propagation.

Intent to Exploit When a vulnerability is announced for a network application,
invariably there will be some reconnaissance activity (network scanning) for the
associated application, i.e., intent to exploit. The reconnaissance is presumably a
survey for hosts that might be potential targets for exploit. The activity may be col-
lecting signatures of hosts that might indicate the version of application software and



13 Network Security 483

Blaster Worm
TCP135 Change Factor Relative to 5 Week Mean

0

1

2

3

4

5

6

7

8

9

10

Change factor flows 7 day Moving Average Start of 
Blaster  

4/9/03

4/16/03

4/23/03

4/30/03

5/7/03

5/14/03

5/21/03

5/28/03

6/4/03

6/11/03

6/18/03

6/25/03

7/2/03

7/9/03

7/16/03

7/23/03

7/30/03

8/6/03

8/13/03

8/20/03

8/27/03

Fig. 13.2 Activity metrics on TCP port 135 in weeks prior to and including the Blaster worm

underlying operating system. The presence of sufficient hosts with potential vulner-
abilities will likely guide the priority and amount of effort attackers will devote to
developing and refining an exploit. Indications of such efforts were very clear in the
case of the Blaster worm, where reconnaissance activity started immediately fol-
lowing the vulnerability announcement, and the level of reconnaissance increased
slowly over days until the presence of the worm was clearly evident. Figure 13.2
illustrates the increase in activity on port 135/tcp for the weeks prior and including
the Blaster worm event.

Exploit Trials As an exploit is developed, it is often developed in stages and usu-
ally does not work to full potential in early phases. Such exploit trials can manifest
themselves in a few different ways, often as phases of on-again and off-again ac-
tivity. For example, this occurred in the weeks leading to the Slammer worm with
activity on a MS-SQL port (1434/udp). Figure 13.3 shows packet counts for UDP
port 1434 in the weeks prior to the Slammer worm. Note that the y-axis is in log
scale. During the weeks of January 1, 2003 and January 8, 2003 there was more
than two orders of magnitude increase in packet counts. Some of these existed for
extended periods of time which might have been an initial worm attempt that fiz-
zled out. During the weeks of January 15, 2003 and January 22, 2003 there were two
short periods of increased activity which might again have been “test runs” before
the start of the actual Slammer event on January 25, 2003.

Worm Propagation There have been some rare examples of very rapid worm prop-
agation. Noted examples are the Slammer worm (once past the trials phase) and
the Witty worm. These worms have illustrated that it is not always possible to re-
act to worm propagations once the worm is launched. However, these examples
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were exceptionally aggressive/efficient worms, and most other worms have not been
nearly as aggressive. The Nachi worm, for example, existed on the Internet for more
than 8 hours before it became visible to even a small portion of the Internet (see
Fig. 13.4). This is sufficient time to recognize the propagation, recognize a behavior
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profile, and prepare a mitigation plan. The activity is recognizable as a continual
increase in the number of source IP addresses that are performing reconnaissance
activity on a given port. In the case of the Nachi worm, the underlying behavior
was a little more difficult to recognize since the reconnaissance was performed us-
ing icmp type 8 (echo request or ping) while the exploit was predominantly on port
135/tcp.

13.4.3.3 Automated Analysis

An important aspect of any data analysis effort is a need for automation. It is not
practical to hire a team of analysts to continually assess traffic activity for millions
of subscribers and billions of flows. Automated analysis functions are needed to
help determine what is important and to lead a small team of analysts in the right
direction to isolate relevant security events.

Below we describe considerations concerning automated analyses for developing
security intelligence.

Ongoing Measurement of Key Parameters Select parameters need to be mea-
sured on a periodic basis. Some obvious parameters to measure are the number of
packets and number of bytes on each IP protocol and port. It can be useful to count
flows, which is defined as a unique source IP address destination IP address, IP
protocol, source port, and destination port. Some less obvious measurements also in-
clude the number of active source IP addresses and the number of active destination
IP addresses. Selection of parameters is a trade-off between simplicity and manage-
ability of the data, system performance, and sacrificing information that might be
useful. It is not possible to maintain all parameter information, but when dealing
with unknown security concerns, it is desirable to err on the conservative side and
maintain as much information as possible.

Baseline Generation A key aspect of identifying what is an anomaly is defining
what is normal. We call the process of calculating the normal activity “baseline gen-
eration”. As with selection of parameters to measure, there are a variety of ways to
determine a baseline, which invariably involves some method of averaging over
time. In traditional POTS phone call patterns, it has in general been possible to
use the previous week of activity as a baseline measurement for call volume. But
the Internet, in an era of multi-GigaByte transfers and DDoS attacks, is much more
volatile than the metered 64 Kbps calls of POTS. Further, specific ports and proto-
cols subdivide segments of activity into smaller and more volatile behaviors. Each
hour of the day as well as each day of the week have unique characteristics. Meth-
ods that use decaying averages and compensate for diurnal behavior are effective
for short-term averaging. For longer-term baselines, a moving average over several
weeks for the same hour of day and same day of week have been shown to be
effective. Another normalizing factor that we call “share value” can also be used
in measurement. For example, rather than measuring the absolute count of packets



486 B. Rexroad and J. Van der Merwe

on port 25/tcp, measure the share/percentage of 25/tcp packets relative to all pack-
ets on the network. This can help compensate for normal network changes or even
anomalies in the availability of certain data in the analysis platform.

Alarm Detection Alarm detection becomes a comparison of current activity with
the baseline. We already mentioned the volatility of measured parameters, and it is
sometimes useful to consider how volatile data normally is in anomaly detection.
To account for this, it can be useful to set alarm thresholds as multiples of standard
deviation for a given measured parameter. For some ports and protocols, there is
no defined application. But not surprisingly, there is occasionally traffic on nearly
every port, protocol, and address possible. Some of this traffic may be accidental,
but much has some sort of nefarious intent, so it is useful to monitor this activ-
ity. But measuring the relative change of activity from a baseline that is effectively
zero presents a challenge. It may be sufficient to define a minimum measurement
of activity that is considered important for alerting and investigation, and this can
overcome some of the problems created by overly volatile or otherwise unused ports
and protocols.

Threshold Management It is desirable to have a standard threshold set for all
types of activity, but we have found some thresholds need to be more sensitive than
others. For example, there are certain ports and protocols that are frequently tar-
geted for attack, while other ports and protocols do not present a significant threat.
Consequently, we have found it to be useful to set thresholds for certain special in-
terest protocols to be tighter than the default group thresholds. None of this remains
fixed, i.e., as the environment and attacks change, so should the measurements and
the thresholds. It is useful to hold periodic analyst meetings that review thresholds
along with current attack and exploit trends, and determine if, or what, threshold
changes (upward or downward) are needed.

Reporting Generating reports is another activity highly amenable to automation.
Specific examples include:

� Alarms Alarms are an obvious report type that are needed to raise attention to
specific events. Depending on the users, it is useful to provide a summary console
of recent alarms and also provide alerting subscription capability. Email seems to
be the most flexible means for alarm delivery. If pertinent alarm information can
be squeezed into the limits of SMS messages without inappropriate disclosure of
information, analysts on call can easily receive pertinent alerts on a conventional
cell phone.

� Traffic Trending Invariably, there will be a need to look at activity and traffic
trends over short and long periods of time. Examples include reports on traf-
fic volume attributes such as flows, packets, bytes, bytes per flow, bytes per
packet.
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13.5 Network Security Systems

In this section we consider several example network security systems that ser-
vice providers utilize to protect network users from security threats. Such service
provider actions are typically manifested as service offers or features. User pro-
tection services can be classified in three categories namely Informational, Auto-
mated/Compulsory, and Supplementary/Optional.

Informational services generally provide information to users about that status
of the network and issues that may pertain to them. Acting on such information is,
however, left up to the end user. Naturally, there must be sources of data to provide
information to users, and this is necessarily the result of gathering and analyz-
ing data from a variety of sources including abuse complaints, security advisories,
traffic flow analysis, and sometimes some in-depth analysis of suspect activity. In
Section 13.5.1 we describe the AT&T’s Security Analysis Platform as a specific
example of a sophisticated network security intelligence apparatus which, among
other things, can be used to provide informational security services to users.

Automated or compulsory security services are normally realized in the form of
filtering. It includes those that are performed to prevent collateral damage to users or
services that might indirectly suffer as a result of an attack. For example, in order to
provide quality service to all customers on a network, it is sometimes necessary to
block the congestion caused by a denial of service flooding attack. Security services
that are automatically provided as part of “standard” service offers also fall in this
category. A canonical example is the filtering or tagging of suspected spam email
when email services are provided. In Section 13.5.2 we describe DDoS blackholing
as well as the AT&T email platform as specific examples in this category.

Supplementary or optional security services are those that customers specifically
select or opt-in to use. Supplementary services often involve dedicated security in-
frastructure and as such often require service specific payment by customers. As
noted earlier in this chapter, security as a service helps to correct the economic
imbalance that is otherwise skewed in favor of bad actors. In Section 13.5.3, we de-
scribe customer specific DDoS filtering and network based firewall services as two
specific service options in this category.

By necessity the categorization provided above is not absolute or perfect. For
example, while derived network intelligence can be provided to customers as in-
formational services, the same information might be utilized to trigger compulsory
DDoS filtering, or customer specific DDoS filtering. Similarly, some informational
services might be provided to all users as a default part of their service, or informa-
tional services might be offered as an optional service feature.

13.5.1 Informational Security Services

In this section we describe AT&T’s Security Analysis Platform as a specific end-to-
end example of how informational security intelligence is derived. As noted above,
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such security information is not only used for informational purposes, but also form
the basis for mitigation actions.

A generic high level overview of the platform is depicted in Fig. 13.5. The pri-
mary source of dynamic network traffic information for this system is in the form
of network flow records. Network flow records convey information regarding the
source, destination, IP protocol, source port, destination, TCP flags, packet count,
byte count, start time, and end time for activity on the network. In select portions
of the AT&T Internet backbone, unsampled flow generation has been implemented
and is processed in a variety of ways to help identify anomalies. The unsampled
flow data complements packet sampled and smart sampled flow data that is more
ubiquitously available.

As shown in Fig. 13.5, flow records are combined with other network data,
e.g., topology information, as well as other external data sources, such as exter-
nal sources of unwanted traffic, e.g., sources of spam email. Data from all these
sources are saved in short term storage and an analysis and/or detection compo-
nent combines all the data and performs automated analysis using predefined rules
and algorithms. For simplicity we represent this component as a single entity, how-
ever, in reality it consists of a variety of sub-systems which we describe in more
detail below. Further, the output of particular subsystems might be used as input to
other sub-systems and is again not shown in the figure. For example, the output of
port-scanning detection is used as input to botnet detection.

The output of the analysis/detection component is a set of alarms. These alarms
are typically stored in long term storage and made available to a group of secu-
rity analysts who investigate the alarms to determine whether action should be
taken. The analysts also make use of other external information sources, for ex-
ample CERT alerts or reports from virus protection vendors. Based on their domain
knowledge and the intelligence provided by the platform, the analysts could gener-
ate detailed customer alerts to warn customers of emerging security concerns.

The analysts could also trigger appropriate mitigation actions to be performed
in the available mitigation platforms. In some cases alarms generated from the
analysis/detection component can directly feed into a mitigation system. We note,
however, that because most mitigation activities have some negative side effects,
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and because all detection system are subject to false positives, automated response
to network security threats is not trivial.

We will now describe various aspects of the analysis/detection component of the
AT&T Security Analysis Platform in more detail.

13.5.1.1 Scan Detection and Trending

We consider several scanning related detection activities and/or algorithms namely,
general scanning, worm detection, scan volume alarming and summarization of
scanning activity in a Reconnaissance Index.

General Scanning General Scanning activity is characterized as source IP
addresses that are making many, many connection attempts to destinations. This
type of activity is generally suspect and usually represents an intent to exploit
vulnerabilities in network applications. For this reason, the Security Analysis Plat-
form detects and records the sources and some general characteristics of scanning
activity on the Internet. The results of this analysis are used for a variety of sub-
sequent analysis algorithms including worm detection, scan volume alarms, the
reconnaissance index, and botnet detection. For example, the graphic in Fig. 13.6
depicts the number of unique source IPs that have been associated with scanning
activity on port 445/tcp over a 200 day period leading into and through the evo-
lution of the Conficker worm. The graphic was generated from data on the AT&T
Internet Security Analysis Platform. Figure 13.6, clearly shows the evolution of the
Conficker worm over time. The graph shows initial significant activity starting on
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November 21. The graphic also shows the changes in Conficker behavior as new
variants were released, and provides a relative measure of the worm’s “success” at
reaching previously infected hosts for update to later variants.

Worm Detection The Worm Detection algorithm provides early detection of worm
activity on the Internet. When a worm propagates on a network, it performs the
following steps: (i) Seeks exploitable hosts through scanning network addresses on
target ports, (ii) performs an exploit against identified targets, (iii) replicates itself
to the target, and (iv) repeats from step (i).

The worm detection algorithm tracks the number of unique hosts scanning, and
alerts analyst to any significant increase in the number of hosts scanning on a given
port. We perform this analysis at the Internet circuit level, i.e., physical links at the
perimeter of the network. Worm alarms are valuable for identifying mass use of new
exploits early in the deployment or even development phases. These types of events
are attributable to a number of network disruptions and problems that have occurred
on the Internet as well as within enterprises, making this unique capability invalu-
able for early warning and mitigation. Table 13.2 shows (in reverse chronological
order) a sample of alarms that precipitated during the period leading to the Con-
ficker worm event. Each line corresponds to an alarm being triggered on a specific
circuit. These alarms are signifying an increase in the number of unique source IP
addresses that are detected actively scanning on port 445/tcp. Specifically, for each
circuit where an alarm has triggered, the number of detected source IPs scanning on
this port is compared with the baseline average that has been observed on this circuit
in previous periods. As the activity increases and becomes visible on more circuits
with greater change, the frequency of alarms increases until the worm reached a
saturation point. Interestingly, the alarms data in Table 13.2 show indications of
developing activity on November 20 and perhaps as early as November 13.

Table 13.2 Example worm alarms which provided early indication of the Conficker worm propa-
gating on port 445/tcp. As time progresses, more alarms are triggered in the same hour indicating
more circuits are affected by the event. The alarms are listed in reverse chronological order since
analysts are generally interested in the most recent activity first

Date Hour Alarm type Target port Message

11/21/2008 6:00 Worm tcp.dport.445 Scans from 56 source IPs compared with 16.36 ave.
11/21/2008 6:00 Worm tcp.dport.445 Scans from 53 source IPs compared with 15.81 ave.
11/21/2008 6:00 Worm tcp.dport.445 Scans from 52 source IPs compared with 15.69 ave.
11/21/2008 6:00 Worm tcp.dport.445 Scans from 61 source IPs compared with 21.76 ave.
11/21/2008 6:00 Worm tcp.dport.445 Scans from 282 source IPs compared with 84.31 ave.
11/21/2008 5:00 Worm tcp.dport.445 Scans from 196 source IPs compared with 56.39 ave.
11/21/2008 5:00 Worm tcp.dport.445 Scans from 44 source IPs compared with 9.76 ave.
11/20/2008 13:00 Worm tcp.dport.445 Scans from 35 source IPs compared with 10.00 ave.
11/20/2008 12:00 Worm tcp.dport.445 Scans from 34 source IPs compared with 10.00 ave.
11/20/2008 7:00 Worm tcp.dport.445 Scans from 158 source IPs compared with 55.91 ave.
11/19/2008 6:00 Worm tcp.dport.445 Scans from 33 source IPs compared with 9.33 ave.
11/19/2008 6:00 Worm tcp.dport.445 Scans from 33 source IPs compared with 9.18 ave.
11/13/2008 20:00 Worm tcp.dport.445 Scans from 159 source IPs compared with 74.66 ave.
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Scan Volume Alarms Another algorithm produce Scan Volume Alarms by evaluat-
ing changes in scanning activity across the Internet. As malicious botnets embark on
efforts to draft new hosts into their control, network scanning is sometimes used to
identify exploitable hosts. Scan activity increases on a given port or protocol can be
indicative of a new exploit in use, which analysts can investigate prior to affecting an
enterprise. Increases in scanning activity can also be indicative of botnet ramping-up
efforts to draft new bots and facilitate malicious acts such as a spamming campaign
or a DDoS attack.

Reconnaissance Index The AT&T Security Analysis Platform summarizes scan-
ning activity measurements and normalizes these over time to generate a long term
trending report called the Reconnaissance Index. The purpose of this index is to as-
sess long-term changes in network exploit threat activity, in a manner analogous to
a financial index. This index takes into account both the number of sources that are
performing reconnaissance as well as the number of aggregate probes performed
by those sources. A recent image of the AT&T Threat Reconnaissance Index is
shown in Fig. 13.7. Not surprisingly, the reconnaissance index has shown a relative
decrease over the past few years. This trend is indicative of efforts by attackers to
deemphasize the rapid spread of network worms and minimize attention to their
activities. Attackers are more motivated to gain control of computers without draw-
ing attention so they can use the exploited computers for undesirable activities
such as sending spam, DDoS attacks, identity theft, intellectual property theft, and
even illegal distribution of media. In late 2006, as operating system vulnerabilities
were starting to be patched more quickly, some exploit discoveries in applications
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initiated a surge in network scanning for vulnerabilities in applications including
anti-virus software, weak database application passwords, and remote access appli-
cations. Some surges in pop-up spam activity to promote system scanning tools are
noted. The rapid increase in the number of sources scanning increased significantly
in late 2008 due to propagation of the Conficker worm. There have also been some
recent surges in DNS amplification DDoS attacks that appear as probing activity to
our analysis and affect the index.

13.5.1.2 Botnet Detection and Tracking

Based on the sources of malicious activity such as scanning for exploits and spam
activity, analysis methods have been developed to correlate the activity of these ma-
licious actors to likely control points and server hubs associated with botnets [49].
A high-level illustration of this analysis algorithm is shown in Fig. 13.8.

As shown in Fig. 13.8, the botnet detection analysis takes as input various reports
of suspicious host activity, e.g., sources involved in scanning, spamming or DDoS
attacks. These suspicious activity reports are further processed to extract the set of IP
addresses that were involved in the suspicious activities. Next all flow records asso-
ciated with the suspect IP addresses near the time of the activities are isolated. These
flow records are then analyzed together to identify candidate botnet controllers. As
shown in Fig. 13.8, DNS metadata is also used in the analysis. However, not all
botnets use domain names as pointers to botnet servers; some point directly to IP
addresses, therefore, we do not rely on the DNS metadata as a primary factor in
detection. There are some types of legitimate services that have behavioral profiles
that are very similar to botnet command and control. These cases are relatively few
and can be easily white-listed from alerting. There are also some cases where a high
correlation may exist between clusters of suspected bots/zombies that can lead to
false-positives. For example, the indexing server of a P2P file-sharing network may
trigger an alarm as a result of analysis of spam sources. In some cases, we have
suspected this correlation may be attributed to use of the P2P file sharing network
as a distribution of Trojan malware that consequently drafted these computers into
the spamming botnet.
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Fig. 13.8 Botnet detection algorithm summary
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As shown in Fig. 13.8, the resulting suspect IP addresses are investigated by an-
alysts to verify the type of function and validate association with botnet activities.
Likely domain names and sometimes port information can be used to identify and
track other control points of the botnets, and subsequent activity is used to help
identify the members of the botnet(s) and further determine the types of activity
the botnets are performing. These methods enable estimation of the relative sizes of
botnets and validation of the intent to do harm through illegal and abusive activities
such as exploits, DDoS attack, spamming activities, identity theft, etc.

The primary purpose of the botnet detection analysis is to determine if a given
botnet presents a threat to network operations and services, customers, or to criti-
cal infrastructure. The information gained about the behavioral profiles of specific
botnets, the malicious IP addresses, and associated domain names used can also be
used to assist with isolation and blocking of malicious activity in the enterprise envi-
ronment. General knowledge of the botnet technology, methods, and motives can be
used to develop tools and operations functions that improve detection methods and
automate the filter and/or alerting on suspected infections as part of routine network
security operations.

Table 13.3 shows an example alarm from the botnet detection processing. A given
alarm identifies an IP address and service port that is suspected to be supporting the
botnet in some capacity. Triggers are identified as part of the alarm. For example, the
first alarm indicates that 17 suspected botnet clients (zombies) associated, with this
controller, were detected scanning (i.e., “sp:”) on port 135 TCP (i.e., IP protocol 6).
The range of analysis for this suspect is identified in a YYYYMMDDHH format,
and the period of the latest alarm noted. Finally, a confidence score is provided
that takes into account a number of additional flow characteristics that are generally
indicative of botnet activity. A score that reaches a defined threshold is issued as an
alarm to analysts for further investigation.

When botnet operators have purposeful tasks to perform, they are forced to
engage in botnet recruiting in order to add new bots into their botnet(s). Fortu-
nately, improvements in spam source controls and DDoS scrubbing technologies
have caused increased volatility of bots engaged in these actions. Specifically, sus-
taining attacks requires a continual influx of new bots or at least a well established
inventory. As the recruiting bots are exposed, so is the opportunity to defensively
expose the command & control infrastructure of the associated botnet(s). While it
is generally difficult to mitigate botnets, it is possible to squelch their strength and

Table 13.3 An example botnet alarm. For example, the first line shows a controller IP address
(masked) with associated scanning activity (“sp”) on port 135 TCP (protocol 6) from 17 zombies.
Each alarm also contains times of activity and a confidence score

Earliest Latest
Server IP Server port Triggers activity activity Alarm time Score

x.x.x.167 65146 sp:135-6(17) 2009050320 2009050704 2009050707 63
x.x.x.84 9517 sp:445-6(58),135-6(1) 2009050309 2009050707 2009050707 57.9
x.x.x.29 1122 sp:445-6(15) 2009050415 2009050619 2009050707 51.9
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force activities on the part of botnet operators to maintain the botnet. I.e., force the
botnet operator to perform botnet recruiting, which helps to reduce the attack power
of the botnet.

13.5.1.3 Volumetric Anomaly Detection

Volumetric analysis is performed on each IP protocol, TCP port, UDP port, and
ICMP type for changes in flow, packet, and byte volumes. This analysis mea-
sures significant changes in activity of each parameter relative to expected values.
Generation of baseline or “expected” values is generally calculated based on histor-
ical activity. The baseline must account for the diurnal characteristics of network
traffic activity and must also reasonably isolate any historical anomalies. Once
anomalies are identified, further automated analysis is performed by the platform
to identify contributing attributes that are reported to security analysts as alarm de-
tails for evaluation.

Volumetric analysis is a catch-all mechanism for detecting various types of events
on the Internet. In addition to the alarming analysis, graphical tools provided by
the platform allows analysts and customers the ability to look at short-term and
long-term activity levels for specific ports and protocols. For example, Fig. 13.9
shows changes in network activity that resulted from patches that were applied to
DNS servers in response to the recent disclosure of DNS cache poisoning attack
techniques [88].

13.5.1.4 DDoS detection

The AT&T Security Analysis Platform also integrates commercial sub-systems to
perform analysis and detection. In particular, multiple commercial DDoS detection
systems [10] form part of the platform. One instance provides detection at a coarse
“infrastructure” level. I.e., it is used to alert network operations and security an-
alysts to significant traffic volume events that might have an impact on Internet
service delivery. Because it is configured to look for large volume events in the
core network of a Tier-1 ISP, this DDoS detection system will not detect smaller
DDoS events, which, although not impacting on the network as a whole, might
still be customer impacting. A second DDoS detection instance is therefore uti-
lized to perform detection for customers who subscribe to this service, typically
in combination with a DDoS mitigation service described below. This capability
provides added sensitivity to customer designated network interfaces and address
blocks, and it represents an analysis and reporting capability that complements the
standard infrastructure DDoS detection. Finally, a third flow analysis platform is
used to provide, among other types of analysis, intranet DDoS detection for private
enterprise (VPN) customers. The alarms generated by these DDoS detection sys-
tems are ingested into the Security Analysis Platform for analysis and correlation
with other detected anomalies.
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Fig. 13.9 Relative change in source-port 53/udp activity volume shows the effects of patching
activities on the network in response to recent disclosure of recent DNS cache poisoning vulner-
abilities. The solution to help alleviate the DNS cache poisoning threat was to force each query
to assign a unique source port for DNS queries thus assigning a new session to each query. For
performance reasons and simplicity of firewall rules, it had previously been common to use a fixed
source port for DNS queries. This worked since DNS queries on port 53/udp are by definition
single-packet sessions. As patches were installed in the wake of new information about the vulner-
ability and later exploit code, there were surges in patching efforts. These were revealed in network
traffic behavior by a relative increase in the flow count on port 53/udp with no significant increase
in byte count for the associated traffic. Randomization of the source port increased the number of
flow records generated in DNS transactions

13.5.2 Automated or Compulsory Security Services

With the informational security services we dealt with in the preceding section,
users were provided with information of possible or impending threats. Acting on
such information, however, was largely left up to the users receiving the information
with the service provider specifically not taking any mitigative action. There are,
however, cases where service providers take unilateral action to prevent or mitigate
specific security concerns. Below we consider two examples namely DDoS and
spam mitigation.

13.5.2.1 DDoS Mitigation

In general service providers do not attempt autonomous mitigation of DDoS attacks.
As we have indicated earlier, it is not always easy to distinguish between a DDoS
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attack and another legitimate surge in traffic, e.g., a flash crowd. DDoS mitigation
techniques typically involve some negative side effects, therefore this possibility of
a false positives in the DDoS detection mechanisms could be problematic. Further,
some Internet destinations are almost constantly under attack and simply consider
that as part of their operational costs.

There are, however, two scenarios where service providers do react to DDoS
attacks as a normal course of action. One is when the attack in question is of such a
magnitude that it starts to cause collateral damage in the network. A classic example
involves an attack against a target that starts to indirectly impact other customers or
network services. This example is depicted in the top part of Fig. 13.10. A second
scenario involves an attack against a specific infrastructure service such as DNS.
This example is illustrated in the bottom part of Fig. 13.10.

Figure 13.10 also shows two possible mitigation strategies that the provider
might employ. As shown in the figure there is an implied DDoS detection mech-
anism, using techniques such as those described above, which precedes mitigation.

The simplest DDoS mitigation technique involves an approach called “blackhol-
ing” where the route to the attack target is tagged with a semantically “drop”
label and distributed to ingress routers with a special route control function.
Ingress routers in the provider network receive these routes and forward traffic
to a specifically configured null interface, thus effectively dropping all traffic to-
wards that destination. This approach is crude since all traffic destined for the
advertised prefix will be dropped, whether attack traffic or wanted traffic. As such,
this approach is best suited to the case where a very specific destination, e.g., a
host specific route, is null routed. Of course all traffic to that specific destination
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will still be dropped, but the collateral damage is minimized. Fortunately, DDoS
attacks are typically not as distributed as one might expect [57]. A more desirable
approach is to surgically distribute the drop-labeled route to only those ingress
routers that have the majority of attack traffic [83]. This approach is illustrated at
the top of Fig. 13.10. Despite its shortcomings, blackholing is a useful mitigation
mechanisms for service providers. In cases where significant DDoS traffic volumes
cross boundaries between provider networks, smaller providers often seek blocking
assistance from larger providers if the traffic is overwhelming their network. Unfor-
tunately, this type of control does little to help the target of the attack. It is desirable
to provide more surgical and more customer friendly mitigation services.

A more sophisticated DDoS mitigation strategy involves deploying dedicated
DDoS mitigation devices [22] at strategic “scrubbing” locations in the provider net-
work. In this case, the route control function advertises a prefix associated with the
attack target to ingress routers in such a way that traffic towards the attack target is
effectively “redirected” towards the scrubbing complex. This is shown in the bot-
tom part of Fig. 13.10. This approach is attractive because in principle only attack
traffic is filtered out at the scrubbing complexes so that wanted traffic can still be
forwarded to the ultimate destination. On the flip side, the fact that dedicated infras-
tructure has to be deployed means that this approach can typically not be utilized
for all provider traffic but is limited to protecting infrastructure services, or, as we
will outline in Section 13.5.3, when it is offered as part of (paid for) supplementary
security services.

13.5.2.2 Spam Mitigation

In addition to Internet access and basic services like DNS, ISPs typically provide a
number of consumer or business-grade end user services to their customers includ-
ing email services, Web-hosting, chat-rooms, Web portals, etc. Of these services,
email typically has the highest take rate and also requires special care from a secu-
rity perspective.

In this section we will describe the essential functionality of the security frontend
to the AT&T consumer email platform as an example ISP email infrastructure which
effectively adapts to ongoing email security concerns in a highly scalable manner.

Figure 13.11 depicts the major functional components of the multi-tiered AT&T
email platform. External SMTP connections first encounter the connection manage-
ment component. The connection management component maintains a reputation
system whereby external SMTP connections are classified based on the historic
and/or current behavior of their source IP addresses and are allocated resources
accordingly. The resources of concern here are the number of SMTP processes that
are allowed to be spawned. First, connections from known and trusted IPs (friends)
are given unlimited resources. Connections from unknown source IPs are classi-
fied into a default class. The default class receives enough resources so that under
normal operating conditions, e.g., when there are no email DoS attacks, no block-
ing occurs. However, the resources allocated to the default class are constrained to
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Fig. 13.11 Logical depiction of the security frontend of the AT&T email platform

prevent impact on the friends class when there are attacks. In the case of resource
exhaustion, the sending SMTP connection may be terminated with a temporary
unavailable SMTP response (i.e., response code 450: Requested action not taken;
mailbox unavailable or busy). The third class of source IPs, which are generally
known to be spam sources, fall in the throttle classification where the resources al-
located to the set and/or to individual IPs are significantly constrained. Specifically,
on average connections in this group would typically receive a 450 SMTP response
80–90% of the time.

SMTP connections that pass through this first level of defense are passed to the
real time blacklist (RBL) component. The RBL parses and analyzes the SMTP pro-
tocol to determine the trustworthiness of an SMTP source. For example it performs
reverse-DNS lookups on the domain name reported by the SMTP source and note
discrepancies between this lookup and the SMTP source IP address. As the name
suggests, the RBL is also dynamically updated based on feedback from subsequent
tiers in the email platform. For example, information concerning detected spam
sources is fed back from the next tier, so that this information can be used in en-
suing rounds to decide whether or not to accept a connection from the same source.
Based on this analysis, the RBL may terminate the connection with an SMTP un-
available response (i.e., response code 550: Requested action not taken: mailbox
unavailable).

The RBL also receives a set of sieve filtering rules [33] from security analysts.
These rules are utilized to queue accepted email messages for differential treatment.
For example, most email messages are simply passed to the next defense layer,
however, some might be queued as possible phishing attacks for analyst attention.
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The third tier in the email processing platform consist of a commercial email
content screening product. At this level email content is analyzed to determine
whether any spam and or phishing rules are triggered. Like the RBL, the rules of the
content filtering component are constantly updated. As mentioned above detected
spam sources are fed back to the RBL tier for automatic inclusion in the RBL filter
set, and the output is also provided to security analysts for further manual evalua-
tion. Finally, email messages are delivered to user mailboxes, with an indication as
to whether the email platform considered it spam or not.

The email processing platform also maintains honeypot or spamtrap [77] ac-
counts. As we explained earlier, these are bogus email accounts, set up explicitly
to attract spam email. As such, all email destined for a spamtrap is spam by defi-
nition. Sending this mail through the content filtering system therefore serves as an
indication of spam that may have been missed by the content filters. This informa-
tion is also made available to security analysts.

Users who are the final recipients of the email are ultimately the judges of the
accuracy of the classification from the content filtering system. The email platform
allows users to provide this judgment back to the system in the form of user ver-
dicts. I.e., indicating that system classified spam was in fact not spam, or, conversely
indicating that mail that passed through the system unflagged was spam.

In addition to all the sources of information already mention as informing them,
security analysts also perform log analysis of the various system component logs.
Indeed the human security analysts remain an integral component of this system.
While well understood components of the analyses can and should be automated,
the role of skilled analysts to react swiftly to changes in the strategy of perpetrators
remain crucial to the success of dealing with unwanted email.

The success of this tiered approach is best appreciated by considering the fact
that the platform receives in excess of 1.4 billion spam email messages on a typical
day and is ordinarily successful in blocking more than 99.3% of it.

13.5.3 Supplementary or Optional Security Services

We now consider security services that users might specifically subscribe to. Service
providers might offer these services as a means to differentiate their existing service
offers, or might offer it as stand alone services. Either way, there is an implied
economic incentive for service providers to provide these services.

13.5.3.1 Customer Specific DDoS Mitigation

Customer specific DDoS mitigation is technically accomplished in much the same
way as the DDoS mitigation described earlier in Section 13.5.2. Traffic destined for
attack targets is passed through scrubbers to allow only wanted traffic to pass to the
subscribing customers. By subscribing to the service, the key difference is in the
detection of DDoS attacks. Specifically, as shown in Fig. 13.12, a customer specific
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DDoS detection mechanism is needed in order to detect attacks at the granularity
where customer links might be impacted. (As opposed to the much higher capacity
provider links.) This might involve deploying DDoS detection tools at the customer
premises, or might be a network based detection capability that is tuned to detect
attacks at the appropriate granularity. Since severe DDoS attacks might overload the
regular customer links, a back channel might be needed to alarm on attacks when a
customer premises deployment is performed.

As before, once an attack is detected, route control mechanisms are utilized to
redirect customer traffic to an appropriate scrubbing complex, and “cleaned” traffic
is sent on for delivery to the customer.

13.5.3.2 Network Based Security Services

The complexities of dealing with network security make the outsourcing of net-
work policy enforcement to service providers as a network based managed security
service an attractive option for customers. The acquisition, installation and main-
tenance of security equipment is handled by the service provider, while customers
maintain the freedom to specify (and modify) their own security policies. Secu-
rity services that can be provided in this manner provide bi-directional protection
of customer networks from Internet-based security threats through stateful fire-
walls, network address translation (NAT), URL filtering, intrusion detection systems
(IDSs) and content inspection.

Figure 13.13 depicts a high level view of an architecture that enables network
based security services. As shown in the figure, security services are provided via
security data centers that are directly connected to the provider network. Customer
traffic to and from the Internet passes through these security data centers en route to
the customer’s network(s).



13 Network Security 501

R

R R
R

R
R Rx Ry

R
Customer

Internet Traffic

Internet

Security
Data

Center

Customer A
Network

Customer A
Network

A policy

B policy

Private
Side

Public
Side

Security
Appliance

Customer B
Network

Security Data Center

Fig. 13.13 Network based security services

It is critically important that individual customers private traffic remains separate
as it routes to and traverses through the secure data center, where policy is applied.
Another key concern is ensuring that individual customers security policies remain
distinct (or virtualized) within the devices that are enforcing the set of security ser-
vices, and that those policies can be easily and securely administered. As illustrated
in the figure, separation of customer traffic is achieved by logically separate “con-
nections” from the customer’s network to the data center. The “connections” are
realized in practice through tunneling or VPN technologies. Similarly, within the
data center VLAN technologies are used to maintain the traffic separation. Mod-
ern security appliances [19, 34] are also capable of per-VLAN security policies and
processing so that the per-customer separation is maintained all the way from the
Internet gateway router, i.e., router Ry in Fig. 13.13, to the customer’s network(s).

13.6 Security Operations

Network operations are a standard consideration in any environment where reliabil-
ity is a factor. There are some added considerations when addressing the security
operations needs of a network. The network security environment is continually
changing. New attacks are created. Variations on old attacks are perfected. Human
behavior is manipulated in creatively new ways to allow exploitation. New exploit
methods are cumulative with old methods. Even as workarounds and patches are in-
troduced, it is not unusual for old vulnerabilities to be reintroduced or similar ones
to be created through the life-cycle of even stable systems. This suggests that an
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automation strategy is imperative to assist with detection and response methods as
security threats evolve. It also suggests that even with the most aggressive strategy
to automate detection and response methods, some manual operations are going to
be necessary to maintain a secure operating profile in the network. Generally, the
distinction between network operations and security operations comes down to the
following characteristics, which stem from the malicious intent associated with se-
curity events:

� Failures occur randomly, but attacks are deliberately timed.
� Failures will present themselves in a predictable manner, but attacks may be in-

tentionally deceiving.

Components of the network will fail somewhat randomly, but ultimately, the re-
sults are predictable and can be characterized. While new devices, software, and
systems will develop new modes of failure over time, the randomness of the events
generally do not have significant consequences on the overall performance of the
network. Of course there are isolated exceptions.11 Conversely, security events are
malicious, and thus will be planned to occur at an opportune time to place the at-
tacker at an advantage. For example, an attacker will attempt to take advantage of a
newly discovered vulnerability before there is an opportunity to create and/or deploy
a suitable patch.

As network failures will time themselves randomly, they will also present them-
selves in a predictable manner. While the diagnosis of a root cause of a network
failure may not be straight forward, it is generally possible to create logical rules
to diagnose the cause (see Chapter 12). Again, considering that security events are
generally malicious, they can be intentionally disguised to appear as one thing while
in reality being something different. Or events can be created to divert attention
from the real event. For example, an attacker may launch a denial of service attack
against one resource to divert attention from a penetration attack or to mask pene-
tration probes against a target. Tactics such as diversion, concealment, and obscurity
can and will be used to achieve the objective.

So while network operations will seek to find the simple explanation for a prob-
lem, a security operations team will need to dig deeper, always considering what
motivation and technique may have been used by an attacker to trigger events. For
this reason, it is generally recommended to have a security operations team repre-
sented in the analysis of root cause for network events, particularly if there is any
suggestion of strange coincidences or unusual traffic activity.

13.6.1 Components of Security Operations

In this section we consider the components or entities involved in security operations
and the relationships between those entities. Figure 13.14 depicts the organizational

11 Case in point is an outage in the AT&T frame relay network in 1998, where a complete network
outage resulted because of a software issue that propagated between switches [69].
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Fig. 13.14 Generic overview of the organizations involved in operations security

components involved in network security operations. The structure follows the typ-
ical tiered approach which, as we discussed in Section 13.3.1, ensures that security
events can be responded to in timely fashion by the appropriate technical experts.
Figure 13.14 also illustrates the fact that security operations is not a standalone func-
tion. In particular, security specific organizations (or functions) interact with other
organizations within the service provider, interact with vendors and other relevant
communities outside of the service provider organization, and of course interact
with the customer community.

Having such a holistic view of network security operations is critically impor-
tant to ensure its success. I.e., the complexity involved in any particular function
represented in Fig. 13.14, implies that the function be fulfilled by a specialist, who
might not necessarily be aware of the holistic view. E.g., network engineers tend to
be focused on making the network operate, similarly, analysts tend to be focused
on the activities they need to perform. Consequently, some of the tools that will be
needed to help the analysts do their job and to help the network engineers be more
successful can easily be overlooked without taking a more holistic approach.

To form a holistic view, below we list and discuss some of the functions that form
part of security operations.

Functions Associated with Network Security Operations

� Event Detection Sensors that detect events that are either directly security
related or provide information that contributes to identifying and under-
standing security events.
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� Data Collection and Management In large networks, there will be large
amounts of data from detection sensors, which includes general metadata
that can assist with security analysis. The collection and management of
this data needs to be a deliberate activity and function.

� Data Analysis Tools As manual analysis becomes more routine, there are
opportunities for automation and refinement. It will be necessary to have
people that focus on tools development while analysts focus on the analysis
requirements.

� Data Analysis Some manual analysis of data will be needed to interpret
security events. This implies some appropriately trained personnel will be
on hand to perform that analysis.

� Algorithm Research Continual research and analysis is needed to keep
abreast of known attack methods and to identify emergence of new attack
methods.

� Vulnerability Database Tools that collect vulnerability information of
many kinds that relate to hardware, operating systems, and application soft-
ware used in and around the network environment.

� Network Device Vendor Relationships Ultimately, the creators of network
and network security products know the most about their products. The
product vendors do not always know the network environment. A cooper-
ative relationship with vendors is necessary to merge the two.

� Network Event Root Cause Analysis When events occur, it may be easy
to make the problem go away, but understanding the root cause with a
balanced consideration of potential malice is important to recognizing and
preventing future security issues.

� Situational Awareness Tracking This is the activity to be cognizant of
events that are taking place in the world and how they might influence
the security posture of the network and influence network activity.

� Coordination and Collaboration Tools As security analysis teams become
more complex and disciplines become more specialized, tools are needed
to exchange and preserve information efficiently.

� Case Management Tools that provide the capability to track and record
the status of network and security events.

� Customer/User Support Customers and users of network services will de-
pend on your network expertise, data, and controls to help maintain a good
security posture.

� Mitigation Mechanisms It is not enough to simply identify and understand
problems. Policies, tools and procedures need to be in place to remediate
and hopefully prevent problems.

� Network Engineers and Tools Development Automation is paramount to
recognizing relevant issues in large-scale networks.
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Event Detection, Data Collection and Management and Data Analysis Tools These
functions are covered in detail in the earlier part of this chapter.

Data Analysis Security Intelligence is discussed at length in this chapter. It is im-
portant to develop a team of analysts that are well acquainted with what various
security attack events look like in the available data. Further, it is equally impor-
tant to be able to recognize what normal traffic activity looks like. Every network is
architected a little differently, data is collected a little differently, metadata is gener-
ated, collected, and managed differently, and traffic profiles vary depending on the
user demographics. For these reasons, there is no substitute for training and prac-
tice of capable analysts. By detecting, characterizing, and addressing small network
events, management of larger events become a matter of routine rather than a stress-
ful experience, and the chances of accurate diagnosis and action are improved.

Algorithm Research Network security is an arms race between the ability of at-
tackers to exploit in competition with the ability to anticipate, detect, prevent, and
remediate. In an enterprise environment, there are already a number of commercial
tools that provide reasonably sophisticated analysis. In service provider environ-
ments, there are much fewer tools that are available commercially that can provide
the appropriate perspective. Therefore, there may be a need to perform research
and development into algorithms that characterize data, detect events, and help
determine appropriate courses of action. Highly skilled and well trained analysts
become very good at recognizing specific types of activities. But no analyst pos-
sesses all the skills necessary to recognize or characterize complex events, and
analysts each possess different strengths. Researchers that have disciplines in math-
ematics, data presentation/visualization, and algorithm creation help to create the
tools analysts will ultimately use. It is advisable to include algorithm researchers in
a forensics activities. For example, when an event was not automatically detected
but perhaps should have been, researchers should be employed to look for evidence
of the event in the underlying historical data, develop algorithms or methods for
detecting future events, and testing the algorithms against on-going activity to help
validate the algorithm.

Vulnerability Database Many security issues for systems are known. But there
are many systems, network elements, operating system versions, and platforms
that make it virtually impossible for any one person to know the full set of vul-
nerabilities and implications on network operations. Managing this complexity is
paramount to managing a secure network. Collecting a database of potentially
relevant vulnerability information (and exploit information when practical) is a help-
ful tool for engineers, systems managers, and security analysts alike. Theoretically,
we should be able to identify all vulnerabilities for systems, fix those vulnerabilities
as soon as they are discovered, and many of the security threats will be mitigated. In
reality, not all vulnerabilities are known, and not infrequently vulnerabilities are ex-
ploited before they become public knowledge (so-called “zero-day” events). In other
cases, vulnerabilities are known by a few and not disclosed to the users for lack of
suitable fixes. The only practical defense is to engineer systems and networks using



506 B. Rexroad and J. Van der Merwe

a defense in depth strategy. This type of engineering is regularly performed in the
context of reliability engineering, which is commonly known as engineering for “no
single point of failure”. In security engineering, a similar strategy should be used to
assure no single point of failure in a security mechanism will significantly compro-
mise the assets that need to be protected.

Network Device Vendor Relationships There is a mutual benefit to developing a
strong relationship with vendors that provide your network products. Most vendor
designers do not actually use their products in real-world operations. While they
may perform robust testing of their products, it is enormously difficult to anticipate
all of the negative test cases that would be needed to thoroughly identify any issues
in products. There is no substitute for reality, where many unanticipated circum-
stances will be encountered. Obviously, it will be desirable to report behavior that
appears to be a direct security threat. But there is also benefit to reporting behavior
that appears to be innocuous, since that behavior could be used to create a much
more insidious problem. Similarly, having developed a strong relationship, vendors
will become more comfortable and feel more obligated to communicate suspected
issues that they have discovered such as vulnerabilities and exploits. One should
never assume that a vendor’s product is either secure or accurate, even if it is a
security product.

Network Event Root Cause Analysis When network events occur, it is common
practice to consider the “root cause” for the network event. Security representation
should always be a part of network event analysis to consider the potential mali-
cious motivations and techniques that could have been related to or the cause of the
event. As stated previously, there may be malicious intent involved and attempts to
make one type of event look like another. While network engineers and operators
diagnose what appears to be the problem, security analysts should consider the pos-
sibility of other types of activities that may be taking place. In other words, it is
the security analyst’s role to act as a conspiracy theorist. Obviously, there is a bal-
ance that must be maintained. There is little value in disrupting normal operations
and consuming excessive resources to investigate elaborate conspiracy theories. The
security analysts should consider the possibilities and follow only those that have
merit considering the likely impact to business risk and operations. Again, practice
is the best way to develop an appropriate balance.

Situational Awareness Tracking There are activities and events that reside outside
the network but can still affect the state of the network. Situational awareness is
the practice or art of keeping abreast of conditions that could affect the network.
For a service provider, national security status and terrorist threats, natural disas-
ters, political events and other major events, personnel issues or threats, existing
network events/outages, and other factors will all have a potential influence on the
focus of security operations. Sometimes events can come from unlikely places. For
example, Fig. 13.15 shows the effects of online viewing of the 2009 Inauguration
event for President Barack Obama on UDP traffic volumes. This type of activity
change could easily have been interpreted as either a DDoS attack or a worm had
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outside influences not been taken into consideration. Situational awareness and in-
vestigation of the event dynamics helped avert suspicions of malicious behavior in
this case. The most common situational awareness “tools” in use likely are to have
current affairs news casts, e.g., CNN and TWC, available on video monitors in the
operations centers.

Coordination and Collaboration Tools While not discounting the value of this form
of situational awareness, it is not sufficient. It will be useful to have some tools
available that allows analysts to make notes on relevant events to track. Blogging
tools might be adapted for this purpose. As new analysts start their work-day or
shift, the situational awareness notes and recent cases provide a good starting point.
At the end of each shift, analysts should check several internal and external sources
of information that may have updates and relevant news that could have implications
on network operations. Relevant points should be extracted from sites and included
in the notes. Similarly, activities that have taken place during the shift which have
been determined to be irrelevant, or more importantly, activities that need to be
watched should be noted. Collaboration tools should keep a record of activities that
extend beyond simple management of alerts and cases.

Case Management There will be a need for recording security events, delegating
the investigation and/or the mitigation of those events and tracking them to clo-
sure. For a network of any significant size, there will be security issues and events
that range from small and routine to large and complex. Issues might include situa-
tions or scenarios that are identified to help prevent security events from occurring.
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Addressing issues to prevent events is a good thing and worthy of tracking. For ex-
ample, it may be necessary to implement a critical security patch in network devices
to assure a particular vulnerability cannot be exploited. In the course of implement-
ing the patch, temporary mitigation actions may be implemented to assure attempts
to exploit the vulnerability are not successful or at least are detected. There will be
a need to track the status of security issues and events. A network of any significant
size will have a case tracking system to address network events, and it may be possi-
ble to integrate security issue tracking as an integral part of network event tracking.
However, since network security is often managed and functions as a distinct spe-
cialized discipline that complements network operations and engineering, it may be
desirable to track security issues and cases as a distinct entity.

Customer/User Support Invariably, customers and/or users of network services will
have security and operational difficulties. In the interest of maintaining customer
satisfaction with the service, some amount of security support in the form of event
management, data analysis, forensic & root cause analysis is needed to help cus-
tomers resolve their issues. This seems somewhat obvious, but supporting customer
events can become a burden on resources if the security operations costs do not
account for the time and effort needed to support this function. There are signif-
icant peripheral benefits to providing this type of support since understanding the
issues and concerns of customers can lead to developing services and functions in
the network that address customer needs.

Network Engineers and Tools Development While not an intrinsic part of security
operations, the people that develop tools that are used for monitoring, analyzing, and
protecting the security of the network and network users often have the best knowl-
edge about what works and what would constitute a misuse of tools that have been
developed. Since security operations can be forced to extend outside the envelope
of normal or expected use, it is best to plan for and include development represen-
tatives in the response execution for fringe events. For example, network devices,
analytical tools, and systems almost always have features that may not have been
fully tested or have not been integrated into normal network operations. Engineer-
ing may know what these features are and how they can be used. That could mean
the difference between avoiding an event or having to recover from a disruptive
outage.

13.7 The Indefinite Arms Race

More than any other aspect of networking, security appears set to be an indefi-
nite arms race between those providing network services and services enabled by
networks, and those who seek to use the same resources for illegitimate activities.
Given the fact that a significant part (perhaps the majority) of such nefarious ac-
tivity is economically motivated, plus the fact that the reliance of modern society
on such networks continue to grow, suggest that this situation will persist. Indeed,
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realizing that service provider network security is as much a process and an ap-
proach as it is a technical discipline, is perhaps the single most important message
in this chapter.

Below we summarize key insights from the approach to service provider net-
work security presented in this chapter and provide thoughts on important future
directions.

13.7.1 A Service Provider Approach to Network Security

Understand the Problem in Context A critical first step in dealing with network
security is to understand the nature of the problem in the context of the specific
provider network in question. I.e., understand intrinsic threats and how those are
shaped by business relationships, fundamental technological dependencies or limi-
tations and the incentives of different role players.

Develop and Follow a Comprehensive Framework to Network Security A
comprehensive security framework is as much about technology as it is about struc-
ture, procedures and relationships. The most basic technical component of such
a framework involves the configuration of network elements to be robust against
exploitation and abuse.

Derive Actionable Network Intelligence Network monitoring at different granu-
larities and timescales provide the raw data, which should be combined with other
information sources, to derive security related network intelligence. Automation is
crucial to support and enable analysis by security experts.

Pro-actively Deploy Network Security Services Acting on network intelligence
to protect the network and to provide security services provides a “closed-loop”
environment and to some extent offsets the economic imbalance between legitimate
and illegitimate economies.

Take a Holistic Approach to Network Operations Network security operations
should be performed within a holistic context with appropriate relationships and
interactions between security functions, other service provider functions and non
service provider functions like vendors and customers.

13.7.2 Future Directions

Safe Sharing of Security Intelligence We have emphasized the importance of each
service provider developing good network security intelligence. To the extent that
each provider is only part of the global network infrastructure, there is a need to
share such security intelligence across service providers. There are some existing
proposals and solutions along these lines [6, 8, 9]. One example is the anomaly
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Fingerprint Sharing Alliance [9] which allows summary information about an at-
tack (i.e., a fingerprint) to be shared between participants. Another example is the
ATLAS initiative [8], whereby each service provider deploy devices in their network
which runs a type of honeypot. Data collected from the honeypot is then shared
with the third party ATLAS-service provider and made available to all participants.
These initiatives are moving in the right direction, however, more work is needed
especially to address the delicate balance between sharing richer information, while
at the same time not running afoul of privacy concerns or revealing information that
can be abused by a competitor.

Secure Protocols While we cautioned in Section 13.2 that secure protocols are
not the proverbial “silver bullet”, such initiatives should be encouraged and secure
protocols should be developed and deployed where they address security needs.

Secure Network Architectures Despite receiving much attention from the network-
ing research community [12, 73, 74, 89], the security implications of the best-effort,
unaccountable service model of the Internet architecture remains an unresolved
problem. While the role of the network in mitigating other “higher layer” security
concerns might be debatable, it seems clear that this problem can fundamentally
only be solved “in the network”. Some argue that these shortcomings can only
be addressed in a clean-slate network design that is unencumbered by backwards
compatibility with the current network [18].

Improve Incentives In the context of this chapter we have focused on one aspect
of attempting to balance the playing field between good and bad actors, namely
economics. Generalizing this to architectures and protocols that aim to provide
mechanisms to correct the imbalance appears to be a promising direction. We con-
sider a number of examples: At the transport protocol level “client puzzles” have
been proposed [45] as a means for servers under DDoS attack to selectively accept
connections from (presumably) legitimate clients that have successfully solved a
puzzle. This approach shifts the balance of power as the client is required to perform
work before any server resources are allocated to it. At the architectural level a DoS-
resistant architecture has been proposed [35]. This architecture proposes to change
the any-to-any service model of the Internet by being explicitly aware of whether a
node acts as a client or a server and further explicitly aims to tilt the cost of com-
munication in favor of the server. Economic disincentives have been proposed as a
spam mitigation mechanism [51]. In essence this scheme associates cryptographic
“stamps” to each sent email message, and canceled stamps (i.e., email that was
deemed unwanted by the recipient) eventually results in the sender either having to
pay to continue sending email, or, being blocked from sending email altogether. The
adoption of these specific proposals remain uncertain, however, the fact that they all
attempt to specifically address incentives appears to be a promising direction.

Scalability As we have indicated throughout this chapter, scalability is a significant
network security concern, both in terms of the volumes of data used to derive net-
work intelligence, and in terms of mitigation mechanisms and services employed
to protect the network and its users. Most existing network security solutions are
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aimed at the enterprise market. This is expected because, first, enterprises are more
security aware and are therefore willing to spend money to protect the applications
they use. Second, enterprises present a sweet spot in terms of scalability. Finding
scalable security solutions in the consumer market remains a significant challenge.
The fact that this market is very price sensitive will further exacerbate the prob-
lem. However, it could be argued that the lack of security solutions in the consumer
space is a significant contributor to the overall security problem as unmanaged home
networks make easy prey for botnet recruiting effort. It is therefore important that
security solutions be found in this space.

Internet Governance We touched in passing on the role of Internet governance
when considering DNSSEC in Section 13.2.3. Internet governance is largely or-
thogonal to core network security concerns. However, understanding the proper role
for national and international bodies in governing the Internet and the potential im-
pact on the security of the Internet, depending on how those roles are defined, is an
important open question.

Cyber Critical Infrastructure Similarly, we considered the fact that commercial
entities are responsible for running and maintaining critical infrastructure in Sec-
tion 13.2.5. Given the global dependence on this infrastructure, both economic and
governmental, it would behoove governments and other role players to better under-
stand the implications of this. In the U.S., recognition of these dependencies lead to
the establishment of Information Sharing and Analysis Centers (ISACs) [42]. ISACs
have been established on a per-sector basis to share information concerning cyber
threats between critical infrastructure owners, operators and government. These in-
dustry initiatives might be complemented by government making the best quality
security solutions available to commercial industry, and encouraging the special so-
lutions that are being devised for protection of government to be used commercially
as well. Similarly, government procurements of services should be helping to es-
tablish infrastructure that can be applied to help protect telecommunications of all
of the critical infrastructure categories that depend on reliable communications in
worst-case scenarios.
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Chapter 14
Disaster Preparedness and Resiliency

Susan R. Bailey

14.1 Introduction

The most important thing to remember in this chapter is its title. The previous
working version of the title was “Disaster Recovery,” which is certainly the most
common phrase used to describe the set of activities associated with managing oper-
ations (including networks) through the most severe catastrophic incidents. Indeed,
the kinds of activities that get publicity, make the headlines, and become the material
for rewards and recognitions are the recovery activities that take place following a
major disaster. The activities certainly do involve heroic acts and significant achieve-
ments worthy of credit. However, the problem with the term “Disaster Recovery”
is the adjective, which places emphasis on the recovery activities that by definition
take place after an event happens.

What is missing in the term “disaster recovery” are the events leading up to a
disaster. To be most effective in recovering from a disaster, the bulk of investment
of time and money, as well as the most significant point of leverage to substan-
tially improve recovery performance, all should happen before the disaster occurs,
so that we are prepared to act, and can act quickly and efficiently. This is true
for any enterprise in any industry, and is most certainly true in running networks.
Even industry’s premier educational and certification program for those engaged in
the practice of disaster management, formed in 1988 and known as the “Disaster
Recovery Institute,” has changed its name to “DRI International: The Institute for
Continuity Management,” signaling the important role in the full scope of activities
that take place before, during, and after a disaster. The way to achieve successful
disaster recovery is to implement disaster preparedness.

The terrorist attacks of September 11, 2001 demonstrate many of the dimen-
sions of disaster planning and management, as well as the resiliency challenges that
are involved in managing networks. The terrorist-piloted airplanes that crashed into
the World Trade Center in New York City destroyed major communication hubs
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housed in the World Trade Center itself and its nearby buildings. These hubs were
a core component of the network infrastructure serving lower Manhattan as well as
the broader New York and East Coast area. At exactly the time when significant
network capacity and connectivity was destroyed, a huge surge of traffic volume
hit the network as people tried to reach their loved ones using any and all means
possible, increasing volumes on the telecommunications infrastructure by double or
more. And this volume was not nicely distributed around the USA and the world, but
rather was primarily concentrated into and out of lower Manhattan. We call this phe-
nomenon focused overload. This scenario is a network manager’s nightmare: trying
to handle an extraordinarily high traffic surge when you have less capacity available
to handle the load. The same network that was being used for mass communications
was also being used for many command-and-control activities by police, emergency
management, and government officials, requiring real-time traffic prioritization de-
cisions during the times of peak congestion. During times of peak-traffic volume
on that day, phone calls destined for edge switches (known as “end offices”), which
were known to be damaged and out of service, were restricted from entering the
network and consuming capacity when it was clear that the phone calls could not
complete successfully anyway. Phone traffic, which did not need to travel through
the New York area (e.g., traffic destined from Atlanta to Boston), was redirected
away from New York through the use of network management traffic controls. Yet,
in the face of the enormously disastrous scenario, the network infrastructure did not
collapse despite localized congestion. Ninety-six percent of AT&T’s Government
Emergency Telecommunications Services (GETS) traffic completed successfully
even in the height of the event, AT&T’s network hub was recovered and ready for
service within 48 h, and the New York Stock Exchange and financial industry of
lower Manhattan reopened in less than a week. Quite simply, this rate of recovery
would have been impossible without the “silent heroes” who planned and practiced
disaster preparedness well before that awful day.

A couple of years later, in October 2003, severe wildfires threatened the area
surrounding San Diego, California. One of AT&T’s mission critical network man-
agement work centers was dangerously close to the fire; so to protect its operational
functions, the work center invoked its business continuity plan. Temporary oper-
ations were established at an alternate site several hundred miles away. Network
managers were deployed to the alternate site, operational support system (OSS) ac-
cess was established, and phone calls to the San Diego work center were redirected
so that the staff at the alternate site could do all the mission critical work normally
done in the San Diego work center. This was all done while still running the network,
with no loss of operational functionality during the transition. The work center was
ultimately not damaged by the fire. But if it were, the alternate location was prepared
to operate indefinitely until a permanent replacement could be built.

Hence, the title of this chapter, and for that matter the content of the chapter,
focuses on disaster preparedness, which includes creating, exercising, and ongoing
management of disaster recovery plans. Maintaining a state of readiness enables
quick, disciplined recovery to minimize service disruptions. With good disaster
preparedness, disaster recovery becomes the disciplined management of the exe-
cution of disaster recovery plans.
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Section 14.2 addresses the role of carrier networks as national critical infrastruc-
ture, and the resulting expectations for sustained operational service in the face of
disasters. Section 14.3 reviews the types of considerations involved in sustaining
continuity of operations in a network environment, pointing out that a full opera-
tional continuity program includes much more than simply protecting the network
itself. Section 14.4 provides an overview of the discipline of business continuity
management, including techniques to structure a business impact assessment and
risk-management program.1 Section 14.5 addresses some considerations for design-
ing resiliency into the architecture of the network itself. Section 14.6 addresses
preparations involved when a specific disaster such as a hurricane is predicted.
Section 14.7 reviews the operational activities that come into play once a disaster
happens. Section 14.8 highlights some important technologies associated with dis-
aster recovery. The chapter closes with Section 14.9, a discussion of open questions
and future research to further improve disaster preparedness and resiliency.

14.2 Networks as Critical Infrastructure

Network carriers have a lot of responsibility. The networks provide emergency life-
line communication for tens of millions of customers in the communities the carriers
serve, including capabilities such as contacting fire and police departments or 9–1–1
emergency services. The fact that life and safety are involved makes it absolutely
essential that these services operate continuously in spite of a disaster, because that
is precisely when these services are needed the most.

Carrier networks carry huge volumes of daily communication traffic. In 2008
AT&T, for example, network traffic volume for all Internet Protocol (IP), transport,
and voice services exceeded 16 petabytes per day. While all this traffic is valuable to
those communicating, a relatively small but growing percentage of this huge volume
is truly “mission critical.” Government and other emergency management agen-
cies such as FEMA and the Department of Defense depend on carriers’ networks
to perform the data and voice communication required for command, control, and
communication functions activated to manage disasters.

In addition, as more industries become technology-based, communications net-
works become an increasingly mission critical component of other national “critical
infrastructure” industries, such as the financial sector, and power generation and
distribution. As the Internet backbone serves as an increasingly essential core for
business operations and commerce, and infrastructure industries implement more
electronics-enabled and automated processes, government and industry depend on
the continuous availability of their network infrastructure and the carriers who
provide it.

1 The term “business continuity” is generally used to encompass aspects of planning and managing
operational continuity for any type of operation, and in this chapter is not limited strictly to com-
mercial businesses. The fundamental techniques are equally applicable for government, academic,
and not-for-profit operations. In the government environment, business continuity is often referred
to as Continuity of Government (COG) or Continuity of Operations (COOP).
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14.3 Business Continuity in a Network Environment

Networks are subject to many kinds of threats, some obvious and well-known, others
less obvious but equally as devastating. To characterize the threats, it is helpful
to understand an abstract view of what a network entails. This section describes
three major components: the network itself, network management work centers, and
operational support systems (OSSs).

In simple terms, a network involves links and nodes. Nodes look like comput-
ing equipment housed in buildings of various shapes and sizes, ranging from small
aggregation or regeneration equipment housed in tiny “huts” with a footprint of
only tens of square feet, to huge data centers and central office buildings spanning
tens of thousands of square feet. The links are the connections between the nodes,
which are typically carried at a physical level on fiber cables that are buried under-
ground, under the oceans, or in some cases strung aerially. The AT&T network, for
example, involves more than 9,000 major buildings and another 200,000 smaller lo-
cations. There are about 900,000 sheath-miles of fiber just in the core of the AT&T
backbone, and that does not even include the magnitudes of cabling to connect each
customer to the AT&T backbone.

The network itself is not very useful without the operational functions that
operate 24 � 7 to keep the network running, including maintenance and repair, con-
figuration management, capacity management, and provisioning customer services.
These functions are executed in work centers, which are typically administrative
buildings staffed with network managers on a 24-h-per-day, 7-day-per-week basis.
Work center functions can vary in their mission criticality, usually based on the re-
quirement for these functions to be fully operational in order to keep a production
network functioning. For example, an enterprise might determine that provisioning
of new customer orders can be suspended temporarily at the time of a disaster, in
which case work center functions involved with provisioning of orders might take
days or weeks. By comparison, work center functions directly involved in maintain-
ing network traffic flow and repairing network problems are usually deemed mission
critical, and must be able to recover almost immediately.

These work centers interact with the network itself using operational support
systems (OSSs), software applications, and their associated databases that perform
functions such as alarm management and the tracking of individual work activities
such as orders and tickets. Without the OSS, the people operating out of the work
centers are unable to interact with the network to execute their required functions.
The mission criticality of an OSS is correlated to the mission criticality of the work
centers that use it.

So, a threat to the network can be anything that impacts the nodes and links of
the network itself (whether physically or logically), the work centers and operational
processes executed in them, or the OSS. The list of potential threats is practically
endless, but some examples include:

� Physical damage to network nodes can be due to incidents such as fires and
floods.

� Physical damage to network links. By their very nature of being geographi-
cally distributed and exposed to outdoor conditions, many network components
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(especially fiber cable) are exposed to significant environmental and man-made
threats such as train derailments, ships dragging anchor and snagging an under-
sea cable, earthquakes, or mudslides.

� Widespread and extended loss of electrical power. Since all the electronics in a
network require electrical power, a loss of commercial electrical power can be a
significant threat to the function of a network. The more widespread the power
loss and the longer the duration, the more significant the disaster can be.

� Denial-of-Service attacks, or any other mass traffic event, injects mass traffic
toward specific components of the network, disabling them by overloading them.

� Worms and viruses disable network components or OSS by destroying their logic
or their databases.

� Physical threats to work center buildings and their inhabitants, which require
the inhabitants to evacuate their normal operating environment. Work centers
are subject to the same kinds of physical threats as network nodes (fires, floods,
etc.). In addition, work centers can be impacted by threats that do not necessarily
damage the building, but require the people who work in the building to evacuate
and/or stay out of their normal operating environment. For example, a gas or
chemical leak on the ground or in the air within a building or in the surrounding
geographic area can require rapid evacuation. More severe examples can include
bomb threats, or even worse, intentional attack using chemical, biological, or
radiological weapons or “dirty bombs.”

� Other threats to work center personnel can range from the loss of mass transit
that impacts the movement of personnel between facilities, to a job action rela-
tion to union contract negotiations (commonly known as a “strike”), to a health
pandemic that disables the workforce directly through illness (or death) or in-
directly through the need to care for ill family members or fear of entering the
work environment and becoming ill.

� Failures in operational support systems used to run the network, such as alarm
management systems, ticketing systems, and remote testing platforms. These
systems are subject to many of the same risks as the network itself, such as loss
of power to data centers and other modes of failure to the flow of telemetry, the
server hardware, and the application software.

To achieve a level of network resilience, a comprehensive disaster preparedness and
business continuity program should encompass the physical components of the net-
work itself (e.g., electronics and cabling), as well as work centers and their mission
critical functions, and tools used. One way of representing this is in Fig. 14.1. The
diagram shows a pyramid for each of the three major business continuity compo-
nents: Work Centers, Network, and Operational Support Systems. Each step up the
pyramid shows an increasingly significant recovery mechanism.

Many of these can share common foundational elements, at the base of each
pyramid, which can be applied to any kind of asset, whether it is a work center, a
component of the network, or the operational support systems and databases that are
used to run the network. These include:

� Business Continuity Discipline: the disciplined approach to Business Impact
Analysis and Risk Management that are described in much of this chapter,
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Fig. 14.1 Enterprise business continuity protocol

including the analysis of threats and vulnerabilities, risk mitigation, development
disaster recovery plans, and ongoing exercising of those plans.

� Infrastructure: the technologies required to provide basic environmental and
power conditions to an office. All buildings require power and air handling,
whether they house network equipment such as routers and switches, operational
support system servers and storage equipment, or work space for people.

� People and Process: a broad category covering the operational discipline in ex-
ecuting well-defined procedures, with vigilance and constant attention to the
impact of any action on the network, its services, and its customers.

Above the shared foundation, the specific approaches to achieving business conti-
nuity can differ.

� In the center of the diagram, Network recovery focuses on moving service to di-
verse physical components, which are unaffected by a disaster. This can include
recovery of service on alternate facilities such as backup equipment or alternate
physical paths, or redirection of traffic onto alternative available capacity. Facil-
ity and traffic prioritization can be used to identify high-priority services, so that
these services can be restored first with the least amount of downtime, as is dis-
cussed in more detail in Section 14.7.2. In situations of most extreme damage,
rebuilding of components that are destroyed can be accomplished using special-
ized disaster recovery equipment.

� On the left of the diagram, Work Center recovery involves functional relocation
and assuring the availability of skilled staff to pick up the operations when a
primary work center is rendered unavailable. It can include the distribution of
critical functions into alternative work centers or a telework model, or a full site
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recovery, in which a dedicated backup site is maintained for purposes of recov-
ering all of a work center’s mission critical functionality.

� On the right of the diagram, Operational Support System recovery focuses on
restoration of the applications in backup data centers, and also involves recovery
of databases so that any data loss is minimized. It includes backup servers to re-
cover from hardware failures, data backup and storage to protect against loss of
data, and application-level recovery through diversifying the platform into mul-
tiple data centers.

14.4 Business Continuity Management

So, you have decided that you want to be prepared for disasters and resilient against
their impact. Where do you start? The almost limitless list of potential disasters
and the breadth of assets to worry about can make the task seem unwieldy. While
it would be nice to protect everything from any disaster, that is virtually impos-
sible. The key is understanding the most significant problem areas and effectively
prioritizing investments in mitigation. The following terms are useful foundation to
provide structure to this process.

Threats are factors that have the possibility of causing damage. Threats can take
many forms, including physical, logical, economic, political, or social. Examples of
threats include weather-related disasters such as hurricanes, floods, and tornadoes,
financial disaster, disease pandemic, and the outbreak of war. One way of reducing
the risk is to eliminate or reduce the possibility that a threat will occur. For example,
a medical vaccine can reduce the possibility of a health pandemic occurring. Often,
it is impossible to actually reduce or eliminate the probability of many kinds of
threats, such as natural disasters; so the focus is on protection even in spite of the
existence of the threat.

Vulnerabilities are characteristics of an asset that make it susceptible to damage
by a threat. If it is difficult to eliminate a threat, another way of reducing an overall
risk profile is to eliminate or reduce an asset’s vulnerabilities. A classic example
of reducing vulnerability is sandbagging to prevent the impact of a flood. The high
water will still rise with the same probability whether or not there are sandbags,
but the sandbags reduce vulnerability by physically holding back flood waters and
protecting buildings, people, and equipment from damage.

Impact is the magnitude of damage to an asset in the event that a specific threat
exploits a vulnerability. If you cannot adequately address a risk by eliminating
threats and vulnerabilities, it can be possible to reduce risk exposure by providing
mechanisms to control the impact. Continuing with the flood example mentioned
above, an example would be providing pumps and other equipment to move water
away once the flood waters have breached a vulnerable area.



524 S.R. Bailey

14.4.1 Know What Is Important

The first step is to enumerate all the assets critical to sustained operation. Assets
can be physical equipment, people and processes, customers, databases, or opera-
tional support systems. Assets can also include external assets including third-party
suppliers and equipment vendors.

Not all assets are created equal, of course. An important step is to understand
which assets are mission critical, meaning that it is impossible to sustain operation
effectively without them. Assets that are not quite mission critical, but are important
to recover within reasonable time can be assigned ratings of lower importance. Once
assets are prioritized, this enables attention to be focused on those with the highest
priority.

14.4.2 Analyze Risks

Business Impact Analysis is a formal process to provide structure to the
identification and prioritization of threats based on understanding the potential im-
pact to an operation or business. It starts with identifying credible threats that could
cause an interruption to an organization’s business. Each asset can be evaluated
against each threat to determine whether that asset has a vulnerability associated
with the threat. Those vulnerabilities can be evaluated and scored quantitatively or
qualitatively on three measures:

� The probability that the threat will exploit the vulnerability
� The magnitude of the service impact if the above happens
� The ability to control the impacts.

These scores can then be rank-ordered and summarized into a risk matrix, such as
the example shown in Fig. 14.2. This matrix is one of the most important elements

Fig. 14.2 Risk matrix example



14 Disaster Preparedness and Resiliency 525

of a risk assessment, and is used to provide a prioritization in support of building
plans to mitigate the most critical risks. In this example, the weight .W / is a judg-
ment of the overall level of importance on a scale of 0–1.0, the probability factor
.P / represents the likelihood that the vulnerability is exploited by a threat, the ser-
vice impact .S/ is the magnitude of the impact if a vulnerability is exploited, and
controllability.C / represents the ability to control the impacts. These variables are
then combined (in this case, multiplied, though other means of combining are pos-
sible) to provide an overall score, with a high score indicating the risk factor that
poses the highest exposure, and therefore warranting the most focused attention to
mitigate.

14.4.3 Develop a Plan

Risk mitigation involves identifying ways to reduce risk, by eliminating or reduc-
ing threats, eliminating or reducing vulnerabilities, or reducing impact by providing
control mechanisms. The various proposed solutions can be evaluated by their over-
all impact on reducing risk, feasibility, and time and cost to implement.

When addressing the recovery of any asset, whether it is a network itself, a sup-
port system, or a work center that operates the network, two important variables can
be considered when designing risk-mitigation solutions.

� Recovery Time Objective (RTO): This is measured as the targeted duration of time
between the occurrence of a disaster and the time that functionality is restored.
For the network itself, this is measured as the outage downtime. For a work cen-
ter, this would be the time between the declaration of a disaster impacting the
work center and the recovery of its functionality in an alternate arrangement at
one or multiple backup locations.

� Recovery Point Objective (RPO): This involves the amount of data that is ex-
pected to be lost as a part of the recovery. It can be thought of as the point that
you can roll back to and recover all critical configuration data. It is measured as
the time between the start of the disaster and the time before the disaster when the
databases and configurations were last updated and able to be recovered. For net-
work components, this translates into the amount of provisioning activity prior to
a disaster, which is lost after the network itself is recovered, and therefore must
be reprovisioned.

RTO and RPO can be depicted visually in Fig. 14.3. Ideally, these variables would be
near zero, indicating instantaneous recovery with no loss of data. Typically, shorter
RTO and RPO require more expensive solutions. So, definition of RTO and RPO ob-
jectives require very careful consideration of exactly what an operation really needs
and how much loss it can handle, based on the impact of downtime to the business.
Once defined, they also provide a very straightforward measurement, useful during
drills and exercises to evaluate the adequacy of the execution of disaster recovery
plans.
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Fig. 14.3 Timeline of a disaster

Fig. 14.4 Risk mitigation example

Frequently, an enterprise faces choices between alternative mechanisms to miti-
gate risk, which can vary in cost to implement and feasibility. One way to assess
risk-mitigation options is to quantitatively compare their relative impact to the
overall risk exposure. An example is shown in Fig. 14.4. Assume that there are
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two options for mitigating risks, portrayed in this figure as Plan A and Plan B.
In this case, Plan B significantly improves the overall risk exposure compared to
Plan A. Once risk-mitigation strategies are selected and implemented, a full disas-
ter recovery or business continuity plan should be documented, outlining the exact
procedural steps that should be taken. Anyone involved in managing or implement-
ing the disaster recovery or business continuity plan needs to be advised and fully
trained on what they are required to do in support of the plan.

14.4.4 Test and Manage the Plan

Conditions constantly change. New threats emerge as world events change. Asset
bases evolve. New technologies are introduced. People move out and move in to
organizations. To sustain a state of preparedness, life-cycle management of disaster
recovery and business continuity plans is extremely important.

One aspect of life-cycle management is maintaining up-to-date documentation
of disaster recovery and business continuity plans. Contact information, process up-
dates, and other information must be kept current.

Another aspect is training and communication, to maintain overall awareness as
well as more detailed training on specialized duties as people transition in and out
of organizations. People need to be so familiar with what they need to do after a
disaster that when it happens, they do what they need to do almost by habit.

Finally, practice, practice, practice! To maintain a state of preparedness, there is
absolutely no substitute for actually invoking a business continuity and disaster re-
covery plan and seeing how it works. Simulate the actual implementation of disaster
recovery and business continuity plans. Make it as real as possible.

� If equipment is involved, use the equipment and make sure it works.
� Measure RTO and RPO against organizational objectives.
� Make sure people are trained, including newcomers to an organization.
� Record problems and findings.
� Create a list of improvements and changes identified as a result of the exercise,

with clear ownership and accountability.

Sometimes, it is impossible to actually test a business continuity and disaster recov-
ery plan. Sometimes, the scenario being tested is too broad in scope to feasibly be
exercised. Sometimes, the act of practicing the loss of functionality and the failover
to an alternate arrangement introduces undue risk to customer service and network
traffic. Where it is impossible to actually practice a real recovery situation, it might
be necessary to practice on a testbed environment separate from the production net-
work, or use traffic simulations based on mathematical models of network traffic
across a network topology. Walk-throughs and “table-top exercises” can be used to
approximate the movement of functions like work centers in a disaster scenario.
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14.5 Design for Resiliency

Being prepared to handle a disaster scenario starts with the design and architecture
of the network itself. If network traffic is impacted by the failure of a component,
that component is identified as a single point of failure (SPOF), and is a point of
high vulnerability. Any component can be an SPOF, including network compo-
nents, physical cabling within a building, long-distance fiber segments, undersea
cable systems, power substations, or power cabling within an office. A component
that is designed to have a backup or alternate arrangement, so that network traffic
can persist even if the component fails, is said to have diversity. Generally speaking,
the more simultaneous failures a particular platform can handle without impacting
traffic, the more resilient is the network design. Applications with extremely high re-
quirements for uninterrupted traffic flow under any circumstance, in a global design
that contains many components spread across a wide variety of geographic environ-
ments, have been designed with eight or more layers of protection (meaning that the
architecture can support seven simultaneous failures without impacting traffic flow).

It is painstaking work to design a resilient network, systematically eliminating
all SPOFs, ranging from physical fiber diversity to software applications and the
servers on which they ride. Traffic simulations based on specific real-time network
topology and traffic patterns, such as those described in Chapter 2, can simulate the
impact to network traffic under various failure conditions across a network topology.

Diversity and redundancy also apply to data storage and backup. Mission criti-
cal data, such as circuit layouts, routing policies, and customer configurations, can
be replicated and stored in multiple diverse data centers, so that the data can be
recovered even in spite of the complete loss of an entire data center and all the
equipment in it. Data recovery is so important in the financial industry that it has reg-
ulatory guidelines issued by the Financial Industry Regulatory Authority (FINRA),
requiring explicit plans for data backup and recovery (Financial Industry Regulatory
Authority, FINRA Manual, section 3510).

Because of the significant dependence on uninterrupted power required to op-
erate a carrier-grade network, carrier-grade network design normally includes the
following elements:

� Completely redundant power cabling in major network buildings, with diverse
building entrances and connectivity to geographically separated electrical sub-
stations on the power grid.

� Battery backup, with near seamless transfer to battery power.
� Diesel or natural gas-powered generators with autostart capabilities and switch-

gear so that the generators activate even if the office is unstaffed. Because
batteries have limited storage, they are not sufficient for long-term power out-
ages, lasting days or weeks. With proper maintenance and a well-run refueling
program, generators can run almost indefinitely. Carrier network buildings have
been known to operate for months on generator, for example after significant
hurricanes.
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� A typical power design engages the batteries immediately on loss of commercial
power. The batteries provide power for the first few minutes until the generators
can ramp up and are ready to carry the load, and which time the load switches
over to the generators for longer-term service.

� Remote equipment installed in small nodes outside of major network offices pose
significant challenges in the area of power protection. These small nodes serve
as aggregation points or signal regeneration or amplification, and can number
hundreds of thousands in a large network. The cost to install permanent genera-
tors to all these locations can be prohibitive, so these types of nodes often rely on
battery backup, followed by dispatch and hookup of portable generators to power
the nodes.

A work center without a business continuity plan can be an SPOF as well. Busi-
ness continuity decisions factor into the design of work centers and their operational
support systems. There are many approaches to designing work center business con-
tinuity. One possibility is to design a backup site, geographically distant from the
primary work center location, which exists solely for the purpose of recovering the
primary site. Another possibility is to build two or more centers that share the work-
load under normal operating conditions, with mechanisms to flow work inputs away
from a center that is unable to operate due to a disaster, e.g. by redirecting phone
calls, alarms, tickets, or other work drivers. Since many work centers perform multi-
ple functions, another approach is to flow each function to an alternate arrangement,
without necessarily moving all the work in the center as a whole to another work
location.

The operational support systems and their associated databases used by employ-
ees in a work center should not be SPOFs either, and the time to work SPOFs out
of the system architecture is during design and installation. Typically, this involves
installation of servers at geographically distant data centers, with software designed
so that it can fail over from one server or site to another.

14.6 When You See Disaster Coming

In many cases, we are lucky enough to see an impending disaster before it happens.
For example, we can watch hurricanes form and travel across the water, and we
are glued to the weather forecasts, which predict precisely when, where, and how
severe the storm will be. This advance warning gives us precious lead time to take
very specific preparatory actions, way beyond the broad planning and preparedness
discussed so far.

It is helpful to maintain a checklist of pre-event activities to perform once a spe-
cific disaster risk is identified. Here are a few kinds of activities to do in preparation
for a disaster.

Batten down the hatches. Take action to protect assets from physical damage. This
can include sandbagging, boarding up windows and doors, and closing marine doors
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to prevent floodwaters from entering a building, installing chicken wire around
roofing to help hold the shingles on, or welding manholes shut to prevent unau-
thorized access by those intending to do harm in preparation for mass political
demonstrations. Work centers that are in harm’s way might elect to activate dis-
aster plans and move mission critical functions to other facilities outside of the risk
area.

Lock down the network. Any time the network is being “touched,” it is being put
at risk. Any change can introduce a new problem. People can make mistakes, and
software changes can introduce new bugs. During a disaster, the focus should be
on handling the disaster, and any other problem is a distraction. The idea here is
to call off as much unnecessary work as possible, planned or routine maintenance,
software upgrades, etc., so that as much effort as possible is available to focus on
handling the disaster itself. The scope of such a lock-down should include all assets
at risk of damage, as well as any assets that might be needed to restore service due
to other damage.

Fix everything possible. Anything that is broken in the network can be thought of
as capacity that is not available to use, even if it is not directly service impacting.
For example, if a line-card in a router is failed, but a redundant card is being used
to sustain service, the failed line-card is not available to restore service in the event
that the redundant card fails. Carriers call this situation a simplex condition, and
all simplex conditions should be remediated before the disaster strikes. Even if the
particular simplex component is not directly threatened by the disaster itself, disas-
ters often result in difficulty of basic movement of equipment and suppliers, so the
component would be difficult to replace even if it fails due to nondisaster-related
conditions. Besides, that capacity might be needed to restore other service.

Know what is at risk. Take stock of what physical components (buildings, equip-
ment, and cable routes) are at risk, and what services and what customers are riding
on those components. When simulation tools are available, simulate the failure of
those components to determine the potential service impact, and take preventive
action where possible.

Move services out of harm’s way. In many cases, services can be moved to alternate
facilities and nodes that are not at the risk of damage, for example, by ring-switching
synchronous optical (SONET) facilities or assigning an extremely high logical cost
to IP backbone connections that are carried on fiber paths likely to sustain damage.
The advantage of moving traffic in advance of an impending disaster, rather than
waiting to see exactly what is damaged and triggering an automatic failover, is that
the traffic move can be implemented under more controlled conditions, which can
result in less overall service impact.

Stage emergency equipment and supplies. If repair and rebuilding is likely, identify
the equipment and supplies that would be needed and stage them in preparation
for deployment after the disaster. But be careful, you do not want your emergency
supplies to be too close, or they can be subject to the same threats as your primary
components. It can be prudent in some cases to leave the equipment in protected
warehouses, to be dispatched after the threat has passed.
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Preplan the recovery. Any design work that can be done in advance of a disaster
eliminates precious time lost after a disaster doing “engineering on the fly.” In some
cases, network traffic can be rerouted to alternative equipment, which has been
permanently installed in the network. For example, an IP-based application can
reside on servers that are installed into geographically diverse data centers, with
data backup and failover capabilities. In other cases, especially where connectiv-
ity needs to be re-established, equipment needs to be deployed near the disaster
area. For this kind of scenario, AT&T’s Network Disaster Recovery program uti-
lizes software that preplans exactly which equipment and which trailers need to be
deployed, with software that provides a design for the specific connections between
the trailers and preprinted labels for the intertrailer cabling. In addition, configura-
tion management software maintains current configurations of each component in
the production network, so that the configuration can be downloaded en masse so
that the trailerized disaster recovery equipment can take on the identity of the dam-
aged equipment without the need to rebuild the mappings and configurations from
scratch. This configuration management alone saves weeks (and potentially months)
of restoration time.

Communicate to customers. In advance of a disaster, customer communication
tends to focus on actions being taken to protect their service and to inform on special
communications that the carrier will implement to keep their customers apprised as
the event unfolds. It can be a calming influence for customers to know that their
service is in professional hands and that the carrier is acting proactively and profes-
sionally to protect the network and customer traffic.

14.7 When Disaster Strikes

Regardless of the best efforts to prevent it, eventually a disaster will hit a network.
That is when the network management team kicks into high gear, focusing all their
energies on keeping the network alive, restoring any service that has been impacted,
and addressing customer needs.

14.7.1 First and Foremost, Exercise-Disciplined
Command and Control

Most network carriers have a command center or emergency management center
that exists for the primary purpose of managing disasters of various sizes. AT&T’s
command center is its Global Network Operations Center (GNOC), as shown in
Fig. 14.5. The GNOC has a military-style command-and-control structure, com-
plete with predefined threshold-triggered actions and specific 24 � 7 duty officer
assignments. A fundamental component of most command-and-control processes is
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Fig. 14.5 AT&T Global Network Operations Center

an emergency management bridge, a secure conference call that serves as the focal
point for critical communication of status, obtaining resources, and providing over-
all strategic priorities and direction. Kicking off this bridge is normally the very first
order of business involved with almost any disaster recovery activity.

A good command-and-control process is structured with predefined actions
based on identified scenarios including outages, incidents, attacks, crises, indica-
tors, and threats. It should cast a wide net of information sources, including network
management, government, customer, and other sources of information.

The control bridge serves a number of purposes, including:

� Ensuring proper flow of information and response decisions across the company
� Approving tactical plans and making critical decisions
� Ensuring that adequate resources are provided
� Coordinating incident response across organizations
� Assessing impact in near real time
� Prioritizing restoration
� Authorizing communications, including press releases and customer notifications.

Every person participating on the control bridge should have a specific assign-
ment. Participants range from various functional organizations within a large car-
rier’s company, including network operations, real estate, public relations, customer
servicing, and security. Because 24 � 7 coverage and immediate response is funda-
mental to the success of a command-and-control structure, reachability is essential,
and delegation is required for even brief times when a bridge member might
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be unreachable. The notification procedure itself requires significant preplanning,
with the command center knowing alternate reach information, knowing personal
schedules and delegations for all bridge participants. When an incident occurs, all
participants whose functions are potentially involved should be notified to join the
bridge, and those not required can be dismissed once the situation is understood
sufficiently.

It is very helpful to separate those managing the command-and-control structure
from those directly involved in fixing a problem. This is for two reasons. First, it
enables those fixing a given problem to remain focused on their task of restoring
service, without getting distracted by tasks such as crafting communications docu-
ments. Second, it is common for those extremely close to a problem to lose sight of
the bigger picture, while a neutral oversight function can more easily see the overall
view of priorities, service impacts, and response activities. Liaison functions often
are established to bridge between those directly involved in repair and the command
center.

Once a disaster situation is stabilized, the same command-and-control structure
can take the lead in analyzing the event and capturing lessons learned after the
fact. Every incident is an opportunity to learn, and lessons can range from pre-
vention of future occurrences to improved response if the event ever happens again.
Lessons learned can be translated into permanent improvements, including procedu-
ral changes and the creation or enhancement of preparedness checklists. It is helpful
for these improvement opportunities to be captured and formalized on an action
register, with clear ownership and accountability and time-bound expectations for
implementing the identified improvements. Placing oversight of the implementation
of the improvement program under the auspices of the formal command-and-control
structure tends to ensure that the improvements are done quickly and completely,
which ultimately makes the organization and the network more resilient in the face
of future disasters.

It is important to consider resiliency of the functions and tools used for command
and control, such as work centers, operational support systems, and conference
bridges. They can themselves have single points of failure and be subject to threats.
At a minimum, a strong command-and-control structure should have alternate
backup notification and communication mechanisms, in case the primary mech-
anisms are failed. Backup arrangements can range from basics such as alternate
conference bridges using geographically separated equipment, through to extreme
cases such as radio backup in case all commercial telecommunications are failed.

14.7.2 Manage Traffic Congestion

Many disasters involve some form of traffic congestion, which is most simply de-
scribed as too much traffic trying to go through too little capacity. Network nodes
such as routers become congested by overrunning limits such as CPU capacity or
memory. Links between nodes become congested when the traffic flowing down
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them exceeds the bandwidth of the connection. Just like a traffic jam on a highway,
network congestion can disable network components that are overloaded, spread
outwards to adjacent network components, and ultimately bring a network to its
knees if not properly managed.

Traffic congestion is often an immediate after-effect that requires immediate ac-
tion on the part of network managers. The basic approach is to service as much
network traffic as possible, even if that means making difficult decisions to impact
some traffic to keep the network from failing under the weight of the load. Traffic
controls have developed on historical circuit-switched networks over decades, and
include capabilities such as traffic redirection and bandwidth management. In to-
day’s IP networks, traffic adjustments require changes to traffic filters and routing
policies, but can be utilized to achieve a similar goal.

In making traffic manipulation decisions, basic traffic management principles
should be followed to protect the network

1. Utilize all available resources. During a congestion situation, all network capac-
ity should be put into service to handle as much traffic as feasibly possible. To do
this, traffic managers observe load conditions on nodes and links, simulate con-
figuration changes, and implement routing changes to adjust traffic flows away
from congestion bottlenecks and toward underutilized capacity. In the Septem-
ber 11 example cited in Section 14.1, there was no need for traffic traveling from
Atlanta to Boston to go directly through New York because it was not originat-
ing or terminating there. Because network capacity in New York was congested
and there was sufficient capacity outside of New York to handle additional load,
network managers redirected this “via” traffic away from the congested area, so
that all the network capacity in the New York area was being utilized to serve
directly the traffic needing to get in or out of New York.

2. Keep all available resources filled with traffic, which has the highest probability
to result in effective communications. In this principle, “effective communica-
tions” simply means that the traffic reaches its destination successfully. If a
network manager has information that the destination is not able to receive traf-
fic, there is no use consuming any network capacity to carry the traffic across the
network only to fail at the end. Network managers attempt to restrict this traffic
as it enters the network, so as to minimize unnecessary consumption of capac-
ity for unsuccessful communications. In the traditional voice network, network
management controls include “cancel-to,” which are applied as traffic enters the
network and direct the originating switch to fail phone calls destined for a ter-
minating “end office” or terminating edge switch, for example if that switch is
known to be down. Such controls do not yet exist in the IP network, other than
brute-force application of things like Access Control Lists (ACLs), but they are
a future opportunity as discussed in Section 14.9.2.

3. In case of congestion and/or overload, give priority to traffic that makes the most
efficient use of network resources. The more network resources used to deliver a
unit of traffic, the less overall traffic can be delivered on the available capacity.
To apply this principle, network managers like to exercise directional bandwidth
controls to enable traffic out of a disaster area, which greatly reduces the traffic
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demand into the area. In the voice network, these controls can be applied to
restrict fixed percentages of traffic headed directionally from one switch to an-
other. This kind of control remains a future opportunity in IP networks of today.

4. Inhibit traffic congestion and prevent its spread. Ideally, all offered load would
be completed, and that is indeed true at low and moderate load levels. At these
levels, the entire offered load is easily completed. As the offered load increases
further, network performance begins to degrade as the network components be-
come more consumed in administrative tasks required to keep themselves up and
running. Hence, the curve begins to drop off at high offered load levels, and not
all that load is completed successfully. If offered load continues even further, per-
formance continues to suffer gradually until a “break point” is reached, the load
simply overwhelms the equipment, and the equipment becomes unable to service
any traffic at all. Once this point is reached on one component on the network,
the congestion spreads extremely quickly and other components are subsequently
vulnerable to the same phenomenon. This scenario can get quickly out of hand.
The network manager’s task is to deliver traffic along this curve, completing as
much traffic as possible on each network component without letting any compo-
nent “fall off the cliff.” This can mean intentionally failing some traffic so as to
protect the broader infrastructure, which because it entails failing some amount
of customer service, should be applied as much as is needed but as little as possi-
ble. While TCP offers endpoints the ability to throttle traffic based on perceived
congestion between them, the underlying IP network operates largely on simple
notions of links being up or down, with no ability to gate traffic volume in re-
sponse to congestion. So congestion-related controls remain an opportunity for
development in IP networks.

To support the prioritization of emergency communications, the US Department of
Homeland Security works with network carriers to implement programs to support
the prioritization of emergency communications for Government, Defense, emer-
gency responder, and critical infrastructure communications. These include:

� Telecommunications Service Priority (TSP) is a program, which enables indi-
vidual circuits on a backbone network to be identified as mission critical. This
enables the circuit to be prioritized for restoration. Referring back to Fig. 14.1,
TSP is an example of prioritization at the facility level.

� Government Emergency Telecommunications Service (GETS) has existed for
many years on the circuit-switched voice network, and enables individual phone
calls to be identified as “emergency” and prioritized above others when capac-
ity is limited. Enhancements to GETS include expansion to Internet Protocol
and Voice over Internet Protocol services. In Fig. 14.1, GETS is an example of
Traffic-level service prioritization, since no circuits are actually restored, but in-
dividual traffic sessions are identified and prioritized for first treatment within the
available capacity limits.

� Wireless Priority Service (WPS) operates similar to GETS, except that the voice
calls that it operates on are wireless, cellular phone calls.
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14.7.3 Restore First, Repair Later

When we encounter any type of problem, it is human nature that we try to diagnose
and fix it. This is not necessarily the best course of action, in that diagnosis and
repair can take a long time, during which customers are unable to use the network
for their communication needs. An experienced network manager will keep in mind
that the first priority is to restore customer service as quickly as possible, regardless
of whether the root cause of the problem was found and fixed. In fact, often it is pos-
sible to restore customer service using alternate restoration mechanisms much faster
than diagnosing and fixing the original problem that caused the service outage in the
first place. Because of the long time that can be involved in repairing widespread
damage, service restoration is almost always the preferred solution to bring back a
network’s ability to handle traffic immediately after a disaster. Because restoration
takes advantage of equipment already deployed and ready to use, it requires little or
no manual work, and can often be done remotely by network managers in a work
center far from the disaster area. It takes a seasoned network manager to ensure that
adequate attention is put toward restoration options, whether designed into the net-
work architecture or designed in real time at the time of the disaster. This can be in
parallel to (or instead of, if the technical expertise and staffing is limited) working
on permanent repairs.

14.7.4 Replace Damaged Equipment

In the event of a “smoking hole” scenario in which network equipment is damaged
and must be replaced, temporary recovery equipment can be an extremely valu-
able solution to restore the network and its services temporarily until permanent
replacements can be acquired and installed. Since restoration time is often extremely
critical, here are some steps to shorten the time it takes to deploy and configure this
equipment:

� Procure the equipment in advance. This eliminates any time lost in the purchase,
manufacture, and shipping of the equipment.

� Mount the equipment in mobile deployable units. Large network carriers can
deem it worthwhile to invest in equipment built to be transportable and dedi-
cated to the purpose of disaster recovery. Network equipment can be mounted
into mobile units that are designed to operate like “data centers on wheels,” com-
plete with self-contained power, cooling, and racks. These can be tractor-trailers
that can be transported by truck, or fly-away containers that fit into airplanes.

� Ensure the recovery equipment is in a constant state of readiness. Check the
equipment regularly and perform preventive maintenance on it. If the produc-
tion network is being upgraded, for example to new software releases, then
upgrade the recovery equipment along with the production network equipment,
so that it matches the equipment it would be replacing as closely as possible.
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Restoration equipment can be connected into monitoring systems for ongoing
alarm management, so that any problems in the equipment can be detected and
remediated, to ensure that all of the equipment is known to be active and opera-
ble at all times. All this work ensures that readiness saves valuable time when a
disaster strikes.

� Maintain current, complete, and accurate backup files for all equipment con-
figurations. These backups downloaded into temporary restoration equipment,
enabling it to take on the identity of the equipment it is replacing without spend-
ing additional time configuring the equipment from scratch.

� Preplan network designs. Even if replacement equipment is readily avail-
able, precious time can be lost designing the architecture of the replacement
solution. Preplanned designs, or software support for ad hoc designs, can reduce
this time and shorten the overall recovery.

14.7.5 Open a Customer Service Command Center

Whether or not a disaster impacts a network customer’s service, very often cus-
tomers will have special needs that must be channeled and prioritized. Sometimes,
customers need to report network outages. Other times, even without a network out-
age, customers have new demands on the network, such as additional bandwidth
requirements to handle increased communication needs, or the provisioning of new
services to deal with relocation of customer data centers or administrative offices.
A customer service command center can accept all the customer needs, funnel them
into appropriate channels, prioritizing as needed, for example to ensure that national
security, emergency management, and critical infrastructure needs are handled first.
This command center can also service as a bidirectional communication interface
between customer service or sales teams and the network managers, so that cus-
tomers can obtain timely and accurate information about restoration and recovery
activities taking place.

14.8 Technologies

A wide variety of technologies play an important part in disaster preparedness and
management for networks.

14.8.1 Restoring Connectivity

Whether network cabling can be terrestrial (i.e., buried underground), aerial
(i.e., strung along utility poles), or undersea, all cabling is exposed to many
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environmental threats. One of the most common types of damage to networks
is the loss of physical connectivity due to cable damage. A number of technologies
are available to restore connectivity while the cable is undergoing physical repair.
These include:

� Cell Sites on Wheels (COWs) and Cell Sites on Light Trucks (COLTs) are often
deployed in disaster areas to bolster a wireless network’s capacity. These operate
exactly like a permanent cell tower, except that they are mobile.

� Point-to-point radio technologies: A variety of technologies using licensed and
unlicensed spectrum, which can be chosen based on distance and speed re-
quirements. Typically, these systems are used to establish a connection to a
hop-on point onto the network backbone. An advantage of these technologies
is that they can be portable units, easily moved, and quickly installed. However,
they frequently require line-of-sight, and can be impacted by the same kinds of
conditions that impact visibility (i.e., severe fog, foliage). Also, they typically
do not provide connectivity over long distances, though in some cases multi-
ple radio connections can be connected end-to-end to achieve somewhat longer
connections.

� Satellite communications: Portable satellite base stations, for example mounted
into vans or trucks, can be deployed to establish network connectivity. Because
satellite communications can be widely used across any geographic area and
can be quickly configured, they are frequently used in the earliest stages of a
disaster. However, delay conditions can make satellite communications infeasible
for applications that are subject to latency.

� Free-space optics: This emerging technology involves laser-based optical con-
nectivity. But unlike traditional fiber-optic solutions, the laser travels across air
instead of glass fiber. Free-space optics offers similar benefits of point-to-point
radio solutions, with the additional advantage that the optical connection can sup-
port much higher data rates. However, connectivity can be interrupted if anything
disrupts line-of-sight between the laser transmitter and the receiver.

14.8.2 Restoring Operational Support System

Essential to the recovery of operational support systems is the ability to access
the data used by these systems. Databases are absolutely critical to network man-
agement, used for functions such as recording tickets, maintaining the network
inventory, and storing usage statistics for billing purposes. Remote data storage en-
ables the recovery of any data despite the loss of primary data storage mechanisms.
A number of technologies are available for remote data storage, ranging from ma-
ture technologies such as tape backup through more recent technologies such as disk
mirroring and replication for more continuous, real-time remote data storage.

Another dimension of OSS recovery is the recovery of the servers and software
applications. This can be accomplished through failover on alternate equipment,
ideally installed in data centers that are geographically separated from the primary
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servers. Failover can either be triggered manually or automatically, with automatic
failover typically involving less downtime because of the speed of response. Emerg-
ing capabilities such as virtualization support more dynamic allocation of comput-
ing resources to apply toward applications needing additional computing power,
whether it be due to a surge in extraordinary demand or physical loss of primary
computing power.

14.8.3 Restoring Power

Another very frequent form of damage to networks is the loss of power. Some tech-
nologies available to restore power include:

� Portable generators: These can range from small units like homeowners might
purchase for personal use, to large units with higher power capability and hauled
by truck.

� Permanently installed generators: These are especially suitable when power
demands are very high, and the generators themselves are very large. Some per-
manently installed generators can operate off natural gas, eliminating the need
for refueling as long as the natural gas supply is not interrupted. This is an ap-
pealing option because movement of people and supplies can be very difficult in
a disaster situation.

� Batteries: Since batteries can only provide power until they are discharged, they
are normally used to support network equipment only temporarily until gener-
ators are able to meet the power requirements. When generators are installed
permanently and with autostart capability, batteries are expected to support the
equipment for only a few minutes, until the generators are activated. At this point,
specialized control equipment can transfer the load from the batteries to the gen-
erators without interruption to the equipment.

14.8.4 Enabling a Safe Work Environment

When chemical, biological, or radiological agents are involved in a disaster, a net-
work provider might need to have people working on the network itself, repairing
or rebuilding network electronics and cabling, while also cleaning up these dan-
gerous agents. Often, a subset of the network operations team is established as a
“Hazmat Team,” trained on how to operate in the presence of hazardous materials,
using special gear.

� Decontamination units focus on protecting people by removing dangerous agents
from them. They are dispatched to the “warm zone,” which is defined as the
area between the “hot zone” where the agents are prevalent and the “cool zone,”
which is safe for people to operate. People enter the unit from the hot zone,
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Fig. 14.6 Chemical, biological, radiological, or nuclear response

go through various stages of being “hosed down,” and leave to the cool zone
with replacement clothing.

� A wide variety of protective gear can be used by people who need to operate
within an area with environmental hazards. These can range from simple paper
air filtering masks to fully protective suits and self-sustaining breathing equip-
ment, such as those shown in Fig. 14.6.

14.9 Open Questions/Future Research

14.9.1 Improving Predictability

Looking ahead, the most exciting opportunity in the area of disaster preparedness
and resiliency is technology to improve the predictability of disasters. It is always
easier to manage a disaster when you know it is coming. A surprise is always harder
to manage than a predicted event. Technological advances can take what is a surprise
today and make it a predicted event tomorrow.
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To see how important predictability can be, one need only look back in history at
the evolution of hurricane prediction. Weather forecasting was almost nonexistent, a
100 years ago, so hurricanes could not be predicted or tracked. This is largely what
caused the extreme deadliness of the famous Galveston hurricane of 1900, in which
6,000 people died. Earlier that day, life seemed normal on this small Texas island,
and the weather deteriorated so quickly that it was impossible to evacuate or make
any preparations before the storm hit.

Now, with advancements in weather-forecasting technologies, we can watch hur-
ricanes form from their earliest stages as tropical depressions thousands of miles
away from land. We can track their path and predict the location and severity at
landfall. This provides precious time to take precautionary action.

Our opportunity space for future research is to consider “surprise” disasters that
can happen today, determine leading indicators and signatures of those events, and
provide the measurement and alerting capabilities so that we can get warning in ad-
vance. The possibilities are practically endless, and can include software bugs, cyber
attacks, earthquakes, or health pandemics. In almost all cases, the essence of predic-
tion is complex data mining and correlation to detect underlying patterns, trends, and
anomalies in the earliest stages of the incubation of a potential disaster. In the case
of cyber attacks, the data sources can include network traffic patterns. Earthquake
prediction could involve analysis of seismological data. Health pandemic predic-
tion could involve analysis and correlation of leading medical indicators, such as
medication purchases, emergency room visits, and test results.

14.9.2 Managing Traffic

Another exciting research opportunity is in the area of management of Internet Pro-
tocol traffic flows to help manage extreme traffic volumes and congestion conditions
that arise during disasters. We have learned that when a network is used for lifeline
and safety communications as well as flow of critical information, it is impossible
to engineer a network to handle the extraordinary volumes and patterns that occur at
the time of a major disaster. This is exacerbated even more when the same network
experiences any loss or damage to capacity. Network managers need the ability to
prioritize traffic and control the flow to avoid congestion conditions. These capabil-
ities are largely “brute forced” in today’s IP network. Technological advancements
to provide intelligent traffic routing and congestion management capabilities can
dramatically improve network resiliency moving forward.

14.9.3 Other Opportunities

Technology advancements will also continue in areas that shorten the time to design
and implement a disaster recovery solution. Software to provide specific engineering
designs to address unique scenarios at the time of a disaster can shorten the design
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time. Configuration management software can improve the ability to maintain real-
time configurations offline, which reduces the time it takes to recover service on
backup equipment and minimizes any loss of data. Even improvements on cabling
and physical connections can reduce recovery time, by providing quick-connect
mechanisms that reduce slow manual processes such as splicing and wiring.

14.10 Conclusion

Disaster recovery starts with disaster preparedness. To achieve and sustain network
resiliency requires significant investment of effort and financial resources, starting
way before an identified disaster is imminent. It starts with the earliest phases of
technology selection and network design, and continues through installation and on-
going operation. It means understanding risks and vulnerabilities and making sound
business choices. It also involves disciplined execution of disaster recovery plans,
once a disaster strikes.

Because of the significant investment of effort and financial resources involved,
the message about importance of business continuity and disaster preparedness
needs to start from the very top of the company. Formalizing a governance pro-
cess, instituting standards and policies, and establishing a dedicated and empowered
planning function of business continuity professionals are all important steps toward
achieving a resilient network.

14.11 Best Practices

Below are the key messages of this chapter, captured into a brief summary of best
practices to keep in mind as you develop your approach to disaster preparedness and
resiliency.

Disaster Management and Resiliency “Best Practice” Principles

� Understand which assets are truly mission critical, and focus planning
efforts accordingly

� Prioritize investments using a risk-assessment methodology which quanti-
fies probability, impact, and ability to control outcomes

� Institute disciplined command-and-control capabilities
� Practice disaster management plans and use the drills to identify improve-

ment opportunities
� Provide ongoing life-cycle management attention to disaster-management

plans
� Strive toward anticipating and predicting disasters wherever possible
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Chapter 15
Building Large-Scale, Reliable Network Services

Alan L. Glasser

15.1 Introduction

This chapter is concerned with a particular class of software: large-scale network
services, such as email systems providing service to millions of subscribers or web
servers supporting e-commerce services to many customers simultaneously. To set
the context of network service software, it may be helpful to understand how such
software is similar to or different from a few other classes of software. Network
services are generally expected to be “highly available;” that is, they are expected
to be available at any time, 365 days of the year. This is in contrast with many
Information Technology (or IT) systems that are designed to support a specific busi-
ness function, and may be allowed significant periods of scheduled downtime, e.g.,
they may be down for “maintenance” on weekends. It is also informative to con-
trast network services software with end-user (or “shrink wrapped”) software. While
end-user software often gets deployed in far higher quantity than network services,
such software gets upgraded in a manner that is often known to and under the con-
trol of the end-user. Microsoft, Apple, and other vendors have conditioned their
end-user communities to expect and tolerate upgrades. Such conditioning of end-
users has not been the case for network services, and expectations are generally
much higher for network service availability. Finally, while we present techniques
for producing reliable software for large-scale network services, this chapter will
not cover “carrier-class” software (the quintessential example being the software
running the public switched telephone network). We define carrier-class software as
software that, if it fails at all, is typically down for at most 5 minutes per year, or
stated alternatively, software that has an availability of at least 99.999%. While there
are many other characteristics of carrier-class software, another key one that con-
trasts somewhat with network services is that carrier-class software rarely requires
operator intervention.
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The class of software covered in this chapter is not expected to run without any
human intervention; in other words, the software need not be completely non-stop
and self-healing (as is often the case in “carrier-class” software). It is far more
expensive to develop software that needs no (or minimal) human intervention. How-
ever, it is important to recognize that with human (or operator) intervention come
failures [1] that have their own costs; it is often reported that for highly reliable sys-
tems, one-third of the failures are due to hardware failures, another third are due to
software failures, and the remaining third are due to human, i.e., operator, error.

Within this scope, we will identify the key concepts and techniques that have
proven to be valuable in the production of reliable network service software. The
overall approach may be characterized as “documentation heavy,” since reliable
software requires a very clear, well-understood view of the system. Many of these
concepts and techniques are also applicable to the production of other classes of
software.

Network services need to be reliable, because the businesses that they support
cannot afford the impact of frequent software failures. Reliable software is not
defined to be bug-free software; it is the software with a particular probability
of running without failure in a given environment for a specified period of time.
Availability is a measure of the percentage of time that the service is available for
end-users to use over a period of time, typically one year. For example, a software
system may be designed to be available 99.99% of the time over a year. Alterna-
tively, the design requirements may allow the system to be unavailable for 0.01%
of a year over a year or approximately 53 minutes per year. Many network services
are sold with a Service-Level Agreement that includes, among other terms, a stated
mechanism for measuring availability, a contracted level of availability, and a set of
financial penalties (including early contract termination) for failure to meet the con-
tracted level of availability. Cost is a key factor in producing reliable software. The
fundamental engineering problem to be solved is to make an appropriate trade-off
between the costs of producing reliable software against the cost of any business-
impacting service failures. In the remainder of this chapter, we discuss techniques
for producing reliable software.

Section 15.2 presents an overview of the system development process,
Section 15.3 presents the generation of requirements, Section 15.4 presents the
architecture deliverables, Section 15.5 presents the design and implementation pro-
cess, Section 15.6 presents testing, and Section 15.7 presents the support processes.

15.2 System Development Process

In many parts of the software industry, process is considered as a panacea.
Unfortunately, many IT groups are burdened with rigid formal software develop-
ment processes that add overhead without contributing much to software reliability.
The perspective presented in this chapter is that process is a way of thinking, not
a substitute for thinking. This chapter does not cover process definition or process
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improvement (this material is covered amply elsewhere; see, for example, [2]).
Instead, we describe the activities necessary to produce reliable, robust large-scale
network service software.

While some software is built by a single individual, working alone, this chapter
addresses the more common production of software developed by a group of people
[3]. Development of large-scale network services requires execution of distinct func-
tions: requirements, architecture, design, implementation, test, and support. While
a large organization may be able to assign each staff member to perform only a
single function, most organizations will not have that luxury. Care should be taken
when assigning staff to carry out more than one function. Requirements are best
produced by staff with no other job function; when this is impossible due to re-
source constraints, an effective second task for the requirements staff is the test
function. Architecture is best performed by a single, designated architect. This indi-
vidual should be accountable for the service and is often supported by a number of
subject matter experts and/or experienced designers (more on this in the Architec-
ture section, below). Design and implementation are functions that should be treated
effectively as a single function; they should not be assigned to separate staff groups.
Test is ideally a dedicated team, but may be combined with requirements. Testing
should never be combined with design and implementation, as this defeats the no-
tion of an independent system test. Finally, deployment and support, while ideally
staffed as an independent team, may be combined with design and implementation
(it should be pointed out that software with a history of production-discovered prob-
lems warrants an independent deployment and support team, as this will allow the
design and implementation team to better adhere to a project schedule and deliver
on development commitments).

The most important element for the successful development of production soft-
ware by a group of people is a common understanding of the project and its details.
Groups that lack a common understanding of the project cannot avoid failures
which, at best, result in project delays as they are remedied, and at worst, result
in project cancellation. The goal of any network service development project is to
produce reliable software that satisfies its customers. The best way to ensure that
all the people involved in a project have a common understanding is for the project
to produce and use high-quality documents. Some key document categories include
requirements, design, test plans, test cases, and project plans. Drafts of these docu-
ments are produced first and reviewed by the project team for completeness, clarity,
and accuracy; the goal of the review process is to produce higher quality documents
than would otherwise be realized. When a document is deemed complete, it is placed
under a formal change control process, which simply means that any future changes
to the document require a careful review and approval process that assesses all the
impacts on the project that such changes would engender. For example, a signifi-
cant new feature might be deferred to a future release due to the rework it might
require on the current release and the concomitant schedule extension necessary to
accommodate the rework.

The author of a piece of software makes certain assumptions in its development.
Wherever assumptions are made, either in requirements or architecture documents
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or anywhere else, they should be clearly documented, and as design, implementa-
tion, test, and deployment occur, they should all be continually tested and confirmed.
If assumptions made are no longer valid, a re-evaluation may be necessary.

15.3 Requirements

Requirements typically start at a relatively high level, describing the primary busi-
ness functions of the software. The most important questions that the initial, high-
level requirements document should answer are:

� What is the problem you are trying to solve?
� Who is the customer of the system?
� Who are the users of the system?

An initial high-level requirements document would, when complete, be followed by
a software architecture document (described in the next section). After the archi-
tecture is produced, lower-level requirements are produced for each of the major
components of the architecture.

The key consumers of the high-level requirements document are the customer (or
sponsor) of the system and the system architect. The customer or sponsor reviews
the document to confirm that their needs are accurately captured therein1. The high-
level requirements document governs and guides the architecture.

Two key consumers of lower-level requirements documents are the design and
implementation team and the test team. The design and implementation team builds
software that implements the requirements, and the test team develops test cases
that confirm that the requirements are implemented properly. It is important that
requirements be written in a form that allows for the implementation of both code
and test cases. The requirements should be written in a manner that avoids, as much
as is feasible, specifying how the software should be built, and instead should focus
on specifying what it is that the software should do. How the software should be
built is a design, and not a requirements activity, and designers resent having design
choices dictated as requirements as they usually place unnecessary constraints on
possible solutions. Also, mixing design and requirements will usually reduce the
clarity of the requirements and may confuse testers. In addition, the requirements
must be testable (e.g., a requirement that includes non-quantitative, vague language,
such as “the system must gradually shift connections” is not testable). Writing good
requirements is as difficult as, if not more difficult than, writing good code.

Requirements fall into two broad categories: functional and non-functional. For
example, an Internet Service Provider (ISP) email platform would include the func-
tions of accepting email from subscribers for forwarding to recipients, accepting

1 Gaining concurrence from the customer or sponsor may require more than the production of a
high-level requirements document, such as the development of demonstration software.
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email for subscribers from other email systems, allowing subscribers to access
their mailbox, and minimization of unwanted/undesired messages. The functional
requirements will address what the software must do to provide those functions
and specify all the features made available to the service’s end-users. Use cases [4]
should be used to document each of the key features.

Additionally, the email platform will have non-functional (also known as opera-
tional) requirements – for example, a requirement that the email platform must log
data about every SMTP session and that each log entry must include various param-
eters that describe that session, such as the start time, end time, and IP addresses
involved. The non-functional requirements address all the capabilities necessary for
operating and supporting the service.

The high-level non-functional requirements for network services must spell out
the expectations for reliability and availability clearly and specifically, because
meeting these expectations will drive architecture and design decisions. For ex-
ample, the requirements must define the hours of operation of the service. If it is
24 hours per day, 7 days per week, it needs to be stated. If something else,that
needs to be stated. The requirements for network services typically include a time
for upgrades and other maintenance activities that will impact the end-user avail-
ability2. Such periods are called “maintenance windows”. The expected duration,
maximum allowed duration, expected frequency, and maximum allowed frequency
of maintenance windows are important requirements that will drive the architecture.
These requirements may be as simple as “at most one maintenance window per
week of no more than 2 hours duration beginning at 08:00 UTC.” All the reliability
and availability requirements will be driven by the service’s sponsor as well as the
organizations supporting and operating the service.

For network services, the non-functional requirements are typically as numerous
and complex as the functional requirements. These requirements address man-
ageability, operability, availability, reliability, system capacity, throughput, latency,
and other non-functional areas3. The high-level requirements document defines
these requirements for the overall system. The lower-level requirements documents
define these requirements for each individual component. Other important non-
functional requirements cover behavior under overload, upgrades, and compatibility.
Additionally, four areas of non-functional requirements that must be addressed are:

1. Provisioning: describes features that the software must provide to allow objects
(e.g., subscribers, accounts, mailboxes, etc.) that need to be known to the system
to be added to, changed, or removed from the system.

2. Operations: describes features that the software must provide to the operations
staff to allow them to operate the service. For example, what software commands
must be provided to allow an operator to determine if the software is operating

2 Overall system availability (e.g., 99.99% availability) excludes such maintenance activities;
i.e., availability is measured against all time other than scheduled maintenance activities.
3 The sponsor or customer should provide a load forecast to aid in the formulation of the
performance requirements.
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normally and, if it is not, what software commands must be provided to allow an
operator to restore correct operation.

3. Administration: describes capabilities that the software must provide to allow
the system to be configured (or administered) to support the various range of
configurations needed to support the business. These requirements also typically
address the configuration and administration of the underlying operating system
and the security requirements for the system.

4. Maintenance: describes the requirements on software needed to support peri-
odic or on-demand maintenance tasks, such as periodic backups or on-demand
connectivity tests.

The non-functional requirements tend to distinguish network services (as well as
“carrier-class” software) from other classes of software.

Careful, thoughtful generation and review of requirements is expensive in terms
of staff effort and calendar time. However, since poorly specified, vague require-
ments rarely, if ever, result in the desired service behavior, and the alternative is
even more expensive rework and calendar time or cancellation of the effort.

15.4 Architecture

Large-scale network services are best developed by first developing a well-thought
architecture in response to the high-level requirements.

A successful architecture must have conceptual integrity. Ideally, the architecture
should be produced by a single individual, or, if not feasible, by a small team led
by “the architect” [3]. The architect can delegate the architecture of each subsystem
in the logical architecture (see below) to different team members. Also, in large
organizations, where individuals can specialize in relatively narrow technologies, it
is advantageous for the architect to consult with these subject experts (e.g., server
and storage experts) in producing the physical architecture.

There are three components of architecture: the logical architecture, the physical
architecture, and the performance and reliability model.

The performance and reliability model is covered in greater detail in Chapter
16 of this book. Here, we simply note that this portion of the system architecture
is driven by the logical and physical architecture and needs to include usage and
traffic assumptions, demand forecasts, transaction flows (through the physical ar-
chitecture), capacity and usage forecasts, component resource budgets, analysis of
reliability, and establishment of component downtime budgets. Additionally, this
component of the architecture needs to provide “back-of-the-envelope” estimates as
to how the architecture meets the throughput and latency requirements.

The performance of the production system needs to be measured and reported to
ascertain whether it is meeting the architectural and design expectations, and, often
more importantly, whether it is meeting any performance criteria set forth in any
service-level agreement. The architecture must address how these needs will be met.
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As stated earlier, the expected system capacity is an important non-functional
requirement of the system. This and related performance requirements (e.g.,
throughput and latency) drives the architecture to a specific design point that will
support those requirements. It is rare indeed that a system architected for a given
design point functions cost effectively (or, for that manner, in any way effectively)
beyond an order of magnitude above or below the design point. For example, in
architecting a system capable of supporting 1,000 transactions per second, it would
be rare to find this same architecture effective at less than 100 or more than 10,000
transactions per second. Thus, the architecture should be completely re-thought if
the design point needs to change by an order of magnitude or more.

Another crucial aspect of architecture is designing how the system will behave
under overload. The system should be engineered to process requests up to a given
offered load level within the latencies specified in the requirements. When the of-
fered load exceeds that specified in the requirements, the system should behave as
gracefully as possible. When the protocols used to provide service are TCP-based,
a simple technique is to set a maximum on the number of connections supported.
Additional offered load above the connection limit will consume some network and
CPU resources, but existing connections should be serviced reasonably, possibly
with longer latencies (due to resource contention). Services that utilize UDP (or
other, non-connection protocols) present more challenges for handling excessive
load. Load-shedding techniques, like simply dropping some fraction of requests,
may be warranted. It is clearly desirable to minimize the processing of any work that
will ultimately be dropped; in other words, requests should be dropped early, before
the system consumes or commits resources. Load-shedding mechanisms should not
themselves increase the amount of processing that the system must perform. How-
ever, for protocols like SIP (utilizing UDP transport), a more intelligent approach to
load-shedding may be applied, such as refusing to establish any new sessions while
continuing to service requests for established sessions (i.e., dropping all requests to
establish new sessions and dropping no requests related to existing sessions). Stress
testing (see Section 15.6, below) should be used to measure the system behavior
under overload.

After production of the architecture deliverables, the project should undergo an
Architecture Assessment (see Section 16.3).

Following Architecture Assessment, the production of lower-level requirements
documents occurs, each corresponding to one of the major functional components
identified in the architecture.

The remainder of this section describes key items that the logical and physical
architecture deliverables must address.

15.4.1 Logical System Architecture

The logical system architecture document provides a high-level logical solution to
the initial high-level requirements.
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The scope of the document needs to be clearly stated; in particular, it is essential
to clearly enumerate what is not covered by this document, stating why those items
are not being covered and where (in what other documents) those items will be
addressed.

The constraints placed on the system need to be covered. These can be con-
straints placed on component selection (e.g., only software from a particular vendor
may be used for database needs). Alternatively, they can be constraints related to
integration with other systems (e.g., billing information will need to be in a partic-
ular format due to this system’s integration with an existing billing system) or the
relationship that this service might have with other services (e.g., network access
controls constraints on this service due to its bundling with an access service). Fi-
nally, the most important set of constraints provided are those that are related to
the service’s performance and reliability. Performance constraints are typically per-
transaction latency requirements (e.g., 99% of the time, a transaction of type XYZZY
must be completed within 100 ms) or scalability requirements (the system must be
able to support 10,000 concurrent XYZZY transactions). The reliability constraints
are typically specified in terms of the service’s availability (e.g., the system must be
available 99.99% of the time).

The architect should distill and clearly document the principles followed in pro-
ducing the architecture, so that all of the subsequent design efforts can adhere to
these principles. Two examples of such principles are where the state is maintained
(or where the state is not maintained), and how data is replicated (and the strategy
employed for replicating a database master). A key role for the architect following
the production of the architecture deliverables is monitoring adherence to the ar-
chitecture, a key aspect of which is adherence to the architecture principles. This
“policing” role is key to maintaining the conceptual integrity of the architecture as
it is implemented.

The design portion of the architecture document should begin with a high-level
block diagram (e.g., see Fig. 15.1, which is a high-level block diagram of a service
to provide wholesale web or phone access to email and calendar capabilities) and
text to describe each of the blocks, their function, and the interfaces that each block
presents to the other blocks. Each of the blocks in the high-level block diagram
typically represents the subsystems of the system being architected. For each of
the subsystems deemed core to the project (or that otherwise warrant this level of
detail), the single block in the high-level block diagram should be exploded to show
the next level of detail, similar to what was done for the high-level block diagram:
text to describe each of the blocks, their function, and the interfaces that each block
presents to the other blocks.

Following the subsystem discussion, the document must identify all the existing
external systems that the architecture relies on and the details of the exact interfaces
used. The various block diagrams should graphically indicate the interfaces to these
external systems.

The discussion within the document to this point has been primarily block dia-
gram and interface-related, and the next area to cover is the data architecture used.
This would include identification of all databases used in the architecture, and for
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Fig. 15.1 Example of high-level block diagram

each database, identification of key data elements, as well as expected queries and
updates, with usage profiles (e.g., each XYZZY transaction results in Q queries and
U updates).

Following data architecture, the document should address security by identifying
the security mechanisms to be employed in the architecture (e.g., use of Access
Control Lists, secure transport, or password encryption algorithms) as well as an
analysis to ensure that the identified mechanisms are sufficient for this service.

The document should close with a discussion of issues and risks. The architect,
having produced this detail about the service, will undoubtedly be aware of a number
of issues that have not been addressed in the document, but need to be tracked and
resolved to assure the success of the project. Finally, the architect will also be aware
of the quantifiable and non-quantifiable risks remaining in the project. These should
be documented and the project should be managed with an eye towards mitigating
those risks.
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15.4.2 Physical System Architecture

This subsection describes the material that needs to be included in the physical
system architecture: server, network4, and storage engineering as well as system
and server management. The subsequent subsections address each of these areas.

The functional blocks of the logical architecture need to be realized on physical
servers running in a specified operational environment, and the physical system ar-
chitecture provides that realization. The physical and logical architectures are often
developed together, typically with the physical somewhat lagging behind the logical.
While constraints may limit certain choices in developing the physical architecture,
the physical architecture should not limit the logical architecture.

Hardware alternatives considered and discarded should be documented, clearly
indicating the analysis that led to the discard. This analysis will undoubtedly be
of value when the chosen hardware is discontinued by the manufacturer and new
hardware must be chosen.

The physical architecture needs to result in a series of engineering drawings
that provide sufficient detail to allow all the hardware to be ordered, deployed, and
interconnected.

Finally, an important output of the physical architecture should be the expected
capital and operations costs, normalized per end-user or subscriber.

15.4.2.1 Server Engineering

The primary consideration in server engineering is to design in redundancy to
provide reliability.

The assignment of logical functions to individual servers is a key part of server
engineering. The key considerations in such assignment are the data needed by each
logical function. When two logical functions always (or almost always) act on the
same data, or when one logical function is the producer of a huge volume of data
consumed by a second logical function, those functions are excellent candidates to
reside on the same server. Another key consideration is the impact of a server failure
on each logical function and what strategies might be employed to minimize the
impact of such failures. Logical functions that are effectively or inherently stateless
(e.g., a proxy for the POP3 protocol) can fail with minimal impact, while those
that are inherently state-full (e.g., an LDAP directory) need a server design that
minimizes the impact of a hardware failure. Stateless servers are also easily scalable
(often referred to as horizontally scalable), while state-full servers are not easily
scalable.

4 Network engineering is covered elsewhere in this book and is not covered here, except for a few
recommendations that aid overall service availability.
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Stateless servers are typically accessed5 via a virtual IP (VIP) address that
represents a pool of real, physical servers (for details on the network engineering
needed to support this, see [5]). The logical functions to be performed on such
servers will be accessed via an IP protocol (e.g., HTTP). At any point in time, some
number of those physical servers will be operational, performing the logical func-
tions required of them. Should one fail, all functions “in flight” will fail. Typically,
clients of this VIP will need to determine whether the function failed (e.g., via an
exception like a TCP reset or a timeout) and take appropriate recovery action. A
simple, useful technique that is worth attempting prior to more drastic measures is
to simply re-try the original request again. With appropriate network engineering,
the new request will simply be routed to another server that is operational and will
succeed.

State-full servers typically require a sparing strategy. The simplest such strategy
is to deploy two physical servers for every state-full server needed. To the extent that
the software can support it, this could provide very fast recovery from a server fail-
ure. This will require that the internal state of the software be replicated to the spare
in a manner that would allow the spare to assume the function of the primary, should
the primary fail at any point. Such an arrangement is generally referred to as active-
active. The performance cost of state replication can become prohibitive and various
optimizations are usually taken to replicate at particular junctures. The replication
points are chosen so as not to leave the spare in an unusable state if the primary
fails between the points. While the spare will be able to quickly take on the role of
the primary, some in-flight client functions, at the time of primary failure, will fail
and need to be re-tried. A simpler strategy is known as active-standby. In an active-
standby approach, the standby server will assume the function of the just failed
active server. All in-memory state will be lost and all in-flight client functions will
fail. This approach is useful when the key state of the functions is stored on external
storage that can be shared with a spare. Depending on the external storage chosen, a
spare might automatically assume the active role; on the other hand, it may require
human intervention to configure equipment to give the spare the necessary identity
and access to assume the active role. Another key consideration in an active-standby
arrangement is the cost of providing pairs of servers. Again, depending on the ex-
ternal storage chosen, another alternative is to allocate one spare for every N active
servers, or more generally, allocate K spare servers for every M active servers.

It is wise to be pessimistic on performance when engineering servers, and thus,
have a designed-in safety margin on latency and capacity.

Another important networking consideration is the assignment of at least two
public IP (or VIP) addresses to be allocated for each externally visible TCP/IP ser-
vice (e.g., for an email service, inbound SMTP to subscribers’ mailboxes would be
a service, and outbound SMTP from subscribers would be another service) to avoid
disruption in the event of routing configuration errors. Also, the authoritative DNS
for the domain needs to return two separate address records, each containing one of

5 Such access may be from an end-user of the service (e.g., via a browser or email client) or from
another system, either internal to the service or from a customer or third-party server.



558 A.L. Glasser

the two addresses. These two IP addresses should be allocated from two blocks of
addresses that contain a lot of space between them (the two blocks are not “near”
each other). In other words, it should not be possible to combine the two blocks into
a single routing prefix that might be accidentally hijacked, which would prevent cus-
tomers from accessing the service. Assuming that all clients will make the proper
use of the two DNS address records (and not simply rely on the first record), this
technique should prevent accidental hijacking of an address block from impacting
this service [6, 7].

15.4.2.2 Storage Engineering

This section presents storage reliability considerations and tradeoffs, and the need
to practice recovery operations to minimize downtime when a failure occurs.

Data stored on disk presents a number of engineering issues to be worked through
as a part of the system architecture. The required performance and capacity of
the disk subsystem for particular sets of data as well as the required availability
of that data must be identified. Data that has similar performance and availability
requirements, whose combined capacity requirements can be satisfied by a given
single-storage solution, are candidates for sharing that solution. Some services, like
a Content Distribution Network cache, may have very low availability requirements
for data that is cached (i.e., the stored data is simply a copy of the authoritative
data source that is stored elsewhere). The physical system architecture must specify
the storage to be employed in the system. Reliability of disk drives and redundancy
in storage engineering are beyond the scope of this chapter; interested readers are
referred to [8, 9].

In spite of carefully designed disk subsystems, there could be a catastrophic disk
subsystem failure, or with similar effect, a software failure that causes data corrup-
tion of all redundant copies of data in the disk subsystem. Such a failure always
results in unplanned system downtime; the duration of such an outage needs to be
minimized. Recovery from such a failure requires having a recent backup of the data
(i.e., a copy of the data on separate secondary storage, typically tape media). In order
to achieve recency of the backup data, backups need to be performed regularly at fre-
quent intervals. While backup is a well-known, commonly instituted practice, what
is equally important and rarely done is periodic data restoral to spare disk drives.
Backup media that is unreadable at the time a restoral is required will become a ma-
jor system catastrophe that may not have any viable recovery. One possible result is
to restore service without the lost data. For an ISP email platform, this might mean
restoring service to end-users with new, empty mailboxes. Another possible result is
that the lost data can be extracted from other systems, each containing a portion of
the needed data, but this will typically be a long duration process and service cannot
be restored until it completes. Backups and regular periodic restoral to spare disk
drives need to be specified in the requirements and supported by operations training
and documentation, in addition to being covered by the architecture.

Another important consideration in providing reliable storage is the use of multi-
ple data centers for mitigating the effect of a disaster in a single data center (disaster
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recovery is covered more fully in Chapter 14 of this book). In this section, we are
concerned with spreading equipment among multiple data centers so that a failure
in a single data center will only cause a partial service outage. An example is an
email service supporting millions of end-user mailboxes, where a fraction of the
mailboxes are hosted in each data center so that a site failure only impacts a fraction
of the end-users. This approach does not achieve true disaster recovery (which can
be very expensive), but it will result in higher availability of the service than placing
all equipment in a single data center. If multiple data centers are used to host the
equipment required by the service being architected and there is a key database or
directory that is a critical resource required for the service to operate, it is advisable
to maintain a replica in at least one (or more) of the other data centers. A simplified
case is a SQL database master with one replica. In this case, the replication would
occur over the WAN (possibly via a tunnel). Such an arrangement should allow the
service to continue running if the master data center site experienced a major fail-
ure or disaster. In some cases, manual procedures may be necessary to promote the
replica to the status of master, and insert, update, and delete transactions will fail
until that promotion occurs. The key to achieving success with this “master-slave”
approach is to regularly exercise “fail-over”, meaning that the operations organiza-
tion will, on a regular basis (say once a week at a low traffic point), deliberately
stop the master and promote the replica to master. Typically, when the prior mas-
ter is restored to service, it will run as a replica to the new master until the next
regular “fail-over” or true failure. This approach of regular “fail-over” should also
be employed for any state-full server schemes. When the operations organization is
familiar with the “fail-over” process, a true failure is dealt with as a relatively mi-
nor inconvenience (at least as far as the familiarity of the steps required to restore
service are concerned). Whenever these processes become exceptions that only get
executed rarely, they rarely get carried out correctly or well. As with backups and
restorals, this fail-over behavior needs to be specified in the requirements and be
supported by operations training and documentation, in addition to being covered
by the architecture.

15.4.2.3 System and Service Management

This section describes support systems, instrumentation and logging, secure access,
and considerations for software installation and upgrade.

The System and Service Management section of the architecture document needs
to describe the monitoring and operations principles and mechanisms to be em-
ployed to manage the service, which needs to be addressed both from an end-to-end
service perspective and for each component.

A key goal of this portion of the architecture is to establish a foolproof and re-
liable mechanism for monitoring the health of the service by the operations staff.
For an enterprise that has an established operations organization, the architect will
probably need to find a solution that will fit into existing monitoring mechanisms
and tools used by that organization. For example, there may already be an SNMP
trap monitoring infrastructure.
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Software systems that monitor the health of the network service should never fail
in a manner that allows a network service failure to go unnoticed. This places a more
stringent reliability requirement on the monitoring systems than on the network ser-
vice. Some techniques to achieve this are to avoid sharing code between the network
service and the health monitoring software, use of a separate staff to build the health
monitoring system, and using off-the-shelf, proven reliable software either from a
vendor or from open source (e.g., OpenNMS and Nagios). There is a cost associated
with this approach, and for a business developing a single network service, this cost
may prove prohibitive.

For an organization that can afford it and needs to support multiple network ser-
vices, having support systems that are independent of and separate from the network
service also presents a cost-savings opportunity: the support systems can be shared
across multiple services. Examples of such systems are SNMP management sys-
tems for monitoring SNMP traps and trouble ticketing systems for managing and
tracking problems (and their resolution) in the network (services as well as other
components like routers, switches, etc.). These support systems need to be very reli-
able as their failure can mask a network service failure; they also need to be managed
well (e.g., backed-up regularly).

The monitoring system must proactively poll the service to determine that it is
working correctly and not simply rely on the service reporting faults.

To provide data for monitoring, one must first address the approach taken to log-
ging key events. Such events may simply be informational (e.g., a typical web server
access log), but must also cover faults discovered by the software. Faults are as-
signed a severity, typically minor, major, and critical. A minor fault is one that needs
attention today or within 24 hours, and if ignored, will result in end-users being able
to detect service degradation. Some examples of minor faults are various resources
such as disk file system capacity or average CPU consumption being above some
threshold, say 80%. Other thresholds such as the rate of retries exceeding some
threshold may also be a possible minor fault. A major fault is one that requires at-
tention within a prescribed amount of time, typically 2–4 hours. Thresholds are an
example of major faults, perhaps set at a higher utilization level than a minor fault,
such as 90%. A critical alarm is an indication that a component or a major subsystem
of the service has failed and requires immediate attention. Examples of critical faults
are loss of connectivity to key resources and missing key configuration data needed
to provide the service (for which there are no reasonable defaults). An SMTP email
Message Transfer Agent (MTA) that has lost all connections to the system’s direc-
tory and cannot re-connect after repeated retries and thus cannot ascertain whether
an addressed user, named in a RECIPIENT command, is a subscriber, is an exam-
ple of a “loss of connectivity” critical fault. All these events must get logged to
disk storage in a reliable manner, as this data is indispensible in troubleshooting
in-service problems. One choice for achieving reliable trap processing is to utilize
multiple SNMP receivers, requiring all the originators to send to multiple receivers,
and to filter-out redundant traps downstream, within the management infrastructure.

While the architect must provide guidelines to the developers on when to gener-
ate a trap, it is often the case that further processing on the received traps is necessary
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prior to raising an alarm to the operations staff. The system receiving the traps
should be configurable to some level so that every trap does not, in general, re-
sult in an operations alarm. It is often the case that multiple traps can be combined,
especially when they occur at roughly the same time, into a single alarm event.
Correlation of traps across components of the service as well as across services is
also desirable. A typical behavior for which operator intervention is undesirable is
when the software attempts a TCP connection to another system that initially fails
(this should generate a trap and log entry, but not cause an immediate alarm), but
is re-tried and subsequently succeeds on the second attempt. If the second attempt
failed, it too would generate a trap and log entry, and the combination of the two
traps within a specified time period would be configured to raise an alarm. Another
behavior that should be detected by monitoring is continual, repeated failure and
restart, as this is often not easily detected by the network service itself.

While seemingly mundane, standardization of log format within the team sim-
plifies specification of alarm correlation rules6 and aids training of all staff: design
and implementation, test, support, and operations. The architecture should define
the standard log format. A single line of text per entry is recommended. It should
always include a date and time in a prescribed format for both elements, a speci-
fied resolution for the time (e.g., seconds or milli-seconds), and a well-known time
zone (Coordinated Universal Time or UTC is an excellent choice). Various other
fields that might be a part of the standard are process-id, user-id, client-IP-address,
end-user-id, etc. Typically, some fields will be particular to the functionality of the
service; e.g., an SMTP MTA will have some unique fields to log compared to a
POP process, such as the domain provided on an SMTP command. The architecture
sets the principles and standards to be followed. The format of each log needs to be
documented as a part of the design process.

An important set of architectural principles to be established in this area is how
much or how little should be logged as “informational” entries, and whether the
amount of data logged should be fixed or determined by a configurable parameter
(e.g., the “log level”). Such a configurable parameter necessitates further principles
associating different classes of information with particular values of the parameter,
so that there is consistency across the system in how such logging is controlled and
occurs. Such “informational” entries are not actionable events, but, at one extreme,
provide data about every transaction (e.g., each SMTP session and each message
within that session processed by an MTA), and, at the other extreme, provide no
data for the “expected” activities (like a successful SMTP session). For maximum
flexibility, each subsystem, component, or program should be independently config-
urable. Also, while it simplifies the operations training and documentation to have
common values for such configurable parameters across the subsystems, compo-
nents, or programs, there are often good arguments to be made for a particular piece
of the service to utilize a unique set of values (e.g., bit masks) to control different
informational entries.

6 To simplify the specification of alarm correlation rules, the system and/or tools used to perform
alarm correlation will drive commonality requirements on logging (e.g., common date and time
formats, allowing rules to determine multiple failures within a given time interval).
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When troubleshooting problems, it is often helpful to have as much information
as possible about the system behavior. Also, there may be value to service plan-
ners, particularly, capacity planners, in capturing a large number of informational
entries. On the other hand, such an approach will require careful attention to the
performance impact of such logging as well as attention to rolling logs and preserv-
ing log data, while avoiding any impact to the service. An occasionally successful
alternative to logging for troubleshooting is to utilize a packet sniffer (e.g., tcpdump,
wireshark, or snoop) when the logging would contain a subset of the sniffed data.

Another important consideration is the ability to provide secure access to
developers to gather data or otherwise observe the service to help troubleshoot
a problem. One proven technique is to provide an entirely separate LAN infras-
tructure for all operations, administration, and maintenance (OA&M) activities
(including developer access), and providing a secure tunnel or VPN access for the
developers to access the OA&M LAN. This general approach also keeps logging
and trap traffic separate from service traffic, which is generally a good idea to aid
overload troubleshooting (e.g., diagnosing a DDoS attack).

Finally, the architectural principles for software installation should be estab-
lished. At one extreme, software installation may need to occur on a server that is
completely out-of-service and from which any prior version has been first removed.
At the other extreme, software installation occurs while the prior version is running
and providing service, and only a minimal duration outage is required to stop the old
version, likely perform some administrative tasks (e.g., adjust some symbolic links)
and start the new version. The former is simpler to implement, and the latter results
in minimal down time. In Section 15.7.2, operational concerns related to software
installation, upgrades, and deployment are discussed.

15.5 Design and Implementation

15.5.1 Design

There are many texts dedicated exclusively to software design. This section will
focus on the aspects of design that are essential to producing reliable software. The
design of a software component has two primary classifications: external design and
internal design. The external design describes how others can use this component
and the internal design describes how the component is constructed.

From an external perspective, each significant functional component of the ar-
chitecture should have a corresponding design document, which, at a minimum,
describes all of the interfaces presented by the component to other components
in the system. Thus, the application programming interfaces (or APIs) exposed by
each architectural subsystem to the rest of the system must be documented (using,
for example, javadoc or doxygen). Expected sequences of API calls, along with
sample code that implements a demonstration of that portion of the design, should
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be documented. Data, in the form of database tables, flat files, or anything else,
represents a key external interface. Data that this component produces or consumes,
for or from other components, should be documented as a part of the external design.
The data local to the component would be described in the internal design.

Another important interface that must be documented is the operations interface.
This would describe how the component is installed, updated, removed, config-
ured, started, checked (for current operational status), re-started (if applicable), and
stopped. While the details of internal-to-the-component data remain in the internal
design, the operations staff needs to know all the files, databases and tables, directo-
ries, and any other data that the component needs, uses, consumes, and produces. All
this can aid troubleshooting (e.g., when an operator is mistaken about the location
of the current directory and inadvertently removes all the files therein). Descriptions
of each and every event that the component might log, including sufficient detail to
enable troubleshooting, represents an important portion of the operations interface.
Additionally, various key performance indicators (KPIs, typically counters) should
be included in the design, along with simple mechanisms for operations staff to ob-
serve those indicators. Expected value ranges of each KPI should be documented
for the operations staff. It is very often the case that such indicators are predictors of
problematic trends. Each user interface should be documented; this is typically done
by providing prototype user interface code or “wireframe” figures and text describ-
ing navigation. User interface design is beyond the scope of this book (see [10,11]).

The internal design typically focuses on key algorithms chosen, trade-offs made,
and performance considerations.

15.5.2 Organization

An effective way to organize the design and implementation staff, given that the sys-
tem has been decomposed into components, is to assign components to individual
staff members. An individual component should never be assigned to multiple staff
members. If a single large component is identified, which is undeniably too large
to be the responsibility of a single staff member, it should be decomposed, if at all
possible, into multiple smaller components. General purpose or utility components
should be avoided; items that would be added to such utility library should instead
constitute new, albeit small, specific functional components. This design approach
requires identifying a bottoms-up component structure for the integration of com-
ponents. At the bottom layer, each component should, in general, be functionally
independent of all other components. Such components might be generally useful
in future projects and should be built in a general fashion to foster reuse. At some
point, a component must be built that depends on bottom layer components and
so on, up the dependency hierarchy. The bottom-up dependencies drive the project
schedule: the bottom layer should be built first and so on, up the hierarchy. Each
component will be made available for integration with the other components when
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it has been fully unit-tested by its developer. It is typically the case that problems
that arise are attributable to the most recent components added to the integration
area.

This approach results in increased accountability, as there is never a question as
to who is responsible for a particular function. It also fosters increased ownership
of the software by the staff members, as each staff member knows that they alone
have complete responsibility for their components. More than one person needs to
be familiar with the software or else there is a potential, software single-point-of-
failure (e.g., the one person is unavailable when a bug is discovered). A “buddy
system” that clearly identifies a specific backup person for each component works
well. This results in an individual being the primary on a number of components
and the backup on a different set of components.

Managing a project of many small components, though somewhat tedious, al-
lows for quite accurate estimation of effort. This results in increased predictability
as well as visibility of the overall development process, affording earlier identifi-
cation of problems than might otherwise be the case. Finally, given the availability
of good API documentation for each component, this approach decreases developer
inter-dependence, as it reduces the need for extensive inter-developer communica-
tion and results in fewer and smaller integration delays (but with typically more
integration points). This approach fosters a “test early, test often” environment7,
as each integration culminates in integration testing to certify that the integration
was successful. It avoids “big bang” integration efforts that, when they do not go
smoothly, result in long delays in sorting out which (often many) components have
problems.

15.5.3 Configurability

The configurability of network services deserves careful design attention. Any pa-
rameter that might change over time should be designed to be a configuration
parameter and not a constant in the code. The use of a constant in the code would
require a new code delivery and certification prior to achieving the change, while
the former, with appropriate operations documentation, could be achieved by the
operations staff acting alone. It is sometimes not clear why a particular parameter
might change in the future; when in doubt, it is best to make it a configuration pa-
rameter. Default values, whenever they make sense, should be provided for each
parameter. Examples of parameters are directory names for various data (e.g., the
directory in which log data should be written), and fully qualified domain names
or IP addresses and corresponding ports (and, if relevant, protocol or protocol ver-
sion) for other systems that this component must communicate with (e.g., SNMP

7 “Test early, test often” should be followed in any case; it fosters easier and faster bug detection
than waiting.
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receivers). The design needs to recognize the environmental differences present in
different test environments (e.g., unit test and system test) as well as in the produc-
tion environment, and support these different environments via simple configuration
changes. Clearly, changing code to support these different environments is not desir-
able. In addition to allowing for the exact same source code to support various test
environments as well as (potentially multiple) production environments, this design
for configurability allows for recovery from a class of failures (e.g., failure of an
SNMP receiver) via a simple change to the configuration data. Another important
consideration is whether a configuration change requires a network service stop and
start, or a trigger from an operator instructing the service to re-read its configuration
data, or if the service automatically detects and implements configuration changes
(e.g., having a thread detect that a configuration file changed, and ingest and process
that file). While the simplest implementation is a service stop and start, automatic
detection provides the least service impact.

15.5.4 Maintainability and Modularity

An important consideration in producing reliable network service software is the
maintainability of the source code. It is almost always the case that modularity and
maintainability are positively correlated. Fewer lines of code are preferable to more
lines of code, since it is less expensive to completely test and certify fewer lines
of code, and less code simplifies enhancement and bug repair because there are
fewer places to look for the place in the code to change. While an approach that
emphasizes a high level of modularity should drive the internal design of the code, it
is often the case that implementers replicate code in multiple methods or functions,
failing to notice a lack of modularity. An approach to design that does not empha-
size modularity often results in “yank and put” or “copy and paste” replication of
code fragments. Such replication throughout a subsystem will clearly suffer from
reliability issues when a bug is discovered in such a fragment, and it is only repaired
in the section that first exhibits the bug. Also, as code replication is typically only
apparent upon reading the code, it is detected, if at all, during code review. De-
signing a single common method usable by all callers may be challenging due to a
need for similar, but not identical behavior in all cases. In such a case, the designer
must include additional parameters whose function is to modify the behavior of the
common method to achieve the necessary variations in behavior. In the extreme,
there may be good cases to be made for multiple methods. These are important
internal design choices. It can be very helpful to future code maintainers to capture
these choices in an appropriate document (which can be comments in the code).

To establish that code is being written for human rather than just machine con-
sumption, a process of code reviews (also known as walk-throughs, inspections, or
peer reviews) must be instituted. Code inspections are valuable in finding bugs, but
the focus deemed most important here is the production of understandable, read-
able source code. Such inspections can improve code via suggestions to improve
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modularity, and more generally, to refactor [12] the code. At least one staff member,
other than the author, must be adequately familiar with the code to be able to fix a
problem should one arise when the author is unavailable. When a “buddy system,”
like the one described earlier, is instituted, a buddy code review, where the primary
code owner leads the backup person through the component’s code, is a lightweight
but effective way to introduce a component to a backup person. Learning the code
after a problem arises is often painful and expensive. Again, this represents yet
another engineering trade-off: incur the cost of code reviews and establish them as
a regular activity to minimize the time to repair a bug versus waiting for a fault
to occur and doing “whatever it takes” at the time of the bug to repair it. When a
“whatever it takes” approach is used without the author, it is often the case that an
imperfect repair results. In such a repair, the bug is repaired, but other functionality,
not exercised in the bug scenario, may no longer work correctly. While it is difficult
to compare costs, the availability of a large-scale network service is always higher
when problems are fixed correctly without introducing new problems.

Sometimes the demanding performance requirements of network services tempt
the designers and implementers to sacrifice modularity and maintainability to obtain
high performance. This is rarely necessary: careful design can usually achieve the
required performance with modular and maintainable code. The emphasis on per-
formance can also lead to unnecessary, premature optimizations. If the code meets
its performance requirements, then further improvements are not needed, and to the
extent that such improvements impact the code’s maintainability, they are undesir-
able. Also, when a performance problem is discovered as a result of measurements
of the code via testing, such a problem is often best solved by algorithmic or archi-
tectural changes, rather than ad-hoc code changes. When a sophisticated algorithm
is the solution, the resulting code may be difficult for the casual reader to follow.
Comments in the code referring the reader to a detailed description of the algorithm
employed, or if no such description is available, providing that description in the
code’s comments, will improve the maintainability of the code.

15.5.5 Implementation

Reliable network service software is software that is commented, tested, and written
in a language with ongoing support, using libraries and other resources that are
themselves of production quality and well-supported, under source control, with a
bug-tracking system.

The amount of effort required to produce reliable network service software for
production use is typically much higher than that required to produce prototype or
personal-use software. A prototype (or proof-of-concept) of a network service is
often used to demonstrate a few key functions to show the value of the service
to potential customers or funders. The things that distinguish the source code of
production software from that of non-production software are typically around
dealing with unexpected errors. Non-production software may ignore errors, as
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they can “never happen” (e.g., an existing TCP connection to a well-known server
goes stale owing to a fail-over behind the well-known server’s load balancer). In
production, everything that can “never happen” always does. Retry and other recov-
ery strategies need to be carefully designed and implemented. Building in various
“fall-backs” to handle some amount of external system unavailability (e.g., queuing
requests to unreachable TCP/IP services, using previous query results for an estab-
lished period of time) is necessary. In terms of easing the effort required to produce a
reliable, production quality service, having a working prototype is rarely more than
an aid in clarifying requirements; converting prototype code into reliable, produc-
tion quality code is often more expensive than just re-coding the service with clear
production requirements.

15.5.5.1 Commenting

Comments in code should be supportive and accurate; out of date, inaccurate com-
ments are more harmful than no comments at all. Comments such as the infamous
“RIP LVB” next to a constant of 1827 [13] do not help an individual unfamiliar with
the code to debug a problem. Code needs to be written to be read and understood
by other humans; compiling or interpreting with no errors is necessary, but not suf-
ficient. Many development teams establish coding guidelines (or standards) to be
followed to aid the production of code meant to be read and understood by other
team members.

15.5.5.2 Unit Testing

Developers need to unit-test their code. A set of unit tests need to be developed in ad-
dition to the code. That test code represents a regression test suite that can be re-run
whenever a change is made to the code. Besides straightforward tests of the external
APIs, one of the most valuable approaches to unit test code is coverage testing [14].
In coverage testing, one determines which lines of code have been executed by a set
of tests, and more importantly, which lines of code are yet to be exercised. There are
many tools available to assist in measuring code coverage. Since these tools almost
always instrument the code to measure coverage, it is always a good idea to re-run
the test cases used to determine coverage with a normal (non-coverage test) build, to
make certain that the coverage tool does not hide any latent bugs. Tools are available
for managing, developing, and maintaining unit test suites (e.g., J unit).

15.5.5.3 Development Tools

Reliable software cannot be produced by unreliable tools. New languages with
possibly buggy compilers and/or support libraries should be avoided. Debugging
one’s own code is challenging enough; determining that the root cause of one’s bug
is because of a compiler bug is adding insult to injury.
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Good debugging tools aid the production of reliable software. Tools that detect
memory leaks are invaluable in producing software that needs to run continuously8.
Enabling and heeding compiler warning messages, or using other code analysis
tools, can help to eliminate bugs prior to execution. Strong type-checking helps
avoid many errors.

15.5.5.4 Change Management

Change management is a key aspect of producing reliable network service software.
It manifests itself to developers in the form of a source code control system (cur-
rent popular tools are CVS and subversion; older tools are the venerable SCCS and
RCS). All the source code and project documents must be managed by a source code
control system (also known as revision control system or version control system).
These tools allow the source code used to create a particular build of a component
at a particular point in time to be exactly reconstituted. This is necessary because
when a bug is reported on a particular version of the system running in a particular
installation, the desired solution is to just fix the cause of the bug and not change
any other aspect of the software whatsoever. This allows for high-quality fixes to
be deployed. An important aspect of repairing production problems is recreating
the production problem in a test environment. This can be difficult if the problem
requires environmental conditions and/or loads that are difficult to recreate outside
of the production environment. However, not being able to reconstitute the exact
source code and rebuild it (with the same tools that built the production instance)
is a solvable problem. Introduction of new “features” while fixing an old bug often
introduces new bugs; the new “features” are typically far from being thoroughly unit
tested, and the interactions of the new “features” with the bug fix will not be care-
fully considered due to time pressure. Further, as we would see in the next section,
independent system test will always focus on certifying the fix to the production
problem; any additional testing (e.g., of new features) should not be forced upon the
system test organization in the form of a high-priority production bug fix.

A bug-tracking system (e.g., bugzilla, trac, or many other such systems) is a nec-
essary tool in the production of reliable network service software. It is used to record
problems and track repairs. Integration with a source code control system may be
an attractive feature, but loosely coupled tools can often be coerced to produce any
necessary project reports with some simple additional script writing.

15.5.5.5 Support Needs

In addition to producing high-quality source code, another development deliverable
as important as source code is a document for each alarm that might be raised to the

8 In cases where continuous operation is not a hard requirement, automatic or scheduled process
restart (sometimes called process rejuvenation) can be used to get “clean” memory. That said,
software that exhibits no leaks is probably always more reliable than software that leaks.
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operations organization9. The document describes the steps that the operations staff
must follow to remedy the situation that caused the alarm to be raised (it might be
the case that the action to take is to call the developer, regardless of the hour, but
a better approach is to enable the operations staff alone to remedy the situation10).
The elements of an alarm document should include: the level (e.g., critical, major, or
minor), sample text of such alarms, the software component(s) reporting the alarm,
the cause, the effect on the service, and a procedure to remedy the situation. If
no such document exists, or, more importantly, if there is no procedure to remedy
the situation, then the alarm should not be raised. The test organization needs to
be able to cause each alarm and test each procedure. The network service should
never cause an alarm to auto-clear from the network monitoring system11; all alarm
clearing should require operations intervention (they may be provided with tools to
clear multiple alarms at once). These documents as well as training material for the
support staff (see Section 15.7, below) are all additional development deliverables,
and should utilize the same change-management tools as those used for source code
(e.g., CVS).

In addition to the obvious software components to be built, support staff often
identify the need for various support tools that should be built (e.g., producing a
report from the logs that helps identify a particular class of problem).

While perhaps stating the obvious, the service has a great dependency on all of
the project’s documents and source code. This data should be backed-up regularly,
and periodically stored remotely from the development environment, to provide
some level of insurance against a disaster impacting the development environment.

15.6 System Test

System test attempts to identify the remaining defects in the software following
unit testing. Testing cannot improve the quality of poorly designed or implemented
software; this is often stated as “you cannot test in quality; it has to be designed in.”

System test staff should be distinct from the software development staff to allow
for an independent quality assessment of the software.

The software that system test installs is ideally built by a support organization,
and should never be built by the software developers. This guarantees that someone

9 This is in addition to the event log documentation described earlier in the chapter.
10 A special class of alarms falls into the category of events that “should almost never happen.” For
such alarms, directing operations staff to call the developer is acceptable. However, if what “should
almost never happen” begins to occur frequently, then the developer should provide more detail on
the action to be taken by the operations staff.
11 It is a good idea to simply provide an informational log entry when a problem that had been
previously reported has been cleared.
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other than the software’s author can successfully build the software; something that
might prove crucial in troubleshooting and repairing a production problem when the
author is unavailable.

The function of system test is primarily to measure the software’s adherence to
the requirements. To this end, the first activity typically undertaken is to assure that
all functional requirements are met. Failure to meet a requirement will result in the
tester creating an entry in the project’s bug-tracking system. All the non-functional
requirements must also be certified, although this will often be more difficult than
certifying functional requirements. Installation, upgrade, removal, start, restart, and
stop of the service must be tested. Each possible alarm should be generated and the
developer-documented procedure to alleviate the alarm condition should be tested.
The system test organization typically requires a rather expensive hardware en-
vironment to accomplish the testing of all latency, throughput, and performance
requirements. In addition to mimicking the production environment, this testing
requires equipment and tools to simulate the production loads. System test orga-
nizations may have a set of developers who concentrate on developing custom test
tools.

In addition to certifying that the software meets the requirements, it is also
important to design tests of adverse conditions (so called “fault injection”, “fail-
ure injection”, or “rainy day” testing), where anything and everything that can go
wrong does go wrong (this may include, as an extreme case, cutting cables, such
as an Ethernet cable, connected to a system under test: “the technician thought
the cable wasn’t being used”). This also extends to entering invalid data in any
way in which the service accepts data, which includes the special case of mis-
configuring the service, to the extent possible, and for all these cases, observing its
behavior.

Another set of important tests is stability or endurance tests, which will typ-
ically take place at a prescribed load, not exceeding the engineered load, for an
extended period of time (e.g., many days). These stability or endurance tests will
often uncover latent bugs, such as memory leaks in the software. It is often help-
ful, if possible, to have the system test team stress-test the system by overloading it
or driving the system past its engineered load for a relatively short period of time
(minutes or hours), and then reducing the load back to the engineered load. The sys-
tem should recover, without operator intervention, when the load is reduced. On the
other hand, it might be the case that the system fails entirely at some overload (it is
important to test at an overload level that is gradually reached, as well as at an over-
load level that is reached suddenly, because the system might behave differently to
the two approaches to the same overload). It is helpful to establish whether or not it
is possible for a value of overload (i.e., larger than the engineered load) to consume
all available resources such that no useful work gets done, and if so, to document
that value for the project team.

While we may hope that the service’s business sponsors accurately forecast de-
mand, it would not be good for the service to be overly popular only to have it
crash owing to overload. Also, network services might very well be the target of
denial-of-service or distributed denial-of-service attacks; overload testing is one
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way to determine how the service will react to such attacks. An important output
of overload or stress testing is a graph indicating throughput versus offered load
(see Fig. 15.2).

Any bug found in the production environment following system test should be
considered a defect against the system test team. It is not reasonable to hold the
developers responsible for all the defects when the function of the system test team
is to identify defects following developer turnover. Whenever a bug is detected in
the production environment and a fix is developed, that fix must be tested. This first
implies that the production bug can be reproduced in the system test environment,
so that the fix for the bug can be certified as fixing the bug. It is often a good idea
to re-run a number of functional tests to ascertain that the software has not deterio-
rated as a result of the fix. One valuable technique is to be able to automate much
of this regression testing and easily determine that the fixed code produces the same
results as the previously released code. The standard UNIX command diff can be
used to compare results of multiple regression test runs when the relevant outputs
can be captured in files. When this data contains date or time stamps, various tech-
niques12 can be used to eliminate them as differences that require attention.

There are a number of key metrics that the system test team should track, such as
number of bugs found over time and the overall fault density. Sufficient testing with
appropriate software reliability engineering [15] should predict the number of faults
remaining. Criteria for exiting system test should be established prior to beginning
test and should target a specific fault level not to be exceeded, as well as zero critical
or major outstanding bugs being found over some period of just completed testing13.

12 One technique is to encapsulate all the date and time stamp string generation in a single project
module. That module needs to be configurable (e.g., via a configuration parameter) to always return
the same value.
13 A critical bug is one that prevents the service or system from functioning; it is sometimes referred
to as a “severity 1 problem.” A major bug is one that prevents a portion of the service or system
from functioning; it is sometimes referred to as a “severity 2 problem.”
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15.7 Support

In this section, we address how operations and support staff may be organized,
deployment of hardware and software, and managing service outages.

15.7.1 Organization

The operations and support staff are often organized into four (or more or less)
distinct “tiers” of support.

“Tier 1” comprises individuals in the operations organization who first notice
that a service has failed. They typically have very little service-specific knowledge,
but they know how to distinguish a hardware failure from a software failure, and
can follow procedures to contact hardware suppliers to perform hardware repair or
maintenance. There is a need to identify and assign staff to Tier 1 within the defined
hours of operation. Tier 1 staff may be trained to follow some developer-produced
operations documents, e.g., documents that describe some classes of problems that
might be cleared by a restart of the service or a system reboot.

“Tier 2” staff are the individuals in the operations organization who have a com-
bination of hardware, operating system, and service-specific software knowledge,
and can typically diagnose which of those three elements are at fault in an other-
wise questionable failure scenario. They have developer-produced documentation
for specific faults (i.e., “alarms”) as to what procedure should be followed to restore
service.

“Tier 3” staff are the individuals, often within the development organization, who
have extensive service knowledge and can reconfigure the service to get it up and
running without a software change.

“Tier 4” staff are the individuals who can diagnose and repair software faults in
the service. They are the developers.

Training is required for Tiers 1 and 2, and may be required for Tier 3. Training
promotes a common, correct understanding of the network service. Training needs
to inform the staff of all the anticipated failures, how they could occur, and how
they can be resolved. The amount of training depends on the support staff’s level of
service awareness and ability, and the completeness of the documentation targeted
at the Tier.

At a minimum, Tier 1 and Tier 4 are required. Tier 1 can always escalate all but
hardware/reboot failures to Tier 4. The system and service management health mon-
itoring must generate Tier 1 observable “alarms” for failure conditions. Many alarms
will be owing to the service being down or difficulty communicating with subtend-
ing services; alarm documentation and Tier 1 staff should suffice to get the service
restored most of the time. However, continual failures will result in escalation.
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A poor substitute for Tier 1 staff, which may be acceptable when the Service-
Level Agreement allows for significant down time, is automatic alarming (via email)
to Tier 4 staff. Alternatively, another low-cost approach is to eliminate Tiers 2 and 3
with Tier 1 monitoring, and escalating any and all events requiring attention to a
prioritized list of Tier 4 staff, possibly going up the management chain if no one can
be reached. A “group cell phone” can be used, which is passed (following a weekly
“on call” list) from one Tier 4 member to another, allowing the instructions to the
Tier 1 staff to simply call one phone number to gain support.

When equipment is remote from Tier support staff, arrangements must be made
for some staff at the equipment site to support hardware supplier access for repair
and possibly for service reboot attempts.

15.7.2 Deployment

Whenever a new service is deployed on new hardware or when new hardware is
added to support an existing service, two classes of certification, operational readi-
ness testing and network validation testing, need to be carried out, typically by Tier
2 or 3 staff. This certification testing is done to certify that the hardware, operat-
ing system, application software, network connectivity, and the overall operation is
functional prior to providing service to the customers. These tests have been proven
valuable in identifying where a problem exists prior to customer service, thus im-
proving service availability (the alternative is to simply enable the service, hope for
no problems, and then perform general troubleshooting if a problem arises). Oper-
ational readiness testing typically consists of the following steps: verify that each
element has a valid maintenance contract; perform a hardware stress test/burn-in
to verify that there are no hardware problems and that nothing was damaged in
shipping; where applicable, verify and, if necessary, configure backup functional-
ity; verify that the crash dump capability is configured and functional; install logins
for the production service; and verify the service functionality. Service function-
ality tests include starting, checking (for current operational status), and stopping
the service, as well as rebooting the system and checking that everything that is
supposed to start automatically does, and that anything that is not supposed to
start automatically does not. Network validation testing certifies that all network
connectivity to or from each new piece of hardware functions correctly (this is of-
ten and best carried out using software other than the actual service application
software, e.g., telnet or nc as a client for testing TCP connectivity to a server).
Another category, network management validation test (sometimes incorporated
into operational readiness), tests whether the service can be properly monitored
and whether the service can communicate (e.g., via SNMP) with the monitoring
systems.

Changes to the software may be minor simple configuration value changes or ma-
jor upgrades. Since, following any new problem, the most frequently asked question
is always “What changed?” it is mandatory to have a process whereby every change
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made by the support staff is recorded (e.g., in a simple file, but on a system quite dis-
tinct and separate from the servers supporting the service, since they may be down
when questions about “what changed” need to be answered). The items that should
be recorded include who, what, where, when, and why for every change.

Deployment of a new version of the software needs to be carefully planned and
supported. A flash-cut from one version to the next presents a number of problems.
It will require the service to be entirely down during the time it takes to get the new
version up and running. If the new version cannot be installed while the previous
version is running, the amount of out-of-service time increases. As the reliability of
a piece of software is established by having the software operate reliably for an ex-
tended period of time in a full production (i.e., not test) environment, a new version
is, by definition, not reliable14. A flash-cut, then, presents the operations organi-
zation with the problem of supporting a new, unknown, unreliable implementation
rather than the previous, known, reliable implementation15. As a result, following
a flash-cut, an entirely new version of the software will not have the confidence of
the operations organization and they will suspect the software prior to suspecting an
operator mis-step.

An alternative to a flash-cut, though more expensive, is to maintain compatibility
between versions, allowing a new version to be deployed on a single machine at
a time. An effective confidence building approach is to first deploy a new version
for a period of time (e.g., a week) on a single machine, and if no critical or major
problems arise, deploy on a few more machines and continue this process every few
days until the new version is entirely deployed. When major new features are being
introduced, it is important to control them via configuration options, which, initially,
are set to disable those features so that end-users see consistent behavior (e.g., it is
undesirable to have two web servers behind a load balancer presenting different user
interfaces, one with the old version and one with the new, as this will confuse the
end-users and will almost certainly result in a spike in customer complaints). Once
the new version is fully deployed, the new features can be enabled via configuration
changes (see the discussion on configurability in the next section). This approach
requires that each new version, via configuration, maintains backward compatibility
with the previous version.

Deployment of a new release of software needs to be carefully planned. Given
the desire to gradually phase in new software, all the steps required need to
be documented in a deployment plan and reviewed with the developers, testers,
and operations staff. Whenever possible, the cut-over should be tested in a non-
production environment to work out any problems prior to the actual deployment.
It is mandatory that a tested back-out plan accompany the upgrade plan. Objec-
tive criteria to determine readiness to begin the deployment as well as continue
at major steps within the plan must be established (these are often referred to as

14 Software is like wine – it improves with time.
15 This is not to say that the known version is perfect. Operations staff will always prefer the devil
that they know to the one that they do not know.
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“entrance criteria”). The planning for the deployment needs to estimate the dura-
tions of each activity. The planning must also determine the worst case scenario – the
set of circumstances that leads to the longest period of service unavailability. This
worst case duration must not violate any service-level or other agreements. This ac-
tivity must occur in a “maintenance window.” During a maintenance window, client
access to the service is normally disabled in some fashion; e.g., for an end-user
web page oriented service, the service is configured (perhaps via DNS) to return
a special web page indicating that the service is temporarily unavailable owing to
maintenance. To determine that the deployment was a success, objective “exit” cri-
teria must be established. Such exit criteria typically take the form of successful test
results as a result of testing the production system to ascertain that it is function-
ally performing as expected. Such testing needs to be similar, but not identical, to
normal client access, as such client activity during a maintenance window should
never access the running system. Thus, this “in-window” testing might use specific
IP addresses or special domain names supporting the testing rather than the normal
domain names. When configuring a single server behind a load balancer, expos-
ing that server directly, via its IP address, is a good way to test it while still in the
maintenance window. The worst case scenario often arrives following the upgrade
when the last of this “sanity” testing seriously fails and the back-out plan needs to
be executed.

15.7.3 Managing Outages

In an enterprise with multiple lines of business, each with multiple large-scale net-
work services, operations coordination across related services is highly desirable. It
may very well be the case that planned maintenance on one service that is called by
a second service will cause a high alarm level on the second service.

Unfortunately, in spite of best intentions, there may be occasions when the
support staff cannot quickly identify the cause of a service failure. When such a situ-
ation arises, it is best to maintain coordination across the different tier support staffs
while providing information to all as new items are discovered. A proven technique
to aid this is a conference call (sometimes called an “outage bridge” when used
to identify a failure cause), on which all active support staff participate. A helpful
addition is an instant messaging tool to allow pairs or larger groups to share data.
Managers of the support staff will also need to follow the activity and join the con-
ference call. There is often a separate conference call running in parallel, on which
mangers participate where the lower (or lowest) level managers either sequentially
or simultaneously (two phones with appropriate mute and volume controls) partici-
pate on both calls.

Finally, it may be suspected that the service outage is due to third-party, vendor
supplied software (e.g., the operating system or the database management system).
When this is the case, it is often necessary to add the vendor’s support staff to
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the outage bridge and provide the vendor (or vendors) with the requested data
(forced dumps being common) or, in extreme cases, direct access to the failing
systems.

15.8 Service Reports

Various data gathered by the service should be combined and reported on a periodic
basis to aid in the management of the service. Some data might best be gathered and
reported daily, such as a performance summary of activity on the service16. Other
data might best be gathered and reported less frequently, weekly, monthly, or quar-
terly. Figure 15.3 shows a quarterly availability report for a service; it shows the
goals (or targets) as well as the actual achieved levels for availability and a number
of related service measurements. Figure 15.4 shows a portion of a daily report for
an email service (for a single server); it provides various statistics about messages,
recipients, and bytes processed, including an hourly histogram, busy hour and busy
minute statistics, and message distribution statistics. Figure 15.5 shows a daily re-
port of account subscriptions for an ISP email service; it shows the distribution of
accounts against the number of subscribers.

2009 Goals

2009 
Year 
End 
Target

Jan 09 
Actual

Feb 09 
Actual

Mar 09 
Actual

Q1 09 
Target

Q1 09 
Actual

Availability 99.99% 99.98% 99.98% 99.99% 99.99% 99.98%

Reduce MTTR 160 137 270 132 160 179

Reduce Incidents 1830 139 153 169 456 461

Reduce Incidents 
> 60 Mins 1005 74 95 84 249 253

Reduce Caused by 
Change Outages 257 12 20 26 63 58

Reduce Procedure 
Caused Outages 330 22 33 26 81 81

Fig. 15.3 Quarterly availability report

16 For web-server reporting, webalizer is a useful tool.
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---------- Messages Sent ----------
Transmitted Messages:      3,015,994 
Transmitted Recipients:    3,016,044 
Total Bytes:     305,851,785,029
Rejected Recipients:     10,159
Deferred Recipients:      12,268

------------ Message Distribution by Hour ------------
00:00    125,101   08:00     61,027   16:00    213,672
01:00    104,898 09:00     65,705   17:00    201,212
02:00     93,829   10:00     83,778   18:00    205,569
03:00     77,064   11:00     97,707   19:00    190,757
04:00     75,120   12:00    126,519   20:00    177,327
05:00     55,289   13:00    149,461   21:00    161,212
06:00     48,108   14:00    169,670   22:00    150,355
07:00     55,568   15:00    198,273   23:00    128,773
-----------------------------------------------------------
Busy Hour: 15:39-16:38    Max:  223,715  Messages/Hour
Busy Min:  19:06     4,776  Messages/Minute

Message Distribution by Size in bytes
38% are 9,999 or less
70% are 22,999 or less
80% are 34,999 or less
90% are 57,999 or less
95% are 115,999 or less
98% are 358,999 or less
Average is 101,409   
Maxim um is 15,725,197

Message Distribution by Recipients per message
99% are 1 or less
Average is 1.000017
Maximum is 2

Max:

Fig. 15.4 Sample of an email service report

Fig. 15.5 Sample of an
account report

Active Subscriptions       742951 
Suspended Subscriptions      7107
Number of accountswith…
2 active subscribers : 119465
3 active subscribers : 48932
4 active subscribers : 26120
5 active subscribers : 13573
6 active subscribers : 9035
7 - 10 active subscribers : 2728
11 - 25 active subscribers : 299
26 - 50 active subscribers : 0
51 or more active subscribers : 0
Total Active Secondary Email Ids = 416596
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15.9 Summary

In this chapter, we presented an approach to building large-scale network services.
Other approaches undoubtedly exist, and this approach is certainly not the only
possible path to success. However, for us, this approach has proven successful in
providing many reliable network services. We conclude this chapter with a summary
of the “best practice” principles.

� Provide accurate, clear, and understandable requirements to ensure that the
resultant software behaves as expected.

� The architecture of a software system must have conceptual integrity. This
is best achieved by designating a single individual as the architect.

� Clearly document all interfaces.
� Avoid any single-point-of-failure by designing in sufficient redundancy.
� Practice recovery operations regularly.
� Establish a reliable mechanism to monitor the health of the service.
� Establish a standard log format.
� Assign exactly one person as the primary developer of each module; each

module should have an assigned backup person (to avoid a human single-
point-of-failure).

� Test early, test often.
� Modularity helps to reduce source code size, which improves maintainabil-

ity.
� Write code for human (and machine) consumption.
� Production software is considerably more difficult to implement than a pro-

totype: plan accordingly.
� Change management allows for deployment of fixes that do not introduce

new, unrelated problems.
� Software should be built by someone other than the software’s author. This

guarantees that the software can be built when the author is unavailable.
� Successful deployment of a new version of software requires careful

planning.
� Plan for service outages. It is rare that such planning will go unused.
� Care should be taken when assigning staff to carry out more than one

function.
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Chapter 16
Capacity and Performance Engineering
for Networked Application Servers: A Case
Study in E-mail Platform Planning

Paul Reeser

16.1 Introduction

Proper capacity and performance engineering (C/PE)1 is critical for the success
of developing and deploying any complex networked application. All too often,
systems and services are rushed to market without proper capacity/performance
planning, resulting in myriad problems including costly hardware upgrades and
software rework, loss of revenue due to poor quality and late delivery, customer
dissatisfaction, and missed market opportunities. In contrast, by planning for per-
formance and scalability from the earliest stages of product architecture and design,
the chances of “doing it right” the first time are greatly improved. Industry studies
have proven the positive business case for building C/PE into software development:
upfront costs are usually only 1–3% of total project budget, while long-term savings
are typically ten times the upfront investment [1]. All mature software development
organizations have a well-defined process in place to systematically plan for capac-
ity, performance, and reliability throughout the software development and service
deployment life cycle [2].

In this chapter, we discuss the typical capacity, performance, availability, reli-
ability, and scalability engineering activities required to deploy a networked ser-
vice platform. These activities should begin at the earliest stages, and span the entire
platform life cycle: from architecture, design, and development, through service test
and deployment, to the ongoing capacity management of a mature service. During
the service development life cycle, an iterative, “layered” approach to addressing
C/PE is often necessary to meet schedule constraints, wherein more detailed passes
are successively made over each assessment area, rather than completing each task
before moving to the next. In general, successful C/PE requires staying “one step

P. Reeser (�)
Lead Member of Technical Staff, AT&T Labs Research, 200 S. Laurel Avenue,
D5-3D26, Middletown, NJ 07748, USA
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1 The term “capacity/performance engineering” in the chapter title and throughout this chapter
broadly refers to the expansive set of activities required to assess and manage platform capacity,
performance, availability, reliability, and scalability.
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Computer Communications and Networks, DOI 10.1007/978-1-84882-828-5 16,
c� Springer-Verlag London Limited 2010
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ahead” of the product life cycle. In the architecture phase, for example, we try
to identify improvements that lead to a better design. In the design phase, we try
to identify improvements that lead to the development of more efficient software. In
the development phase, we try to create an environment that leads to more effective
testing, and so on.

The aim of this chapter is not to present an exhaustive C/PE “how to” man-
ual, as there are many books devoted to the topic (cf. [1, 3, 4]). Rather, our goal
is to highlight the areas where proper C/PE is especially critical to the successful
deployment of a networked service platform. At the highest level, the goal is to en-
sure that the service meets all performance and reliability requirements in the most
cost-effective manner, wherein “cost” encompasses such areas as hardware/software
resources, delivery schedule, and scalability. With this goal in mind, the process
(shown in Fig. 16.1a) begins with an understanding of what functionality the plat-
form provides and how users interact with the system (Architecture Assessment),
including the flow of critical transactions, the workload placed on the platform ele-
ments, and the service-level performance/reliability metrics that the platform must
meet (Workload/Metrics Assessment). Next, we develop analytic models and col-
lect measurements to predict how the proposed platform will handle the workload
while meeting the requirements (Reliability/Availability Assessment and Capacity/
Performance Assessment). Finally, we develop engineering guidelines to size the
platform initially (Scalability Assessment) and to maintain service capacity, perfor-
mance, and reliability post-deployment (Capacity/Performance Management).

These C/PE assessment activities are depicted relative to the typical software
development and delivery life cycle phases in Fig. 16.1b.
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16.2 Basic Probability and Queuing Concepts

Prior to introducing the case study, we briefly review some straightforward concepts
from elementary probability analysis and queuing theory. These simple concepts
and their associated results will be leveraged at various points throughout the C/PE
process described in the remainder of this chapter. Readers who are already familiar
with such concepts as birth and death models, state transition balance equations,
Markovian queuing systems, and Little’s Law may skip this section and proceed to
Section 16.3. Readers who desire a more thorough treatment of these concepts may
explore any of the countless probability and queuing texts (cf. [5–8]).

From [5], a discrete random variable X is said to be Poisson distributed with
parameter � > 0 if its probability mass function p.n/ is given by

p.n/ D P fX D ng D e�� �n

nŠ
; n D 0; 1; 2; : : : :

A continuous random variable X is said to be exponentially distributed with param-
eter � > 0 if its probability density function f .x/ and its cumulative distribution
function F.x/ are, respectively, given by

f .x/ D
�

�e��x;

0 ;

x � 0

x < 0
and F.x/ D P fX � xg D

�
1 � e��x;

0 ;

x � 0:

x < 0:
:

The mean and variance of X are, respectively, given by ��1 and ��2. The 95th
percentile of X is the value of x such that F.x/ D 0:95. Solving the above equation
for x yields x D �ln.0:05/��1 D 3:00��1. That is, the 95th percentile of an
exponentially distributed random variable is three times the mean. Exponentially
distributed random variables are said to be memoryless in that

P fX > s C t jX > tg D P fX > sg for all s; t � 0:

A stochastic process N.t/; t � 0 is said to be a counting process if N.t/ repre-
sents the number of “events” up to time t . Furthermore, N.t/ is said to be a Poisson
process if (among other conditions) the number of events in an interval t is Poisson
distributed with mean �t . That is, for all t � 0

P fN.t/ D ng D e��t .�t/n

nŠ
; n D 0; 1; 2; : : : :

For a Poisson process N.t/, let T1 denote the time of the 1st event, and let Tn for
n > 1 denote the time between the .n � 1/st and the nth events. The sequence Tn

of inter-event times are independent and identically distributed (i.i.d.) exponential
random variables with mean ��1.

The Poisson process is one example of the general class of exponential mod-
els known as continuous-time Markov chains. These models are completely
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characterized at any time by their state at that time (memoryless), and the time
between transitions from one state to another is exponentially distributed. Markov
chains that always transition from state n to state n C 1 are called pure birth pro-
cesses, whereas those that always transition from state n to state n � 1 are called
pure death processes. More generally, a Markov chain that can transition from state
n to either states n C 1 or n � 1 (such as the number of jobs in queue) is called a
birth and death process.

One example of a birth and death process is the Markovian queuing system.
Suppose that jobs arrive at the single server according to a Poisson process with
rate � > 0 (i.e., inter-arrival times are i.i.d. exponentially distributed with mean
��1), and suppose that service times are i.i.d. exponentially distributed with rate
� > 0 (mean ��1). Such an exponential queuing system is typically denoted by
M(�)/M(�)/1, or M/M/1 for short. More generally, the notation M(�)/M(�)/C/K (or
M/M/C/K for short) commonly denotes a Markovian queuing system with Poisson
arrivals, exponential service times, 1 � C � 1 servers, and 0 � K � 1 buffers.

The service discipline (i.e., the order in which waiting jobs are served) can vary
from the implicit first-in-first-out (FIFO), to last-in-first-out (LIFO), or processor-
sharing (PS) wherein each job in the system receives an equal “slice” of service, or
random order, or priority order, and so on. Fortunately, most metrics of interest (such
as average queue length, or average time in system, or average server utilization)
are insensitive to the particular service discipline due to work conservation laws.
However, service order does impact variances as well as metrics for individual jobs.

Let X.t/ denote the number of jobs in an M/M/1 queuing system at time t , and let

Pn D lim
t!1 P fX.t/ D ng; n D 0; 1; 2; : : :

denote the steady-state probability that there are n jobs in the system. For each n�0,
the rate at which the system enters state n equals the rate at which it leaves state n

(flow in D flow out). This principle is known as equilibrium, and the resulting set
of equations is known as state transition balance equations. For the M/M/1 system,
solving these “flow in D flow out” balance equations in terms of P0 yields Pn D
�nP0, where � D �=� is the utilization. Note that there are n � 1 unique equations
and n unknowns. The nth equation comes from the fact that the probabilities must
sum to 1; hence,

1 D
1X

nD0

Pn D P0

1X

nD0

�n D P0

1 � �
:

Thus, P0 D 1 � � and Pn D �n.1 � �/; n � 1.
Next, let L denote the average number of jobs in the system, and let W denote

the average time spent in the system (delay). L and W are given by

L D
1X

nD0

nPn D .1��/

1X

nD0

n�n D �

1 � �
and W D

1X

nD0

n C 1

�
Pn D : : : D �

1 � �
;
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where � D ��1 is the average service time. The expression for W is derived by
noting that a job arriving to find n jobs already in the system expects to wait for
n C 1 service times (the n jobs ahead of it, plus its own service).2

Comparing the expressions for L and W , we see that L D �W . This relation-
ship is referred to as Little’s Law [9], which states that the average number of
jobs in the system equals the average arrival rate times the average delay in the
system, independent of the arrival or service distributions. Although this formula
seems deceptively simple, it applies under general (non-Markovian) conditions, and
is an extremely powerful “back-of-the-envelope” (BoE) result that we employ often
throughout the C/PE process.

Other common BoE results that we often rely on include the expression for W ,
which states that the average delay equals the average service time divided by (1 –
utilization), as well as the expression for L, which states that the average number of
jobs in the system equals the utilization divided by (1 – utilization). Although these
expressions are derived assuming Markovian arrival and service distributions, they
are generally applicable as a rough estimation for most common queuing situations
in stable steady state. (For transient scenarios, such as the rate of queue growth
following server failure, comparable fluid-flow approximations can be used.)

As a final note, the M/M/C Markovian queuing system has been studied widely,
and has many applications in computer engineering [10]. Other non-Markovian
queues that have wide applications include the M/D/C system, wherein service times
are deterministic (D), and the B/M/C system, wherein jobs arrive in batches (B).
Generally speaking, any variations on the M/M/C exponential system that “smooth”
either the arrival process or the service process (such as the M/D/C queue) tend to
reduce the coefficient of variation (CV),3 while those where either process is more
“bursty” (such as the B/M/C system) tend to increase the CV. As a result, the 95th
percentile will be less than three times the mean for smoother (than exponential)
distributions, and more than three times the mean for burstier distributions. For ex-
ample, in computer systems in which the CPU executes virtually identical code for
each job (e.g., a server that specializes in one function), the service process may
appear more deterministic. In this case, the 95th percentile delay will be less than
three times the mean. Practical experience suggests that the 95th percentile delay
for common systems is typically two to three times the average delay.

16.3 Case Study

Throughout this chapter, we use an Internet Service Provider (ISP) e-mail platform
as a unifying case study to illustrate many of the C/PE tasks. Most likely, we all
have one or more Internet accounts through which we can send and receive e-mails,

2 This Markovian property results from the memoryless nature of the exponential distribution, and
is referred to as Poisson Arrivals See Time Averages (PASTA).
3 The coefficient of variation (CV) is a normalized measure of dispersion of a distribution, defined
as the ratio of the standard deviation  to the mean � .CV D =�/.
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maintain a personal web page, access newsgroups and web logs, and participate in
a variety of online activities such as chat rooms and gaming. In most cases, we pay
an ISP to provide basic Internet access ranging from narrowband dial-up, through
broadband DSL and cable, up to wideband FTTH. Features such as e-mail, web
page hosting, and news then come “free” with our Internet access subscription.

But have you ever wondered what goes on “behind the scenes” to provide a “free”
feature such as e-mail? In reality, the cost and complexity of providing a fast, reliable
ISP e-mail platform for millions of subscriber mailboxes is a real C/PE challenge.
With many large ISPs offering 1 GB mailboxes, these providers potentially need to
provision and maintain many terabytes of online storage, and meet stringent delay
requirements while processing many millions of e-mail messages daily.

Figure 16.2 illustrates an example functional architecture for a large ISP e-mail
platform. Such a platform typically consists of numerous functional components,
each performing specialized tasks and conforming to multiple protocols for send-
ing, receiving, and retrieving e-mails. These software components could all run on
the same physical server, and many e-mail platform vendors offer an “all-on-one”
configuration. From a performance, reliability, security, and scalability standpoint,
however, such a solution has severe limitations. For example, the server capacity
of an “all-on-one” configuration is limited by the most stringent performance met-
ric (e.g., message retrieval), resulting in costly over-engineering relative to other
metrics (e.g., message delivery). By partitioning functionality across servers, each
component can be optimized relative to its own unique metrics. Or, sizing an “all-
on-one” solution to meet storage needs may require more disk than one physical
server can manage. Or, putting the inbound and outbound mail delivery processes
on the same physical server may result in security vulnerabilities such as “mail re-
lay”, where spammers attempt to mask their identity to relay mail through your
server (by spoofing the sender as an on-net user so that the server passes the mail
through to an off-net recipient). Thus, architects and C/PE planners must determine
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Fig. 16.2 Example ISP e-mail platform functional architecture
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the expected market segment that their solution targets, and plan accordingly. Unless
the target market is very small, partitioning of software components onto dedicated
hardware sized for the component is more cost-effective.

With this understanding in mind, we assume throughout the remainder of this
chapter that we are delivering an e-mail platform to serve a large ISP. Accord-
ingly, there are typically numerous identical replicas of the functional components
in Fig. 16.2, each running on its own physical hardware. Thus, the physical architec-
ture for a large ISP e-mail platform can consist of many hardware servers, and will
typically look very much like the functional architecture illustrated in Fig. 16.2. As a
result, we will henceforth use the word server interchangeably to refer to either the
specialized functional (software) component or the dedicated physical (hardware)
element on which it resides.4

Referring again to Fig. 16.2, a typical large e-mail platform includes inbound
Gateway (GW) servers to receive incoming e-mail from the Internet, running the
industry-standard Simple Mail Transfer Protocol (SMTP) on the Internet-facing
side. These GWs typically perform a variety of filtering functions to screen out un-
wanted and threatening e-mails (e.g., spam, viruses, and worms), often employing
specialized anti-spam/virus (AS/V) filtering software on outboard servers. Messages
that pass filtering are then forwarded to Post Office (PO) servers, where messages
are stored in user mailboxes until they are retrieved or deleted. Unlike the other mail
platform components, the POs are usually “stateful” in that a user’s mailbox typi-
cally resides on only one PO, and messages destined to a particular user must be
routed to a particular PO. (As we will discuss later, this fact is particularly relevant
to ongoing C/PE.) Collectively, the GWs and POs constitute the message delivery
and storage platform.

Next, users can typically access their e-mail over the ISP Intranet through a
number of interfaces. The oldest such access mechanism is the industry-standard
Post Office Protocol (POP), where a POP software client residing on the user’s PC
connects to a POP proxy (PP) server to retrieve e-mails. The PP server in turn con-
nects to the appropriate PO and typically “drains” all messages in one transaction,
downloading them to the user PC and removing them from the PO. The user can
then read the messages from their local storage. In addition to POP, another widely
used access mechanism is the industry-standard Secure HyperText Transfer Proto-
col (HTTPS), wherein an HTTP browser residing on the user’s PC connects to a
WebMail (WM) server to retrieve the e-mails. The WM server in turn connects to
the appropriate PO (possibly via the PP), and typically provides a list of all stored
messages. The user can then choose to retrieve and/or delete the messages (usually
one at a time) from the PO, resulting in a series of transactions. Typically, messages

4 In reality, ISPs typically support multiple applications in addition to e-mail (e.g., newsgroups and
web hosting). These applications typically share physical resources, either through virtualization,
common transactions (e.g., authentication), or shared infrastructure (e.g., LANs). For the purpose
of illustrating the C/PE tasks, we assume that all physical resources are dedicated to the single
e-mail application. In the case of resource sharing/virtualization, the C/PE analysis must account
for the impact of additional workload, reduced resource availability, and contention.
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remain on the PO server until the user explicitly deletes them, or the PO eventually
deletes them as a result of optional mail aging policies. (Again, this fact is particu-
larly relevant to ongoing C/PE.) Although POP and HTTPS are the most prevalent
consumer access protocols, other options are common, including Internet Message
Access Protocol (IMAP) and proprietary mail clients (e.g., MS Outlook). Collec-
tively, the PPs, WMs, and POs constitute the message retrieval platform.

Finally, users can typically send e-mails through a number of interfaces. The old-
est egress mechanism is again SMTP, wherein an SMTP client residing on the user’s
PC connects to an outbound mail relay (MR) server to send e-mails. These MRs
typically perform the same filtering functions as the GWs, again often employing
specialized filtering software on outboard AS/V servers. Messages that pass filtering
are then forwarded to the recipient ISP’s GW over the Internet, or to the appropriate
PO server if the recipient is “on-net” (hosted by the same ISP as the sender). In
addition to SMTP, another widely used egress mechanism is again HTTPS, wherein
the browser connects to a WM server, which forwards the message to an MR. Col-
lectively, the MRs and WMs constitute the message egress platform.

16.4 Architecture Assessment

Section 16.4 describes the Architecture Assessment activities. These tasks are usu-
ally performed during the architecture and design phases of the platform life cycle.
The goals at this stage are to

1. Identify critical functional (software) and physical (hardware) elements
2. Identify critical user transactions and develop a descriptive model of the flow of

transactions through the platform elements
3. Identify critical element resource limits and potential performance- and

scalability-limiting platform bottlenecks (“choke points”)

For example, the critical software elements in this e-mail platform are

(a) Inbound SMTP GW and AS/V filtering processes
(b) PO message delivery, storage, retrieval, and deletion processes
(c) POP and HTTPS message retrieval processes
(d) Outbound SMTP GW, HTTPS, and AS/V filtering processes

Similarly, the critical hardware elements in this e-mail platform are

(a) Inbound SMTP GWs, outbound SMTP MRs, and AS/V servers
(b) PP and WM message retrieval servers
(c) PO message storage servers

Examples of software/hardware elements that may not be considered critical (at least
in the first iteration) include databases to store user identities, credentials, and e-mail
preferences, secure servers to authenticate HTTPS users against their credentials,
directories to map user identities to physical mailbox locations, servers to manage
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access control lists (ACLs) and spammer “blacklists,” log servers to record transac-
tion access and summarize daily usage volumes, scripts to migrate mailboxes from
one PO to another PO for load-balancing, and probe servers to measure transaction
reliability and performance. Such noncritical elements can be explicitly considered
in successive iterations if their associated transaction volumes or resource consump-
tions turn out to warrant it.

Once the critical software/hardware platform elements are identified, we next
identify the critical user/system transactions. First, these critical “use case” trans-
actions must include all those that will have associated service-level metrics. If we
do not explicitly model transactions for which a requirement will be specified, then
we will not know in a timely manner if the requirement can be met. For example,
any common user-initiated transactions, such as retrieving a message, must be con-
sidered as critical. In addition, critical transactions must include those that may be
particularly usage- or resource-intensive. If we do not explicitly model transactions
that may consume significant resources, then we will not know in a timely man-
ner if the system will have adequate capacity. For example, if the e-mail service
implements a message aging policy, traversing the storage directory to find mes-
sages older than N days can be extremely CPU-intensive, even though there is no
associated performance metric.

For the e-mail platform, some of the critical transactions are

(a) Receive and filter an inbound or outbound SPAM/virus message
(b) Receive, filter, and deliver a safe inbound message
(c) Receive, filter, and deliver a safe outbound message locally
(d) Receive, filter, and deliver a safe outbound message to the Internet
(e) Retrieve a mailbox contents via POP (including moving the contents to a trash

bin for subsequent deletion)
(f) Retrieve a mailbox list via HTTPS
(g) Retrieve a single message via HTTPS
(h) Delete a list of messages via HTTPS
(i) Traverse the storage directory to find messages older than N days

Examples of transactions that may not be considered critical (at least in the first it-
eration) include interactions with a database server to identify a user or update user
e-mail preferences, sending a non-delivery notice (NDN) back to the originating
ISP when a message recipient is not found, writing transactions to a logging server,
updating the AS/V rule set when new spam signatures are identified, migrating mail-
boxes from one PO to another PO to load-balance the storage levels, running daily
scripts to summarize transaction volumes, and so on. Such non-critical transactions
can be explicitly evaluated in successive iterations if their transaction volumes or
resource consumptions turn out to be higher than anticipated, or if the involved ele-
ments turn out to be bottlenecks.

These critical platform elements, and many of these critical transaction flows,
are captured in Fig. 16.2. Given this characterization, we can begin to identify
possible resource limits and potential capacity- and performance-limiting platform
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bottlenecks. Listed below are a number of typical e-mail platform choke points.
This list is by no means intended to be exhaustive. Rather, these are a few of the
numerous bottlenecks that can be identified early in the platform delivery process:

� The ISP does not have direct control over the incoming message arrival process.
The source ISP could deliver messages as they are received (one at a time, one
SMTP connection per message), or store messages destined for a particular ISP
and deliver a batch of many messages at once (in one SMTP connection). As a
result, the inbound SMTP process running on the GWs needs to be able to handle
a highly variable input stream with highly variable connection times. This in turn
suggests that the GWs need to have a large amount of RAM, and a mechanism
to commit messages to disk prior to closing the SMTP connection (to ensure
message delivery reliability).

� The rules governing AS/V filtering are highly dynamic and ever-expanding.
Spam is growing exponentially, with volumes doubling every few years. And
as a new spam, virus, or worm signature is identified, the filtering rule set must
be updated with this new signature. Thus, the GW must be able to keep pace
with the ever-growing processing demands of this CPU-intensive function. For
this reason, the AS/V function is often moved to an outboard filtering engine such
as a high-density, rack-mounted, disk-less blade server, where processing power
can be grown in a cost-effective manner. This in turn allows the GW server to be
specialized to its more memory-intensive task.

� Mailbox management is of particular concern for any e-mail platform. Without
proper policies to control message retention (e.g., an aging policy that deletes
unread messages older than 60 days), PO storage needs will grow exponentially.
Even so, the POs need to be able to handle huge volumes of data and support
large disk subsystems. As a result, PO storage is often moved to expandable
NFS-based network attached storage (NAS), or even to a storage area network
(SAN).

� Finally, the user experience is typically dominated by message retrieval, where
stringent performance and reliability metrics are often defined. Hence, the user-
facing PP and WM servers must be sized to provide adequate capacity to meet
the delay requirements even under failure conditions (e.g., two of N servers are
down, or, in the case of redundant sites, half of all servers are unavailable due to,
say, site router failure).

16.5 Workload/Metrics Assessment

This section describes the Workload/Metrics Assessment activities. These tasks are
usually performed during the design phase of the platform life cycle. The goals at
this stage are to

1. Characterize the anticipated critical (usage- or resource-intensive) transac-
tion workload and develop representative workload models (transaction mix)
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to describe platform usage during typical and extreme scenarios (e.g., under
element failure or during peak holiday periods)

2. Characterize the anticipated transaction performance and reliability require-
ments/metrics

3. Develop software component resource estimation and budgeting models for the
representative transaction workload scenarios

4. Identify needs to optimize the platform architecture (e.g., splitting software com-
ponents across multiple servers) based on budget constraints

16.5.1 Workload Models and Requirements

For an e-mail platform, many of the critical transactions were listed in the previous
section. Table 16.1 provides an example transaction mix for the normal and peak
scenarios. These workload parameters can be estimated through a variety of chan-
nels, including past platform experience, competitive assessments, industry bench-
marks, and market research. In addition, sensitivity analyses can be performed to
understand the C/PE ramifications of significant changes in the expected workload
profile.

Next, we must specify performance and reliability requirements for a subset of
the critical transactions. Often, these requirements are driven by what customers are
demanding, or by what competitors are offering, or by what the product planning
organization thinks will be required to differentiate this product from those offered
by competitors. Frequently, these requirements are built into a contractual service-
level agreement (SLA) with the customer, including specific penalties (such as a
specified credit on the monthly service cost) when an SLA metric is violated.

Performance and reliability metrics can take many forms. Traditionally, these
metrics have been specified in terms such as “average delay less than X seconds” or
“availability greater than Y %”. More recently, many service providers have adopted
approaches such as the 6 Sigma methodology [11] to specify these metrics in terms

Table 16.1 Representative transaction workload models

Critical transaction Normal rate (tps) Peak rate (tps)

Receive/filter inbound (IB) spam message 2,000 3,000
Receive/filter outbound (OB) spam message 1,000 1,500
Receive/filter/deliver safe IB message 500 750
Receive/filter/deliver safe OB message locally 100 150
Receive/filter/deliver safe OB message to Internet 400 600
Retrieve mailbox contents via POP 100 150
Retrieve mailbox list via HTTPS 100 150
Retrieve single message via HTTPS 200 300
Delete list of messages via HTTPS 150 200
Traverse storage directory to find old messages 0.001 0.001
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of a unified Defects per Million (DPMs) rate. In a nutshell, a transaction defect can
occur in any one of three areas:

1. Accessibility (simply speaking, the availability of the operation)
2. Continuity (the reliability of the operation)
3. Fulfillment (the performance quality of the operation, e.g., latency)

For example, an e-mail transaction can be considered defective if

(a) The transaction fails to complete (i.e., no response is received)
(b) The transaction completes, but an incorrect response is received
(c) The transaction completes, and the correct response is received, but the response

time (or other appropriate metric) violates its target

The overall DPM is defined as 106 � fthe fraction of defective transactions in ex-
cess of targetg. Specifically, the number of defects (raw count) is the actual number
of transactions violating their targets minus the allowable number of transactions
violating their targets. For example, for the “deliver a safe inbound message” trans-
action, a typical target might be “95% of measured delivery times <10 min”. In this
case, the DPMs would be max f[(observed fraction >10 min) – (1 – 0.95)]�106, 0g.

Regardless of how the metrics are defined, a number of characteristics must be
addressed. First, they must be specific. Consider, for example, a response time re-
quirement for a “retrieve message” transaction. We must specify any characteristics
that impact delay, such as message size, the point at which the stopwatch begins
(user clicks on link) and ends (first packet is received), access link speed, and so
on. Second, they must be measurable. A service-level metric is useless to you and
your customers if it cannot be accurately measured and verified. As a result, you
need to consider how you plan to measure the requirement. Will you need a soft-
ware client add-on to capture and report measurements? Will you deploy a hardware
sniffer at select user end points? Will you subscribe to an outside vendor’s perfor-
mance verification service? Will you develop a separate measurement platform to
launch synthetic transactions into your platform? Third, they must be controllable.
You may have difficulty meeting contractual SLAs if you do not control all compo-
nents in the critical path of the metric. For instance, defining a response time metric
to include rendering by the user’s browser makes you vulnerable to the user’s PC.
Or defining a metric to include network transport is dangerous if you do not con-
trol the access/egress networks. For example, we may define a metric for “deliver
message locally” rather than “deliver message to Internet” because the ISP does not
have control over the Internet, or the recipient ISP’s platform.

Using this approach, we can define the DPM components for each critical trans-
action. For example, the direct measures of quality (DMoQs) associated with the
“retrieve message via HTTPS” transaction are shown in Table 16.2. Given these
DMoQs, we can tolerate up to 106�0:05 D 50;000 DPMs associated with the “re-
trieve message via HTTPS” transaction: up to 106�0:005 D 5;000 accessibility
DPMs and up to .106 � 5;000/�0:002 D 1;990 additional continuity DPMs, with
the balance as fulfillment DPMs.
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Table 16.2 Example metrics for “retrieve message via HTTPS” transaction

DMoQ Target Definition

1. HTTPS read availability 99.5% Proportion of attempts that
complete prior to time out

2. Read reliability (given 1.) 99.8% Proportion of attempts that
complete successfully

3. 95th Percentile response
time (given 1. and 2.)

20 s Time from clicking on link until
contents fully displayed

16.5.2 Resource Estimation and Budgeting Models

Performance modeling must begin as early as possible in the platform development
process. Many platform planners assume that useful models cannot be constructed
until after the software is developed and tested. Unfortunately, if we wait until per-
formance/scalability problems are uncovered during testing, it is often too late to
make architectural changes without costly rework. Early-stage performance models
need not be overly complex. In fact, simple “back-of-the-envelope” (BoE) models
often provide valuable insights into performance issues. Resource estimation and
budgeting is one such modeling effort that can bear significant fruit early in the
platform life cycle [12].

Throughout the remainder of this chapter, we attempt to maintain a consistent
set of symbolic notation in mathematic formulas wherever possible. We consolidate
much of this notation here so that the reader can refer back to one place to refresh
their memory. Let

Ri denote the rate of transaction i (in transactions per second, or tps)
Nj denote the number of instances of component j (parallel servers)
Cij denote CPU consumption of transaction i on component j (s)
�j D P

i Ri Cij=Nj D CPU utilization per replica of component j

Tij D Cij =
�
1 � �j

� D delay of transaction i on component j (s)5

Ti D P
j Tij D end-to-end delay of transaction i (s)

T i denote the end-to-end delay requirement of transaction i (s)
T ij denote the delay budget of transaction i on component j (s)

The process of resource estimation and budgeting is iterative, and varies de-
pending on the stage of platform life cycle. Prior to development, when resource
consumptions cannot yet be measured, designers must estimate resource costs based
on the detailed component design. Resource estimation is a “bottom-up” approach
in that we first estimate the hardware/software component resource consumptions
Cij and determine the number of servers Nj required to meet the delay require-
ments NTi . Thus, the goal of software component resource estimation is essentially
to minimize Nj such that Ti � NTi . Resource budgeting is a “top-down” approach

5 This expression results from a BoE model for delay W reviewed in Section 16.2.
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in that we first specify delay allocations T ij for each component and determine
the maximum resource consumptions Cij allowable while still meeting the budgets.
Thus, the goal of software component resource budgeting is essentially to maximize
Cij given Nj such that Tij � T ij. By performing both estimation and budgeting, we
can identify gaps in the design and focus development resources on the most critical
components. As development proceeds, the results of the estimation and budgeting
eventually align.

With this process in mind, consider again the “retrieve message via HTTPS”
transaction. The critical path flow of this transaction is

Client $ Access network $ WM server $ PO server.

Thus, delay objectives must be budgeted to each component in the critical path.
Assume that to meet a 95th percentile delay requirement of 20 s, you must target an
average response time of 10 s.6 Assuming that the performance metric is specified
to be from the moment the user clicks on the browser link until the first packet of a
100 kB message is received, the client is essentially removed from the critical path.
Assuming that the ISP provides an access network capable of sustaining 1 Mbps, the
transmission of a 100 kB message should take no more than 1 s including protocol
delays. Of the remaining 9 s, assume that our rough sizing of the workload indicates
an initial allocation of 3 s to the WM server and 5 s to the PO as a starting point. We
keep the final 1 s in reserve (a “kitty”) to allocate later in the process in the event of
minor overruns. This initial allocation is somewhat arbitrary, since we can perform
sensitivity analyses around the allocation of time among components to optimize
the configuration.

Consider the WM server (the PO server budgeting is similar). The WM server
is in the critical path of three critical transactions: “retrieve single message via
HTTPS” (transaction 1), “retrieve mailbox list via HTTPS” (transaction 2), and
“delete list of messages via HTTPS” (transaction 3). From Table 16.1, the peak
transaction rates are R1 D 300 tps, R2 D 150 tps, and R3 D 200 tps. Assume that
development has not yet completed, but the designers estimate that the WM CPU
consumptions per transaction are C1 D 20 ms, C2 D 40 ms, and C3 D 30 ms. (For
simplicity, we drop the subscript j as we only consider a single component.) Then
the WM server CPU utilization per replica is � D †Ri Ci=N D 18=N , and the
average delay of transaction 1 (in seconds) is T1 D C1=.1��/ D 0:02N=.N �18/.
Finally, solving the expression T1 � 3 s for N yields N � 18.1 WM servers. Thus,
given the peak workload and resource consumption estimates, the current projec-
tion is that at least 19 WM servers are required to meet the average delay objective
for transaction 1. (This number could increase further once a similar analysis is
performed for transactions 2 and 3.) This approach is “best case” in that it ignores
contributions to end-to-end delay other than CPU contention. For instance, disk

6 As discussed in Section 16.2, both analytic modeling and practical experience suggest that the
average delay for user-initiated jobs with common code execution is typically one-third to half of
95th percentile delay. As part of the budgeting exercise, we can perform sensitivity analyses around
this 95th percentile-to-mean assumption.
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and network I/O time and protocol delays will “eat into” the delay budget, leaving
less time for CPU processing. These factors are usually illuminated during the test-
ing phase, and can be captured during the performance modeling. This approach
is also “worst case” in that the underlying BoE model T D C=.1 � �/ assumes
a high-degree variability that is frequently not observed when computer systems
deterministically execute identical code for each job.

This budgeting exercise often sheds light on opportunities to optimize the plat-
form architecture based on the resource constraints. For example, we may find that
too many critical transactions are competing for the same resource, resulting in the
need to over-engineer that component to meet the most restrictive requirement. By
splitting the functionality across specialized servers (say one pool of WM servers
to handle transactions 1 and 3, and another pool to handle transaction 2), we may
be able to meet all requirements with fewer total servers. Or we may find that one
particular design estimate for component CPU consumption leads to an inefficient
use of the resources. By budgeting a smaller target for that component, we may be
able to better focus development resources on the most critical components, thus
leading to a more efficient product.

16.6 Availability/Reliability Assessment

This section describes the Availability/Reliability Assessment activities. These tasks
are usually performed between the design and software development phases of the
platform life cycle. The goals at this stage are to

1. Develop reliability block diagram models to quantify long-term (steady-state)
service availability, and birth and death models to quantify short-term (transient)
platform reliability, and identify reliability-impacting platform bottlenecks (such
as single points of failure)

2. Perform reliability sensitivity and failure-mode analyses to identify and quantify
the reliability impact of required platform enhancements

3. Propose additional reliability requirements and engineering rules

16.6.1 Availability Modeling

Prior to software development, we can begin to assess platform availability and
reliability. To determine the availability of the platform for various activities, we
first estimate the availability of all components and identify which components are
required to perform the activity. The data required for each component in estimating
transaction availability are

� The mean-time-to-failure (MTTF)
� The mean-time-to-repair or restore (MTTR)
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� The “K of N” sparing policy (discussed below)
� The software C procedural “scaling factor” (discussed below)

The availability A of each element is given by A D MTTF/(MTTF C MTTR), and
the downtime DT (in minutes per year) is given by DT D 525;600.1 � A/.

The sparing policy depends on whether or not persistent state information is re-
tained. For stateless components such as the GW server, the notation “K of N ”
denotes that the component is available if at least K of the N replicas are opera-
tional. For stateful components such as the PO, the notation “1 of K CN ” (typically
1 of 1 C 1) denotes that there are K primary servers and N warm standbys. For 1
of 1 C 1 sparing, if the primary component fails, the state is re-created on the warm
standby, and the subsystem is down for the duration of this failover procedure (given
by the MTTR).

The availability for a block of elements is given by

Ak of n D
n�kX

iD0

�
n

i

�

An�i .1 � A/i :

For example, AN �1 of N D NAN �1 � .N � 1/AN ; AN �2 of N D 1=2.N � 1/

.N � 2/AN � N.N � 2/AN �1 C 1=2N.N � 1/AN �2, and so on. Note that this
general model includes as limiting cases the “series” (N of N ) and “parallel” (1 of
N ) systems, given by Aseries D An and Aparallel D 1 � .1 � A/n.

Two approaches are commonly employed to account for the effects of software
faults and procedural errors on the platform availability:

� Perform rigorous software reliability analysis to measure and estimate the mean
time between faults/errors and MTTR, and explicitly include these components
in the reliability critical path

� Scale the hardware availability estimates based on common “rules of thumb” to
account for software/procedural impacts

Clearly, the first approach is more accurate and application-specific, provided data
can be obtained at the current stage of platform delivery. There are numerous
approaches to this analysis, such as software reliability engineering (SRE), fault
insertion testing (FIT), and modification request (MR) analysis (cf. [13, 14]). More
often than not, however, direct measurements of software/procedure failures are not
available until the platform has been through system test and/or deployed for some
time. As a result, the second approach is more common at this early stage. One com-
mon methodology is to scale the hardware downtime to reflect software/procedural
faults. Based on experience [15], the recommended factors are listed in Table 16.3.

Let S denote the scaling factor, and let the subscripts H and T denote the hard-
ware (only) and total (hardware C software C procedural) availability measures.
Then S � DTT=DTH D .1 � AT/=.1 � AH/. Thus, once we compute the hardware
downtime DT H and availability AH, the total downtime DTT is given by S.DTH/,
and the total availability AT is given by AT D 1 � S.1 � AH/.
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Table 16.3 Recommended hardware-to-total DT scaling factors

Level of component complexity

Platform life-cycle
stage

Simple,
simplex

Moderate,
average

Complex,
redundant

New 15 20 25
Evolving 9 12 15
Mature 3 4 5

1 of 1+(N–1)

Spare

PO

•••
1 of 2

Access

Access

N–1 of N

GW

GW

N–2 of N

AS/V

AS/V
Global 
Internet

•••

Fig. 16.3 Example reliability block diagram

The process usually begins with the construction of reliability block diagram
(RBD) models. These models define “blocks” of platform elements along the critical
path of transaction flows, where each block has an associated probability of failure.
For example, Fig. 16.3 shows a typical RBD model for the “receive/filter/deliver
safe IB message” transaction.

As can be seen, there are two access links from the Internet to the GWs. In this
example, assume that this portion of the path is available if at least one is operational
(1 of 2). There are multiple stateless GW servers, any one of which could receive the
next connection. Assume that this portion of the path is available (i.e., has sufficient
capacity to handle the workload without performance degradation) if no more than
one GW is down (hence N � 1 of N must be up). There are multiple stateless AS/V
servers, any one of which could receive the next filtering request. Assume that this
portion of the path is available if no more than two AS/V servers are down (hence,
N � 2 of N must be up). Finally, there are multiple stateful PO servers, only one
of which normally contains the destination mailbox. Assume that there is one spare
PO available in the event that any primary PO fails. Then, this portion of the path is
available if either the primary PO for this mailbox is operational, or the spare PO is
available to serve this mailbox. The spare PO in turn is available if all other N � 1

POs are operational. Hence, 1 of 1 C .N � 1/ must be up. Further explanation of
how failover to the spare PO actually works is given later in Section 16.6.2 when we
discuss detailed reliability modeling. (For simplicity, we ignore other components
in the critical path, such as access routers, load-balancing switches, and LAN hubs.)

Next, we estimate the MTTF and MTTR parameters for each element in the
RBD model. The MTTF estimates are typically based on industry-standard as-
sumptions or vendor analyses of server hardware availability, whereas the MTTR
estimates are typically based on knowledge of your data center operations and
staffing (e.g., 15 min to detect and reboot a server, 4 h to diagnose and replace a
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Table 16.4 Example availability analysis

Element MTTF (h) MTTR (h) S K N AH

DT H

(min/year)
DT T

(min/year) AT

Access 40K 24 5 1 2 1.00000 0.2 1 1.00000
GW 5K 8 25 9 10 0.99989 59.8 1496 0.99715
AS/V 10K 4 15 18 20 1.00000 0.0 1 1.00000
PO 5K 4 25 4 5 1.00000 132.7 3319 0.99369
Critical path � � � � � 0.99988 192.8 4807 0.99085

LAN card, and 24 h to ship and replace a component not available on-site). Once the
model is constructed, we can easily perform sensitivity analysis of these parameters.

For example, consider the RBD in Fig. 16.3. Table 16.4 shows the results of this
availability modeling exercise. Columns two to four provide the assumed MTTFs,
MTTRs, and scaling factors for the elements along the critical path. Columns seven
to ten show the resulting downtimes and availabilities. The PO server requires spe-
cial treatment. The availability AH given in Table 16.4 only reflects the availability
of the primary PO or spare PO (in parallel). We must also reflect the failover time
in the PO downtime DTH. Assume that this procedure requires 1 h to migrate the
file system from the failed PO to the spare, and another 15 min to reboot the server.
Thus, every 5,000 h (the PO MTTF), we incur a 75-min downtime to restore service,
or 131.4 min/year added to DTH.

As can be seen, the estimated total availability AT for the “deliver safe IB mes-
sage” transaction is 99.1%. If AT is less than the target requirement proposed in
Section 16.5.1, then we must consider enhancements to the architecture and/or data
center operations. For example, the biggest contributors to the downtime are the GW
and PO servers. By planning for additional GW servers, we can provide enough ca-
pacity to handle two failures (N �2 of N ). If this change does not provide sufficient
benefit to meet the requirement, then we can consider alternative storage architec-
tures that could reduce the PO failover time below the 1-h assumption. These and
other sensitivity analyses are easily facilitated by this modeling approach.

We must also be careful not to over-simplify the analysis. Otherwise, we may
overlook potential single points of failure (SPoFs). For example, this analysis as-
sumes that element failures are independent. In the case of the access links, this
assumption implies that the physical links are diversely routed (i.e., each link takes
a separate physical path between the data center and the Internet). If this assump-
tion is not true (e.g., the links terminate on the same edge router, or the logical links
“ride” on the same higher-capacity physical fiber), then failures are not independent
(e.g., a fiber cut can take out both links). As another example, if the AS/V servers
are blade servers, then they reside in a blade center chassis. If there are SPoFs in the
chassis (e.g., power supply or cooling fan), then we could lose all AS/V servers in
the chassis if the chassis fails. Or, if the data center does not have battery or diesel
power backup, then the loss of commercial power could result in the catastrophic
failure of all servers at once.
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16.6.2 Reliability Modeling

Once RBDs are constructed for the critical transactions, we can begin to look at
element reliability in more detail where warranted. For example, consider again
the PO server failover behavior described in the previous section. Assume that the
procedure for handling PO outages is as follows: If the primary PO serving a given
mailbox goes down, the data center staff first tries to reboot the PO. With probability
c (referred to as the “coverage” factor to denote that the remedial action – in this
case, a reboot – “covers” the failure event), the PO successfully comes back up.
Otherwise, the PO is considered failed. If the spare PO is available, then state is
migrated onto the spare PO (failover), which becomes the new primary PO for the
given mailbox. Once the failed PO is repaired, it becomes the new spare. Otherwise,
if the spare PO is unavailable (i.e., another PO failure occurred and that PO is not
yet repaired), then the given mailbox is unavailable.

The PO availability state space can then be described as follows. Let

A denote the state “primary PO is active”
D denote the state “primary PO is down”
F denote the state “primary PO is failed”
S denote the state “spare PO is available”
U denote the state “spare PO is unavailable”

Furthermore, let

N denote the total number of PO servers
� denote the PO failure rate D MTTF�1

�R denote the PO repair rate D MTTR�1

�B denote the PO reboot rate D (time to reboot)�1

�F denote the PO failover rate D (time to failover to spare)�1

c denote the reboot coverage factor

As with most modeling efforts, we take a layered approach to this reliability
modeling (starting with the simplest model first, and adding successively more detail
until the benefits diminish). With this approach in mind, the simplest model results
from assuming that the spare PO is always available. The state transition model for
this case is shown in Fig. 16.4.

Hopefully, “A/S” is the predominant state. Transitions from state “A/S” to “D/S”
occur at rate � if the primary PO goes down. Transitions from “D/S” back to
“A/S” occur at rate c�B if the reboot succeeds, whereas transitions from “D/S”
to “F/S” occur at rate .1 � c/�B if the reboot fails. Finally, transitions from “F/S” to
“A/S” occur at rate �F if the primary PO fails over to the spare. Service is available
if the PO is in state “A/S”. As discussed in Section 16.2, this state transition diagram

Fig. 16.4 Simple PO server
state transition diagram
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describes a birth and death model. Solving the resulting equilibrium balance equa-
tions yields

P.A=S/ D �B�F

�F.� C �B/ C .1 � c/��B
:

For N D 5, � D 1=5;000, �B D 4, �F D 1, and c D 0:5, the probability that
the mailbox is available P.A=S/ D 99:985%, resulting in a PO hardware downtime
DTH of 78.8 min/year. Thus, reflecting the detailed data center operations procedure
(attempting a reboot before failing over to the spare PO) results in a reduction in our
PO hardware downtime estimate from 131.4 to 78.8 min/year.

In fact, we can see now that the original estimate of 131.4 min/year is an upper
bound, since it essentially assumes that c D 0 (i.e., every failure results in failover).
In contrast, the new estimate of 78.8 min/year is a lower bound, as it assumes that
we only ever have one concurrent PO failure. This observation illustrates the point
that much of the early C/PE analysis involves developing simple models to provide
upper and lower bounds on the true answer. If the bounds are tight, then we can often
move on to the next problem without the need to develop a more detailed model.

In this case, the bounds are not tight. So adding the next layer of detail, we
assume that the spare PO is sometimes unavailable due to the failure of another PO.
Furthermore, we assume that at most one other PO has failed at any moment in time.
This state transition model is shown in Fig. 16.5.

Again, “A/S” (shown in the upper left corner) is hopefully the predominant state.
Transitions from “A/S” to “A/U”, or from “D/S” to “D/U”, occur at rate .1 � c/

.N � 1/� in the event that one of the other N � 1 POs fails (thus making the spare
PO unavailable), whereas transitions from the bottom row state “*/U” to the top row
state “*/S” occur at rate �R in the event that the failed PO is repaired. Transitions
from “A/*” to “D/*” occur at rate � if the primary PO goes down. Transitions from
“D/*” back to “A/*” occur at rate c�B if the reboot succeeds, whereas transitions
from “D/*” to “F/*” occur at rate .1 � c/�B if the reboot fails. Finally, transitions
from “F/S” to “A/U” occur at rate �F if the primary PO fails over to the spare PO.
Service is available if the platform is in either of states “A/S” or “A/U”.

Solving the (much more complicated) equilibrium balance equations for N D 5;

� D 1=5;000; �R D 1=4; �B D 4; �F D 1, and c D 0:5 suggests that the
probability that the mailbox is available P.A=S/CP.A=U / D 99:9849%, resulting
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Fig. 16.5 Detailed PO server state transition diagram
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Probability of PO Availability and HW Downtime vs Coverage
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Fig. 16.6 Sensitivity of PO availability to coverage

in a PO hardware downtime DTH of 79.3 min/year. Thus, adding this next layer of
detail results in a further refinement in our PO hardware downtime estimate from
78.8 to 79.3 min/year. As with the RBD modeling, sensitivity analyses are easily
facilitated by this modeling approach. For example, Fig. 16.6 shows the probability
that the PO is available P.A=�/ and the PO hardware downtime as a function of the
coverage factor c. From this type of analysis, we can then set development targets
for recovery times and coverage factors.

Additional layers of detail are possible. For example, we can model the totality
of failure possibilities for all N POs. Here, the states can be represented by (i; j ),
where i D 0; : : : ; N is the number of active POs, and j D 0, 1 is the number of
available spares. However, given the minimal change achieved by the last refine-
ment, further detail is not warranted in this case.

16.6.3 Failure Modes and Effects Analysis

Failure modes and effects analysis (FMEA) is a proactive, systematic software qual-
ity assurance methodology, utilized during the design phase to help identify and
correct weak points in the platform design, thereby addressing potential reliability
problems prior to deployment. FMEA identifies both remedies to avoid outages,
and mitigations (e.g., alarming and recovery procedures) to reduce recovery time.
FMEA is powerful yet easy-to-use (one brainstorming session can yield significant
improvements), and it typically pays for itself if just one failure is averted in the
field. More specifically, FMEA is a disciplined design review technique intended to

� Recognize and evaluate potential failure modes of a system and their effects on
user-perceived performance and reliability
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� Assess the criticality of the potential failure mode in terms of its frequency of
occurrence and its severity of impact

� Identify actions that could reduce or eliminate the likelihood that the potential
failure mode occurs

� Identify alarming, alarm handling, and recovery procedures that focus on mini-
mizing the time to restore service

� Develop a prioritized set of recommendations to achieve the greatest potential
“bang for the buck” in terms of quality and TTR

The FMEA process is as follows: First, we decompose the system into functional
elements (autonomous code modules with well-defined interfaces) and construct
functional decomposition block diagrams to illustrate how the different subsystems
are interconnected. Next, we identify the key transaction flows among the elements
based on the operational workload profile and critical use cases. (This informa-
tion is readily available from the Architecture and Workload assessments described
previously.)

Now, for each element/interface, we identify the possible failure modes and their
likely effects. This step is typically accomplished during a brainstorming session
with the platform architects, system engineers, lead developers, and lead testers,
where the team addresses such questions as:

� What happens if interface X is slow, or hangs, or times out?
� What happens if external system Y is down for an extended period?
� What happens if the response is malformed, or inappropriate?

Next, for each failure mode, we populate an FMEA spreadsheet with the following
information:

� Failure mode (what can go wrong?)
� Failure effects (what are the impacts?)
� Frequency (how often does it occur?)
� Severity (how critical is it?)
� Detection (how is it recognized?)
� Root cause (what is the underlying event?)
� Remedies (what can be done to avoid the failure mode?)
� Mitigations (what can be done to alarm/recover quickly?)
� Effort (how costly – staff, capital – is it to do?)

Remedies are proactive approaches that result in outage avoidance by eliminating the
underlying root cause (e.g., fix the software design, or add redundancy to remove
SPoFs). Mitigations are proactive approaches that result in outage minimization
by reducing their impact (e.g., alarming to provide early warning/detection, alarm
handling procedures to facilitate detection, or recovery procedures to expedite short-
term restoral/repair).

Once a robust list of failure modes has been compiled, we review the spreadsheet
to identify “low-hanging fruit,” such as

� Failure modes for which the remedy is trivial to implement (even if the criticality
is low, eliminating these failure incidents is beneficial)
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� Failure modes for which the effects are catastrophic (even if the effort is high,
these failures must be eliminated through design improvements or minimized
through alarming/recovery procedures)

� Failure modes for which the frequency is high

Finally, we prioritize the identified failure modes, and develop recommended action
plans to address them. The priority of each failure mode is based on three factors:
frequency of failure, severity of impact, and effort to remedy. One approach to pri-
oritization is simply to assign numerical values to each factor, and use the product
(or sum) of the values to determine priorities. The lower the product (or sum), the
higher the priority (e.g., a product of 1 is number 1 priority). Example assignments
are shown below:

� Frequency

– Level 1 (100/year): error response code, time out, core dump
– Level 2 (10/year): CPU board failure, database corruption
– Level 3 (1/year): hard disk crash, commercial power outage
– Level 4 (rarely): lightning strike, flood, locust, alien attack

� Severity

– Sev 1 (catastrophic): complete loss of system or major function
– Sev 2 (critical): severe reduction in functionality or performance
– Sev 3 (major): significant functionality/performance degradation
– Sev 4 (minor): slight degradation affecting limited population

� Effort

– Level 1 (trivial): no change to code base, no regression testing
– Level 2 (minor): one staff-day of rework, little retesting
– Level 3 (moderate): one staff-week of rework, some retesting
– Level 4 (major): complete redesign of critical module

As an illustration of applying the FMEA methodology, a few sample FMEA scenar-
ios for the e-mail platform are listed below:

1. Failure mode: Communication disrupted between the GWs and AS/Vs

– Effects: Messages back up in GW memory, queues overflow, further SMTP
connections denied, message integrity possibly compromised

– Detection: Alarms monitoring GW memory usage, queue volumes
– Root Causes: OB GW and/or IB AS/V process died? LAN failure?
– Remedies: Redundant LANs, multiple virtual IP addresses (VIPs)
– Mitigations: Alarm on queue thresholds, throttle SMTP connections, write IB

messages to GW disk to guarantee integrity/avoid loss
– Frequency: 2 (e.g., once per month)
– Severity: 3 (i.e., significant functionality/performance degradation)
– Effort: 3 (e.g., 2 weeks to design/code/test write-to-disk capability)
– Priority: 18 (i.e., 2*3*3)
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2. Failure mode: PO physical disk storage exhaust

– Effects: Inability to store/send messages, message corruption/loss
– Detection: Alarms monitoring PO disk usage, GW queue volumes
– Root causes: Disruption in PP/WM message deletion or PO garbage collec-

tion/disk clean-up? Unusual spike in volume or SPAM attack?
– Remedies: Rate-limit message ingestion, adequate spare PO storage
– Mitigations: Throttle message ingestion, off-load messages to tape
– Frequency: 4 (e.g., rarely with proper C/PE planning)
– Severity: 1–2 (i.e., possible loss of service to many users)
– Effort: 1–2 (e.g., small effort to proactively monitor storage levels)
– Priority: 9 (4*1.5*1.5)

3. Failure mode: User authentication services disrupted

– Effects: Inability to access mailbox, retrieve/send messages
– Detection: User complaints to customer care, DMoQ probe failures
– Root causes: Authentication process failure or database corruption? Intranet

connectivity disruption? Denial-of-service attack?
– Remedies: Dual active–active authentication DBs, process monitors
– Mitigations: Auto-restart process, roll back DB, or restore from tape
– Frequency: 3 (e.g., once per year)
– Severity: 1 (i.e., possible loss of service to all users)
– Effort: 4 (e.g., major redesign of DB integrity/backup architecture)
– Priority: 12 (3*1*4)

Among these failure modes, “PO physical disk storage exhaust” is the highest
priority at 9, followed by “user authentication services disrupted” at 12, then “com-
munication disrupted between GWs and AS/Vs” at 18.

16.7 Capacity/Performance Assessment

This section describes the Capacity/Performance Assessment activities. These tasks
are usually performed during the software development and testing phases of the
platform life cycle. The goals at this stage are to

1. Identify ongoing transaction usage measurement/monitoring requirements and
develop a unified measurement architecture for performance data collection, stor-
age, distribution, reporting, and visualization

2. Measure per-transaction server resource consumptions (e.g., CPU, memory, disk,
and I/O) and performance, under normal and overload conditions, and quantify
maximum system throughput and system capacity

3. Develop element/platform performance models to identify performance-limiting
bottlenecks, and perform sensitivity analyses to identify and quantify the perfor-
mance impact of required enhancements

4. Identify necessary overload controls to prevent performance degradation at high
load and propose engineering rules to avoid overload
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16.7.1 Performance Data Measurement Architecture

Once software development has begun, we next turn our attention to planning
for an effective capacity/performance measurement environment that will facil-
itate upcoming software testing as well as post-deployment ongoing scalability
planning. As discussed previously, the ability to accurately measure transaction
performance is critical for offering and supporting customer SLAs. A reliable per-
formance measurement architecture is often one of the most overlooked aspects of
software development, resulting in costly rework to build it back into the platform
“after the fact.” Yet, it is one of the most important components of any successful
platform. The foundation for this measurement architecture is often laid during this
phase, as we prepare to measure performance in the laboratory.

C/PE is responsible for thoroughly identifying all relevant application traffic/
workload and resource consumption/usage measurements. Each platform element
must be instrumented to measure its own application workload and resource uti-
lization. Each software component is responsible for “application-aware” measure-
ments, while the server OS is responsible for basic, hardware-level measurements.
For example, the GW application must be instrumented to track such application-
level workload metrics as the number of SMTP connections, the number of received
messages, the number of AS/V filtered messages, the number of messages transmit-
ted to the POs, and so on. Each such measurement should be reported at various
levels of aggregation (e.g., total per day, during each hour, and during the busiest
5 min (B5M) or the busiest 1 min). The GW server (OS) must track resource utiliza-
tions, such as 5-min samples of CPU and memory utilization, disk and network I/O
operations, and so on. (Fortunately, most OSs routinely track these system activity
metrics, so special measurement code development is typically not required.)

This measurement architecture is discussed in more detail in Section 16.9.

16.7.2 Performance Testing

Software testing typically consists of three parts. First, during “unit” testing,
individual software components are tested in isolation to ensure that they func-
tion as designed. Second, during “system” testing, components are collectively
tested in an end-to-end manner to ensure that interfaces are operating properly and
transactions are processed as expected. Third, during “load/soak” testing, collective
components are stressed by generating multiple concurrent transactions to assess
system behavior under expected load and under overload [16]. C/PE plays a role in
all three parts.

During the unit test phase, the actual transaction CPU consumptions Cij and “no-
load” transaction delays Tij are collected. This allows us to iteratively update the
software estimation/budgeting analysis performed earlier, and to begin to gather
the parameters and insights required to build element performance models. For in-
stance, the budgeting formula reduces to Tij D Cij at no-load .� � 0/. If Tij is
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significantly larger than Cij at no-load, then we know that other contributions to
end-to-end delay (e.g., disk I/O time) must be explicitly captured during upcoming
performance modeling. In the mean time, the budgeting analysis can be updated to
reflect these additional delays. For example, if the unit testing reveals that the ad-
ditional delay is associated with an operation that is not highly dependent on the
load on this component (such as waiting for a timer to expire, looking up a record
in a database dominated by other transactions, or session protocol handshake de-
lay), then this additional delay can be treated as a fixed cost added to the transaction
delays Tij during the budgeting calculation.

On the other hand, if the unit testing reveals that the additional delay is associated
with another server resource such as disk I/O, then the expression for the delay Tij of
transaction i on component j must be expanded to include another load-dependent
component, the disk controller. Thus, we now have Tij D Cij=.1–�Cj/CDij=.1–�Dj/,
where �Cj and �Dj, respectively, denote the CPU and disk utilizations per replica of
component j , and Dij denotes the disk consumption of transaction i on component
j (which must be measured along with Cij during unit testing). Continuing the ear-
lier analysis in Section 16.5.2, assume for simplicity that the actual measured C

0

i s
match the design estimates for transactions 1–3, and assume that the disk consump-
tions per-transaction are measured at D1 D 40 ms; D2 D 100 ms, and D3 D 50 ms.
Then, the WM server disk utilization per replica �D D †RiDi =N D 37=N , and the
average delay of transaction 1 (in seconds) is T1 D C1=.1 � �C / C D1=.1 � �D/ D
0:02N=.N � 18/ C 0:04N=.N � 37/. Now, solving the (quadratic) expression
T1 � 3 s for N yields N � 37:5 WM servers. Thus, at least 38 WM servers are
now required to meet the average delay objective for transaction 1 due to the disk
I/O bottleneck.

At this stage, we can also begin to identify automated workload generation tools
capable of generating a production-level workload in the system and stress test envi-
ronments. Depending on the application protocols in use, a commercial load testing
tool may be available that emulates multiple users generating common transac-
tions (e.g., delivering SMTP messages and retrieving/deleting messages via POP
or HTTP). Otherwise, custom tools must be specified and developed to generate
load. In either case, the load generation platform must be designed with scalability
in mind, since a stress test environment that cannot drive the application servers into
overload is of limited value. This often requires numerous user-emulation servers,
together with a collection server capable of integrating the separate performance
measurements. (Again, this stress testing infrastructure is itself a service platform,
requiring its own C/PE effort.)

During the system test phase, components are tested in a pair-wise manner to
ensure that interfaces are operating properly, and eventually “strung” together to
ensure that transactions are processed as expected end-to-end. At this point, we
begin to get a clear picture of server resource consumptions along the entire crit-
ical path, and can evaluate the best-case (no-load) transaction performance. The
first step is to verify that the sum of the delays observed during unit testing match
the end-to-end delay observed during system testing. If not, then we must break
down the end-to-end delay to determine the source of the discrepancy. Are there



16 Capacity and Performance Engineering for Networked Application Servers 607

unexpected interactions between platform components impacting performance? For
example, to unit test the WM server processing a “retrieve message via HTTPS”
transaction, we likely had to “hairpin” the request across the PO server interface and
immediately return the response to the WM server (the requested message). During
system testing, the WM server has to wait for the PO to return the message. Does
the act of putting the WM process to “sleep” waiting for the response cause addi-
tional resource consumption, adversely impacting performance? Any learning from
this exercise contributes valuable insights required to build element performance
models.

During the load/soak test phase, end-to-end components are stressed to assess
system behavior under expected load and under overload. Unlike in the unit and
system test phases, where the C/PE role is more passive (gleaning data and insights
as a by-product of the test effort), we take an active role in driving the stress testing.
The first step is to develop a comprehensive load/soak test plan specifying how
load will be generated and performance will be measured, the characteristics of the
workload to be generated (transaction mix and volumes, message sizes and mix,
mailbox sizes, and so on), and the specific performance metrics to be captured (usr,
sys, and wio CPU consumption, and disk and network I/O rates).

There are numerous goals of this stress testing. One goal is to produce a so-called
“load–service curve” characterizing the service performance (e.g., transaction de-
lay) as a function of offered load (tps). A typical load–service curve is shown in
Fig. 16.7. As can be seen, the delay starts at the best-case (no-load) value and re-
mains relatively flat at low loads. Eventually, the transaction delay begins to rise
rapidly as the bottleneck resource begins to saturate, approaching a vertical asymp-
tote corresponding to a bottleneck resource utilization of 100%. This load level is
often referred to as the “maximum throughput,” the highest level of load that the
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system can handle without replication of the bottleneck component. Also shown in
Fig. 16.7 is an example delay requirement for this transaction. The point at which
the delay curve hits the requirement is often referred to as the “system capacity,”
the highest level of load that the system can handle without violating the require-
ment. Note that system capacity < maximum throughput (always), and often system
capacity << maximum throughput.

Although the load–service curve depicted in Fig. 16.7 is typical of a well-
behaving system, other abnormal behavior is frequently observed. It is critical to pay
attention to any observed abnormalities, as these are opportunities for performance
improvement. For example, we sometimes see a load–service curve that increases
linearly with load (i.e., delay at 2 tps D delay at 1 tps C X , delay at 3 tps D delay at
1 tps C 2X , and so on). This behavior is indicative of serialization within a process,
where each request is single-threaded through a portion of the code (e.g., a synchro-
nization lock). Other times, we see the maximum throughput asymptote occur at a
point where resource utilizations are <<100%. This behavior is indicative of a soft-
ware bottleneck (e.g., connection table entries and file descriptors). Frequently, we
see a load–service curve that approaches the maximum throughput asymptote and
then bends backward. This behavior is indicative of a “concurrency penalty” that
occurs at high bottleneck utilizations (e.g., excessive memory paging and context
switching). In all cases, these abnormalities are indications of performance prob-
lems that must be addressed.

Note that for platforms such as our e-mail system, in which most components
are stateless and multiple replicas can exist, stress testing is iterative. For exam-
ple, say that in the first round of testing we found that the WM server was the
throughput-limiting bottleneck for the HTTPS transactions, while the PO server’s
highest-utilization resource only reached 40%. Then in the second round of testing,
we should deploy two WM servers and verify that maximum throughput doubles.
If so, then in the third round of testing, we should deploy three WM servers. At
this point, the bottleneck resource should shift to the PO, and maximum throughput
should increase to no more than 2.5 times the original throughput. In this manner,
we can begin to determine the appropriate balance of machines required in our de-
ployment configuration (e.g., 2.5 WM servers for each PO server). Furthermore, if
the system capacity achieved during this third round of testing is, say, one-tenth of
the expected peak workload, then we can also begin to determine the appropriate
number of machines required in our deployment configuration (e.g., 25 WM servers
and 10 PO servers).

Another goal of stress testing is to identify engineering rules for the platform
components. As discussed above, the capacity of a component is the level of utiliza-
tion above which one or more transaction delay requirements are violated. Many
planners bypass the “load–service” analysis and assume that system capacity is tied
to a particular utilization level, say 80% or 90% utilization of the bottleneck re-
source. In reality, system capacity is dictated by the requirements, as depicted in
Fig. 16.7, and not by the utilization level. Through stress testing, we can determine
the component utilization levels above which performance is adversely impacted.
Based on these levels, we can then define engineering rules required for ongo-



16 Capacity and Performance Engineering for Networked Application Servers 609

ing capacity/performance planning. For example, we may discover that to meet
transaction requirements, user-facing components such as the WM or PP servers
must be engineered to, say, 50% utilization, while system-facing components such
as the GW or AS/V servers can be engineered to, say, 80% utilization. Once the
platform is deployed, we can then monitor service-level metrics and adjust these
engineering rules based on actual field performance under actual field workloads
(discussed later). Other factors, such as observed historical volatility, or the impact
of server/site failures, may also affect these engineering rules.

16.7.3 Performance Modeling

Frequently, the ability to adequately measure component behavior during stress
testing is limited by a number of factors, such as schedule constraints (time and
personnel), equipment availability, workload generator capabilities, and so on. One
of the most common factors is that the laboratory environment is not equipped with
machines of the same caliber as those planned for deployment in the field. As a
result, performance models may be required to estimate field performance. These
models can range from simple BoE formulas, to detailed queuing models and simu-
lations.

As reviewed in Section 16.2, one common BoE model results from Little’s Law
[9], which states that the average number N of jobs in the system equals the av-
erage arrival rate � times the average delay D, or N D �D. Given the expected
transaction rates, message sizes, and estimated or measured service times, we can
easily predict the average number of concurrent inbound SMTP connections, the
average number of messages in process in the GW memory, the average throughput
of messages over the egress network, and so on. Through this simple analysis, we
can identify potential required platform enhancements such as faster processors or
more memory in the servers, bigger links between the data center and the Internet,
and so on.

Another common BoE formula from Section 16.2 states that average delay D

equals the average service time T divided by .1 � �/, or D D T=.1 � �/, where
utilization � D �T . (This model was employed in the estimation and budgeting
analysis in Section 16.5.2.) Also from Section 16.2, the average number of jobs in
the system N D �=.1 � �/. These simple formulae can be used to deduce numerous
powerful observations about our platform. For example, suppose that we expect
each GW to handle 80 tps, and we measure CPU consumption per-transaction to be
10 ms. Then the expected GW CPU utilization � D �T is 80%, the expected number
of SMTP connections in progress N D �=.1–�/ is 4, and the expected transaction
delay for an arriving request D D T=.1–�/ is 50 ms (i.e., the service times for the
four connections in progress plus that of the arriving request).

One reason to develop detailed queuing models is to explain unexpected be-
havior observed during testing. As mentioned previously, abnormal behavior is
frequently observed during stress testing, and performance models can often help
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the development team to know where to look during detailed code examination, by
providing possible explanations for the observed behavior. Another reason to de-
velop performance models is to perform parametric sensitivity analyses around the
usage assumptions (transaction workload mix and message/mailbox size) to quan-
tify the performance impact of deviations from the assumptions, and to identify
required platform enhancements. Yet another reason is to further evaluate system
behavior under overload, and recommend overload controls to prevent performance
degradation at high load. For example, we can identify appropriate limits on the
number of simultaneous SMTP connections to the GW servers, thereby deferring
load to nonpeak periods and avoiding GW overload. Finally, another reason is to
evaluate the impact of proposed features and enhancements that have not been devel-
oped (and hence cannot be measured), allowing the development team to prioritize
future features based on which gives the biggest performance “bang for the buck.”

As an illustration, consider the following actual stress test results [16]. (The
remainder of this section is extracted from Ref. [16] with express permission. In
particular, we reuse Figs. 16.4 through 16.8 and associated text from Sections 16.3.2
through 16.3.7 on pp. 291–298.) Figure 16.8 shows the measured delay D and CPU
utilization as a function of the number of concurrent simulated users N . Each user
submits a transaction, waits for the response, submits another transaction, waits, and
so on. As can be seen, the delay increases as more “load” (in the form of concurrent
users) is offered to the server, but is not yet exhibiting the classic “hockey stick”
behavior that is observed when the bottleneck resource saturates. Yet, the CPU uti-
lization curve has leveled off at 65–70%, well below expectation if the CPU were
the bottleneck.

Although this CPU behavior seemed odd, it was not sufficient to get the attention
of the development team. (After all, the system is handling more and more concur-
rent “load,” right?) So to better understand and explain what is happening, we can

0

3

6

9

12

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# CONCURRENT USERS

R
E

S
P

O
N

S
E

 T
IM

E
 (

se
c)

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

T
IL

IZ
A

T
IO

N
 (

%
)

Response time
CPU utilization

Fig. 16.8 Concurrency–service curve for a closed system



16 Capacity and Performance Engineering for Networked Application Servers 611

0

3

6

9

12

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# CONCURRENT USERS

R
E

S
P

O
N

S
E

 T
IM

E
 (

se
c)

Response time

linear asymptote

Fig. 16.9 System saturation in a closed system

turn to queuing theory and modeling. First, we note that stress testing open systems
by emulating users submitting transactions serially in a loop creates a closed system.
That is, there are a fixed number of transactions in the system, corresponding to the
number of concurrent users. Contrary to expectation for open systems, increasing
the concurrency level does not necessarily result in increasing the load level. Thus,
this delay curve is not a traditional load–service curve. In fact, for closed systems, it
can be shown that as the bottleneck resource saturates, the relationship between N

and D approaches a linear asymptote with a slope equal to the bottleneck resource
holding time (rather than a vertical asymptote, as expected in open systems), and
the transaction arrival rate � D N=D stops increasing and levels off.

As can be seen in Fig. 16.9, we have already hit the asymptote at a concurrency
level of seven simulated users. In other words, the (unknown) bottleneck resource
has already saturated, the arrival rate has leveled off, and the “concurrency–delay”
curve is riding along its asymptote. In fact, it appears that the curve actually starts to
diverge from the asymptote at higher levels of concurrency. By plotting delay D as a
function of load � D N=D, we can translate these stress test results into equivalent
load test results. As shown in Fig. 16.10, maximum throughput peaks at 2 tps, then
decreases. That is, as N increases beyond seven simulated concurrent users, there is
actually a drop in capacity (“concurrency penalty”), likely due to context switching,
object/thread management, garbage collection, and so on.

With this knowledge in hand, the developers finally began to believe that there
could be a problem. As Fig. 16.8 shows, the CPU was not the bottleneck (nor were
any other hardware resources), so some unknown “soft” resource bottleneck was
preventing full utilization of CPU resources. Candidate “soft” resources include
OS/application threads, file descriptors, TCP transaction control blocks, I/O buffers,
virtual memory, object/code locks, and so on. After discussions with the develop-
ment team, we theorized that transactions were being serialized through a lock on
one or more significant synchronized code regions (e.g., some Java-related kernel
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system call). To test this theory, we developed a simple queuing model (shown in
Fig. 16.11) consisting of three serial queues: a CPU node (modeled as a four-server
queue to represent the four CPUs in our test machine), a software bottleneck node
(modeled as a single-server queue to represent the theorized code lock), and a fixed
delay node (modeled as an infinite-server queue to reflect any load-independent
components in the measured delays).

The modeling results are shown in Fig. 16.12. As can be seen, this simple
model produces a good fit to the test results, providing significant insights into the
performance of the system. In particular, the approach characterized the system
performance limitations, identified a significant software bottleneck in the code
that prevented the system from fully utilizing the CPU resources, and exposed the
system’s behavior under overload. The development team then ran a number of pro-
filing tools to uncover the source of the code serialization. Two culprits became
evident: first (at the application level), writes to the log file were synchronized, and
second (at the kernel level), the createObject method was single-threaded. To ad-
dress the first source, the logging method was rewritten to allow concurrent writes
to the transaction log. To resolve the second source, many objects were moved
from transaction (request) scope to application scope to avoid much of the object
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creation, de-referencing, and garbage collection activity. Collectively, these changes
eliminated the software bottleneck and resulted in a dramatic improvement in the
software performance.

16.8 Scalability Assessment

This section describes the Scalability Assessment activities. These tasks are usually
performed between the development and deployment phases of the platform life
cycle. The goals at this stage are to

1. Develop platform-wide scalability models that reflect aggregate resource con-
sumption (e.g., storage)

2. Identify scalability-limiting bottlenecks that impact the platform’s ability to scale
linearly with usage, and quantify the scalability impact of proposed architectural
enhancements

3. Provide capacity–deployment (“facility–demand”) projections comparing plat-
form capacity to forecasted usage growth over time

4. Provide additional scalability requirements and engineering rules

Once we have a handle on the predicted “current” performance (i.e., the behavior
expected at service launch), we next take a look at the likely long-term platform
performance/scalability as the workload grows beyond the near-term engineering
limits. Simply speaking, a service platform can be called scalable if a 2� increase
in load requires no more than a 2� increase in resources. For new deployments, we
can expect that doubling the load requires much less than twice as much equipment,
since we can hope to achieve some economies of scale as resources are utilized
more efficiently. In addition, as the load grows, the peak:average ratio tends to drop
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due to a number of factors (e.g., source ISP or Internet congestion smoothes out
the traffic bursts). Thus, the average load may double, but the peak load (that we
engineer for) may only increase by, say, 1.5 times. But at some point in the service
growth, all economies and efficiencies of scale have been fully realized, and the best
we can hope for is a linear scaling of equipment with load. At that point, we need to
consider whether or not there are any resources that will begin to exhibit nonlinear
scaling (i.e., doubling the load requires more than double the resources).

There are many common but often overlooked examples. For instance, data cen-
ter floor space and power are frequently limited, especially if you choose to locate
your platform in a mature data center, if you are hosted in another entity’s facil-
ities, or if you require contiguous space for growth. Solutions to these scalability
limitations (e.g., relocating to another data center, or establishing a second site,
or upgrading the power distribution plant) are often extremely costly, so advanced
planning is critical if you expect platform demand to grow rapidly. And even if
the data center itself is not a scalability bottleneck, connectivity to the Internet can
be. Access links and edge router ports can eventually exhaust, requiring costly and
time-consuming link/router upgrades. Advance planning for scale (e.g., budgeting
for one 10 GigE link rather than hoping to add multiple 1 GigE links “on the fly”)
can save cost and headaches in the long run. And some components may scale
in “blocks,” requiring infrequent but costly upgrades to grow. For example, blade
servers reside in blade centers, so adding another blade may require adding a new
blade center chassis. Or adding storage to a NAS or SAN may require upgrading the
storage appliance.

One approach to planning for scalability is to determine the number of compo-
nents required per unit of “demand.” In the case of our e-mail platform, the most
effective unit of demand is a mailbox. Thus, we want to determine the number of
GWs or POs required per (say) one million mailboxes. This is a two-stage process:
first, we determine the measure of usage to which each component’s capacity is most
sensitive, and measure/estimate the component capacity in terms of that metric, then
we determine what a typical mailbox generates in terms of each of these measures
of usage (often referred to as a usage profile). Integrating these results yields the
example set of scalability engineering rules, illustrated in Table 16.5.

Table 16.5 Example e-mail platform scalability engineering rules

Server
component Usage metric

Server
capacity
@100%

Engineering
limit

Peak usage per
mailbox

Servers per
one million
mailboxes

GW IB messages 100 m/s 70% 2/h 7.9
MR OB messages 80 m/s 60% 1/h 5.8
AS/V I/O messages 60 m/s 80% 3/h 17.4
PO Storage 5 TBs 80% 10 MBs 2.5
PP Retrieved messages 100 m/s 60% 1/h 4.6
WM Retrieved messages 50 m/s 60% 2/h 18.5
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Growth in Number of Mailboxes, Mailbox Size, and Total Storage

Number of Mailboxes
Average Mailbox Size
Total Persistent Storage

Fig. 16.13 Example mailbox number, size, and storage growth

Consider again our ISP e-mail platform. As mentioned earlier, storage of mes-
sages is stateful (i.e., persistent messages for a particular mailbox reside on a
particular PO). As a result, persistent storage is of critical concern from a scala-
bility standpoint. Total storage growth has two distinct components: growth in the
number of mailboxes, and growth in the size of mailboxes. So even if the number N

of mailboxes and the size S of mailboxes both growth linearly over time, the total
storage NS increases super-linearly with time (as illustrated in Fig. 16.13). An added
wrinkle results from the fact that different mailboxes grow at different rates. Thus,
the particular mailboxes on one (stateful) PO may collectively grow at a different
aggregate rate than those on another PO. This in turn leads to C/PE issues associated
with load-balancing (discussed in detail in Section 16.9).

The result of this compounded growth means that PO storage does not scale lin-
early. Over time, our PO scalability engineering rule in Table 16.5 will decrease due
to growth in the average mailbox size. (In fact, this result is true for most other com-
ponents, as changes in such factors as message sizes or filtering rules or usage profile
will impact the engineering rules.) In the case of storage, however, this concern is
particularly relevant, as many service-level metrics are sensitive to mailbox size. So
even if we de-load a PO to account for increasing per-mailbox size, at some point
the size of a mailbox can become too large to meet delay requirements. For example,
consider the “retrieve mailbox list via HTTPS” transaction from Section 16.5. Even-
tually, mailboxes may become so large that we cannot process the “list” command
in the allotted time. By considering these scalability bottlenecks early in the process,
we can identify required architectural changes. For instance, in the case of mailbox
size, we can consider tiered storage, where messages that have not been accessed
in N months are moved to slower secondary storage. A static list of such messages
can be compiled only every time the contents of secondary storage change (thus
avoiding the delay of real-time compilation every time the user performs a “list”
command). Or we can consider implementing an e-mail aging policy (discussed
previously) to manage mailbox growth.
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Facility-Demand Projection for PO Storage Deployment

Projected Persistent Storage
100% of Deployed Capacity
80% of Deployed Capacity

T-90 T

Fig. 16.14 Example PO storage “facility–demand” projection

Another component of the scalability assessment is the development of so-called
“facility–demand” projections. (The term originated in teletraffic engineering,
where there is a need to forecast the provisioning timeline for new “facilities” –
voice and data trunks – as a function of projected growth in demand.) Consider
again the growth in PO storage, and assume that the persistent storage curve in
Fig. 16.13 represents a forecast of storage growth over time. Figure 16.14 shows
the resulting facility–demand projection for PO storage. The dashed line represents
100% of the total deployed storage, whereas the dotted line represents 80% of
deployed storage (the desired engineering limit). As can be seen, each time the
projected persistent storage level hits the engineering limit of currently deployed
storage, a new PO must be deployed. Thus, if the PO provisioning lead time is, say,
90 days (including a cushion to absorb variability in demand), then this facility–
demand projection provides a forecast for when in the future new PO servers must
be ordered. These capacity–deployment projections play an essential role in the on-
going capacity/performance management once the platform is deployed (discussed
in Section 16.9).

16.9 Capacity/Performance Management

This section describes the Capacity/Performance Management activities. These
tasks are performed during the deployment and growth phases of the platform life
cycle. The goals at this stage are to

1. Implement a measurement architecture capable of collecting, warehousing, and
reporting/visualizing all performance (usage and resource consumption) and re-
liability (failure and outage) data
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2. Implement a monitoring architecture capable of measuring, tracking, and report-
ing all platform quality metrics (DMoQs) and transaction/service-level objectives
(SLAs/SLOs)

3. Implement capabilities required to analyze usage trends against service metrics to
project platform usage growth and predict platform capacity augments required
to maintain acceptable service levels

4. Identify/reflect unique characteristics of the service environment that impact
C/PE (e.g., seasonality, shifts in traffic mix, and cyber attacks)

5. Automate performance management and capacity-deployment planning activi-
ties where appropriate

16.9.1 Measurement/Monitoring Infrastructure

Congratulations! Your service platform has been deployed. But your C/PE work
is far from over. As discussed previously, a reliable measurement and monitoring
architecture is one of the most important components of any successful platform,
and it is critical to any post-deployment C/PE activity. Hopefully, the foundation was
laid during the testing phase. Now we need to ensure that the measurement platform
is robust and scalable. It must be capable of collecting, storing, processing, and
reporting all relevant performance (usage and resource consumption) and reliability
(failure and outage) data across all platform elements.

In particular, C/PE is responsible for specifying consistent, reliable mechanisms
for performance data collection, storage, processing, distribution, reporting, and vi-
sualization. Data collection mechanisms may include native OS utilities, Simple
Network Management Protocol (SNMP)-based MIBs, off-the-shelf “measureware”
agents, and custom-developed code (often required for application-level data). The
data storage architecture must be designed with extreme scalability and longevity
in mind, typically consisting of a number of polling servers, flat-file and relational
database servers, and reporting servers. It is all too common to see a poorly designed
data storage architecture that “runs out of steam” soon after platform introduc-
tion. (This data storage infrastructure is itself a service platform, often requiring its
own C/PE effort.) In addition to performance data, this warehouse should also in-
clude a comprehensive database of platform topology and server configuration data,
including hardware profiles, software versions, and connectivity maps. The data
distribution, reporting, and visualization architecture must be carefully designed
to ensure that data is readily available in the appropriate formats. For example,
“canned” reports and graphics may be required for executive dashboards, whereas
raw data feeds may be required for capacity planning tools and ad hoc analyses. Fi-
nally, the data push (or pull) from platform elements to data warehouse to capacity
management tools/users should be fully automated where possible, taking into con-
sideration such security issues as firewalls between production sites and back-office
systems. (For example, will FTP or e-mail work between a GW server on a secure
production LAN and a collection server on a management LAN?)
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Like the measurement architecture, the monitoring architecture must be designed
for extreme scalability and robustness. C/PE is responsible for specifying consistent,
reliable mechanisms for collection of any performance and availability data that
are required to monitor and validate all service-level metrics. As discussed previ-
ously, these metrics should be specific, measurable, and controllable. A contractual
service-level metric is useless if it cannot be accurately measured and verified. As
a result, you need to consider how you plan to monitor the requirement. A number
of approaches are possible, including client software add-ons, end-point hardware
sniffers, outside vendor services, and parallel monitoring platforms.

For example, consider the last approach of a separate measurement and moni-
toring platform. First, such a monitoring architecture typically consists of a number
of probe servers to launch synthetic transactions. These probe servers emulate an
end-user performing typical transactions, such as sending, listing, retrieving, and
deleting messages. It is important to locate these servers so that the entire control-
lable transaction path is exercised. For instance, placing these servers in the same
data center as the e-mail platform unnecessarily bypasses much of the ISP Intranet
infrastructure, while placing them in an off-net data center introduces Internet and
possibly peering connectivity issues that are out of the ISP’s control. Second, the
monitoring platform typically consists of a number of probe mailboxes, distributed
evenly across all POs in the data center. Third, the monitoring architecture typically
consists of a well-defined set of synthetic user transactions that comprehensively
cover all service-level metrics. For instance, if SLAs are defined for receive safe
message, send safe message via SMTP, retrieve message via HTTPS, and retrieve
message via POP, then the synthetic transactions must mimic these operations. As
an example, assume that one such service-level metric is “receive safe 100 kB mes-
sage within 15 min of sending 95% of the time.” The probe server thread can send
a safe 100 kB e-mail message to a probe mailbox, sleep 15 min, and attempt to
retrieve the message via HTTPS then via POP (thus removing the message). The
probe server can keep track of successes and failures, and compute the 95th per-
centile over time. This single synthetic transaction allows us to monitor all SLAs
defined above (send, receive, and retrieve) simultaneously. Finally, the monitoring
platform typically consists of database and reporting servers, capable of providing
“canned” reports and supporting ad hoc analyses. And of course, the SLA monitor-
ing and verification process should be fully automated.

16.9.2 Resource Growth Projections

One of the primary post-deployment capacity/performance management roles is to
monitor the growth in consumption of critical platform resources, project when
resources are likely to exhaust, and determine when resource augments must be
scheduled based on deployment lead times. As introduced in Section 16.8 and il-
lustrated for the PO storage resource, this task is facilitated by development and
maintenance of “facility–demand” projections. Besides PO storage, another key
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e-mail platform resource is server CPU utilization. A typical process for developing
“facility–demand” projections of server CPU utilization consists of the following
(performed separately for each element type � GW, MR, AS/V, PP, WM, and PO):

1. First, collect 5-min samples of CPU utilization of all active servers
2. Compute the time-consistent 5-min average across all active servers
3. Compute the daily average busy hour (BH) server CPU utilization

(a) This is the maximum rolling 1-h average of 5-min averages.
(b) Other measures of peak utilization are possible, including busiest 5 min

(B5M) and 95th percentile of 5-min samples (for typical daily traffic pro-
files, BH and 95th percentile values are similar).

4. Compute the weekly peak BH (or B5M or 95%) server CPU utilization

(a) This is the maximum rolling 7-day peak of BH values.

5. Compute the linear trend through the series of weekly peak values
6. Compute the headroom threshold (HT) based on engineering limits

(a) The HT D (engineering limit)�1. For example, if the GW engineering limit
is 60%, then the GW HT is 1/0.6 D 1.67.

(b) This headroom is intended to provide sufficient spare capacity to absorb his-
toric volatility without suffering degraded performance.

7. Compute the CPU “consumption” trend D HT*fCPU utilization trendg
(a) When utilization hits the engineering limit, consumption hits 100%.

8. Finally, project the CPU consumption trend into the future (say 1 year)

(a) Server augment is required when the consumption trend hits 100%.
(b) With each augment, the utilization and consumption trends “step down” by

N=.N C 1/, where N is the number of active servers prior to augment. For
example, if N D 3 then the consumption trend will be reduced from 100%
to 75% when the fourth server is deployed.

A typical set of server engineering limits and resulting HTs are given in Table 16.6
(including other platform infrastructure elements as well).

As an illustration of the “facility–demand” projection process, consider the GW
CPU utilization curves shown in Fig. 16.15. (This chart represents an actual GW
component for a large cable ISP.) The thin solid curve shows the daily BH CPU
utilization (the results of steps 1–3 above). The bold solid curve shows the weekly

Table 16.6 Typical engineering limits and headroom thresholds

Engineering limit (weekly peak BH CPU)

33% 50% 60% 75%

DNS, databases Network infrastructure GW, MR, PP, WM AS/V, PO
3	 HT 2	 HT 1:67	 HT 1:33	 HT
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Fig. 16.15 Example GW CPU “facility–demand” curve
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Fig. 16.16 Example GW CPU “facility–demand” projection

peak BH CPU utilization trend (steps 4 and 5). The dotted line shows the CPU con-
sumption trend based on a 60% engineering limit, and thus a 1:67� HT (steps 6
and 7). As can be seen, the daily BH curve exhibits weekday peaks as well as week-
end troughs. As such, any trend through this daily data would be unduly skewed by
the weekend data. In contrast, the linear regression through the weekly peak data
(shown as a dashed line) captures only the weekday behavior, thus providing a more
realistic basis for a trend of peak CPU utilization.

Finally, Fig. 16.16 shows a projection of the CPU consumption trend five quar-
ters into the future (step 8). As can be seen, CPU consumption is projected to hit
100% in March, signaling the need to deploy a new GW. (Equivalently, the CPU
utilization is projected to hit the 60% engineering limit of currently deployed ca-
pacity.) Thus, if the GW provisioning lead time is 60 days, then a new GW server
must be ordered in January.
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Fig. 16.17 Example “server consumption per mailbox” trends

Another value to tracking CPU consumptions is the ability to project resource
needs per unit of “demand.” In the case of an e-mail platform, it is valuable to
project CPU consumption per mailbox for each platform element. With this knowl-
edge in hand, the capacity/performance planner can then readily assess the impact
of service growth. For example, assume that the ISP is planning to acquire a new
market area (through the acquisition of another ISP, or the common swap of markets
between ISPs to consolidate geographic footprints). Given the number of mailboxes
to be added to the platform, you can quickly determine how many new servers must
be deployed to accommodate those mailboxes. As an illustration, Fig. 16.17 shows
example trends for the number of GW, MR, and PP servers required per one million
new mailboxes, including associated headroom levels. (This chart represents actual
server components for a large DSL ISP.)

16.9.3 Traffic Growth Projections

Another primary post-deployment capacity/performance management role is
to monitor the growth in traffic/usage (demand) of critical platform transactions,
and reflect any unique characteristics of the service environment that impact ca-
pacity/performance engineering. These unique characteristics include seasonality,
session/state management, load-balancing, off-site backups, shifts in traffic mix,
and cyber attacks. Of particular interest in e-mail platform C/PE (or any end-
user-driven service platform) is the impact of seasonality. As discussed previously,
capacity planning must reflect daily periodicity (by engineering based on BH or
95th percentile) as well as weekly periodicity (by engineering based on weekday
peaks). In addition, capacity planning must reflect yearly periodicity (seasonality).

Consider the seasonal growth in e-mail storage. Figure 16.18 shows an exam-
ple of growth in average mailbox size over a 3-year period. (This chart represents
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Fig. 16.18 Example mailbox storage growth and seasonality

actual mailbox growth for a very large cable ISP.) As can be seen, storage utiliza-
tion exhibits strong seasonality. Storage levels surge around holidays (specifically,
Valentine’s Day, Halloween, and the December religious celebrations). In the case
of consumer e-mail, these surges are due largely to the popularity of digital greet-
ing cards, digital holiday photos, and holiday-themed animated executables. Peak
utilization exceeds the trend (shown as a solid straight line) by as much as 10%
during holidays. Thus, if we planned PO storage capacity based on average stor-
age growth, then we could experience a serious capacity shortfall (and significant
negative publicity) during holiday periods of peak demand.

Also shown in Fig. 16.18 is a projection of mailbox size during the upcoming
holiday period (shown as a thinner solid curve during the final quarter). As can
be seen, this projection is not simply a linear trend, but rather mimics the year-
end behavior observed during the previous year. There are a number of possible
approaches to developing such a fluid-flow model of storage growth, most of which
essentially involve “replaying” the previous year’s traffic behavior scaled by year-
over-year volume changes.

To illustrate at a high level, let St denote the stored volume at the beginning of
day t , let It and Dt , respectively, denote the incoming and deleted volumes during
day t , and let Fx denote the year-over-year scaling factor in volume x (where x D
storage s, incoming i , and deleted d ). One approach is to replay the scaled daily stor-
age change: StC1 D St C Fs.St�364 � St�365/. Another approach (utilized for the
projection in Fig. 16.18) is to replay the scaled daily incoming and deleted volumes:
StC1 D St C Fi It�364 � FdDt�364. Regardless of the approach used, develop-
ing such a seasonality-based projection allows for more accurate capacity planning
during peak periods.

As another example of seasonality, consider the seasonal variability in data center
access link utilization. Figure 16.19 shows a real example of daily IB traffic vari-
ability over the course of a year (normalized by June volume). As can be seen,
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Fig. 16.19 Example seasonal variability in link utilization

bandwidth utilization also exhibits strong seasonality, with traffic levels surging
around Halloween, Christmas, and Valentine’s Day. Overall, the traffic volume is
increased by 20% over the year. Even more striking is the 1:7� difference in traffic
volumes between the year-end lull (83% of June volume) and the Halloween surge
(144% of June volume). Again, the lesson is that such seasonality must be reflected
in any capacity planning projections to avoid serious capacity shortfalls during hol-
iday periods of peak traffic.

Next, load-balancing is of particular concern for stateful components such as the
PO server. As mentioned previously, different mailboxes grow at different rates.
Thus, the particular mailboxes on one (stateful) PO may collectively grow at a dif-
ferent aggregate rate than those on another PO. Thus, operational procedures must
be developed to monitor and balance the storage growth on individual POs (in addi-
tion to aggregate storage growth) to ensure that particular POs do not prematurely
exhaust.

Finally, as an example of shifting user behavior and traffic mix, consider the
mix of message retrieval between HTTPS and POP. Figure 16.20 shows a real ex-
ample of the percentage of users accessing their mailbox via HTTPS (WebMail)
instead of POP over a 3-year period. As can be seen, HTTPS penetration increased
steadily from 35% to 50% over the first two years and then leveled off. From an
e-mail platform C/PE perspective, this HTTPS saturation is good news, since WM
users are far more expensive to support than POP users (due to increased PO storage
and server CPU consumption). Note also that the HTTPS:POP mix exhibits strong
weekly periodicity, with higher WM penetration during weekdays (indicating that
many users of this consumer ISP service retrieve their personal e-mail via HTTPS
from their workplace computer during the week, and then use POP from their home
computer over the weekend).
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Fig. 16.20 Example shift in message retrieval behavior

16.10 C/PE “Best Practice” Principles

We conclude this chapter with a summary of C/PE “best practice” principles to
guide you in your next effort.

� Develop and maintain a business-relevant transaction workload profile for
use during initial platform sizing and ongoing new feature testing

� Define realistic, measurable service-level objectives tied to workload
� Specify comprehensive engineering rules for relevant service elements

based on sound capacity/performance/reliability modeling and analysis
� Implement a single, consistent, comprehensive, authoritative database for

platform topology and configuration data
� Thoroughly identify relevant usage/resource consumption metrics

– BH server resource utilizations and 95th percentile traffic metrics
� Implement a consistent, reliable, scalable architecture for performance data

collection, storage, and distribution (leveraging SNMP MIBs on switches
and lightweight resource “measureware” agents on servers)

� Develop a highly-scalable warehouse for performance data, providing au-
tomated push/pull from elements to data warehouse to tools/users

� Implement a consistent, reliable mechanism for usage/performance data
reporting and visualization, minimizing the required number of capac-
ity/performance management tools/interfaces to be maintained

� Develop tools to provide historical and projected views of data, with
– Flexible aggregation capabilities (by server type, technology, and so on)
– Trending on peak (e.g., 95th percentile) values, not averages
– Ability to reflect anticipated future events in trending/projections
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� Provide automated triggers to determine required capacity augments based
on defined engineering rules/metrics

� Implement a well-defined deployment process with known lead times

Acronyms

ACL access control list
AS/V anti-spam/virus filtering server
BH busy hour
B5M busy 5 min.
BoE back-of-the-envelope
C/PE capacity/performance engineering
DMoQ direct measure of quality
DPM defect per million
DSL digital subscriber line
DT downtime
FIFO first-in-first-out
FIT fault insertion testing
FMEA failure modes and effects analysis
FTP File Transfer Protocol
FTTH fiber-to-the-home
GW IB SMTP Gateway server
HT headroom threshold
HTTP Hyper-Text Transfer Protocol
HTTPS Secure HTTP
HW hardware
IMAP Internet Message Access Protocol
IB inbound
i.i.d. independent identically distributed
I/O input/output
ISP Internet service provider
LAN local area network
LIFO last-in-first-out
MIB management information base
MR OB Mail Relay server
MRA modification request analysis
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MTTF mean-time-to-failure
MTTR mean-time-to-restore
NAS network attached storage
NFS network file system
OB outbound
PO Post Office server
POP Post Office Protocol
PP POP Proxy server
PS processor-sharing
RBD reliability block diagram
SAN storage area network
SLA service-level agreement
SLO service-level objective
SNMP Simple Network Management Protocol
SPoF single point of failure
SRE software reliability engineering
SMTP Simple Mail Transfer Protocol
tps transactions per second
VIP virtual IP address (aka VLAN)
WM WebMail server
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