
Foreword

388

Machine learning is the latest in a long line of attempts to capture human389

knowledge and reasoning into a form that is suitable for constructing ma-390

chines and engineering automated systems. As machine learning becomes391

more ubiquitous and its software packages become easier to use it is nat-392

ural and desirable that the low-level technical details are abstracted away393

and hidden from the practitioner. However, this brings with it the danger394

that a practitioner becomes unaware of the design decisions and, hence,395

the limits of machine learning algorithms. The enthusiastic practitioner396

who is interested to learn more about the magic behind successful ma-397

chine learning algorithms currently faces a daunting set of pre-requisite398

knowledge:399

• Programming languages and data analysis tools400

• Large-scale computation and the associated frameworks401

• Mathematics and statistics and how machine learning builds on it402

At universities, introductory courses on machine learning tend to spend403

early parts of the course covering some of these pre-requisites. For histori-404

cal reasons, courses in machine learning tend to be taught in the computer405

science department, where students are often trained in the first two ar-406

eas of knowledge, but not so much in mathematics and statistics. Current407

machine learning textbooks try to squeeze in one or two chapters of back-408

ground mathematics, either at the beginning of the book or as appendices.409

This book brings the mathematical foundations of basic machine learning410

concepts to the fore and collects the information in a single place.411

Why Another Book on Machine Learning?412

Machine learning builds upon the language of mathematics to express413

concepts that seem intuitively obvious but which are surprisingly difficult414

to formalize. Once properly formalized we can then use the tools of math-415

ematics to derive the consequences of our design choices. This allows us416

to gain insights into the task we are solving and also the nature of intel-417

ligence. One common complaint of students of mathematics around the418

globe is that the topics covered seem to have little relevance to practi-419

cal problems. We believe that machine learning is an obvious and direct420

motivation for people to learn mathematics.421
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2 Foreword

This book is intended to be a guidebook to the vast mathematical lit-422

erature that forms the foundations of modern machine learning. We mo-“Math is linked in
the popular mind
with phobia and
anxiety. You’d think
we’re discussing
spiders.” (Strogatz,
2014)

423

tivate the need for mathematical concepts by directly pointing out their424

usefulness in the context of fundamental machine learning problems. In425

the interest of keeping the book short, many details and more advanced426

concepts have been left out. Equipped with the basic concepts presented427

here, and how they fit into the larger context of machine learning, the428

reader can find numerous resources for further study, which we provide at429

the end of the respective chapters. For readers with a mathematical back-430

ground, this book provides a brief but precisely stated glimpse of machine431

learning. In contrast to other books that focus on methods and models of432

machine learning (MacKay, 2003b; Bishop, 2006; Alpaydin, 2010; Rogers433

and Girolami, 2016; Murphy, 2012; Barber, 2012; Shalev-Shwartz and434

Ben-David, 2014) or programmatic aspects of machine learning (Müller435

and Guido, 2016; Raschka and Mirjalili, 2017; Chollet and Allaire, 2018)436

we provide only four representative examples of machine learning algo-437

rithms. Instead we focus on the mathematical concepts behind the models438

themselves, with the intent of illuminating their abstract beauty. We hope439

that all readers will be able to gain a deeper understanding of the ba-440

sic questions in machine learning and connect practical questions arising441

from the use of machine learning with fundamental choices in the mathe-442

matical model.443

Who is the Target Audience?444

As applications of machine learning become widespread in society we be-445

lieve that everybody should have some understanding of its underlying446

principles. This book is written in an academic mathematical style, which447

enables us to be precise about the concepts behind machine learning. We448

encourage readers unfamiliar with this seemingly terse style to persevere449

and to keep the goals of each topic in mind. We sprinkle comments and450

remarks throughout the text, in the hope that it provides useful guidance451

with respect to the big picture. The book assumes the reader to have math-452

ematical knowledge commonly covered in high-school mathematics and453

physics. For example, the reader should have seen derivatives and inte-454

grals before, and geometric vectors in two or three dimensions. Starting455

from there we generalize these concepts. Therefore, the target audience456

of the book includes undergraduate university students, evening learners457

and people who participate in online machine learning courses.458

In analogy to music, there are three types of interaction, which people459

have with machine learning:460

Astute Listener461

The democratization of machine learning by the provision of open-source462

software, online tutorials, and cloud-based tools allows users to not worry463

about the nitty gritty details of pipelines. Users can focus on extracting464
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Foreword 3

insights from data using off-the-shelf tools. This enables non-tech savvy465

domain experts to benefit from machine learning. This is similar to lis-466

tening to music; the user is able to choose and discern between different467

types of machine learning, and benefits from it. More experienced users468

are like music critics, asking important questions about the application of469

machine learning in society such as ethics, fairness, and privacy of the in-470

dividual. We hope that this book provides a framework for thinking about471

the certification and risk management of machine learning systems, and472

allow them to use their domain expertise to build better machine learning473

systems.474

Experienced Artist475

Skilled practitioners of machine learning are able to plug and play differ-476

ent tools and libraries into an analysis pipeline. The stereotypical prac-477

titioner would be a data scientist or engineer who understands machine478

learning interfaces and their use cases, and is able to perform wonderful479

feats of prediction from data. This is similar to virtuosos playing music,480

where highly skilled practitioners can bring existing instruments to life,481

and bring enjoyment to their audience. Using the mathematics presented482

here as a primer, practitioners would be able to understand the benefits483

and limits of their favorite method, and to extend and generalize existing484

machine learning algorithms. We hope that this book provides the impe-485

tus for more rigorous and principled development of machine learning486

methods.487

Fledgling Composer488

As machine learning is applied to new domains, developers of machine489

learning need to develop new methods and extend existing algorithms.490

They are often researchers who need to understand the mathematical ba-491

sis of machine learning and uncover relationships between different tasks.492

This is similar to composers of music who, within the rules and structure493

of musical theory, create new and amazing pieces. We hope this book pro-494

vides a high-level overview of other technical books for people who want495

to become composers of machine learning. There is a great need in society496

for new researchers who are able to propose and explore novel approaches497

for attacking the many challenges of learning from data.498
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1

Introduction and Motivation

572

1.1 Finding Words for Intuitions573

Machine learning is about designing algorithms that learn from data. The574

goal is to find good models that generalize well to future data. The chal-575

lenge is that the concepts and words are slippery, and a particular compo-576

nent of the machine learning system can be abstracted to different math-577

ematical concepts. For example, the word “algorithm” is used in at least578

two different senses in the context of machine learning. In the first sense,579

we use the phrase “machine learning algorithm” to mean a system that580

makes predictions based on input data. We refer to these algorithms as581

predictors. In the second sense, we use the exact same phrase “machine predictors582

learning algorithm” to mean a system that adapts some internal parame-583

ters of the predictor so that it performs well on future unseen input data.584

Here we refer to this adaptation as training a predictor. training585

The first part of this book describes the mathematical concepts and586

foundations needed to talk about the three main components of a machine587

learning system: data, models, and learning. We will briefly outline these588

components here, and we will revisit them again in Chapter 8 once we589

have the mathematical language under our belt. Adding to the challenge590

is the fact that the same English word could mean different mathematical591

concepts, and we can only work out the precise meaning via the context.592

We already remarked about the overloaded use of the word “algorithm”,593

and the reader will be faced with other such phrases. We advise the reader594

to use the idea of “type checking” from computer science and apply it595

to machine learning concepts. Type checking allows the reader to sanity596

check whether the equation that they are considering contains inputs and597

outputs of the correct type, and whether they are mixing different types598

of objects.599

While not all data is numerical it is often useful to consider data in a600

number format. In this book, we assume that the data has already been data601

appropriately converted into a numerical representation suitable for read-602

ing into a computer program. In this book, we think of data as vectors.603

As another illustration of how subtle words are, there are three different data as vectors604

ways to think about vectors: a vector as an array of numbers (a computer605

science view), a vector as an arrow with a direction and magnitude (a606
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12 Introduction and Motivation

physics view), and a vector as an object that obeys addition and scaling (a607

mathematical view).608

What is a model? Models are simplified versions of reality, which capturemodel 609

aspects of the real world that are relevant to the task. Users of the model610

need to understand what the model does not capture, and hence obtain611

an appreciation of the limitations of it. Applying models without knowing612

their limitations is like driving a vehicle without knowing whether it can613

turn left or not. Machine learning algorithms adapt to data, and therefore614

their behavior will change as it learns. Applying machine learning models615

without knowing their limitations is like sitting in a self-driving vehicle616

without knowing whether it has encountered enough left turns during its617

training phase. In this book, we use the word “model” to distinguish be-618

tween two schools of thought about the construction of machine learning619

predictors: the probabilisitic view and the optimization view. The reader620

is referred to Domingos (2012) for a more general introduction to the five621

schools of machine learning.622

We now come to the crux of the matter, the learning component oflearning 623

machine learning. Assume we have a way to represent data as vectors624

and that we have an appropriate model. We are interested in training625

our model based on data so that it performs well on unseen data. Pre-626

dicting well on data that we have already seen (training data) may only627

mean that we found a good way to memorize the data. However, this may628

not generalize well to unseen data, and in practical applications we often629

need to expose our machine learning system to situations that it has not630

encountered before. We use numerical methods to find good parameters631

that “fit” the model to data, and most training methods can be thought of632

as an approach analogous to climbing a hill to reach its peak. The peak633

of the hill corresponds to a maximization of some desired performance634

measure. The challenge is to design algorithms that learn from past data635

but generalizes well.636

Let us summarize the main concepts of machine learning:637

• We use domain knowledge to represent data as vectors.638

• We choose an appropriate model, either using the probabilisitic or opti-639

mization view.640

• We learn from past data by using numerical optimization methods with641

the aim that it performs well on unseen data.642

1.2 Two Ways to Read this Book643

We can consider two strategies for understanding the mathematics for644

machine learning:645

• Building up the concepts from foundational to more advanced. This is646

often the preferred approach in more technical fields, such as mathe-647

matics. This strategy has the advantage that the reader at all times is648
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1.2 Two Ways to Read this Book 13

Figure 1.1 The
foundations and
four pillars of
machine learning.
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able to rely on their previously learned definitions, and there are no649

murky hand-wavy arguments that the reader needs to take on faith.650

Unfortunately, for a practitioner many of the foundational concepts are651

not particularly interesting by themselves, and the lack of motivation652

means that most foundational definitions are quickly forgotten.653

• Drilling down from practical needs to more basic requirements. This654

goal-driven approach has the advantage that the reader knows at all655

times why they need to work on a particular concept, and there is a656

clear path of required knowledge. The downside of this strategy is that657

the knowledge is built on shaky foundations, and the reader has to658

remember a set of words for which they do not have any way of under-659

standing.660

This book is split into two parts, where Part I lays the mathematical661

foundations and Part II applies the concepts from Part I to a set of basic662

machine learning problems, which form four pillars of machine learning663

as illustrated in Figure 1.1.664

Part I is about Mathematics665

We represent numerical data as vectors and represent a table of such data666

as a matrix. The study of vectors and matrices is called linear algebra, linear algebra667

which we introduce in Chapter 2. The collection of vectors as a matrix is668

also described there. Given two vectors, representing two objects in the669

real world, we want to be able to make statements about their similarity.670

The idea is that vectors that are similar should be predicted to have similar671

outputs by our machine learning algorithm (our predictor). To formalize672

the idea of similarity between vectors, we need to introduce operations673
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14 Introduction and Motivation

that take two vectors as input and return a numerical value represent-674

ing their similarity. This construction of similarity and distances is called675

analytic geometry and is discussed in Chapter 3. In Chapter 4, we introduceanalytic geometry 676

some fundamental concepts about matrices and matrix decomposition. Itmatrix
decomposition

677

turns out that operations on matrices are extremely useful in machine678

learning, and we use them for representing data as well as for modeling.679

We often consider data to be noisy observations of some true underly-680

ing signal, and hope that by applying machine learning we can identify681

the signal from the noise. This requires us to have a language for quanti-682

fying what noise means. We often would also like to have predictors that683

allow us to express some sort of uncertainty, e.g., to quantify the confi-684

dence we have about the value of the prediction for a particular test data685

point. Quantification of uncertainty is the realm of probability theory andprobability theory 686

is covered in Chapter 6. Instead of considering a predictor as a single func-687

tion, we could consider predictors to be probabilistic models, i.e., models688

describing the distribution of possible functions.689

To apply hill-climbing approaches for training machine learning models,690

we need to formalize the concept of a gradient, which tells us the direc-691

tion which to search for a solution. This idea of the direction to search692

is formalized by calculus, which we present in Chapter 5. How to use acalculus 693

sequence of these search directions to find the top of the hill is called694

optimization, which we introduce in Chapter 7.optimization 695

It turns out that the mathematics for discrete categorical data is differ-696

ent from the mathematics for continuous real numbers. Most of machine697

learning assumes continuous variables, and except for Chapter 6 the other698

chapters in Part I of the book only discuss continuous variables. However,699

for many application domains, data is categorical in nature, and naturally700

there are machine learning problems that consider categorical variables.701

For example, we may wish to model sex (male/female). Since we assume702

that our data is numerical, we encode sex as the numbers −1 and +1703

for male and female, respectively. However, it is worth keeping in mind704

when modeling that sex is a categorical variable, and the actual differ-705

ence in value between the two numbers should not have any meaning in706

the model. This distinction between continuous and categorical variables707

gives rise to different machine learning approaches.708

Part II is about Machine Learning709

The second part of the book introduces four pillars of machine learning asfour pillars of
machine learning

710

listed in Table 1.1. The rows in the table distinguish between problems711

where the variable of interest is continuous or categorical. We illustrate712

how the mathematical concepts introduced in the first part of the book713

can be used to design machine learning algorithms. In Chapter 8, we re-714

state the three components of machine learning (data, models and param-715

eter estimation) in a mathematical fashion. In addition, we provide some716

guidelines for building experimental setups that guard against overly op-717
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Table 1.1 The four
pillars of machine
learning

Supervised Unsupervised
Continuous Regression Dimensionality reduction
latent variables (Chapter 9) (Chapter 10)
Categorical Classification Density estimation
latent variables (Chapter 12) (Chapter 11)

timistic evaluations of machine learning systems. Recall that the goal is to718

build a predictor that performs well on future data.719

The terms “supervised” and “unsupervised” (the columns in Table 1.1)720

learning refer to the question of whether or not we provide the learning721

algorithm with labels during training. An example use case of supervised supervised learning722

learning is when we build a classifier to decide whether a tissue biopsy is723

cancerous. For training, we provide the machine learning algorithm with724

a set of images and a corresponding set of annotations by pathologists.725

This expert annotation is called a label in machine learning, and for many label726

supervised learning tasks it is obtained at great cost or effort. After the727

classifier is trained, we show it an image from a new biopsy and hope that728

it can accurately predict whether the tissue is cancerous. An example use729

case of unsupervised learning (using the same cancer biopsy problem) is730

if we want to visualize the properties of the tissue around which we have731

found cancerous cells. We could choose two particular features of these732

images and plot them in a scatter plot. Alternatively we could use all the733

features and find a two dimensional representation that approximates all734

the features, and plot this instead. Since this type of machine learning task735

does not provide a label during training, it is called unsupervised learning. unsupervised
learning

736

The second part of the book provides a brief overview of two fundamental737

supervised (regression and classification) and unsupervised (dimensionality regression

classification
dimensionality
reduction

738

reduction and density estimation) machine learning problems.

density estimation

739

Of course there are more than two ways to read this book. Most read-740

ers learn using a combination of top-down and bottom-up approaches,741

sometimes building up basic mathematical skills before attempting more742

complex concepts, but also choosing topics based on applications of ma-743

chine learning. Chapters in Part I mostly build upon the previous ones, but744

the reader is encouraged to skip to a chapter that covers a particular gap745

the reader’s knowledge and work backwards if necessary. Chapters in Part746

II are loosely coupled and are intended to be read in any order. There are747

many pointers forward and backward between the two parts of the book748

to assist the reader in finding their way.749

1.3 Exercises and Feedback750

We provide some exercises in Part I, which can be done mostly by pen and751

paper. For Part II we provide programming tutorials (jupyter notebooks)752

to explore some properties of the machine learning algorithms we discuss753

in this book.754
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We appreciate that Cambridge University Press strongly supports our755

aim to democratize education and learning by making this book freely756

available for download at757

https://mml-book.com758

where you can also find the tutorials, errata and additional materials. You759

can also report mistakes and provide feedback using the URL above.760
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2

Linear Algebra

768

When formalizing intuitive concepts, a common approach is to construct769

a set of objects (symbols) and a set of rules to manipulate these objects.770

This is known as an algebra. algebra771

Linear algebra is the study of vectors and certain rules to manipulate772

vectors. The vectors many of us know from school are called “geometric773

vectors”, which are usually denoted by having a small arrow above the774

letter, e.g., −→x and −→y . In this book, we discuss more general concepts of775

vectors and use a bold letter to represent them, e.g., x and y.776

In general, vectors are special objects that can be added together and777

multiplied by scalars to produce another object of the same kind. Any778

object that satisfies these two properties can be considered a vector. Here779

are some examples of such vector objects:780

1. Geometric vectors. This example of a vector may be familiar from school.781

Geometric vectors are directed segments, which can be drawn, see782

Figure 2.1(a). Two geometric vectors
→
x,

→
y can be added, such that783

→
x +

→
y =

→
z is another geometric vector. Furthermore, multiplication784

by a scalar λ
→
x, λ ∈ R is also a geometric vector. In fact, it is the785

original vector scaled by λ. Therefore, geometric vectors are instances786

of the vector concepts introduced above.787

2. Polynomials are also vectors, see Figure 2.1(b): Two polynomials can788

be added together, which results in another polynomial; and they can789

be multiplied by a scalar λ ∈ R, and the result is a polynomial as790

well. Therefore, polynomials are (rather unusual) instances of vectors.791

Figure 2.1
Different types of
vectors. Vectors can
be surprising
objects, including
(a) geometric
vectors and (b)
polynomials.

→
x →

y

→
x +

→
y

(a) Geometric vectors.

−2 0 2
x

−6

−4

−2

0

2

4

y

(b) Polynomials.
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18 Linear Algebra

Note that polynomials are very different from geometric vectors. While792

geometric vectors are concrete “drawings”, polynomials are abstract793

concepts. However, they are both vectors in the sense described above.794

3. Audio signals are vectors. Audio signals are represented as a series of795

numbers. We can add audio signals together, and their sum is a new796

audio signal. If we scale an audio signal, we also obtain an audio signal.797

Therefore, audio signals are a type of vector, too.798

4. Elements of Rn are vectors. In other words, we can consider each el-
ement of Rn (the tuple of n real numbers) to be a vector. Rn is more
abstract than polynomials, and it is the concept we focus on in this
book. For example,

a =

1
2
3

 ∈ R3 (2.1)

is an example of a triplet of numbers. Adding two vectors a, b ∈ Rn799

component-wise results in another vector: a+ b = c ∈ Rn. Moreover,800

multiplying a ∈ Rn by λ ∈ R results in a scaled vector λa ∈ Rn.801

Linear algebra focuses on the similarities between these vector concepts.802

We can add them together and multiply them by scalars. We will largely803

focus on vectors in Rn since most algorithms in linear algebra are for-804

mulated in Rn. Recall that in machine learning, we often consider data805

to be represented as vectors in Rn. In this book, we will focus on finite-806

dimensional vector spaces, in which case there is a 1:1 correspondence807

between any kind of (finite-dimensional) vector and Rn. By studying Rn,808

we implicitly study all other vectors such as geometric vectors and poly-809

nomials. Although Rn is rather abstract, it is most useful.810

One major idea in mathematics is the idea of “closure”. This is the ques-811

tion: What is the set of all things that can result from my proposed oper-812

ations? In the case of vectors: What is the set of vectors that can result by813

starting with a small set of vectors, and adding them to each other and814

scaling them? This results in a vector space (Section 2.4). The concept of815

a vector space and its properties underlie much of machine learning.816

A closely related concept is a matrix, which can be thought of as amatrix 817

collection of vectors. As can be expected, when talking about properties818

of a collection of vectors, we can use matrices as a representation. The819

concepts introduced in this chapter are shown in Figure 2.2820Pavel Grinfeld’s
series on linear
algebra:
http://tinyurl.

com/nahclwm

Gilbert Strang’s
course on linear
algebra:
http://tinyurl.

com/29p5q8j

This chapter is largely based on the lecture notes and books by Drumm821

and Weil (2001); Strang (2003); Hogben (2013); Liesen and Mehrmann822

(2015) as well as Pavel Grinfeld’s Linear Algebra series. Another excellent823

source is Gilbert Strang’s Linear Algebra course at MIT.824

Linear algebra plays an important role in machine learning and gen-825

eral mathematics. In Chapter 5, we will discuss vector calculus, where826

a principled knowledge of matrix operations is essential. In Chapter 10,827
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Figure 2.2 A mind
map of the concepts
introduced in this
chapter, along with
when they are used
in other parts of the
book.
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we will use projections (to be introduced in Section 3.7) for dimensional-828

ity reduction with Principal Component Analysis (PCA). In Chapter 9, we829

will discuss linear regression where linear algebra plays a central role for830

solving least-squares problems.831

2.1 Systems of Linear Equations832

Systems of linear equations play a central part of linear algebra. Many833

problems can be formulated as systems of linear equations, and linear834

algebra gives us the tools for solving them.835

Example 2.1
A company produces productsN1, . . . , Nn for which resourcesR1, . . . , Rm
are required. To produce a unit of product Nj , aij units of resource Ri are
needed, where i = 1, . . . ,m and j = 1, . . . , n.

The objective is to find an optimal production plan, i.e., a plan of how
many units xj of product Nj should be produced if a total of bi units of
resource Ri are available and (ideally) no resources are left over.

If we produce x1, . . . , xn units of the corresponding products, we need
a total of

ai1x1 + · · ·+ ainxn (2.2)

many units of resource Ri. The optimal production plan (x1, . . . , xn) ∈
Rn, therefore, has to satisfy the following system of equations:

a11x1 + · · ·+ a1nxn = b1

...
am1x1 + · · ·+ amnxn = bm

, (2.3)
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20 Linear Algebra

where aij ∈ R and bi ∈ R.

Equation (2.3) is the general form of a system of linear equations, andsystem of linear
equations

836

x1, . . . , xn are the unknowns of this system of linear equations. Every n-
unknowns

837

tuple (x1, . . . , xn) ∈ Rn that satisfies (2.3) is a solution of the linear equa-
solution

838

tion system.839

Example 2.2
The system of linear equations

x1 + x2 + x3 = 3 (1)
x1 − x2 + 2x3 = 2 (2)
2x1 + 3x3 = 1 (3)

(2.4)

has no solution: Adding the first two equations yields 2x1+3x3 = 5, which
contradicts the third equation (3).

Let us have a look at the system of linear equations

x1 + x2 + x3 = 3 (1)
x1 − x2 + 2x3 = 2 (2)

x2 + x3 = 2 (3)
. (2.5)

From the first and third equation it follows that x1 = 1. From (1)+(2) we
get 2+3x3 = 5, i.e., x3 = 1. From (3), we then get that x2 = 1. Therefore,
(1, 1, 1) is the only possible and unique solution (verify that (1, 1, 1) is a
solution by plugging in).

As a third example, we consider

x1 + x2 + x3 = 3 (1)
x1 − x2 + 2x3 = 2 (2)
2x1 + 3x3 = 5 (3)

. (2.6)

Since (1)+(2)=(3), we can omit the third equation (redundancy). From
(1) and (2), we get 2x1 = 5−3x3 and 2x2 = 1+x3. We define x3 = a ∈ R
as a free variable, such that any triplet(

5

2
− 3

2
a,

1

2
+

1

2
a, a

)
, a ∈ R (2.7)

is a solution to the system of linear equations, i.e., we obtain a solution
set that contains infinitely many solutions.

In general, for a real-valued system of linear equations we obtain either840

no, exactly one or infinitely many solutions.841

Remark (Geometric Interpretation of Systems of Linear Equations). In a842

system of linear equations with two variables x1, x2, each linear equation843

determines a line on the x1x2-plane. Since a solution to a system of lin-844
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Figure 2.3 The
solution space of a
system of two linear
equations with two
variables can be
geometrically
interpreted as the
intersection of two
lines. Every linear
equation represents
a line.

2x1 − 4x2 = 1

4x1 + 4x2 = 5

x1

x2

ear equations must satisfy all equations simultaneously, the solution set845

is the intersection of these line. This intersection can be a line (if the lin-846

ear equations describe the same line), a point, or empty (when the lines847

are parallel). An illustration is given in Figure 2.3. Similarly, for three848

variables, each linear equation determines a plane in three-dimensional849

space. When we intersect these planes, i.e., satisfy all linear equations at850

the same time, we can end up with solution set that is a plane, a line, a851

point or empty (when the planes are parallel). ♦852

For a systematic approach to solving systems of linear equations, we will
introduce a useful compact notation. We will write the system from (2.3)
in the following form:

x1

a11

...
am1

+ x2

a12

...
am2

+ · · ·+ xn

a1n

...
amn

 =

 b1

...
bm

 (2.8)

⇐⇒

a11 · · · a1n

...
...

am1 · · · amn


x1

...
xn

 =

 b1

...
bm

 . (2.9)

In the following, we will have a close look at these matrices and define853

computation rules.854

2.2 Matrices855

Matrices play a central role in linear algebra. They can be used to com-856

pactly represent systems of linear equations, but they also represent linear857

functions (linear mappings) as we will see later in Section 2.7. Before we858

discuss some of these interesting topics, let us first define what a matrix is859

and what kind of operations we can do with matrices.860

Definition 2.1 (Matrix). With m,n ∈ N a real-valued (m,n) matrix A is matrix

anm·n-tuple of elements aij , i = 1, . . . ,m, j = 1, . . . , n, which is ordered
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according to a rectangular scheme consisting of m rows and n columns:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 , aij ∈ R . (2.10)

We sometimes write A = ((aij)) to indicate that the matrix A is a two-861

dimensional array consisting of elements aij . (1, n)-matrices are called862

rows, (m, 1)-matrices are called columns. These special matrices are alsorows
columns

863

called row/column vectors.
row/column vectors

864

Rm×n is the set of all real-valued (m,n)-matrices. A ∈ Rm×n can be865

equivalently represented as a ∈ Rmn by stacking all n columns of the866

matrix into a long vector.867

2.2.1 Matrix Addition and Multiplication868

The sum of two matricesA ∈ Rm×n,B ∈ Rm×n is defined as the element-
wise sum, i.e.,

A+B :=

 a11 + b11 · · · a1n + b1n

...
...

am1 + bm1 · · · amn + bmn

 ∈ Rm×n . (2.11)

For matrices A ∈ Rm×n,B ∈ Rn×k the elements cij of the productNote the size of the
matrices. C = AB ∈ Rm×k are defined as
C =
np.einsum(’il,
lj’, A, B) cij =

n∑
l=1

ailblj, i = 1, . . . ,m, j = 1, . . . , k. (2.12)

This means, to compute element cij we multiply the elements of the ithThere are n columns
in A and n rows in
B, such that we can
compute ailblj for
l = 1, . . . , n.

869

row ofA with the jth column ofB and sum them up. Later in Section 3.2,870

we will call this the dot product of the corresponding row and column.871

Remark. Matrices can only be multiplied if their “neighboring” dimensions
match. For instance, an n × k-matrix A can be multiplied with a k ×m-
matrix B, but only from the left side:

A︸︷︷︸
n×k

B︸︷︷︸
k×m

= C︸︷︷︸
n×m

(2.13)

The productBA is not defined ifm 6= n since the neighboring dimensions872

do not match. ♦873

Remark. Matrix multiplication is not defined as an element-wise operation874

on matrix elements, i.e., cij 6= aijbij (even if the size of A,B was cho-875

sen appropriately). This kind of element-wise multiplication often appears876

in programming languages when we multiply (multi-dimensional) arrays877

with each other. ♦878
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Example 2.3

For A =

[
1 2 3
3 2 1

]
∈ R2×3, B =

0 2
1 −1
0 1

 ∈ R3×2, we obtain

AB =

[
1 2 3
3 2 1

]0 2
1 −1
0 1

 =

[
2 3
2 5

]
∈ R2×2, (2.14)

BA =

0 2
1 −1
0 1

[1 2 3
3 2 1

]
=

 6 4 2
−2 0 2
3 2 1

 ∈ R3×3 . (2.15)

Figure 2.4 Even if
both matrix
multiplications AB
and BA are
defined, the
dimensions of the
results can be
different.

From this example, we can already see that matrix multiplication is not879

commutative, i.e., AB 6= BA, see also Figure 2.4 for an illustration.880

Definition 2.2 (Identity Matrix). In Rn×n, we define the identity matrix

identity matrix

as

In =



1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 1 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · 1


∈ Rn×n (2.16)

as the n × n-matrix containing 1 on the diagonal and 0 everywhere else.881

With this, A · In = A = In ·A for all A ∈ Rn×n.882

Now that we have defined matrix multiplication, matrix addition and883

the identity matrix, let us have a look at some properties of matrices,884

where we will omit the “·” for matrix multiplication:885

• Associativity:

∀A ∈ Rm×n,B ∈ Rn×p,C ∈ Rp×q : (AB)C = A(BC) (2.17)

• Distributivity:

∀A,B ∈ Rm×n,C,D ∈ Rn×p :(A+B)C = AC +BC (2.18a)

A(C +D) = AC +AD (2.18b)

• Neutral element:

∀A ∈ Rm×n : ImA = AIn = A (2.19)

Note that Im 6= In for m 6= n.886
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2.2.2 Inverse and Transpose887

Definition 2.3 (Inverse). For a square matrix A ∈ Rn×n a matrix B ∈A square matrix
possesses the same
number of columns
and rows.

888

Rn×n with AB = In = BA the matrix B is called inverse and denoted

inverse

889

by A−1.890

Unfortunately, not every matrix A possesses an inverse A−1. If this891

inverse does exist, A is called regular/invertible/non-singular, otherwiseregular

invertible
non-singular

892

singular/non-invertible.

singular

non-invertible

893

Remark (Existence of the Inverse of a 2× 2-Matrix). Consider a matrix

A :=

[
a11 a12

a21 a22

]
∈ R2×2 . (2.20)

If we multiply A with

B :=

[
a22 −a12

−a21 a11

]
(2.21)

we obtain

AB =

[
a11a22 − a12a21 0

0 a11a22 − a12a21

]
= (a11a22 − a12a21)I (2.22)

so that

A−1 =
1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
(2.23)

if and only if a11a22−a12a21 6= 0. In Section 4.1, we will see that a11a22−894

a12a21 is the determinant of a 2×2-matrix. Furthermore, we can generally895

use the determinant to check whether a matrix is invertible. ♦896

Example 2.4 (Inverse Matrix)
The matrices

A =

1 2 1
4 4 5
6 7 7

 , B =

−7 −7 6
2 1 −1
4 5 −4

 (2.24)

are inverse to each other since AB = I = BA.

Definition 2.4 (Transpose). For A ∈ Rm×n the matrix B ∈ Rn×m with897

bij = aji is called the transpose of A. We write B = A>.transpose 898

The main diagonal
(sometimes called
“principal diagonal”,
“primary diagonal”,
“leading diagonal”,
or “major diagonal”)
of a matrix A is the
collection of entries
Aij where i = j.

For a square matrixA> is the matrix we obtain when we “mirror”A on899

its main diagonal. In general,A> can be obtained by writing the columns900

of A as the rows of A>.901

Some important properties of inverses and transposes are:

AA−1 = I = A−1A (2.25)

(AB)−1 = B−1A−1 (2.26)
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(A+B)−1 6= A−1 +B−1 (2.27)

(A>)> = A (2.28)

(A+B)> = A> +B> (2.29)

(AB)> = B>A> (2.30)

Moreover, ifA is invertible then so isA> and (A−1)> = (A>)−1 =: A−> In the scalar case
1

2+4
= 1

6
6= 1

2
+ 1

4
.

902

A matrix A is symmetric if A = A>. Note that this can only hold for
symmetric

903

(n, n)-matrices, which we also call square matrices because they possess
square matrices

904

the same number of rows and columns.905

Remark (Sum and Product of Symmetric Matrices). The sum of symmet-
ric matrices A,B ∈ Rn×n is always symmetric. However, although their
product is always defined, it is generally not symmetric:[

1 0
0 0

] [
1 1
1 1

]
=

[
1 1
0 0

]
. (2.31)

♦906

2.2.3 Multiplication by a Scalar907

Let us have a brief look at what happens to matrices when they are mul-908

tiplied by a scalar λ ∈ R. Let A ∈ Rm×n and λ ∈ R. Then λA = K,909

Kij = λ aij . Practically, λ scales each element ofA. For λ, ψ ∈ R it holds:910

• Distributivity:911

(λ+ ψ)C = λC + ψC, C ∈ Rm×n912

λ(B +C) = λB + λC, B,C ∈ Rm×n913

• Associativity:914

(λψ)C = λ(ψC), C ∈ Rm×n915

λ(BC) = (λB)C = B(λC) = (BC)λ, B ∈ Rm×n,C ∈ Rn×k.916

Note that this allows us to move scalar values around.917

• (λC)> = C>λ> = C>λ = λC> since λ = λ> for all λ ∈ R.918

Example 2.5 (Distributivity)
If we define

C :=

[
1 2
3 4

]
(2.32)

then for any λ, ψ ∈ R we obtain

(λ+ ψ)C =

[
(λ+ ψ)1 (λ+ ψ)2
(λ+ ψ)3 (λ+ ψ)4

]
=

[
λ+ ψ 2λ+ 2ψ

3λ+ 3ψ 4λ+ 4ψ

]
(2.33a)

=

[
λ 2λ
3λ 4λ

]
+

[
ψ 2ψ
3ψ 4ψ

]
= λC + ψC (2.33b)
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2.2.4 Compact Representations of Systems of Linear Equations919

If we consider the system of linear equations

2x1 + 3x2 + 5x3 = 1

4x1 − 2x2 − 7x3 = 8

9x1 + 5x2 − 3x3 = 2

(2.34)

and use the rules for matrix multiplication, we can write this equation
system in a more compact form as2 3 5

4 −2 −7
9 5 −3

x1

x2

x3

 =

1
8
2

 . (2.35)

Note that x1 scales the first column, x2 the second one, and x3 the third920

one.921

Generally, system of linear equations can be compactly represented in922

their matrix form as Ax = b, see (2.3), and the product Ax is a (linear)923

combination of the columns of A. We will discuss linear combinations in924

more detail in Section 2.5.925

2.3 Solving Systems of Linear Equations926

In (2.3), we introduced the general form of an equation system, i.e.,

a11x1 + · · ·+ a1nxn = b1

...

am1x1 + · · ·+ amnxn = bm ,

(2.36)

where aij ∈ R and bi ∈ R are known constants and xj are unknowns,927

i = 1, . . . ,m, j = 1, . . . , n. Thus far, we saw that matrices can be used as928

a compact way of formulating systems of linear equations so that we can929

write Ax = b, see (2.9). Moreover, we defined basic matrix operations,930

such as addition and multiplication of matrices. In the following, we will931

focus on solving systems of linear equations.932

2.3.1 Particular and General Solution933

Before discussing how to solve systems of linear equations systematically,
let us have a look at an example. Consider the system of equations

[
1 0 8 −4
0 1 2 12

]
x1

x2

x3

x4

 =

[
42
8

]
. (2.37)
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This system of equations is in a particularly easy form, where the first two
columns consist of a 1 and a 0. Remember that we want to find scalars
x1, . . . , x4, such that

∑4
i=1 xici = b, where we define ci to be the ith

column of the matrix and b the right-hand-side of (2.37). A solution to
the problem in (2.37) can be found immediately by taking 42 times the
first column and 8 times the second column so that

b =

[
42
8

]
= 42

[
1
0

]
+ 8

[
0
1

]
. (2.38)

Therefore, a solution vector is [42, 8, 0, 0]>. This solution is called a particularparticular solution

solution or special solution. However, this is not the only solution of this special solution

system of linear equations. To capture all the other solutions, we need to
be creative of generating 0 in a non-trivial way using the columns of the
matrix: Adding 0 to our special solution does not change the special so-
lution. To do so, we express the third column using the first two columns
(which are of this very simple form)[

8
2

]
= 8

[
1
0

]
+ 2

[
0
1

]
(2.39)

so that 0 = 8c1 + 2c2 − 1c3 + 0c4 and (x1, x2, x3, x4) = (8, 2,−1, 0). In
fact, any scaling of this solution by λ1 ∈ R produces the 0 vector, i.e.,

[
1 0 8 −4
0 1 2 12

]λ1


8
2
−1
0


 = λ1(8c1 + 2c2 − c3) = 0 . (2.40)

Following the same line of reasoning, we express the fourth column of the
matrix in (2.37) using the first two columns and generate another set of
non-trivial versions of 0 as

[
1 0 8 −4
0 1 2 12

]λ2


−4
12
0
−1


 = λ2(−4c1 + 12c2 − c4) = 0 (2.41)

for any λ2 ∈ R. Putting everything together, we obtain all solutions of the
equation system in (2.37), which is called the general solution, as the set general solutionx ∈ R4 : x =


42
8
0
0

+ λ1


8
2
−1
0

+ λ2


−4
12
0
−1

 , λ1, λ2 ∈ R

 . (2.42)

Remark. The general approach we followed consisted of the following934

three steps:935

1. Find a particular solution to Ax = b936

2. Find all solutions to Ax = 0937
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3. Combine the solutions from 1. and 2. to the general solution.938

Neither the general nor the particular solution is unique. ♦939

The system of linear equations in the example above was easy to solve940

because the matrix in (2.37) has this particularly convenient form, which941

allowed us to find the particular and the general solution by inspection.942

However, general equation systems are not of this simple form. Fortu-943

nately, there exists a constructive algorithmic way of transforming any944

system of linear equations into this particularly simple form: Gaussian945

elimination. Key to Gaussian elimination are elementary transformations946

of systems of linear equations, which transform the equation system into947

a simple form. Then, we can apply the three steps to the simple form that948

we just discussed in the context of the example in (2.37), see the remark949

above.950

2.3.2 Elementary Transformations951

Key to solving a system of linear equations are elementary transformationselementary
transformations

952

that keep the solution set the same, but that transform the equation system953

into a simpler form:954

• Exchange of two equations (or: rows in the matrix representing the955

equation system)956

• Multiplication of an equation (row) with a constant λ ∈ R\{0}957

• Addition of two equations (rows)958

Example 2.6
For a ∈ R, we seek all solutions of the following system of equations:

−2x1 + 4x2 − 2x3 − x4 + 4x5 = −3
4x1 − 8x2 + 3x3 − 3x4 + x5 = 2
x1 − 2x2 + x3 − x4 + x5 = 0
x1 − 2x2 − 3x4 + 4x5 = a

. (2.43)

We start by converting this system of equations into the compact matrix
notation Ax = b. We no longer mention the variables x explicitly and
build the augmented matrixaugmented matrix 

−2 4 −2 −1 4 −3
4 −8 3 −3 1 2
1 −2 1 −1 1 0
1 −2 0 −3 4 a


Swap with R3

Swap with R1

where we used the vertical line to separate the left-hand-side from the
right-hand-side in (2.43). We use  to indicate a transformation of the
left-hand-side into the right-hand-side using elementary transformations.
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2.3 Solving Systems of Linear Equations 29

Swapping rows 1 and 3 leads to
1 −2 1 −1 1 0
4 −8 3 −3 1 2
−2 4 −2 −1 4 −3

1 −2 0 −3 4 a

 −4R1

+2R1

−R1

When we now apply the indicated transformations (e.g., subtract Row 1 The augmented
matrix

[
A | b

]
compactly
represents the
system of linear
equations Ax = b.

four times from Row 2), we obtain
1 −2 1 −1 1 0
0 0 −1 1 −3 2
0 0 0 −3 6 −3
0 0 −1 −2 3 a


−R2 −R3

 


1 −2 1 −1 1 0
0 0 −1 1 −3 2
0 0 0 −3 6 −3
0 0 0 0 0 a+1

 ·(−1)
·(− 1

3
)

 


1 −2 1 −1 1 0
0 0 1 −1 3 −2
0 0 0 1 −2 1
0 0 0 0 0 a+1


This (augmented) matrix is in a convenient form, the row-echelon form row-echelon form

(REF)(REF). Reverting this compact notation back into the explicit notation with
the variables we seek, we obtain

x1 − 2x2 + x3 − x4 + x5 = 0
x3 − x4 + 3x5 = −2

x4 − 2x5 = 1
0 = a+ 1

. (2.44)

Only for a = −1 this system can be solved. A particular solution is particular solution
x1

x2

x3

x4

x5

 =


2
0
−1
1
0

 . (2.45)

The general solution, which captures the set of all possible solutions, is general solutionx ∈ R
5 : x =


2
0
−1
1
0

+ λ1


2
1
0
0
0

+ λ2


2
0
−1
2
1

 , λ1, λ2 ∈ R

 . (2.46)
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In the following, we will detail a constructive way to obtain a particular959

and general solution of a system of linear equations.960

Remark (Pivots and Staircase Structure). The leading coefficient of a row961

(first non-zero number from the left) is called the pivot and is alwayspivot 962

strictly to the right of the pivot of the row above it. Therefore, any equa-963

tion system in row echelon form always has a “staircase” structure. ♦964

Definition 2.5 (Row Echelon Form). A matrix is in row echelon form (REF)row echelon form 965

if966

• All rows that contain only zeros are at the bottom of the matrix; corre-967

spondingly, all rows that contain at least one non-zero element are on968

top of rows that contain only zeros.969

• Looking at non-zero rows only, the first non-zero number from the left970

(also called the pivot or the leading coefficient) is always strictly to thepivot

leading coefficient

971

right of the pivot of the row above it.
In other books, it is
sometimes required
that the pivot is 1.

972

Remark (Basic and Free Variables). The variables corresponding to the973

pivots in the row-echelon form are called basic variables, the other vari-
basic variables

974

ables are free variables. For example, in (2.44), x1, x3, x4 are basic vari-
free variables

975

ables, whereas x2, x5 are free variables. ♦976

Remark (Obtaining a Particular Solution). The row echelon form makes977

our lives easier when we need to determine a particular solution. To do978

this, we express the right-hand side of the equation system using the pivot979

columns, such that b =
∑P

i=1 λipi, where pi, i = 1, . . . , P , are the pivot980

columns. The λi are determined easiest if we start with the most-right981

pivot column and work our way to the left.982

In the above example, we would try to find λ1, λ2, λ3 such that

λ1


1
0
0
0

+ λ2


1
1
0
0

+ λ3


−1
−1
1
0

 =


0
−2
1
0

 . (2.47)

From here, we find relatively directly that λ3 = 1, λ2 = −1, λ1 = 2. When983

we put everything together, we must not forget the non-pivot columns984

for which we set the coefficients implicitly to 0. Therefore, we get the985

particular solution x = [2, 0,−1, 1, 0]>. ♦986

Remark (Reduced Row Echelon Form). An equation system is in reducedreduced row
echelon form

987

row echelon form (also: row-reduced echelon form or row canonical form) if988

• It is in row echelon form.989

• Every pivot is 1.990

• The pivot is the only non-zero entry in its column.991

♦992
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The reduced row echelon form will play an important role later in Sec-993

tion 2.3.3 because it allows us to determine the general solution of a sys-994

tem of linear equations in a straightforward way.995

Gaussian
eliminationRemark (Gaussian Elimination). Gaussian elimination is an algorithm that996

performs elementary transformations to bring a system of linear equations997

into reduced row echelon form. ♦998

Example 2.7 (Reduced Row Echelon Form)
Verify that the following matrix is in reduced row echelon form (the pivots
are in bold):

A =

1 3 0 0 3
0 0 1 0 9
0 0 0 1 −4

 (2.48)

The key idea for finding the solutions of Ax = 0 is to look at the non-
pivot columns, which we will need to express as a (linear) combination of
the pivot columns. The reduced row echelon form makes this relatively
straightforward, and we express the non-pivot columns in terms of sums
and multiples of the pivot columns that are on their left: The second col-
umn is 3 times the first column (we can ignore the pivot columns on the
right of the second column). Therefore, to obtain 0, we need to subtract
the second column from three times the first column. Now, we look at the
fifth column, which is our second non-pivot column. The fifth column can
be expressed as 3 times the first pivot column, 9 times the second pivot
column, and −4 times the third pivot column. We need to keep track of
the indices of the pivot columns and translate this into 3 times the first col-
umn, 0 times the second column (which is a non-pivot column), 9 times
the third pivot column (which is our second pivot column), and −4 times
the fourth column (which is the third pivot column). Then we need to
subtract the fifth column to obtain 0. In the end, we are still solving a
homogeneous equation system.

To summarize, all solutions of Ax = 0,x ∈ R5 are given byx ∈ R
5 : x = λ1


3
−1
0
0
0

+ λ2


3
0
9
−4
−1

 , λ1, λ2 ∈ R

 . (2.49)
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2.3.3 The Minus-1 Trick999

In the following, we introduce a practical trick for reading out the solu-1000

tions x of a homogeneous system of linear equations Ax = 0, where1001

A ∈ Rk×n,x ∈ Rn.1002

To start, we assume thatA is in reduced row echelon form without any
rows that just contain zeros, i.e.,

A =



0 · · · 0 1 ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗
...

... 0 0 · · · 0 1 ∗ · · · ∗ ...
...

...
...

...
...

...
... 0

...
...

...
...

...
...

...
...

...
...

...
...

... 0
...

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗


,

(2.50)

where ∗ can be an arbitrary real number, with the constraints that the first
non-zero entry per row must be 1 and all other entries in the correspond-
ing column must be 0. The columns j1, . . . , jk with the pivots (marked
in bold) are the standard unit vectors e1, . . . , ek ∈ Rk. We extend this
matrix to an n× n-matrix Ã by adding n− k rows of the form[

0 · · · 0 −1 0 · · · 0
]

(2.51)

so that the diagonal of the augmented matrix Ã contains either 1 or −1.1003

Then, the columns of Ã, which contain the −1 as pivots are solutions of1004

the homogeneous equation system Ax = 0. To be more precise, these1005

columns form a basis (Section 2.6.1) of the solution space of Ax = 0,1006

which we will later call the kernel or null space (see Section 2.7.3).kernel
null space

1007

Example 2.8 (Minus-1 Trick)
Let us revisit the matrix in (2.48), which is already in REF:

A =

1 3 0 0 3
0 0 1 0 9
0 0 0 1 −4

 . (2.52)

We now augment this matrix to a 5 × 5 matrix by adding rows of the
form (2.51) at the places where the pivots on the diagonal are missing
and obtain

Ã =


1 3 0 0 3
0 −1 0 0 0
0 0 1 0 9
0 0 0 1 −4
0 0 0 0 −1

 (2.53)
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2.3 Solving Systems of Linear Equations 33

From this form, we can immediately read out the solutions of Ax = 0 by
taking the columns of Ã, which contain −1 on the diagonal:x ∈ R

5 : x = λ1


3
−1
0
0
0

+ λ2


3
0
9
−4
−1

 , λ1, λ2 ∈ R

 , (2.54)

which is identical to the solution in (2.49) that we obtained by “insight”.

Calculating the Inverse1008

To compute the inverse A−1 of A ∈ Rn×n, we need to find a matrix X
that satisfies AX = In. Then, X = A−1. We can write this down as
a set of simultaneous linear equations AX = In, where we solve for
X = [x1| · · · |xn]. We use the augmented matrix notation for a compact
representation of this set of systems of linear equations and obtain[

A|In
]
 · · · 

[
In|A−1

]
. (2.55)

This means that if we bring the augmented equation system into reduced1009

row echelon form, we can read out the inverse on the right-hand side of1010

the equation system. Hence, determining the inverse of a matrix is equiv-1011

alent to solving systems of linear equations.1012

Example 2.9 (Calculating an Inverse Matrix by Gaussian Elimination)
To determine the inverse of

A =


1 0 2 0
1 1 0 0
1 2 0 1
1 1 1 1

 (2.56)

we write down the augmented matrix
1 0 2 0 1 0 0 0
1 1 0 0 0 1 0 0
1 2 0 1 0 0 1 0
1 1 1 1 0 0 0 1


and use Gaussian elimination to bring it into reduced row echelon form

1 0 0 0 −1 2 −2 2
0 1 0 0 1 −1 2 −2
0 0 1 0 1 −1 1 −1
0 0 0 1 −1 0 −1 2

 ,

c©2018 Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Press.



34 Linear Algebra

such that the desired inverse is given as its right-hand side:

A−1 =


−1 2 −2 2
1 −1 2 −2
1 −1 1 −1
−1 0 −1 2

 . (2.57)

2.3.4 Algorithms for Solving a System of Linear Equations1013

In the following, we briefly discuss approaches to solving a system of lin-1014

ear equations of the form Ax = b.1015

In special cases, we may be able to determine the inverse A−1, such
that the solution of Ax = b is given as x = A−1b. However, this is
only possible if A is a square matrix and invertible, which is often not the
case. Otherwise, under mild assumptions (i.e., A needs to have linearly
independent columns) we can use the transformation

Ax = b ⇐⇒ A>Ax = A>b ⇐⇒ x = (A>A)−1A>b (2.58)

and use the Moore-Penrose pseudo-inverse (A>A)−1A> to determine theMoore-Penrose
pseudo-inverse

1016

solution (2.58) that solves Ax = b, which also corresponds to the mini-1017

mum norm least-squares solution. A disadvantage of this approach is that1018

it requires many computations for the matrix-matrix product and comput-1019

ing the inverse of A>A. Moreover, for reasons of numerical precision it1020

is generally not recommended to compute the inverse or pseudo-inverse.1021

In the following, we therefore briefly discuss alternative approaches to1022

solving systems of linear equations.1023

Gaussian elimination plays an important role when computing deter-1024

minants (Section 4.1), checking whether a set of vectors is linearly inde-1025

pendent (Section 2.5), computing the inverse of a matrix (Section 2.2.2),1026

computing the rank of a matrix (Section 2.6.2) and a basis of a vector1027

space (Section 2.6.1). We will discuss all these topics later on. Gaussian1028

elimination is an intuitive and constructive way to solve a system of linear1029

equations with thousands of variables. However, for systems with millions1030

of variables, it is impractical as the required number of arithmetic opera-1031

tions scales cubically in the number of simultaneous equations.1032

In practice, systems of many linear equations are solved indirectly, by1033

either stationary iterative methods, such as the Richardson method, the1034

Jacobi method, the Gauß-Seidel method, or the successive over-relaxation1035

method, or Krylov subspace methods, such as conjugate gradients, gener-1036

alized minimal residual, or biconjugate gradients.1037

Let x∗ be a solution ofAx = b. The key idea of these iterative methods
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2.4 Vector Spaces 35

is to set up an iteration of the form

x(k+1) = Ax(k) (2.59)

that reduces the residual error ‖x(k+1)−x∗‖ in every iteration and finally1038

converges to x∗. We will introduce norms ‖ · ‖, which allow us to compute1039

similarities between vectors, in Section 3.1.1040

2.4 Vector Spaces1041

Thus far, we have looked at systems of linear equations and how to solve1042

them. We saw that systems of linear equations can be compactly repre-1043

sented using matrix-vector notations. In the following, we will have a1044

closer look at vector spaces, i.e., a structured space in which vectors live.1045

In the beginning of this chapter, we informally characterized vectors as1046

objects that can be added together and multiplied by a scalar, and they1047

remain objects of the same type (see page 17). Now, we are ready to1048

formalize this, and we will start by introducing the concept of a group,1049

which is a set of elements and an operation defined on these elements1050

that keeps some structure of the set intact.1051

2.4.1 Groups1052

Groups play an important role in computer science. Besides providing a1053

fundamental framework for operations on sets, they are heavily used in1054

cryptography, coding theory and graphics.1055

Definition 2.6 (Group). Consider a set G and an operation⊗ : G×G → G1056

defined on G.1057

Then G := (G,⊗) is called a group if the following hold: group1058

Closure
1. Closure of G under ⊗: ∀x, y ∈ G : x⊗ y ∈ G1059 Associativity:
2. Associativity: ∀x, y, z ∈ G : (x⊗ y)⊗ z = x⊗ (y ⊗ z)1060 Neutral element:
3. Neutral element: ∃e ∈ G ∀x ∈ G : x⊗ e = x and e⊗ x = x1061 Inverse element:

4. Inverse element: ∀x ∈ G ∃y ∈ G : x ⊗ y = e and y ⊗ x = e. We often1062

write x−1 to denote the inverse element of x.1063

If additionally ∀x, y ∈ G : x ⊗ y = y ⊗ x then G = (G,⊗) is an Abelian Abelian group1064

group (commutative).1065

Example 2.10 (Groups)
Let us have a look at some examples of sets with associated operations
and see whether they are groups.

• (Z,+) is a group.
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• (N0,+) is not a group: Although (N0,+) possesses a neutral elementN0 := N ∪ {0}

(0), the inverse elements are missing.
• (Z, ·) is not a group: Although (Z, ·) contains a neutral element (1), the

inverse elements for any z ∈ Z, z 6= ±1, are missing.
• (R, ·) is not a group since 0 does not possess an inverse element.
• (R\{0}) is Abelian.
• (Rn,+), (Zn,+), n ∈ N are Abelian if + is defined componentwise, i.e.,

(x1, · · · , xn) + (y1, · · · , yn) = (x1 + y1, · · · , xn + yn). (2.60)

Then, (x1, · · · , xn)−1 := (−x1, · · · ,−xn) is the inverse element and
e = (0, · · · , 0) is the neutral element.
• (Rm×n,+), the set of m × n-matrices is Abelian (with componentwise

addition as defined in (2.60)).
• Let us have a closer look at (Rn×n, ·), i.e., the set of n×n-matrices with

matrix multiplication as defined in (2.12).

– Closure and associativity follow directly from the definition of matrix
multiplication.If A ∈ Rm×n then

In is only a right
neutral element,
such that
AIn = A. The
corresponding
left-neutral element
would be Im since
ImA = A.

– Neutral element: The identity matrix In is the neutral element with
respect to matrix multiplication “·” in (Rn×n, ·).

– Inverse element: If the inverse exists thenA−1 is the inverse element
of A ∈ Rn×n.

Remark. The inverse element is defined with respect to the operation ⊗1066

and does not necessarily mean 1
x
. ♦1067

Definition 2.7 (General Linear Group). The set of regular (invertible)1068

matrices A ∈ Rn×n is a group with respect to matrix multiplication as1069

defined in (2.12) and is called general linear group GL(n,R). However,general linear group1070

since matrix multiplication is not commutative, the group is not Abelian.1071

2.4.2 Vector Spaces1072

When we discussed groups, we looked at sets G and inner operations on1073

G, i.e., mappings G × G → G that only operate on elements in G. In the1074

following, we will consider sets that in addition to an inner operation +1075

also contain an outer operation ·, the multiplication of a vector x ∈ G by1076

a scalar λ ∈ R.1077

Definition 2.8 (Vector space). A real-valued vector space V = (V,+, ·) isvector space

a set V with two operations

+ : V × V → V (2.61)

· : R× V → V (2.62)

where1078
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1. (V,+) is an Abelian group1079

2. Distributivity:1080

1. ∀λ ∈ R,x,y ∈ V : λ · (x+ y) = λ · x+ λ · y1081

2. ∀λ, ψ ∈ R,x ∈ V : (λ+ ψ) · x = λ · x+ ψ · x1082

3. Associativity (outer operation): ∀λ, ψ ∈ R,x ∈ V : λ ·(ψ ·x) = (λψ) ·x1083

4. Neutral element with respect to the outer operation: ∀x ∈ V : 1 ·x = x1084

The elements x ∈ V are called vectors. The neutral element of (V,+) is vectors1085

the zero vector 0 = [0, . . . , 0]>, and the inner operation + is called vector vector addition1086

addition. The elements λ ∈ R are called scalars and the outer operation scalars1087

· is a multiplication by scalars. Note that a scalar product is something multiplication by
scalars

1088

different, and we will get to this in Section 3.2.1089

Remark. A “vector multiplication” ab, a, b ∈ Rn, is not defined. Theoret-1090

ically, we could define an element-wise multiplication, such that c = ab1091

with cj = ajbj . This “array multiplication” is common to many program-1092

ming languages but makes mathematically limited sense using the stan-1093

dard rules for matrix multiplication: By treating vectors as n× 1 matrices1094

(which we usually do), we can use the matrix multiplication as defined1095

in (2.12). However, then the dimensions of the vectors do not match. Only1096

the following multiplications for vectors are defined: ab> ∈ Rn×n (outer1097

product), a>b ∈ R (inner/scalar/dot product). ♦1098

Example 2.11 (Vector Spaces)
Let us have a look at some important examples.

• V = Rn, n ∈ N is a vector space with operations defined as follows:

– Addition: x+y = (x1, . . . , xn)+(y1, . . . , yn) = (x1+y1, . . . , xn+yn)
for all x,y ∈ Rn

– Multiplication by scalars: λx = λ(x1, . . . , xn) = (λx1, . . . , λxn) for
all λ ∈ R,x ∈ Rn

• V = Rm×n,m, n ∈ N is a vector space with

– Addition: A + B =

 a11 + b11 · · · a1n + b1n

...
...

am1 + bm1 · · · amn + bmn

 is defined ele-

mentwise for all A,B ∈ V

– Multiplication by scalars: λA =

λa11 · · · λa1n

...
...

λam1 · · · λamn

 as defined in

Section 2.2. Remember that Rm×n is equivalent to Rmn.

• V = C, with the standard definition of addition of complex numbers.
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Remark. In the following, we will denote a vector space (V,+, ·) by V1099

when + and · are the standard vector addition and scalar multiplication.1100

Moreover, we will use the notation x ∈ V for vectors in V to simplify1101

notation. ♦1102

Remark. The vector spaces Rn,Rn×1,R1×n are only different in the way
we write vectors. In the following, we will not make a distinction between
Rn and Rn×1, which allows us to write n-tuples as column vectorscolumn vectors

x =

x1

...
xn

 . (2.63)

This simplifies the notation regarding vector space operations. However,1103

we do distinguish between Rn×1 and R1×n (the row vectors) to avoid con-row vectors 1104

fusion with matrix multiplication. By default we write x to denote a col-1105

umn vector, and a row vector is denoted by x>, the transpose of x. ♦transpose 1106

2.4.3 Vector Subspaces1107

In the following, we will introduce vector subspaces. Intuitively, they are1108

sets contained in the original vector space with the property that when1109

we perform vector space operations on elements within this subspace, we1110

will never leave it. In this sense, they are “closed”.1111

Definition 2.9 (Vector Subspace). Let V = (V,+, ·) be a vector space and1112

U ⊆ V , U 6= ∅. Then U = (U ,+, ·) is called vector subspace of V (or linearvector subspace

linear subspace

1113

subspace) if U is a vector space with the vector space operations + and ·1114

restricted to U × U and R × U . We write U ⊆ V to denote a subspace U1115

of V .1116

If U ⊆ V and V is a vector space, then U naturally inherits many prop-1117

erties directly from V because they are true for all x ∈ V , and in par-1118

ticular for all x ∈ U ⊆ V . This includes the Abelian group properties,1119

the distributivity, the associativity and the neutral element. To determine1120

whether (U ,+, ·) is a subspace of V we still do need to show1121

1. U 6= ∅, in particular: 0 ∈ U1122

2. Closure of U :1123

1. With respect to the outer operation: ∀λ ∈ R∀x ∈ U : λx ∈ U .1124

2. With respect to the inner operation: ∀x,y ∈ U : x+ y ∈ U .1125

Example 2.12 (Vector Subspaces)
Let us have a look at some subspaces.

• For every vector space V the trivial subspaces are V itself and {0}.
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• Only example D in Figure 2.5 is a subspace of R2 (with the usual inner/
outer operations). In A and C, the closure property is violated; B does
not contain 0.
• The solution set of a homogeneous linear equation systemAx = 0 with
n unknowns x = [x1, . . . , xn]> is a subspace of Rn.
• The solution of an inhomogeneous equation system Ax = b, b 6= 0 is

not a subspace of Rn.
• The intersection of arbitrarily many subspaces is a subspace itself.

Figure 2.5 Not all
subsets of R2 are
subspaces. In A and
C, the closure
property is violated;
B does not contain
0. Only D is a
subspace.

0 0 0 0

A
B

C

D

Remark. Every subspace U ⊆ (Rn,+, ·) is the solution space of a homo-1126

geneous linear equation system Ax = 0. ♦1127

2.5 Linear Independence1128

So far, we looked at vector spaces and some of their properties, e.g., clo-1129

sure. Now, we will look at what we can do with vectors (elements of1130

the vector space). In particular, we can add vectors together and multi-1131

ply them with scalars. The closure property guarantees that we end up1132

with another vector in the same vector space. Let us formalize this:1133

Definition 2.10 (Linear Combination). Consider a vector space V and a
finite number of vectors x1, . . . ,xk ∈ V . Then, every v ∈ V of the form

v = λ1x1 + · · ·+ λkxk =
k∑
i=1

λixi ∈ V (2.64)

with λ1, . . . , λk ∈ R is a linear combination of the vectors x1, . . . ,xk. linear combination1134

The 0-vector can always be written as the linear combination of k vec-1135

tors x1, . . . ,xk because 0 =
∑k

i=1 0xi is always true. In the following,1136

we are interested in non-trivial linear combinations of a set of vectors to1137

represent 0, i.e., linear combinations of vectors x1, . . . ,xk where not all1138

coefficients λi in (2.64) are 0.1139

Definition 2.11 (Linear (In)dependence). Let us consider a vector space1140

V with k ∈ N and x1, . . . ,xk ∈ V . If there is a non-trivial linear com-1141

bination, such that 0 =
∑k

i=1 λixi with at least one λi 6= 0, the vectors1142
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x1, . . . ,xk are linearly dependent. If only the trivial solution exists, i.e., linearly dependent1143

λ1 = . . . = λk = 0 the vectors x1, . . . ,xk are linearly independent.linearly
independent

1144

Linear independence is one of the most important concepts in linear1145

algebra. Intuitively, a set of linearly independent vectors are vectors that1146

have no redundancy, i.e., if we remove any of those vectors from the set,1147

we will lose something. Throughout the next sections, we will formalize1148

this intuition more.1149

Example 2.13 (Linearly Dependent Vectors)
A geographic example may help to clarify the concept of linear indepen-
dence. A person in Nairobi (Kenya) describing where Kigali (Rwanda) isIn this example, we

make crude
approximations to
cardinal directions.

might say “You can get to Kigali by first going 506 km Northwest to Kam-
pala (Uganda) and then 374 km Southwest.”. This is sufficient information
to describe the location of Kigali because the geographic coordinate sys-
tem may be considered a two-dimensional vector space (ignoring altitude
and the Earth’s surface). The person may add “It is about 751 km West of
here.” Although this last statement is true, it is not necessary to find Kigali
given the previous information (see Figure 2.6 for an illustration).

Figure 2.6
Geographic example
(with crude
approximations to
cardinal directions)
of linearly
dependent vectors
in a
two-dimensional
space (plane).

Kigali

Kampala

Nairobi

751 km West
37
4
km

So
ut
hw

es
t 506 km Northwest

37
4
km

So
ut
hw

es
t

In this example, the “506 km Northwest” vector (blue) and the “374 km
Southwest” vector (purple) are linearly independent. This means the
Southwest vector cannot be described in terms of the Northwest vector,
and vice versa. However, the third “751 km West” vector (black) is a lin-
ear combination of the other two vectors, and it makes the set of vectors
linearly dependent.

Remark. The following properties are useful to find out whether vectors1150

are linearly independent.1151

• k vectors are either linearly dependent or linearly independent. There1152

is no third option.1153
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• If at least one of the vectors x1, . . . ,xk is 0 then they are linearly de-1154

pendent. The same holds if two vectors are identical.1155

• The vectors {x1, . . . ,xk : xi 6= 0, i = 1, . . . , k}, k > 2, are linearly1156

dependent if and only if (at least) one of them is a linear combination1157

of the others. In particular, if one vector is a multiple of another vector,1158

i.e., xi = λxj, λ ∈ R then the set {x1, . . . ,xk : xi 6= 0, i = 1, . . . , k}1159

is linearly dependent.1160

• A practical way of checking whether vectors x1, . . . ,xk ∈ V are linearly1161

independent is to use Gaussian elimination: Write all vectors as columns1162

of a matrix A and perform Gaussian elimination until the matrix is in1163

row echelon form (the reduced row echelon form is not necessary here).1164

– The pivot columns indicate the vectors, which are linearly indepen-1165

dent of the vectors on the left. Note that there is an ordering of vec-1166

tors when the matrix is built.1167

– The non-pivot columns can be expressed as linear combinations of
the pivot columns on their left. For instance, the row echelon form[

1 3 0
0 0 2

]
(2.65)

tells us that the first and third column are pivot columns. The second1168

column is a non-pivot column because it is 3 times the first column.1169

All column vectors are linearly independent if and only if all columns1170

are pivot columns. If there is at least one non-pivot column, the columns1171

(and, therefore, the corresponding vectors) are linearly dependent.1172

♦1173

Example 2.14
Consider R4 with

x1 =


1
2
−3
4

 , x2 =


1
1
0
2

 , x3 =


−1
−2
1
1

 . (2.66)

To check whether they are linearly dependent, we follow the general ap-
proach and solve

λ1x1 + λ2x2 + λ3x3 = λ1


1
2
−3
4

+ λ2


1
1
0
2

+ λ3


−1
−2
1
1

 = 0 (2.67)

for λ1, . . . , λ3. We write the vectors xi, i = 1, 2, 3, as the columns of a
matrix and apply elementary row operations until we identify the pivot
columns:
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1 1 −1
2 1 −2
−3 0 1
4 2 1

  · · · 


1 1 −1
0 1 0
0 0 1
0 0 0

 (2.68)

Here, every column of the matrix is a pivot column. Therefore, there is no
non-trivial solution, and we require λ1 = 0, λ2 = 0, λ3 = 0 to solve the
equation system. Hence, the vectors x1,x2,x3 are linearly independent.

Remark. Consider a vector space V with k linearly independent vectors
b1, . . . , bk and m linear combinations

x1 =
k∑
i=1

λi1bi ,

...

xm =
k∑
i=1

λimbi .

(2.69)

Defining B = [b1, . . . , bk] as the matrix whose columns are the linearly
independent vectors b1, . . . , bk, we can write

xj = Bλj , λj =

λ1j

...
λkj

 , j = 1, . . . ,m , (2.70)

in a more compact form.1174

We want to test whether x1, . . . ,xm are linearly independent. For this
purpose, we follow the general approach of testing when

∑m
j=1 ψjxj = 0.

With (2.70), we obtain

m∑
j=1

ψjxj =
m∑
j=1

ψjBλj = B
m∑
j=1

ψjλj . (2.71)

This means that {x1, . . . ,xm} are linearly independent if and only if the1175

column vectors {λ1, . . . ,λm} are linearly independent.1176

♦1177

Remark. In a vector space V ,m linear combinations of k vectors x1, . . . ,xk1178

are linearly dependent if m > k. ♦1179
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Example 2.15
Consider a set of linearly independent vectors b1, b2, b3, b4 ∈ Rn and

x1 = b1 − 2b2 + b3 − b4

x2 = −4b1 − 2b2 + 4b4

x3 = 2b1 + 3b2 − b3 − 3b4

x4 = 17b1 − 10b2 + 11b3 + b4

(2.72)

Are the vectors x1, . . . ,x4 ∈ Rn linearly independent? To answer this
question, we investigate whether the column vectors


1
−2
1
−1

 ,

−4
−2
0
4

 ,


2
3
−1
−3

 ,


17
−10
11
1


 (2.73)

are linearly independent. The reduced row echelon form of the corre-
sponding linear equation system with coefficient matrix

A =


1 −4 2 17
−2 −2 3 −10
1 0 −1 11
−1 4 −3 1

 (2.74)

is given as 
1 0 0 −7
0 1 0 −15
0 0 1 −18
0 0 0 0

 . (2.75)

We see that the corresponding linear equation system is non-trivially solv-
able: The last column is not a pivot column, and x4 = −7x1−15x2−18x3.
Therefore, x1, . . . ,x4 are linearly dependent as x4 can be expressed as a
linear combination of x1, . . . ,x3.

2.6 Basis and Rank1180

In a vector space V , we are particularly interested in sets of vectors A that1181

possess the property that any vector v ∈ V can be obtained by a linear1182

combination of vectors in A. These vectors are special vectors, and in the1183

following, we will characterize them.1184

2.6.1 Generating Set and Basis1185

Definition 2.12 (Generating Set and Span). Consider a vector space V =1186

(V,+, ·) and set of vectors A = {x1, . . . ,xk} ⊆ V . If every vector v ∈1187
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V can be expressed as a linear combination of x1, . . . ,xk, A is called a1188

generating set of V . The set of all linear combinations of vectors in A isgenerating set 1189

called the span ofA. IfA spans the vector space V , we write V = span[A]span 1190

or V = span[x1, . . . ,xk].1191

Generating sets are sets of vectors that span vector (sub)spaces, i.e.,1192

every vector can be represented as a linear combination of the vectors1193

in the generating set. Now, we will be more specific and characterize the1194

smallest generating set that spans a vector (sub)space.1195

Definition 2.13 (Basis). Consider a vector space V = (V,+, ·) and A ⊆1196

V . A generating set A of V is called minimal if there exists no smaller setminimal 1197

Ã ⊆ A ⊆ V that spans V . Every linearly independent generating set of V1198

is minimal and is called a basis of V .basis 1199

A basis is a minimal
generating set and a
maximal linearly
independent set of
vectors.

Let V = (V,+, ·) be a vector space and B ⊆ V,B 6= ∅. Then, the1200

following statements are equivalent:1201

• B is a basis of V1202

• B is a minimal generating set1203

• B is a maximal linearly independent set of vectors in V , i.e., adding any1204

other vector to this set will make it linearly dependent.1205

• Every vector x ∈ V is a linear combination of vectors from B, and every
linear combination is unique, i.e., with

x =
k∑
i=1

λibi =
k∑
i=1

ψibi (2.76)

and λi, ψi ∈ R, bi ∈ B it follows that λi = ψi, i = 1, . . . , k.1206

Example 2.16

• In R3, the canonical/standard basis iscanonical/standard
basis

B =


1

0
0

 ,
0

1
0

 ,
0

0
1

 . (2.77)

• Different bases in R3 are

B1 =


1

0
0

 ,
1

1
0

 ,
1

1
1

 , B2 =


0.5

0.8
0.4

 ,
1.8

0.3
0.3

 ,
−2.2
−1.3
3.5

 . (2.78)

• The set

A =




1
2
3
4

 ,


2
−1
0
2

 ,


1
1
0
−4


 (2.79)
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is linearly independent, but not a generating set (and no basis) of R4:
For instance, the vector [1, 0, 0, 0]> cannot be obtained by a linear com-
bination of elements in A.

Remark. Every vector space V possesses a basis B. The examples above1207

show that there can be many bases of a vector space V , i.e., there is no1208

unique basis. However, all bases possess the same number of elements,1209

the basis vectors. ♦ basis vectors1210

The dimension of a
vector space
corresponds to the
number of basis
vectors.

We only consider finite-dimensional vector spaces V . In this case, the1211

dimension of V is the number of basis vectors, and we write dim(V ). If

dimension

1212

U ⊆ V is a subspace of V then dim(U) 6 dim(V ) and dim(U) = dim(V )1213

if and only if U = V . Intuitively, the dimension of a vector space can be1214

thought of as the number of independent directions in this vector space.1215

Remark. A basis of a subspace U = span[x1, . . . ,xm] ⊆ Rn can be found1216

by executing the following steps:1217

1. Write the spanning vectors as columns of a matrix A1218

2. Determine the row echelon form of A.1219

3. The spanning vectors associated with the pivot columns are a basis of1220

U .1221

♦1222

Example 2.17 (Determining a Basis)
For a vector subspace U ⊆ R5, spanned by the vectors

x1 =


1
2
−1
−1
−1

 , x2 =


2
−1
1
2
−2

 , x3 =


3
−4
3
5
−3

 , x4 =


−1
8
−5
−6
1

 ∈ R5, (2.80)

we are interested in finding out which vectors x1, . . . ,x4 are a basis for U .
For this, we need to check whether x1, . . . ,x4 are linearly independent.
Therefore, we need to solve

4∑
i=1

λixi = 0 , (2.81)

which leads to a homogeneous equation system with matrix

[
x1,x2,x3,x4

]
=


1 2 3 −1
2 −1 −4 8
−1 1 3 −5
−1 2 5 −6
−1 −2 −3 1

 . (2.82)

c©2018 Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Press.



46 Linear Algebra

With the basic transformation rules for systems of linear equations, we
obtain the reduced row echelon form

1 2 3 −1
2 −1 −4 8
−1 1 3 −5
−1 2 5 −6
−1 −2 −3 1

  · · · 


1 0 −1 0
0 1 2 0
0 0 0 1
0 0 0 0
0 0 0 0

 .
From this reduced-row echelon form we see that x1,x2,x4 belong to the
pivot columns, and, therefore, are linearly independent (because the lin-
ear equation system λ1x1 + λ2x2 + λ4x4 = 0 can only be solved with
λ1 = λ2 = λ4 = 0). Therefore, {x1,x2,x4} is a basis of U .

2.6.2 Rank1223

The number of linearly independent columns of a matrix A ∈ Rm×n1224

equals the number of linearly independent rows and is called the rankrank 1225

of A and is denoted by rk(A).1226

Remark. The rank of a matrix has some important properties:1227

• rk(A) = rk(A>), i.e., the column rank equals the row rank.1228

• The columns of A ∈ Rm×n span a subspace U ⊆ Rm with dim(U) =1229

rk(A). Later, we will call this subspace the image or range. A basis of1230

U can be found by applying Gaussian elimination to A to identify the1231

pivot columns.1232

• The rows of A ∈ Rm×n span a subspace W ⊆ Rn with dim(W ) =1233

rk(A). A basis of W can be found by applying Gaussian elimination to1234

A>.1235

• For allA ∈ Rn×n holds:A is regular (invertible) if and only if rk(A) =1236

n.1237

• For all A ∈ Rm×n and all b ∈ Rm it holds that the linear equation1238

system Ax = b can be solved if and only if rk(A) = rk(A|b), where1239

A|b denotes the augmented system.1240

• For A ∈ Rm×n the subspace of solutions for Ax = 0 possesses dimen-1241

sion n − rk(A). Later, we will call this subspace the kernel or the nullkernel
null space

1242

space.1243

• A matrix A ∈ Rm×n has full rank if its rank equals the largest possiblefull rank 1244

rank for a matrix of the same dimensions. This means that the rank of1245

a full-rank matrix is the lesser of the number of rows and columns, i.e.,1246

rk(A) = min(m,n). A matrix is said to be rank deficient if it does notrank deficient 1247

have full rank.1248

♦1249
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Example 2.18 (Rank)

• A =

1 0 1
0 1 1
0 0 0

. A possesses two linearly independent rows (and

columns). Therefore, rk(A) = 2.

• A =

 1 2 1
−2 −3 1
3 5 0

 We use Gaussian elimination to determine the

rank:  1 2 1
−2 −3 1
3 5 0

  · · · 

1 2 1
0 −1 3
0 0 0

 . (2.83)

Here, we see that the number of linearly independent rows and columns
is 2, such that rk(A) = 2.

2.7 Linear Mappings1250

In the following, we will study mappings on vector spaces that preserve
their structure. In the beginning of the chapter, we said that vectors are
objects that can be added together and multiplied by a scalar, and the
resulting object is still a vector. This property we wish to preserve when
applying the mapping: Consider two real vector spaces V,W . A mapping
Φ : V →W preserves the structure of the vector space if

Φ(x+ y) = Φ(x) + Φ(y) (2.84)

Φ(λx) = λΦ(x) (2.85)

for all x,y ∈ V and λ ∈ R. We can summarize this in the following1251

definition:1252

Definition 2.14 (Linear Mapping). For vector spaces V,W , a mapping
Φ : V → W is called a linear mapping (or vector space homomorphism/ linear mapping

vector space
homomorphism

linear transformation) if

linear
transformation

∀x,y ∈ V ∀λ, ψ ∈ R : Φ(λx+ ψy) = λΦ(x) + ψΦ(y) . (2.86)

Before we continue, we will briefly introduce special mappings.1253

Definition 2.15 (Injective, Surjective, Bijective). Consider a mapping Φ :1254

V → W , where V,W can be arbitrary sets. Then Φ is called1255

injective
• injective if ∀x,y ∈ V : Φ(x) = Φ(y) =⇒ x = y.1256 surjective
• surjective if Φ(V) =W .1257 bijective
• bijective if it is injective and surjective.1258
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If Φ is injective then it can also be “undone”, i.e., there exists a mapping1259

Ψ :W → V so that Ψ ◦Φ(x) = x. If Φ is surjective then every element in1260

W can be “reached” from V using Φ.1261

With these definitions, we introduce the following special cases of linear1262

mappings between vector spaces V and W :1263

Isomorphism
• Isomorphism: Φ : V →W linear and bijective1264Endomorphism
• Endomorphism: Φ : V → V linear1265Automorphism
• Automorphism: Φ : V → V linear and bijective1266

• We define idV : V → V , x 7→ x as the identity mapping in V .identity mapping 1267

Example 2.19 (Homomorphism)
The mapping Φ : R2 → C, Φ(x) = x1 + ix2, is a homomorphism:

Φ

([
x1

x2

]
+

[
y1

y2

])
= (x1 + y1) + i(x2 + y2) = x1 + ix2 + y1 + iy2

= Φ

([
x1

x2

])
+ Φ

([
y1

y2

])
Φ

(
λ

[
x1

x2

])
= λx1 + λix2 = λ(x1 + ix2) = λΦ

([
x1

x2

])
.

(2.87)
This also justifies why complex numbers can be represented as tuples in
R2: There is a bijective linear mapping that converts the elementwise addi-
tion of tuples in R2 into the set of complex numbers with the correspond-
ing addition. Note that we only showed linearity, but not the bijection.

Theorem 2.16. Finite-dimensional vector spaces V and W are isomorphic1268

if and only if dim(V ) = dim(W ).1269

Theorem 2.16 states that there exists a linear, bijective mapping be-1270

tween two vector spaces of the same dimension. Intuitively, this means1271

that vector spaces of the same dimension are kind of the same thing as1272

they can be transformed into each other without incurring any loss.1273

Theorem 2.16 also gives us the justification to treat Rm×n (the vector1274

space of m × n-matrices) and Rmn (the vector space of vectors of length1275

mn) the same as their dimensions are mn, and there exists a linear, bijec-1276

tive mapping that transforms one into the other.1277

Remark. Consider vector spaces V,W,X. Then:1278

• For linear mappings Φ : V → W and Ψ : W → X the mapping1279

Ψ ◦ Φ : V → X is also linear.1280

• If Φ : V → W is an isomorphism then Φ−1 : W → V is an isomor-1281

phism, too.1282

• If Φ : V → W, Ψ : V → W are linear then Φ + Ψ and λΦ, λ ∈ R, are1283

linear, too.1284
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♦1285

2.7.1 Matrix Representation of Linear Mappings1286

Any n-dimensional vector space is isomorphic to Rn (Theorem 2.16). We
consider a basis {b1, . . . , bn} of an n-dimensional vector space V . In the
following, the order of the basis vectors will be important. Therefore, we
write

B = (b1, . . . , bn) (2.88)

and call this n-tuple an ordered basis of V . ordered basis1287

Remark (Notation). We are at the point where notation gets a bit tricky.1288

Therefore, we summarize some parts here. B = (b1, . . . , bn) is an ordered1289

basis, B = {b1, . . . , bn} is an (unordered) basis, and B = [b1, . . . , bn] is a1290

matrix whose columns are the vectors b1, . . . , bn. ♦1291

Definition 2.17 (Coordinates). Consider a vector space V and an ordered
basis B = (b1, . . . , bn) of V . For any x ∈ V we obtain a unique represen-
tation (linear combination)

x = α1b1 + . . .+ αnbn (2.89)

of x with respect to B. Then α1, . . . , αn are the coordinates of x with coordinates

respect to B, and the vector

α =

α1

...
αn

 ∈ Rn (2.90)

is the coordinate vector/coordinate representation of x with respect to the coordinate vector
coordinate
representation

1292

ordered basis B.1293

Figure 2.7
Different coordinate
representations of a
vector x, depending
on the choice of
basis.

e1

e2
b2

b1

x = −1
2b1 +

5
2b2

x = 2e1 + 3e2

Remark. Intuitively, the basis vectors can be thought of as being equipped1294

with units (including common units such as “kilograms” or “seconds”).1295

Let us have a look at a geometric vector x ∈ R2 with coordinates [2, 3]>1296

with respect to the standard basis e1, e2 in R2. This means, we can write1297

x = 2e1 + 3e2. However, we do not have to choose the standard basis1298

to represent this vector. If we use the basis vectors b1 = [1,−1]>, b2 =1299

[1, 1]> we will obtain the coordinates 1
2
[−1, 5]> to represent the same1300

vector (see Figure 2.7). ♦1301

Remark. For an n-dimensional vector space V and an ordered basis B1302

of V , the mapping Φ : Rn → V , Φ(ei) = bi, i = 1, . . . , n, is linear1303

(and because of Theorem 2.16 an isomorphism), where (e1, . . . , en) is1304

the standard basis of Rn.1305

♦1306

Now we are ready to make an explicit connection between matrices and1307

linear mappings between finite-dimensional vector spaces.1308
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Definition 2.18 (Transformation matrix). Consider vector spaces V,W
with corresponding (ordered) basesB = (b1, . . . , bn) andC = (c1, . . . , cm).
Moreover, we consider a linear mapping Φ : V →W . For j ∈ {1, . . . , n}

Φ(bj) = α1jc1 + · · ·+ αmjcm =
m∑
i=1

αijci (2.91)

is the unique representation of Φ(bj) with respect to C. Then, we call the
m× n-matrix AΦ whose elements are given by

AΦ(i, j) = αij (2.92)

the transformation matrix of Φ (with respect to the ordered bases B of Vtransformation
matrix

1309

and C of W ).1310

The coordinates of Φ(bj) with respect to the ordered basis C of W
are the j-th column of AΦ. Consider (finite-dimensional) vector spaces
V,W with ordered bases B,C and a linear mapping Φ : V →W with
transformation matrix AΦ. If x̂ is the coordinate vector of x ∈ V with
respect to B and ŷ the coordinate vector of y = Φ(x) ∈ W with respect
to C, then

ŷ = AΦx̂ . (2.93)

This means that the transformation matrix can be used to map coordinates1311

with respect to an ordered basis in V to coordinates with respect to an1312

ordered basis in W .1313

Example 2.20 (Transformation Matrix)
Consider a homomorphism Φ : V → W and ordered bases B =
(b1, . . . , b3) of V and C = (c1, . . . , c4) of W . With

Φ(b1) = c1 − c2 + 3c3 − c4

Φ(b2) = 2c1 + c2 + 7c3 + 2c4

Φ(b3) = 3c2 + c3 + 4c4

(2.94)

the transformation matrix AΦ with respect to B and C satisfies Φ(bk) =∑4
i=1 αikci for k = 1, . . . , 3 and is given as

AΦ = [α1,α2,α3] =


1 2 0
−1 1 3
3 7 1
−1 2 4

 , (2.95)

where the αj, j = 1, 2, 3, are the coordinate vectors of Φ(bj) with respect
to C.
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Figure 2.8 Three
examples of linear
transformations of
the vectors shown
as dots in (a). (b)
Rotation by 45◦; (c)
Stretching of the
horizontal
coordinates by 2;
(d) Combination of
reflection, rotation
and stretching.

(a) Original data. (b) Rotation by 45◦. (c) Stretch along the
horizontal axis.

(d) General linear
mapping.

Example 2.21 (Linear Transformations of Vectors)
We consider three linear transformations of a set of vectors in R2 with the
transformation matrices

A1 =

[
cos(π

4
) − sin(π

4
)

sin(π
4
) cos(π

4
)

]
, A2 =

[
2 0
0 1

]
, A3 =

1

2

[
3 −1
1 −1

]
.

(2.96)

Figure 2.8 gives three examples of linear transformations of a set of
vectors. Figure 2.8(a) shows 400 vectors in R2, each of which is repre-
sented by a dot at the corresponding (x1, x2)-coordinates. The vectors are
arranged in a square. When we use matrix A1 in (2.96) to linearly trans-
form each of these vectors, we obtain the rotated square in Figure 2.8(b).
If we apply the linear mapping represented byA2, we obtain the rectangle
in Figure 2.8(c) where each x1-coordinate is stretched by 2. Figure 2.8(d)
shows the original square from Figure 2.8(a) when linearly transformed
using A3, which is a combination of a reflection, a rotation and a stretch.

2.7.2 Basis Change1314

In the following, we will have a closer look at how transformation matrices
of a linear mapping Φ : V → W change if we change the bases in V and
W . Consider two ordered bases

B = (b1, . . . , bn), B̃ = (b̃1, . . . , b̃n) (2.97)

of V and two ordered bases

C = (c1, . . . , cm), C̃ = (c̃1, . . . , c̃m) (2.98)

of W . Moreover, AΦ ∈ Rm×n is the transformation matrix of the linear1315

mapping Φ : V →W with respect to the bases B and C, and ÃΦ ∈ Rm×n1316

is the corresponding transformation mapping with respect to B̃ and C̃.1317

In the following, we will investigate how A and Ã are related, i.e., how/1318

whether we can transform AΦ into ÃΦ if we choose to perform a basis1319

change from B,C to B̃, C̃.1320
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Remark. We effectively get different coordinate representations of the1321

identity mapping idV . In the context of Figure 2.7, this would mean to1322

map coordinates with respect to e1, e2 onto coordinates with respect to1323

b1, b2 without changing the vector x. By changing the basis and corre-1324

spondingly the representation of vectors, the transformation matrix with1325

respect to this new basis can have a particularly simple form that allows1326

for straightforward computation. ♦1327

Example 2.22 (Basis Change)
Consider a transformation matrix

A =

[
2 1
1 2

]
(2.99)

with respect to the canonical basis in R2. If we define a new basis

B = (

[
1
1

]
,

[
1
−1

]
) (2.100)

we obtain a diagonal transformation matrix

Ã =

[
3 0
0 1

]
(2.101)

with respect to B, which is easier to work with than A.

In the following, we will look at mappings that transform coordinate1328

vectors with respect to one basis into coordinate vectors with respect to1329

a different basis. We will state our main result first and then provide an1330

explanation.1331

Theorem 2.19 (Basis Change). For a linear mapping Φ : V →W , ordered
bases

B = (b1, . . . , bn), B̃ = (b̃1, . . . , b̃n) (2.102)

of V and

C = (c1, . . . , cm), C̃ = (c̃1, . . . , c̃m) (2.103)

of W , and a transformation matrix AΦ of Φ with respect to B and C, the
corresponding transformation matrix ÃΦ with respect to the bases B̃ and C̃
is given as

ÃΦ = T−1AΦS . (2.104)

Here, S ∈ Rn×n is the transformation matrix of idV that maps coordinates1332

with respect to B̃ onto coordinates with respect to B, and T ∈ Rm×m is the1333

transformation matrix of idW that maps coordinates with respect to C̃ onto1334

coordinates with respect to C.1335
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Proof Following Drumm and Weil (2001) we can write the vectors of the
new basis B̃ of V as a linear combination of the basis vectors of B, such
that

b̃j = s1jb1 + · · ·+ snjbn =
n∑
i=1

sijbi , j = 1, . . . , n . (2.105)

Similarly, we write the new basis vectors C̃ of W as a linear combination
of the basis vectors of C, which yields

c̃k = t1kc1 + · · ·+ tmkcm =
m∑
l=1

tlkcl , k = 1, . . . ,m . (2.106)

We define S = ((sij)) ∈ Rn×n as the transformation matrix that maps1336

coordinates with respect to B̃ onto coordinates with respect to B and1337

T = ((tlk)) ∈ Rm×m as the transformation matrix that maps coordinates1338

with respect to C̃ onto coordinates with respect to C. In particular, the jth1339

column of S is the coordinate representation of b̃j with respect to B and1340

the kth column of T is the coordinate representation of c̃k with respect to1341

C. Note that both S and T are regular.1342

We are going to look at Φ(b̃j) from two perspectives. First, applying the
mapping Φ, we get that for all j = 1, . . . , n

Φ(b̃j) =
m∑
k=1

ãkj c̃k︸ ︷︷ ︸
∈W

(2.106)
=

m∑
k=1

ãkj

m∑
l=1

tlkcl =
m∑
l=1

(
m∑
k=1

tlkãkj

)
cl , (2.107)

where we first expressed the new basis vectors c̃k ∈ W as linear com-1343

binations of the basis vectors cl ∈ W and then swapped the order of1344

summation.1345

Alternatively, when we express the b̃j ∈ V as linear combinations of
bj ∈ V , we arrive at

Φ(b̃j)
(2.105)

= Φ

(
n∑
i=1

sijbi

)
=

n∑
i=1

sijΦ(bi) =
n∑
i=1

sij

m∑
l=1

alicl (2.108a)

=
m∑
l=1

(
n∑
i=1

alisij

)
cl , j = 1, . . . , n , (2.108b)

where we exploited the linearity of Φ. Comparing (2.107) and (2.108b),
it follows for all j = 1, . . . , n and l = 1, . . . ,m that

m∑
k=1

tlkãkj =
n∑
i=1

alisij (2.109)

and, therefore,

TÃΦ = AΦS ∈ Rm×n , (2.110)

c©2018 Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Press.



54 Linear Algebra

Figure 2.9 For a
homomorphism
Φ : V →W and
ordered bases B, B̃
of V and C, C̃ of W
(marked in blue),
we can express the
mapping ΦC̃B̃ with
respect to the bases
B̃, C̃ equivalently as
a composition of the
homomorphisms
ΦC̃B̃ =

ΞC̃C ◦ ΦCB ◦ΨBB̃
with respect to the
bases in the
subscripts. The
corresponding
transformation
matrices are in red.

V W

B

B̃ C̃

C

Φ

ΦCB

ΦC̃B̃

ΨBB̃ ΞCC̃S T

ÃΦ

AΦ

V W

B

B̃ C̃

C

Φ

ΦCB

ΦC̃B̃

ΨBB̃ ΞC̃C = Ξ−1

CC̃
S T−1

ÃΦ

AΦ

Vector spaces

Ordered bases

such that

ÃΦ = T−1AΦS , (2.111)

which proves Theorem 2.19.1346

Theorem 2.19 tells us that with a basis change in V (B is replaced with
B̃) and W (C is replaced with C̃) the transformation matrix AΦ of a
linear mapping Φ : V →W is replaced by an equivalent matrix ÃΦ with

ÃΦ = T−1AΦS. (2.112)

Figure 2.9 illustrates this relation: Consider a homomorphism Φ : V →
W and ordered bases B, B̃ of V and C, C̃ of W . The mapping ΦCB is an
instantiation of Φ and maps basis vectors of B onto linear combinations
of basis vectors of C. Assuming, we know the transformation matrix AΦ

of ΦCB with respect to the ordered bases B,C. When we perform a basis
change from B to B̃ in V and from C to C̃ in W , we can determine the
corresponding transformation matrix ÃΦ as follows: First, we find the ma-
trix representation of the linear mapping ΨBB̃ : V → V that maps coordi-
nates with respect to the new basis B̃ onto the (unique) coordinates with
respect to the “old” basis B (in V ). Then, we use the transformation ma-
trix AΦ of ΦCB : V → W to map these coordinates onto the coordinates
with respect to C in W . Finally, we use a linear mapping ΞC̃C : W → W
to map the coordinates with respect to C onto coordinates with respect to
C̃. Therefore, we can express the linear mapping ΦC̃B̃ as a composition of
linear mappings that involve the “old” basis:

ΦC̃B̃ = ΞC̃C ◦ ΦCB ◦ΨBB̃ = Ξ−1

CC̃
◦ ΦCB ◦ΨBB̃ . (2.113)

Concretely, we use ΨBB̃ = idV and ΞCC̃ = idW , i.e., the identity mappings1347

that map vectors onto themselves, but with respect to a different basis.1348

Definition 2.20 (Equivalence). Two matricesA, Ã ∈ Rm×n are equivalentequivalent 1349

if there exist regular matrices S ∈ Rn×n and T ∈ Rm×m, such that1350

Ã = T−1AS.1351

Definition 2.21 (Similarity). Two matrices A, Ã ∈ Rn×n are similar ifsimilar 1352

there exists a regular matrix S ∈ Rn×n with Ã = S−1AS1353

Remark. Similar matrices are always equivalent. However, equivalent ma-1354

trices are not necessarily similar. ♦1355
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Remark. Consider vector spaces V,W,X. From the remark on page 48 we1356

already know that for linear mappings Φ : V → W and Ψ : W → X the1357

mapping Ψ ◦ Φ : V → X is also linear. With transformation matrices AΦ1358

andAΨ of the corresponding mappings, the overall transformation matrix1359

is AΨ◦Φ = AΨAΦ. ♦1360

In light of this remark, we can look at basis changes from the perspec-1361

tive of composing linear mappings:1362

• AΦ is the transformation matrix of a linear mapping ΦCB : V → W1363

with respect to the bases B,C.1364

• ÃΦ is the transformation matrix of the linear mapping ΦC̃B̃ : V → W1365

with respect to the bases B̃, C̃.1366

• S is the transformation matrix of a linear mapping ΨBB̃ : V → V1367

(automorphism) that represents B̃ in terms of B. Normally, Ψ = idV is1368

the identity mapping in V .1369

• T is the transformation matrix of a linear mapping ΞCC̃ : W → W1370

(automorphism) that represents C̃ in terms of C. Normally, Ξ = idW is1371

the identity mapping in W .1372

If we (informally) write down the transformations just in terms of bases
then AΦ : B → C, ÃΦ : B̃ → C̃, S : B̃ → B, T : C̃ → C and
T−1 : C → C̃, and

B̃ → C̃ = B̃ → B→ C → C̃ (2.114)

ÃΦ = T−1AΦS . (2.115)

Note that the execution order in (2.115) is from right to left because vec-1373

tors are multiplied at the right-hand side so that x 7→ Sx 7→ AΦ(Sx) 7→1374

T−1
(
AΦ(Sx)

)
= ÃΦx.1375

Example 2.23 (Basis Change)
Consider a linear mapping Φ : R3 → R4 whose transformation matrix is

AΦ =


1 2 0
−1 1 3
3 7 1
−1 2 4

 (2.116)

with respect to the standard bases

B = (

1
0
0

 ,
0

1
0

 ,
0

0
1

) , C = (


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

). (2.117)

We seek the transformation matrix ÃΦ of Φ with respect to the new bases
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B̃ = (

1
1
0

 ,
0

1
1

 ,
1

0
1

) ∈ R3, C̃ = (


1
1
0
0

 ,


1
0
1
0

 ,


0
1
1
0

 ,


1
0
0
1

) . (2.118)

Then,

S =

1 0 1
1 1 0
0 1 1

 , T =


1 1 0 1
1 0 1 0
0 1 1 0
0 0 0 1

 , (2.119)

where the ith column of S is the coordinate representation of b̃i in terms
of the basis vectors of B. Similarly, the jth column of T is the coordinateSince B is the

standard basis, the
coordinate
representation is
straightforward to
find. For a general
basis B we would
need to solve a
linear equation
system to find the
λi such that∑3
i=1 λibi = b̃j ,

j = 1, . . . , 3.

representation of c̃j in terms of the basis vectors of C.
Therefore, we obtain

ÃΦ = T−1AΦS =
1

2


1 1 −1 −1
1 −1 1 −1
−1 1 1 1
0 0 0 2




3 2 1
0 4 2
10 8 4
1 6 3

 (2.120a)

=


−4 −4 −2
6 0 0
4 8 4
1 6 3

 . (2.120b)

In Chapter 4, we will be able to exploit the concept of a basis change1376

to find a basis with respect to which the transformation matrix of an en-1377

domorphism has a particularly simple (diagonal) form. In Chapter 10, we1378

will look at a data compression problem and find a convenient basis onto1379

which we can project the data while minimizing the compression loss.1380

2.7.3 Image and Kernel1381

The image and kernel of a linear mapping are vector subspaces with cer-1382

tain important properties. In the following, we will characterize them1383

more carefully.1384

Definition 2.22 (Image and Kernel).1385

For Φ : V →W , we define the kernel/null spacekernel
null space

ker(Φ) := Φ−1(0W ) = {v ∈ V : Φ(v) = 0W} (2.121)

and the image/rangeimage
range

Im(Φ) := Φ(V ) = {w ∈W |∃v ∈ V : Φ(v) = w} . (2.122)
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Figure 2.10 Kernel
and Image of a
linear mapping
Φ : V →W .

Im(Φ)

0W

ker(Φ)

0V

Φ : V → W
V W

We also call V and W also the domain and codomain of Φ, respectively. domain
codomain

1386

Intuitively, the kernel is the set of vectors in v ∈ V that Φ maps onto1387

the neutral element 0W ∈W . The image is the set of vectors w ∈W that1388

can be “reached” by Φ from any vector in V . An illustration is given in1389

Figure 2.10.1390

Remark. Consider a linear mapping Φ : V → W , where V,W are vector1391

spaces.1392

• It always holds that Φ(0V ) = 0W and, therefore, 0V ∈ ker(Φ). In1393

particular, the null space is never empty.1394

• Im(Φ) ⊆W is a subspace of W , and ker(Φ) ⊆ V is a subspace of V .1395

• Φ is injective (one-to-one) if and only if ker(Φ) = {0}1396

♦1397

Remark (Null Space and Column Space). Let us consider A ∈ Rm×n and1398

a linear mapping Φ : Rn → Rm, x 7→ Ax.1399

• For A = [a1, . . . ,an], where ai are the columns of A, we obtain

Im(Φ) = {Ax : x ∈ Rn} =

{
n∑
i=1

xiai : x1, . . . , xn ∈ R
}

(2.123a)

= span[a1, . . . ,an] ⊆ Rm , (2.123b)

i.e., the image is the span of the columns of A, also called the column column space1400

space. Therefore, the column space (image) is a subspace of Rm, where1401

m is the “height” of the matrix.1402

• rk(A) = dim(Im(Φ))1403

• The kernel/null space ker(Φ) is the general solution to the linear ho-1404

mogeneous equation system Ax = 0 and captures all possible linear1405

combinations of the elements in Rn that produce 0 ∈ Rm.1406

• The kernel is a subspace of Rn, where n is the “width” of the matrix.1407

• The kernel focuses on the relationship among the columns, and we can1408

use it to determine whether/how we can express a column as a linear1409

combination of other columns.1410
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• The purpose of the kernel is to determine whether a solution of the1411

system of linear equations is unique and, if not, to capture all possible1412

solutions.1413

♦1414

Example 2.24 (Image and Kernel of a Linear Mapping)
The mapping

Φ : R4 → R2,


x1

x2

x3

x4

 7→ [
1 2 −1 0
1 0 0 1

]
x1

x2

x3

x4

 =

[
x1 + 2x2 − x3

x1 + x4

]
(2.124)

= x1

[
1
1

]
+ x2

[
2
0

]
+ x3

[−1
0

]
+ x4

[
0
1

]
(2.125)

is linear. To determine Im(Φ) we can take the span of the columns of the
transformation matrix and obtain

Im(Φ) = span[

[
1
1

]
,

[
2
0

]
,

[−1
0

]
,

[
0
1

]
] . (2.126)

To compute the kernel (null space) of Φ, we need to solve Ax = 0, i.e.,
we need to solve a homogeneous equation system. To do this, we use
Gaussian elimination to transform A into reduced row echelon form:[

1 2 −1 0
1 0 0 1

]
 · · · 

[
1 0 0 1
0 1 − 1

2
− 1

2

]
. (2.127)

This matrix is in reduced row echelon form, and we can use the Minus-
1 Trick to compute a basis of the kernel (see Section 2.3.3). Alternatively,
we can express the non-pivot columns (columns 3 and 4) as linear com-
binations of the pivot-columns (columns 1 and 2). The third column a3 is
equivalent to− 1

2
times the second column a2. Therefore, 0 = a3 + 1

2
a2. In

the same way, we see that a4 = a1− 1
2
a2 and, therefore, 0 = a1− 1

2
a2−a4.

Overall, this gives us the kernel (null space) as

ker(Φ) = span[


0
1
2

1
0

 ,

−1

1
2

0
1

] . (2.128)

Theorem 2.23 (Rank-Nullity Theorem). For vector spaces V,W and a lin-
ear mapping Φ : V →W it holds that

dim(ker(Φ)) + dim(Im(Φ)) = dim(V ) . (2.129)
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2.8 Affine Spaces1415

In the following, we will have a closer look at spaces that are offset from1416

the origin, i.e., spaces that are no longer vector subspaces. Moreover, we1417

will briefly discuss properties of mappings between these affine spaces,1418

which resemble linear mappings.1419

2.8.1 Affine Subspaces1420

Definition 2.24 (Affine Subspace). Let V be a vector space, x0 ∈ V and
U ⊆ V a subspace. Then the subset

L = x0 + U := {x0 + u : u ∈ U} (2.130a)

= {v ∈ V |∃u ∈ U : v = x0 + u} ⊆ V (2.130b)

is called affine subspace or linear manifold of V . U is called direction or affine subspace

linear manifold
direction

1421

direction space, and x0 is called support point. In Chapter 12, we refer to

direction space

support point

1422

such a subspace as a hyperplane.

hyperplane

1423

Note that the definition of an affine subspace excludes 0 if x0 /∈ U .1424

Therefore, an affine subspace is not a (linear) subspace (vector subspace)1425

of V for x0 /∈ U .1426

Examples of affine subspaces are points, lines and planes in R3, which1427

do not (necessarily) go through the origin.1428

Remark. Consider two affine subspaces L = x0 +U and L̃ = x̃0 + Ũ of a1429

vector space V . Then, L ⊆ L̃ if and only if U ⊆ Ũ and x0 − x̃0 ∈ Ũ .1430

Affine subspaces are often described by parameters: Consider a k-dimen- parameters

sional affine space L = x0 + U of V . If (b1, . . . , bk) is an ordered basis of
U , then every element x ∈ L can be uniquely described as

x = x0 + λ1b1 + . . .+ λkbk , (2.131)

where λ1, . . . , λk ∈ R. This representation is called parametric equation parametric equation1431

of L with directional vectors b1, . . . , bk and parameters λ1, . . . , λk. ♦ parameters1432

Example 2.25 (Affine Subspaces)

Figure 2.11 Vectors
y on a line lie in an
affine subspace L
with support point
x0 and direction u.

0

x0

u

y

L = x0 + λu
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• One-dimensional affine subspaces are called lines and can be writtenlines

as y = x0 + λx1, where λ ∈ R, where U = span[x1] ⊆ Rn is a one-
dimensional subspace of Rn. This means, a line is defined by a support
point x0 and a vector x1 that defines the direction. See Figure 2.11 for
an illustration.
• Two-dimensional affine subspaces of Rn are called planes. The para-planes

metric equation for planes is y = x0 + λ1x1 + λ2x2, where λ1, λ2 ∈ R
and U = [x1,x2] ⊆ Rn. This means, a plane is defined by a support
point x0 and two linearly independent vectors x1,x2 that span the di-
rection space.
• In Rn, the (n− 1)-dimensional affine subspaces are called hyperplanes,hyperplanes

and the corresponding parametric equation is y = x0 +
∑n−1

i=1 λixi,
where x1, . . . ,xn−1 form a basis of an (n − 1)-dimensional subspace
U of Rn. This means, a hyperplane is defined by a support point x0

and (n − 1) linearly independent vectors x1, . . . ,xn−1 that span the
direction space. In R2, a line is also a hyperplane. In R3, a plane is also
a hyperplane.

Remark (Inhomogeneous linear equation systems and affine subspaces).1433

For A ∈ Rm×n and b ∈ Rm the solution of the linear equation system1434

Ax = b is either the empty set or an affine subspace of Rn of dimension1435

n− rk(A). In particular, the solution of the linear equation λ1x1 + . . .+1436

λnxn = b, where (λ1, . . . , λn) 6= (0, . . . , 0), is a hyperplane in Rn.1437

In Rn, every k-dimensional affine subspace is the solution of a linear1438

inhomogeneous equation systemAx = b, whereA ∈ Rm×n, b ∈ Rm and1439

rk(A) = n − k. Recall that for homogeneous equation systems Ax = 01440

the solution was a vector subspace, which we can also think of as a special1441

affine space with support point x0 = 0. ♦1442

2.8.2 Affine Mappings1443

Similar to linear mappings between vector spaces, which we discussed1444

in Section 2.7, we can define affine mappings between two affine spaces.1445

Linear and affine mappings are closely related. Therefore, many properties1446

that we already know from linear mappings, e.g., that the composition of1447

linear mappings is a linear mapping, also hold for affine mappings.1448

Definition 2.25 (Affine mapping). For two vector spaces V,W and a lin-
ear mapping Φ : V →W and a ∈W the mapping

φ :V →W (2.132)

x 7→ a+ Φ(x) (2.133)

Draft (2018-09-21) from Mathematics for Machine Learning. Errata and feedback to https://mml-book.com.

https://mml-book.com


Exercises 61

is an affine mapping from V to W . The vector a is called the translationaffine mapping

translation vector

1449

vector of φ.1450

• Every affine mapping φ : V → W is also the composition of a linear1451

mapping Φ : V → W and a translation τ : W → W in W , such that1452

φ = τ ◦ Φ. The mappings Φ and τ are uniquely determined.1453

• The composition φ′ ◦ φ of affine mappings φ : V → W , φ′ : W → X is1454

affine.1455

• Affine mappings keep the geometric structure invariant. They also pre-1456

serve the dimension and parallelism.1457

Exercises1458

2.1 We consider (R\{−1}, ?) where

a ? b := ab+ a+ b, a, b ∈ R\{−1} (2.134)

1. Show that (R\{−1}, ?) is an Abelian group1459

2. Solve

3 ? x ? x = 15

in the Abelian group (R\{−1}, ?), where ? is defined in (2.134).1460

2.2 Let n be inN \ {0}. Let k, x be in Z. We define the congruence class k̄ of the
integer k as the set

k = {x ∈ Z | x− k = 0 (modn)}
= {x ∈ Z | (∃a ∈ Z) : (x− k = n · a)} .

We now define Z/nZ (sometimes written Zn) as the set of all congruence
classes modulo n. Euclidean division implies that this set is a finite set con-
taining n elements:

Zn = {0, 1, . . . , n− 1}

For all a, b ∈ Zn, we define

a⊕ b := a+ b

1. Show that (Zn,⊕) is a group. Is it Abelian?1461

2. We now define another operation ⊗ for all a and b in Zn as

a⊗ b = a× b (2.135)

where a× b represents the usual multiplication in Z.1462

Let n = 5. Draw the times table of the elements of Z5 \ {0} under ⊗, i.e.,1463

calculate the products a⊗ b for all a and b in Z5 \ {0}.1464

Hence, show that Z5 \ {0} is closed under ⊗ and possesses a neutral1465

element for ⊗. Display the inverse of all elements in Z5 \ {0} under ⊗.1466

Conclude that (Z5 \ {0},⊗) is an Abelian group.1467

3. Show that (Z8 \ {0},⊗) is not a group.1468

c©2018 Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Press.



62 Linear Algebra

4. We recall that Bézout theorem states that two integers a and b are rela-1469

tively prime (i.e., gcd(a, b) = 1) if and only if there exist two integers u1470

and v such that au + bv = 1. Show that (Zn \ {0},⊗) is a group if and1471

only if n ∈ N \ {0} is prime.1472

2.3 Consider the set G of 3× 3 matrices defined as:

G =


1 x z

0 1 y

0 0 1

 ∈ R3×3

∣∣∣∣∣∣x, y, z ∈ R
 (2.136)

We define · as the standard matrix multiplication.1473

Is (G, ·) a group? If yes, is it Abelian? Justify your answer.1474

2.4 Compute the following matrix products:1475

1. 1 2

4 5

7 8

1 1 0

0 1 1

1 0 1


2. 1 2 3

4 5 6

7 8 9

1 1 0

0 1 1

1 0 1


3. 1 1 0

0 1 1

1 0 1

1 2 3

4 5 6

7 8 9


4.

[
1 2 1 2

4 1 −1 −4

]
0 3

1 −1

2 1

5 2


5. 

0 3

1 −1

2 1

5 2

[1 2 1 2

4 1 −1 −4

]

2.5 Find the set S of all solutions in x of the following inhomogeneous linear1476

systems Ax = b where A and b are defined below:1477

1.

A =


1 1 −1 −1

2 5 −7 −5

2 −1 1 3

5 2 −4 2

 , b =


1

−2

4

6
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2.

A =


1 −1 0 0 1

1 1 0 −3 0

2 −1 0 1 −1

−1 2 0 −2 −1

 , b =


3

6

5

−1


3. Using Gaussian elimination find all solutions of the inhomogeneous equa-

tion system Ax = b with

A =

0 1 0 0 1 0

0 0 0 1 1 0

0 1 0 0 0 1

 , b =

 2

−1

1



2.6 Find all solutions in x =

x1

x2

x3

 ∈ R3 of the equation system Ax = 12x,

where

A =

6 4 3

6 0 9

0 8 0


and

∑3
i=1 xi = 1.1478

2.7 Determine the inverse of the following matrices if possible:1479

1.

A =

2 3 4

3 4 5

4 5 6


2.

A =


1 0 1 0

0 1 1 0

1 1 0 1

1 1 1 0


2.8 Which of the following sets are subspaces of R3?1480

1. A = {(λ, λ+ µ3, λ− µ3) | λ, µ ∈ R}1481

2. B = {(λ2,−λ2, 0) | λ ∈ R}1482

3. Let γ be in R.1483

C = {(ξ1, ξ2, ξ3) ∈ R3 | ξ1 − 2ξ2 + 3ξ3 = γ}1484

4. D = {(ξ1, ξ2, ξ3) ∈ R3 | ξ2 ∈ Z}1485

2.9 Are the following vectors linearly independent?1486

1.

x1 =

 2

−1

3

 , x2

 1

1

−2

 , x3

 3

−3

8
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2.

x1 =


1

2

1

0

0

 , x2 =


1

1

0

1

1

 , x3 =


1

0

0

1

1


2.10 Write

y =

 1

−2

5


as linear combination of

x1 =

1

1

1

 , x2 =

1

2

3

 , x3 =

 2

−1

1


2.11 1. Consider two subspaces of R4:

U1 = span[


1

1

−3

1

 ,


2

−1

0

−1

 ,

−1

1

−1

1

] , U2 = span[


−1

−2

2

1

 ,


2

−2

0

0

 ,

−3

6

−2

−1

] .

Determine a basis of U1 ∩ U2.1487

2. Consider two subspaces U1 and U2, where U1 is the solution space of the
homogeneous equation system A1x = 0 and U2 is the solution space of
the homogeneous equation system A2x = 0 with

A1 =


1 0 1

1 −2 −1

2 1 3

1 0 1

 , A2 =


3 −3 0

1 2 3

7 −5 2

3 −1 2

 .
1. Determine the dimension of U1, U21488

2. Determine bases of U1 and U21489

3. Determine a basis of U1 ∩ U21490

2.12 Consider two subspaces U1 and U2, where U1 is spanned by the columns of
A1 and U2 is spanned by the columns of A2 with

A1 =


1 0 1

1 −2 −1

2 1 3

1 0 1

 , A2 =


3 −3 0

1 2 3

7 −5 2

3 −1 2

 .
1. Determine the dimension of U1, U21491

2. Determine bases of U1 and U21492

3. Determine a basis of U1 ∩ U21493

2.13 Let F = {(x, y, z) ∈ R3 | x+y−z = 0} andG = {(a−b, a+b, a−3b) | a, b ∈ R}.1494

1. Show that F and G are subspaces of R3.1495

2. Calculate F ∩G without resorting to any basis vector.1496
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3. Find one basis for F and one forG, calculate F∩G using the basis vectors1497

previously found and check your result with the previous question.1498

2.14 Are the following mappings linear?1499

1. Let a, b ∈ R.

Φ : L1([a, b])→ R

f 7→ Φ(f) =

∫ b

a

f(x)dx ,

where L1([a, b]) denotes the set of integrable function on [a, b].1500

2.

Φ : C1 → C0

f 7→ Φ(f) = f ′ .

where for k > 1, Ck denotes the set of k times continuously differentiable1501

functions, and C0 denotes the set of continuous functions.1502

3.

Φ : R→ R
x 7→ Φ(x) = cos(x)

4.

Φ : R3 → R2

x 7→
[
1 2 3

1 4 3

]
x

5. Let θ be in [0, 2π[.

Φ : R2 → R2

x 7→
[

cos(θ) sin(θ)

− sin(θ) cos(θ)

]
x

2.15 Consider the linear mapping

Φ : R3 → R4

Φ

x1

x2

x3

 =


3x1 + 2x2 + x3

x1 + x2 + x3

x1 − 3x2

2x1 + 3x2 + x3


• Find the transformation matrix AΦ1503

• Determine rk(AΦ)1504

• Compute kernel and image of Φ. What is dim(ker(Φ)) and dim(Im(Φ))?1505

2.16 Let E be a vector space. Let f and g be two endomorphisms on E such that1506

f◦g = idE (i.e. f◦g is the identity isomorphism). Show that ker f = ker(g◦f),1507

Img = Im(g ◦ f) and that ker(f) ∩ Im(g) = {0E}.1508
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2.17 Consider an endomorphism Φ : R3 → R3 whose transformation matrix
(with respect to the standard basis in R3) is

AΦ =

1 1 0

1 −1 0

1 1 1

 .
1. Determine ker(Φ) and Im(Φ).1509

2. Determine the transformation matrix ÃΦ with respect to the basis

B = (

1

1

1

 ,
1

2

1

 ,
1

0

0

) ,

i.e., perform a basis change toward the new basis B.1510

2.18 Let us consider four vectors b1, b2, b
′
1, b
′
2 of R2 expressed in the standard

basis of R2 as

b1 =

[
2

1

]
, b2 =

[
−1

−1

]
, b′1 =

[
2

−2

]
, b′2 =

[
1

1

]
(2.137)

and let us define B = (b1, b2) and B′ = (b′1, b
′
2).1511

1. Show that B and B′ are two bases of R2 and draw those basis vectors.1512

2. Compute the matrix P 1 which performs a basis change from B′ to B.1513

2.19 We consider three vectors c1, c2, c3 of R3 defined in the standard basis of R1514

as1515

c1 =

 1

2

−1

 , c2 =

 0

−1

2

 , c3 =

 1

0

−1

 (2.138)

and we define C = (c1, c2, c3).1516

1. Show that C is a basis of R3.1517

2. Let us call C′ = (c′1, c
′
2, c
′
3) the standard basis of R3. Explicit the matrix1518

P 2 that performs the basis change from C to C′.1519

2.20 Let us consider b1, b2, b
′
1, b
′
2, 4 vectors of R2 expressed in the standard basis

of R2 as

b1 =

[
2

1

]
, b2 =

[
−1

−1

]
, b′1 =

[
2

−2

]
, b′2 =

[
1

1

]
(2.139)

and let us define two ordered bases B = (b1, b2) and B′ = (b′1, b
′
2) of R2.1520

1. Show that B and B′ are two bases of R2 and draw those basis vectors.1521

2. Compute the matrix P 1 that performs a basis change from B′ to B.1522

3. We consider c1, c2, c3, 3 vectors of R3 defined in the standard basis of R
as

c1 =

 1

2

−1

 , c2 =

 0

−1

2

 , c3 =

 1

0

−1

 (2.140)

and we define C = (c1, c2, c3).1523
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1. Show that C is a basis of R3 using determinants1524

2. Let us call C′ = (c′1, c
′
2, c
′
3) the standard basis of R3. Determine the1525

matrix P 2 that performs the basis change from C to C′.1526

4. We consider a homomorphism Φ : R2 −→ R3, such that

Φ(b1 + b2) = c2 + c3

Φ(b1 − b2) = 2c1 − c2 + 3c3
(2.141)

where B = (b1, b2) and C = (c1, c2, c3) are ordered bases of R2 and R3,1527

respectively.1528

Determine the transformation matrixAΦ of Φ with respect to the ordered1529

bases B and C.1530

5. Determine A′, the transformation matrix of Φ with respect to the bases1531

B′ and C′.1532

6. Let us consider the vector x ∈ R2 whose coordinates in B′ are [2, 3]>. In1533

other words, x = 2b′1 + 3b′3.1534

1. Calculate the coordinates of x in B.1535

2. Based on that, compute the coordinates of Φ(x) expressed in C.1536

3. Then, write Φ(x) in terms of c′1, c
′
2, c
′
3.1537

4. Use the representation of x in B′ and the matrix A′ to find this result1538

directly.1539
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Analytic Geometry

1541

In Chapter 2, we studied vectors, vector spaces and linear mappings at1542

a general but abstract level. In this chapter, we will add some geometric1543

interpretation and intuition to all of these concepts. In particular, we will1544

look at geometric vectors, compute their lengths and distances or angles1545

between two vectors. To be able to do this, we equip the vector space with1546

an inner product that induces the geometry of the vector space. Inner1547

products and their corresponding norms and metrics capture the intuitive1548

notions of similarity and distances, which we use to develop the Support1549

Vector Machine in Chapter 12. We will then use the concepts of lengths1550

and angles between vectors to discuss orthogonal projections, which will1551

play a central role when we discuss principal component analysis in Chap-1552

ter 10 and regression via maximum likelihood estimation in Chapter 9.1553

Figure 3.1 gives an overview of how concepts in this chapter are related1554

and how they are connected to other chapters of the book.1555

Figure 3.1 A mind
map of the concepts
introduced in this
chapter, along with
when they are used
in other parts of the
book.

Inner product

Norm

Lengths Orthogonal
projection Angles Rotations

Chapter 4
Matrix

decomposition

Chapter 10
Dimensionality

reduction

Chapter 9
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Chapter 12
Classification

induces
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Figure 3.3 For
different norms, the
red lines indicate
the set of vectors
with norm 1. Left:
Manhattan norm;
Right: Euclidean
distance.

1

1 1

1

‖x‖1 = 1 ‖x‖2 = 1

3.1 Norms1556

When we think of geometric vectors, i.e., directed line segments that start1557

at the origin, then intuitively the length of a vector is the distance of the1558

“end” of this directed line segment from the origin. In the following, we1559

will discuss the notion of the length of vectors using the concept of a norm.1560

Definition 3.1 (Norm). A norm on a vector space V is a function norm

‖ · ‖ :V → R , (3.1)

x 7→ ‖x‖ , (3.2)

which assigns each vector x its length ‖x‖ ∈ R, such that for all λ ∈ R length1561

and x,y ∈ V the following hold:1562

• Absolutely homogeneous: ‖λx‖ = |λ|‖x‖1563 Triangle inequality

• Triangle inequality: ‖x+ y‖ 6 ‖x‖+ ‖y‖1564 Positive definite

• Positive definite: ‖x‖ > 0 and ‖x‖ = 0 ⇐⇒ x = 0.1565

Figure 3.2 Triangle
inequality.

a b

c ≤ a + b

In geometric terms, the triangle inequality states that for any triangle,1566

the sum of the lengths of any two sides must be greater than or equal to1567

the length of the remaining side; see Figure 3.2 for an illustration.1568

Recall that for a vector x ∈ Rn we denote the elements of the vector1569

using a subscript, that is xi is the ith element of the vector x.1570

Example 3.1 (Manhattan Norm)
The Manhattan norm on Rn is defined for x ∈ Rn as Manhattan norm

‖x‖1 :=
n∑
i=1

|xi| , (3.3)

where | · | is the absolute value. The left panel of Figure 3.3 indicates all
vectors x ∈ R2 with ‖x‖1 = 1. The Manhattan norm is also called `1 `1 norm

norm.
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Example 3.2 (Euclidean Norm)
The length of a vector x ∈ Rn is given by

‖x‖2 :=

√√√√ n∑
i=1

x2
i =
√
x>x , (3.4)

which computes the Euclidean distance of x from the origin. This norm isEuclidean distance

called the Euclidean norm. The right panel of Figure 3.3 shows all vectorsEuclidean norm

x ∈ R2 with ‖x‖2 = 1. The Euclidean norm is also called `2 norm.`2 norm

Remark. Throughout this book, we will use the Euclidean norm (3.4) by1571

default if not stated otherwise. ♦1572

Remark (Inner Products and Norms). Every inner product induces a norm,
but there are norms (like the `1 norm) without a corresponding inner
product. For an inner product vector space (V, 〈·, ·〉) the induced norm
‖ · ‖ satisfies the Cauchy-Schwarz inequalityCauchy-Schwarz

inequality
| 〈x,y〉 | 6 ‖x‖‖y‖ . (3.5)

♦1573

3.2 Inner Products1574

Inner products allow for the introduction of intuitive geometrical con-1575

cepts, such as the length of a vector and the angle or distance between1576

two vectors. A major purpose of inner products is to determine whether1577

vectors are orthogonal to each other.1578

3.2.1 Dot Product1579

We may already be familiar with a particular type of inner product, the
scalar product/dot product in Rn, which is given byscalar product

dot product

x>y =
n∑
i=1

xiyi . (3.6)

We will refer to the particular inner product above as the dot product1580

in this book. However, inner products are more general concepts with1581

specific properties, which we will now introduce.1582

3.2.2 General Inner Products1583

Recall the linear mapping from Section 2.7, where we can rearrange the
mapping with respect to addition and multiplication with a scalar. A bilinearbilinear mapping
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mapping Ω is a mapping with two arguments, and it is linear in each ar-
gument, i.e., when we look at a vector space V then it holds that for all
x,y, z ∈ V, λ ∈ R

Ω(λx+ y, z) = λΩ(x, z) + Ω(y, z) (3.7)

Ω(x, λy + z) = λΩ(x,y) + Ω(x, z) . (3.8)

Here, (3.7) asserts that Ω is linear in the first argument, and (3.8) asserts1584

that Ω is linear in the second argument.1585

Definition 3.2. Let V be a vector space and Ω : V × V → R be a bilinear1586

mapping that takes two vectors and maps them onto a real number. Then1587

• Ω is called symmetric if Ω(x,y) = Ω(y,x) for all x,y ∈ V , i.e., the symmetric1588

order of the arguments does not matter.1589

• Ω is called positive definite if positive definite

∀x ∈ V \ {0} : Ω(x,x) > 0 , Ω(0,0) = 0 (3.9)

Definition 3.3. Let V be a vector space and Ω : V × V → R be a bilinear1590

mapping that takes two vectors and maps them onto a real number. Then1591

• A positive definite, symmetric bilinear mapping Ω : V ×V → R is called1592

an inner product on V . We typically write 〈x,y〉 instead of Ω(x,y). inner product1593

• The pair (V, 〈·, ·〉) is called an inner product space or (real) vector space inner product space

vector space with
inner product

1594

with inner product. If we use the dot product defined in (3.6), we call1595

(V, 〈·, ·〉) a Euclidean vector space.
Euclidean vector
space

1596

We will refer to the spaces above as inner product spaces in this book.1597

Example 3.3 (Inner Product that is not the Dot Product)
Consider V = R2. If we define

〈x,y〉 := x1y1 − (x1y2 + x2y1) + 2x2y2 (3.10)

then 〈·, ·〉 is an inner product but different from the dot product. The proof
will be an exercise.

3.2.3 Symmetric, Positive Definite Matrices1598

Symmetric, positive definite matrices play an important role in machine1599

learning, and they are defined via the inner product.1600

Consider an n-dimensional vector space V with an inner product 〈·, ·〉 :
V ×V → R (see Definition 3.3) and an ordered basis B = (b1, . . . , bn) of
V . Recall from Section 2.6.1 that any vectors x,y ∈ V can be written as
linear combinations of the basis vectors so that x =

∑n
i=1 ψibi ∈ V and
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y =
∑n

j=1 λjbj ∈ V for suitable ψi, λj ∈ R. Due to the bilinearity of the
inner product it holds that for all x,y ∈ V that

〈x,y〉 =

〈
n∑
i=1

ψibi,
n∑
j=1

λjbj

〉
=

n∑
i=1

n∑
j=1

ψi 〈bi, bj〉λj = x̂>Aŷ , (3.11)

where Aij := 〈bi, bj〉 and x̂, ŷ are the coordinates of x and y with respect
to the basis B. This implies that the inner product 〈·, ·〉 is uniquely deter-
mined through A. The symmetry of the inner product also means that A
is symmetric. Furthermore, the positive definiteness of the inner product
implies that

∀x ∈ V \{0} : x>Ax > 0 . (3.12)

Definition 3.4 (Symmetric, positive definite matrix). A symmetric matrix1601

A ∈ Rn×n that satisfies (3.12) is called symmetric, positive definite orsymmetric, positive
definite

1602

just positive definite. If only > holds in (3.12) then A is called symmetric,
positive definite

symmetric, positive
semi-definite

1603

positive semi-definite.1604

Example 3.4 (Symmetric, Positive Definite Matrices)
Consider the following matrices:

A1 =

[
9 6
6 5

]
, A2 =

[
9 6
6 3

]
(3.13)

Then, A1 is positive definite because it is symmetric and

x>A1x =
[
x1 x2

] [9 6
6 5

] [
x1

x2

]
(3.14a)

= 9x2
1 + 12x1x2 + 5x2

2 = (3x1 + 2x2)2 + x2
2 > 0 (3.14b)

for all x ∈ V \ {0}. However, A2 is symmetric but not positive definite
because x>A2x = 9x2

1 +12x1x2 +3x2
2 = (3x1 +2x2)2−x2

2 can be smaller
than 0, e.g., for x = [2,−3]>.

If A ∈ Rn×n is symmetric, positive definite then

〈x,y〉 = x̂>Aŷ (3.15)

defines an inner product with respect to an ordered basis B where x̂ and1605

ŷ are the coordinate representations of x,y ∈ V with respect to B.1606

Theorem 3.5. For a real-valued, finite-dimensional vector space V and an
ordered basis B of V it holds that 〈·, ·〉 : V × V → R is an inner product if
and only if there exists a symmetric, positive definite matrixA ∈ Rn×n with

〈x,y〉 = x̂>Aŷ . (3.16)

The following properties hold if A ∈ Rn×n is symmetric and positive1607

definite:1608
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• The null space (kernel) of A consists only of 0 because x>Ax > 0 for1609

all x 6= 0. This implies that Ax 6= 0 if x 6= 0.1610

• The diagonal elements aii of A are positive because aii = e>i Aei > 0,1611

where ei is the ith vector of the standard basis in Rn.1612

In Section 4.3, we will return to symmetric, positive definite matrices in1613

the context of matrix decompositions.1614

3.3 Lengths and Distances1615

In Section 3.1, we already discussed norms that we can use to compute
the length of a vector. Inner products and norms are closely related in the
sense that any inner product induces a norm Inner products

induce norms.

‖x‖ :=
√
〈x,x〉 (3.17)

in a natural way, such that we can compute lengths of vectors using the in-1616

ner product. However, not every norm is induced by an inner product. The1617

Manhattan norm (3.3) is an example of a norm that is not induced by an1618

inner product. In the following, we will focus on norms that are induced1619

by inner products and introduce geometric concepts, such as lengths, dis-1620

tances and angles.1621

Example 3.5 (Lengths of Vectors using Inner Products)
In geometry, we are often interested in lengths of vectors. We can now use
an inner product to compute them using (3.17). Let us take x = [1, 1]> ∈
R2. If we use the dot product as the inner product, with (3.17) we obtain

‖x‖ =
√
x>x =

√
12 + 12 =

√
2 (3.18)

as the length of x. Let us now choose a different inner product:

〈x,y〉 := x>
[

1 − 1
2

− 1
2

1

]
y = x1y1 −

1

2
(x1y2 + x2y1) + x2y2 . (3.19)

If we compute the norm of a vector, then this inner product returns smaller
values than the dot product if x1 and x2 have the same sign (and x1x2 >
0), otherwise it returns greater values than the dot product. With this
inner product we obtain

〈x,x〉 = x2
1 − x1x2 + x2

2 = 1− 1 + 1 = 1 =⇒ ‖x‖ =
√

1 = 1 , (3.20)

such that x is “shorter” with this inner product than with the dot product.

Definition 3.6 (Distance and Metric). Consider an inner product space
(V, 〈·, ·〉). Then

d(x,y) := ‖x− y‖ =
√
〈x− y,x− y〉 (3.21)

c©2018 Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Press.



74 Analytic Geometry

is called distance of x,y ∈ V . If we use the dot product as the innerdistance

product, then the distance is called Euclidean distance. The mappingEuclidean distance

d : V × V → R (3.22)

(x,y) 7→ d(x,y) (3.23)

is called metric.metric 1622

Remark. Similar to the length of a vector, the distance between vectors1623

does not require an inner product: a norm is sufficient. If we have a norm1624

induced by an inner product, the distance may vary depending on the1625

choice of the inner product. ♦1626

A metric d satisfies:1627

1. d is positive definite, i.e., d(x,y) > 0 for all x,y ∈ V and d(x,y) =positive definite 1628

0 ⇐⇒ x = y1629

2. d is symmetric, i.e., d(x,y) = d(y,x) for all x,y ∈ V .symmetric 1630

Triangular
inequality

3. Triangular inequality: d(x, z) 6 d(x,y) + d(y, z).1631

3.4 Angles and Orthogonality1632

Figure 3.4 When
restricted to [0, π]

then f(ω) = cos(ω)

returns a unique
number in the
interval [−1, 1].

0 1 2 3

ω

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

co
s(
ω

)

f (ω) = cos(ω)

The Cauchy-Schwarz inequality (3.5) allows us to define angles ω in inner
product spaces between two vectors x,y. Assume that x 6= 0,y 6= 0. Then

−1 6
〈x,y〉
‖x‖ ‖y‖ 6 1 . (3.24)

Therefore, there exists a unique ω ∈ [0, π] with

cosω =
〈x,y〉
‖x‖ ‖y‖ , (3.25)

see Figure 3.4 for an illustration. The number ω is the angle between
angle

1633

the vectors x and y. Intuitively, the angle between two vectors tells us1634

how similar their orientations are. For example, using the dot product,1635

the angle between x and y = 4x, i.e., y is a scaled version of x, is 0:1636

Their orientation is the same.Figure 3.5 The
angle ω between
two vectors x,y is
computed using the
inner product.

y

x

10

1

ω

1637

Example 3.6 (Angle between Vectors)
Let us compute the angle between x = [1, 1]> ∈ R2 and y = [1, 2]> ∈ R2,
see Figure 3.5, where we use the dot product as the inner product. Then
we get

cosω =
〈x,y〉√
〈x,x〉 〈y,y〉

=
x>y√
x>xy>y

=
3√
10
, (3.26)

and the angle between the two vectors is arccos( 3√
10

) ≈ 0.32 rad, which
corresponds to about 18◦.
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The inner product also allows us to characterize vectors that are orthog-1638

onal.1639

Definition 3.7 (Orthogonality). Two vectors x and y are orthogonal if and orthogonal1640

only if 〈x,y〉 = 0, and we write x ⊥ y. If additionally ‖x‖ = 1 = ‖y‖,1641

i.e., the vectors are unit vectors, then x and y are orthonormal. orthonormal1642

An implication of this definition is that the 0-vector is orthogonal to1643

every vector in the vector space.1644

Remark. Orthogonality is the generalization of the concept of perpendic-1645

ularity to bilinear forms that do not have to be the dot product. In our1646

context, geometrically, we can think of orthogonal vectors as having a1647

right angle with respect to a specific inner product. ♦1648

Example 3.7 (Orthogonal Vectors)

Figure 3.6 The
angle ω between
two vectors x,y can
change depending
on the inner
product.

y x

−1 10

1

ω

Consider two vectors x = [1, 1]>,y = [−1, 1]> ∈ R2, see Figure 3.6.
We are interested in determining the angle ω between them using two
different inner products. Using the dot product as inner product yields an
angle ω between x and y of 90◦, such that x ⊥ y. However, if we choose
the inner product

〈x,y〉 = x>
[
2 0
0 1

]
y , (3.27)

we get that the angle ω between x and y is given by

cosω =
〈x,y〉
‖x‖‖y‖ = −1

3
=⇒ ω ≈ 1.91 rad ≈ 109.5◦ , (3.28)

and x and y are not orthogonal. Therefore, vectors that are orthogonal
with respect to one inner product do not have to be orthogonal with re-
spect to a different inner product.

Definition 3.8 (Orthogonal Matrix). A square matrix A ∈ Rn×n is an
orthogonal matrix if and only if its columns are orthonormal so that orthogonal matrix

AA> = I = A>A , (3.29)
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which implies that

A−1 = A> , (3.30)

i.e., the inverse is obtained by simply transposing the matrix.It is convention to
call these matrices
“orthogonal” but a
more precise
description would
be “orthonormal”.

1649

Remark. Transformations by orthogonal matrices are special because the
length of a vector x is not changed when transforming it using an orthog-
onal matrix A. For the dot product we obtain

Transformations
with orthogonal
matrices preserve
distances and
angles.

‖Ax‖2 = (Ax)>(Ax) = x>A>Ax = x>Ix = x>x = ‖x‖2 . (3.31)

Moreover, the angle between any two vectors x,y, as measured by their
inner product, is also unchanged when transforming both of them using
an orthogonal matrix A. Assuming the dot product as the inner product,
the angle of the images Ax and Ay is given as

cosω =
(Ax)>(Ay)

‖Ax‖ ‖Ay‖ =
x>A>Ay√

x>A>Axy>A>Ay
=

x>y

‖x‖ ‖y‖ , (3.32)

which gives exactly the angle between x and y. This means that orthogo-1650

nal matrices A with A> = A−1 preserve both angles and distances. ♦1651

3.5 Orthonormal Basis1652

In Section 2.6.1, we characterized properties of basis vectors and found1653

that in an n-dimensional vector space, we need n basis vectors, i.e., n1654

vectors that are linearly independent. In Sections 3.3 and 3.4, we used1655

inner products to compute the length of vectors and the angle between1656

vectors. In the following, we will discuss the special case where the basis1657

vectors are orthogonal to each other and where the length of each basis1658

vector is 1. We will call this basis then an orthonormal basis.1659

Let us introduce this more formally.1660

Definition 3.9 (Orthonormal basis). Consider an n-dimensional vector
space V and a basis {b1, . . . , bn} of V . If

〈bi, bj〉 = 0 for i 6= j (3.33)

〈bi, bi〉 = 1 (3.34)

for all i, j = 1, . . . , n then the basis is called an orthonormal basis (ONB).orthonormal basis
ONB

1661

If only (3.33) is satisfied then the basis is called an orthogonal basis.
orthogonal basis

1662

Note that (3.34) implies that every basis vector has length/norm 1. The1663

Gram-Schmidt process (Strang, 2003) is a constructive way to iteratively1664

build an orthonormal basis {b1, . . . , bn} given a set {b̃1, . . . , b̃n} of non-1665

orthogonal and unnormalized basis vectors.1666
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Example 3.8 (Orthonormal basis)
The canonical/standard basis for a Euclidean vector space Rn is an or-
thonormal basis, where the inner product is the dot product of vectors.

In R2, the vectors

b1 =
1√
2

[
1
1

]
, b2 =

1√
2

[
1
−1

]
(3.35)

form an orthonormal basis since b>1 b2 = 0 and ‖b1‖ = 1 = ‖b2‖.

We will exploit the concept of an orthonormal basis in Chapter 12 and1667

Chapter 10 when we discuss Support Vector Machines and Principal Com-1668

ponent Analysis.1669

3.6 Inner Product of Functions1670

Thus far, we looked at properties of inner products to compute lengths,1671

angles and distances. We focused on inner products of finite-dimensional1672

vectors.1673

In the following, we will look at an example of inner products of a1674

different type of vectors: inner products of functions.1675

The inner products we discussed so far were defined for vectors with a1676

finite number of entries. We can think of a vector x ∈ Rn as function with1677

n function values. The concept of an inner product can be generalized to1678

vectors with an infinite number of entries (countably infinite) and also1679

continuous-valued functions (uncountably infinite). Then, the sum over1680

individual components of vectors, see (3.6) for example, turns into an1681

integral.1682

An inner product of two functions u : R → R and v : R → R can be
defined as the definite integral

〈u, v〉 :=

∫ b

a

u(x)v(x)dx (3.36)

for lower and upper limits a, b < ∞, respectively. As with our usual in-1683

ner product, we can define norms and orthogonality by looking at the1684

inner product. If (3.36) evaluates to 0, the functions u and v are orthogo-1685

nal. To make the above inner product mathematically precise, we need to1686

take care of measures, and the definition of integrals. Furthermore, unlike1687

inner product on finite-dimensional vectors, inner products on functions1688

may diverge (have infinite value). Some careful definitions need to be ob-1689

served, which requires a foray into real and functional analysis which we1690

do not cover in this book.1691
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Figure 3.8
Orthogonal
projection of a
two-dimensional
data set onto a
one-dimensional
subspace.

−4 −2 0 2 4
x1

−4

−2

0

2

4

x
2

(a) Original dataset.

−4 −2 0 2 4
x1

−2

−1

0

1

2

x
2

(b) Original data (blue) and their corresponding
orthogonal projections (orange) onto a lower-
dimensional subspace (straight line).

Example 3.9 (Inner Product of Functions)
If we choose u = sin(x) and v = cos(x), the integrand f(x) = u(x)v(x)
of (3.36), is shown in Figure 3.7. We see that this function is odd, i.e.,
f(−x) = −f(x). Therefore, the integral with limits a = −π, b = π of thisFigure 3.7 f(x) =

sin(x) cos(x).
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)
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product evaluates to 0. Therefore, sin and cos are orthogonal functions.

Remark. It also holds that the collection of functions

{1, cos(x), cos(2x), cos(3x), . . . } (3.37)

is orthogonal if we integrate from −π to π, i.e., any pair of functions are1692

orthogonal to each other. ♦1693

In Chapter 6, we will have a look at a second type of unconventional1694

inner products: the inner product of random variables.1695

3.7 Orthogonal Projections1696

Projections are an important class of linear transformations (besides ro-1697

tations and reflections). Projections play an important role in graphics,1698

coding theory, statistics and machine learning. In machine learning, we1699

often deal with data that is high-dimensional. High-dimensional data is1700

often hard to analyze or visualize. However, high-dimensional data quite1701

often possesses the property that only a few dimensions contain most in-1702

formation, and most other dimensions are not essential to describe key1703

properties of the data. When we compress or visualize high-dimensional“Feature” is a
commonly used
word for “data
representation”.

1704

data we will lose information. To minimize this compression loss, we1705

ideally find the most informative dimensions in the data. Then, we can1706

project the original high-dimensional data onto a lower-dimensional fea-1707

ture space and work in this lower-dimensional space to learn more about1708

the dataset and extract patterns. For example, machine learning algo-1709

rithms, such as Principal Component Analysis (PCA) by Pearson (1901b);1710
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Figure 3.9
Examples of
projections onto
one-dimensional
subspaces.

b

x

πU(x)

ω

(a) Projection of x ∈ R2 onto a subspace U
with basis vector b.

cosωω

sinω

b

x

(b) Projection of a two-dimensional vector
x with ‖x‖ = 1 onto a one-dimensional
subspace spanned by b.

Hotelling (1933) and Deep Neural Networks (e.g., deep auto-encoders Deng1711

et al. (2010)), heavily exploit the idea of dimensionality reduction. In the1712

following, we will focus on orthogonal projections, which we will use in1713

Chapter 10 for linear dimensionality reduction and in Chapter 12 for clas-1714

sification. Even linear regression, which we discuss in Chapter 9, can be1715

interpreted using orthogonal projections. For a given lower-dimensional1716

subspace, orthogonal projections of high-dimensional data retain as much1717

information as possible and minimize the difference/error between the1718

original data and the corresponding projection. An illustration of such an1719

orthogonal projection is given in Figure 3.8.1720

Before we detail how to obtain these projections, let us define what a1721

projection actually is.1722

Definition 3.10 (Projection). Let V be a vector space and W ⊆ V a1723

subspace of V . A linear mapping π : V → W is called a projection if projection1724

π2 = π ◦ π = π.1725

Remark (Projection matrix). Since linear mappings can be expressed by1726

transformation matrices (see Section 2.7), the definition above applies1727

equally to a special kind of transformation matrices, the projection matrices projection matrices1728

P π, which exhibit the property that P 2
π = P π.1729

♦1730

In the following, we will derive orthogonal projections of vectors in the1731

inner product space (Rn, 〈·, ·〉) onto subspaces. We will start with one-1732

dimensional subspaces, which are also called lines. If not mentioned oth- lines1733

erwise, we assume the dot product 〈x,y〉 = x>y as the inner product.1734

3.7.1 Projection onto 1-Dimensional Subspaces (Lines)1735

Assume we are given a line (1-dimensional subspace) through the origin1736

with basis vector b ∈ Rn. The line is a one-dimensional subspace U ⊆ Rn1737
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spanned by b. When we project x ∈ Rn onto U , we want to find the1738

point πU(x) ∈ U that is closest to x. Using geometric arguments, let us1739

characterize some properties of the projection πU(x) (Fig. 3.9 serves as1740

an illustration):1741

• The projection πU(x) is closest to x, where “closest” implies that the1742

distance ‖x−πU(x)‖ is minimal. It follows that the segment πU(x)−x1743

from πU(x) to x is orthogonal to U and, therefore, the basis b of U . The1744

orthogonality condition yields 〈πU(x)− x, b〉 = 0 since angles between1745

vectors are defined by means of the inner product.1746

• The projection πU(x) of x onto U must be an element of U and, there-1747

fore, a multiple of the basis vector b that spans U . Hence, πU(x) = λb,1748

for some λ ∈ R.λ is then the
coordinate of πU (x)

with respect to b.

1749

In the following three steps, we determine the coordinate λ, the projection1750

πU(x) ∈ U and the projection matrix P π that maps arbitrary x ∈ Rn onto1751

U .1752

1. Finding the coordinate λ. The orthogonality condition yields

〈x− πU(x), b〉 = 0 (3.38)
πU (x)=λb⇐⇒ 〈x− λb, b〉 = 0 . (3.39)

We can now exploit the bilinearity of the inner product and arrive atWith a general inner
product, we get
λ = 〈x, b〉 if
‖b‖ = 1.

〈x, b〉 − λ 〈b, b〉 = 0 (3.40)

⇐⇒ λ =
〈x, b〉
〈b, b〉 =

〈x, b〉
‖b‖2 (3.41)

If we choose 〈·, ·〉 to be the dot product, we obtain

λ =
b>x

b>b
=
b>x

‖b‖2 (3.42)

If ‖b‖ = 1, then the coordinate λ of the projection is given by b>x.1753

2. Finding the projection point πU(x) ∈ U . Since πU(x) = λb we imme-
diately obtain with (3.42) that

πU(x) = λb =
〈x, b〉
‖b‖2 b =

b>x

‖b‖2b , (3.43)

where the last equality holds for the dot product only. We can also
compute the length of πU(x) by means of Definition 3.1 as

‖πU(x)‖ = ‖λb‖ = |λ| ‖b‖ . (3.44)

This means that our projection is of length |λ| times the length of b.1754

This also adds the intuition that λ is the coordinate of πU(x) with1755

respect to the basis vector b that spans our one-dimensional subspace1756

U .1757
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If we use the dot product as an inner product we get

‖πU(x)‖ (3.43)
=
|b>x|
‖b‖2 ‖b‖

(3.25)
= | cosω| ‖x‖ ‖b‖ ‖b‖‖b‖2 = | cosω| ‖x‖ .

(3.45)

Here, ω is the angle between x and b. This equation should be familiar1758

from trigonometry: If ‖x‖ = 1 then x lies on the unit circle. It follows1759

that the projection onto the horizontal axis spanned by b is exactly The horizontal axis
is a one-dimensional
subspace.

1760

cosω, and the length of the corresponding vector πU(x) = | cosω|. An1761

illustration is given in Figure 3.9.1762

3. Finding the projection matrix P π. We know that a projection is a lin-
ear mapping (see Definition 3.10). Therefore, there exists a projection
matrix P π, such that πU(x) = P πx. With the dot product as inner
product and

πU(x) = λb = bλ = b
b>x

‖b‖2 =
bb>

‖b‖2x (3.46)

we immediately see that

P π =
bb>

‖b‖2 . (3.47)

Note that bb> is a symmetric matrix (with rank 1) and ‖b‖2 = 〈b, b〉 Projection matrices
are always
symmetric.

1763

is a scalar.1764

The projection matrixP π projects any vector x ∈ Rn onto the line through1765

the origin with direction b (equivalently, the subspace U spanned by b).1766

Remark. The projection πU(x) ∈ Rn is still an n-dimensional vector and1767

not a scalar. However, we no longer require n coordinates to represent the1768

projection, but only a single one if we want to express it with respect to1769

the basis vector b that spans the subspace U : λ. ♦1770

Example 3.10 (Projection onto a Line)
Find the projection matrix P π onto the line through the origin spanned
by b =

[
1 2 2

]>
. b is a direction and a basis of the one-dimensional

subspace (line through origin).
With (3.47), we obtain

P π =
bb>

b>b
=

1

9

1
2
2

 [1 2 2
]

=
1

9

1 2 2
2 4 4
2 4 4

 . (3.48)

Let us now choose a particular x and see whether it lies in the subspace
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Figure 3.10
Projection onto a
two-dimensional
subspace U with
basis b1, b2. The
projection πU (x) of
x ∈ R3 onto U can
be expressed as a
linear combination
of b1, b2 and the
displacement vector
x− πU (x) is
orthogonal to both
b1 and b2.

0

x

b1

b2

U

πU(x)

x− πU(x)

spanned by b. For x =
[
1 1 1

]>
, the projection is

πU(x) = P πx =
1

9

1 2 2
2 4 4
2 4 4

1
1
1

 =
1

9

 5
10
10

 ∈ span[

1
2
2

] . (3.49)

Note that the application of P π to πU(x) does not change anything, i.e.,With the results
from Chapter 4 we
can show that
πU (x) is also an
eigenvector of P π ,
and the
corresponding
eigenvalue is 1.

P ππU(x) = πU(x). This is expected because according to Definition 3.10
we know that a projection matrix P π satisfies P 2

πx = P πx for all x.

3.7.2 Projection onto General Subspaces1771

If U is given by a set
of spanning vectors,
which are not a
basis, make sure
you determine a
basis b1, . . . , bm
before proceeding.

In the following, we look at orthogonal projections of vectors x ∈ Rn1772

onto higher-dimensional subspaces U ⊆ Rn with dim(U) = m > 1. An1773

illustration is given in Figure 3.10.1774

Assume that (b1, . . . , bm) is an ordered basis of U . Any projection πU(x)1775

onto U is necessarily an element of U . Therefore, they can be represented1776

as linear combinations of the basis vectors b1, . . . , bm of U , such that1777

πU(x) =
∑m

i=1 λibi.The basis vectors
form the columns of
B ∈ Rn×m, where
B = [b1, . . . , bm].

1778

As in the 1D case, we follow a three-step procedure to find the projec-1779

tion πU(x) and the projection matrix P π:1780

1. Find the coordinates λ1, . . . , λm of the projection (with respect to the
basis of U), such that the linear combination

πU(x) =
m∑
i=1

λibi = Bλ , (3.50)

B = [b1, . . . , bm] ∈ Rn×m, λ = [λ1, . . . , λm]> ∈ Rm , (3.51)

is closest to x ∈ Rn. As in the 1D case, “closest” means “minimum
distance”, which implies that the vector connecting πU(x) ∈ U and
x ∈ Rn must be orthogonal to all basis vectors of U . Therefore, we
obtain m simultaneous conditions (assuming the dot product as the
inner product)

〈b1,x− πU(x)〉 = b>1 (x− πU(x)) = 0 (3.52)
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... (3.53)

〈bm,x− πU(x)〉 = b>m(x− πU(x)) = 0 (3.54)

which, with πU(x) = Bλ, can be written as

b>1 (x−Bλ) = 0 (3.55)
... (3.56)

b>m(x−Bλ) = 0 (3.57)

such that we obtain a homogeneous linear equation systemb
>
1
...
b>m


x−Bλ

 = 0 ⇐⇒ B>(x−Bλ) = 0 (3.58)

⇐⇒ B>Bλ = B>x . (3.59)

The last expression is called normal equation. Since b1, . . . , bm are a normal equation

basis of U and, therefore, linearly independent, B>B ∈ Rm×m is reg-
ular and can be inverted. This allows us to solve for the coefficients/
coordinates

λ = (B>B)−1B>x . (3.60)

The matrix (B>B)−1B> is also called the pseudo-inverse of B, which pseudo-inverse1781

can be computed for non-square matricesB. It only requires thatB>B1782

is positive definite, which is the case if B is full rank. In practical
applications (e.g.,
linear regression),
we often add a
“jitter term” εI to
B>B to guarantee
increased numerical
stability and positive
definiteness. This
“ridge” can be
rigorously derived
using Bayesian
inference. See
Chapter 9 for
details.

1783

2. Find the projection πU(x) ∈ U . We already established that πU(x) =
Bλ. Therefore, with (3.60)

πU(x) = B(B>B)−1B>x . (3.61)

3. Find the projection matrix P π. From (3.61) we can immediately see
that the projection matrix that solves P πx = πU(x) must be

P π = B(B>B)−1B> . (3.62)

Remark. Comparing the solutions for projecting onto a one-dimensional1784

subspace and the general case, we see that the general case includes the1785

1D case as a special case: If dim(U) = 1 then B>B ∈ R is a scalar and1786

we can rewrite the projection matrix in (3.62) P π = B(B>B)−1B> as1787

P π = BB>

B>B
, which is exactly the projection matrix in (3.47). ♦1788

Example 3.11 (Projection onto a Two-dimensional Subspace)

For a subspace U = span[

1
1
1

 ,
0

1
2

] ⊆ R3 and x =

6
0
0

 ∈ R3 find the
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coordinates λ of x in terms of the subspace U , the projection point πU(x)
and the projection matrix P π.

First, we see that the generating set of U is a basis (linear indepen-

dence) and write the basis vectors of U into a matrix B =

1 0
1 1
1 2

.

Second, we compute the matrix B>B and the vector B>x as

B>B =

[
1 1 1
0 1 2

]1 0
1 1
1 2

 =

[
3 3
3 5

]
, B>x =

[
1 1 1
0 1 2

]6
0
0

 =

[
6
0

]
.

(3.63)

Third, we solve the normal equation B>Bλ = B>x to find λ:[
3 3
3 5

] [
λ1

λ2

]
=

[
6
0

]
⇐⇒ λ =

[
5
−3

]
. (3.64)

Fourth, the projection πU(x) of x onto U , i.e., into the column space of
B, can be directly computed via

πU(x) = Bλ =

 5
2
−1

 . (3.65)

The corresponding projection error is the norm of the difference vectorprojection error

between the original vector and its projection onto U , i.e.,

‖x− πU(x)‖ =
∥∥∥[1 −2 1

]>∥∥∥ =
√

6 . (3.66)

The projection error
is also called the
reconstruction error. Fifth, the projection matrix (for any x ∈ R3) is given by

P π = B(B>B)−1B> =
1

6

 5 2 −1
2 2 2
−1 2 5

 . (3.67)

To verify the results, we can (a) check whether the displacement vector
πU(x)−x is orthogonal to all basis vectors of U , (b) verify that P π = P 2

π

(see Definition 3.10).

Remark. The projections πU(x) are still vectors in Rn although they lie in1789

an m-dimensional subspace U ⊆ Rn. However, to represent a projected1790

vector we only need the m coordinates λ1, . . . , λm with respect to the1791

basis vectors b1, . . . , bm of U . ♦1792

Remark. In vector spaces with general inner products, we have to pay1793

attention when computing angles and distances, which are defined by1794

means of the inner product. ♦1795
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Figure 3.11
Projection onto an
affine space. (a) The
original setting; (b)
The setting is
shifted by −x0, so
that x− x0 can be
projected onto the
direction space U ;
(c) The projection is
translated back to
x0 + πU (x− x0),
which gives the final
orthogonal
projection πL(x).

L

x0

x

b2

b10

(a) Setting.

b10

x− x0

U = L− x0

πU(x− x0)

b2

(b) Reduce problem to pro-
jection πU onto vector sub-
space.

L

x0

x

b2

b10

πL(x)

(c) Add support point back in
to get affine projection πL.

We can find
approximate
solutions to
unsolvable linear
equation systems
using projections.

Projections allow us to look at situations where we have a linear system1796

Ax = b without a solution. Recall that this means that b does not lie in1797

the span of A, i.e., the vector b does not lie in the subspace spanned by1798

the columns ofA. Given that the linear equation cannot be solved exactly,1799

we can find an approximate solution. The idea is to find the vector in the1800

subspace spanned by the columns ofA that is closest to b, i.e., we compute1801

the orthogonal projection of b onto the subspace spanned by the columns1802

of A. This problem arises often in practice, and the solution is called the1803

least squares solution (assuming the dot product as the inner product) of least squares
solution

1804

an overdetermined system. This is discussed further in Chapter 9.1805

Remark. We just looked at projections of vectors x onto a subspace U with
basis vectors {b1, . . . , bk}. If this basis is an ONB, i.e., (3.33)–(3.34) are
satisfied, the projection equation (3.61) simplifies greatly to

πU(x) = BB>x (3.68)

since B>B = I with coordinates

λ = B>x . (3.69)

This means that we no longer have to compute the tedious inverse from (3.61),1806

which saves us much computation time. ♦1807

3.7.3 Projection onto Affine Subspaces1808

Thus far, we discussed how to project a vector onto a lower-dimensional1809

subspace U . In the following, we provide a solution to projecting a vector1810

onto an affine subspace.1811

Consider the setting in Figure 3.11(a). We are given an affine space L =
x0 + U where b1, b2 are basis vectors of U . To determine the orthogonal
projection πL(x) of x onto L, we transform the problem into a problem
that we know how to solve: the projection onto a vector subspace. In
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Figure 3.12 A
rotation rotates
objects in a plane
about the origin. If
the rotation angle is
positive, we rotate
counterclockwise.

Original

Rotated by 112.5◦

order to get there, we subtract the support point x0 from x and from L,
so that L− x0 = U is exactly the vector subspace U . We can now use the
orthogonal projections onto a subspace we discussed in Section 3.7.2 and
obtain the projection πU(x − x0), which is illustrated in Figure 3.11(b).
This projection can now be translated back into L by adding x0, such that
we obtain the orthogonal projection onto an affine space L as

πL(x) = x0 + πU(x− x0) , (3.70)

where πU(·) is the orthogonal projection onto the subspace U , i.e., the1812

direction space of L, see Figure 3.11(c).1813

From Figure 3.11 it is also evident that the distance of x from the affine
space L is identical to the distance of x− x0 from U , i.e.,

d(x, L) = ‖x− πL(x)‖ = ‖x− (x0 + πU(x− x0))‖ (3.71)

= d(x− x0, πU(x− x0)) . (3.72)

3.8 Rotations1814

Length and angle preservation, as discussed in Section 3.4, are the two1815

characteristics of linear mappings with orthogonal transformation matri-1816

ces. In the following, we will have a closer look at specific orthogonal1817

transformation matrices, which describe rotations.1818

A rotation is a linear mapping (more specifically, an automorphism ofrotation

a Euclidean vector space) that rotates a plane by an angle θ about the
origin, i.e., the origin is a fixed point. For a positive angle θ > 0, by com-
mon convention, we rotate in a counterclockwise direction. An example is
shown in Figure 3.12, where the transformation matrix is

R =

[−0.38 −0.92
0.92 −0.38

]
. (3.73)
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Figure 3.13 The
robotic arm needs to
rotate its joints in
order to pick up
objects or to place
them correctly.
Figure taken
from (Deisenroth
et al., 2015).

Figure 3.14
Rotation of the
standard basis in R2

by an angle θ.

e1

e2

θ

θ

Φ(e2) = [− sin θ, cos θ]>

Φ(e1) = [cos θ, sin θ]>

cos θ

sin θ

− sin θ

cos θ

Important application areas of rotations include computer graphics and1819

robotics. For example, in robotics, it is often important to know how to1820

rotate the joints of a robotic arm in order to pick up or place an object,1821

see Figure 3.13.1822

3.8.1 Rotations in R2
1823

Consider the standard basis
{
e1 =

[
1
0

]
, e2 =

[
0
1

]}
of R2, which defines1824

the standard coordinate system in R2. We aim to rotate this coordinate1825

system by an angle θ as illustrated in Figure 3.14. Note that the rotated1826

vectors are still linearly independent and, therefore, are a basis ofR2. This1827

means that the rotation performs a basis change.1828

Rotations Φ are linear mappings so that we can express them by a
rotation matrix R(θ). Trigonometry (see Figure 3.14) allows us to de- rotation matrix

termine the coordinates of the rotated axes (the image of Φ) with respect
to the standard basis in R2. We obtain

Φ(e1) =

[
cos θ
sin θ

]
, Φ(e2) =

[− sin θ
cos θ

]
. (3.74)

Therefore, the rotation matrix that performs the basis change into the
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Figure 3.15
Rotation of a vector
(gray) in R3 by an
angle θ about the
e3-axis. The rotated
vector is shown in
blue.

e1

e2

e3

θ

rotated coordinates R(θ) is given as

R(θ) =
[
Φ(e1) Φ(e2)

]
=

[
cos θ − sin θ
sin θ cos θ

]
. (3.75)

3.8.2 Rotations in R3
1829

In contrast to the R2 case, in R3 we can rotate any two-dimensional plane1830

about a one-dimensional axis. The easiest way to specify the general rota-1831

tion matrix is to specify how the images of the standard basis e1, e2, e3 are1832

supposed to be rotated, and making sure these imagesRe1,Re2,Re3 are1833

orthonormal to each other. We can then obtain a general rotation matrix1834

R by combining the images of the standard basis.1835

To have a meaningful rotation angle we have to define what “coun-1836

terclockwise” means when we operate in more than two dimensions. We1837

use the convention that a “counterclockwise” (planar) rotation about an1838

axis refers to a rotation about an axis when we look at the axis “head on,1839

from the end toward the origin”. In R3, there are therefore three (planar)1840

rotations about the three standard basis vectors (see Figure 3.15):1841

• Rotation about the e1-axis

R1(θ) =
[
Φ(e1) Φ(e2) Φ(e3)

]
=

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 . (3.76)

Here, the e1 coordinate is fixed, and the counterclockwise rotation is1842

performed in the e2e3 plane.1843

• Rotation about the e2-axis

R2(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 . (3.77)

If we rotate the e1e3 plane about the e2 axis, we need to look at the e21844

axis from its “tip” toward the origin.1845
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3.8 Rotations 89

• Rotation about the e3-axis

R3(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (3.78)

Figure 3.15 illustrates this.1846

3.8.3 Rotations in n Dimensions1847

The generalization of rotations from 2D and 3D to n-dimensional Eu-1848

clidean vector spaces can be intuitively described as fixing n − 2 dimen-1849

sions and restrict the rotation to a two-dimensional plane in the n-dimen-1850

sional space. As in the three-dimensional case we can rotate any plane1851

(two-dimensional subspace of Rn).1852

Definition 3.11 (Givens Rotation). Let and V be an n-dimensional Eu-
clidean vector space and Φ : V → V an automorphism with transforma-
tion matrix

Rij(θ) :=


I i−1 0 · · · · · · 0
0 cos θ 0 − sin θ 0
0 0 Ij−i−1 0 0
0 sin θ 0 cos θ 0
0 · · · · · · 0 In−j

 ∈ Rn×n , (3.79)

for 1 6 i < j 6 n and θ ∈ R. Then Rij(θ) is called a Givens rotation. Givens rotation

Essentially, Rij(θ) is the identity matrix In with

rii = cos θ , rij = − sin θ , rji = sin θ , rjj = cos θ . (3.80)

In two dimensions (i.e., n = 2), we obtain (3.75) as a special case.1853

3.8.4 Properties of Rotations1854

Rotations exhibit a number useful properties:1855

• Rotations preserve distances, i.e., ‖x−y‖ = ‖Rθ(x)−Rθ(y)‖. In other1856

words, rotations leave the distance between any two points unchanged1857

after the transformation.1858

• Rotations preserve angles, i.e., the angle betweenRθx andRθy equals1859

the angle between x and y.1860

• Rotations in three (or more) dimensions are generally not commuta-1861

tive. Therefore, the order in which rotations are applied is important,1862

even if they rotate about the same point. Only in two dimensions vector1863

rotations are commutative, such that R(φ)R(θ) = R(θ)R(φ) for all1864

φ, θ ∈ [0, 2π), and form an Abelian group (with multiplication) only if1865

they rotate about the same point (e.g., the origin).1866
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3.9 Further Reading1867

In this chapter, we gave a brief overview of some of the important concepts1868

of analytic geometry, which we will use in later chapters of the book. For1869

a broader and more in-depth overview of some the concepts we presented1870

we refer to the following excellent books: Axler (2015) and Boyd and1871

Vandenberghe (2018).1872

Inner products allow us to determine specific bases of vector (sub)spaces,1873

where each vector is orthogonal to all others (orthogonal bases) using the1874

Gram-Schmidt method. These bases are important in optimization and1875

numerical algorithms for solving linear equation systems. For instance,1876

Krylov subspace methods, such as Conjugate Gradients or GMRES, mini-1877

mize residual errors that are orthogonal to each other (Stoer and Burlirsch,1878

2002).1879

In machine learning, inner products are important in the context of1880

kernel methods (Schölkopf and Smola, 2002). Kernel methods exploit the1881

fact that many linear algorithms can be expressed purely by inner prod-1882

uct computations. Then, the “kernel trick” allows us to compute these1883

inner products implicitly in a (potentially infinite-dimensional) feature1884

space, without even knowing this feature space explicitly. This allowed the1885

“non-linearization” of many algorithms used in machine learning, such as1886

kernel-PCA (Schölkopf et al., 1997) for dimensionality reduction. Gaus-1887

sian processes (Rasmussen and Williams, 2006) also fall into the category1888

of kernel methods and are the current state-of-the-art in probabilistic re-1889

gression (fitting curves to data points). The idea of kernels is explored1890

further in Chapter 12.1891

Projections are often used in computer graphics, e.g., to generate shad-1892

ows. In optimization, orthogonal projections are often used to (iteratively)1893

minimize residual errors. This also has applications in machine learning,1894

e.g., in linear regression where we want to find a (linear) function that1895

minimizes the residual errors, i.e., the lengths of the orthogonal projec-1896

tions of the data onto the linear function (Bishop, 2006). We will investi-1897

gate this further in Chapter 9. PCA (Hotelling, 1933; Pearson, 1901b) also1898

uses projections to reduce the dimensionality of high-dimensional data.1899

We will discuss this in more detail in Chapter 10.1900

Exercises1901

3.1 Show that 〈·, ·〉 defined for all x = (x1, x2) and y = (y1, y2) in R2 by:

〈x,y〉 := x1y1 − (x1y2 + x2y1) + 2(x2y2)

is an inner product.1902
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3.2 Consider R2 with 〈·, ·〉 defined for all x and y in R2 as:

〈x,y〉 := x>
[
2 0

1 2

]
︸ ︷︷ ︸

=:A

y

Is 〈·, ·〉 an inner product?1903

3.3 Consider the Euclidean vector space R5 with the dot product. A subspace
U ⊆ R5 and x ∈ R5 are given by

U = span[


0

−1

2

0

2

 ,


1

−3

1

−1

2

 ,

−3

4

1

2

1

 ,

−1

−3

5

0

7

] , x =


−1

−9

−1

4

1


1. Determine the orthogonal projection πU (x) of x onto U1904

2. Determine the distance d(x, U)1905

3.4 Consider R3 with the inner product

〈x,y〉 := x>

2 1 0

1 2 −1

0 −1 2

y .
Furthermore, we define e1, e2, e3 as the standard/canonical basis in R3.1906

1. Determine the orthogonal projection πU (e2) of e2 onto

U = span[e1, e3] .

Hint: Orthogonality is defined through the inner product.1907

2. Compute the distance d(e2, U).1908

3. Draw the scenario: standard basis vectors and πU (e2)1909

3.5 Prove the Cauchy-Schwarz inequality | 〈x,y〉 | 6 ‖x‖ ‖y‖ for x,y ∈ V , where1910

V is a vector space.1911
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Matrix Decompositions

1911

In Chapters 2 and 3, we studied ways to manipulate and measure vectors,1912

projections of vectors and linear mappings. Mappings and transformations1913

of vectors can be conveniently described as operations performed on ma-1914

trices. Moreover, data is often represented in matrix form as well, for ex-1915

ample where the rows of the matrix represent different instances of the1916

data (for example people) and the columns describe different features of1917

the data (for example weight, height and socio-economic status). In this1918

chapter we present three aspects of matrices: how to summarize matrices,1919

how matrices can be decomposed, and how these decompositions can be1920

used to consider matrix approximations.1921

We first consider methods that allow us to describe matrices with just1922

a few numbers that characterize the overall properties of matrices. We1923

will do this in the sections on determinants (Section 4.1) and eigenvalues1924

(Section 4.2 for the important special case of square matrices. These char-1925

acteristic numbers have important mathematical consequences and allow1926

us to quickly grasp what useful properties a matrix has. From here we will1927

proceed to matrix decomposition methods: An analogy for matrix decom-1928

position is the factoring of numbers, such as the factoring of 21 into prime1929

numbers 7×3. For this reason matrix decomposition is also often referred1930

to as matrix factorization. Matrix decompositions are used to interpret amatrix factorization1931

matrix using a different representation using factors of interpretable ma-1932

trices.1933

We will first cover a square-root-like operation for matrices called Cholesky1934

decomposition (Section 4.3) for symmetric, positive definite matrices. From1935

here we will look at two related methods for factorizing matrices into1936

canonical forms. The first one is known as matrix diagonalization (Sec-1937

tion 4.4), which allows us to represent the linear mapping using a diago-1938

nal transformation matrix if we choose an appropriate basis. The second1939

method, singular value decomposition (Section 4.5), extends this factor-1940

ization to non-square matrices, and it is considered one of the fundamen-1941

tal concepts in linear algebra. These decomposition are helpful as matrices1942

representing numerical data are often very large and hard to analyze. We1943

conclude the chapter with a systematic overview of the types of matrices1944

and the characteristic properties that distinguish them in form of a matrix1945

taxonomy (Section 4.7).1946
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4.1 Determinant and Trace 93

Figure 4.1 A mind
map of the concepts
introduced in this
chapter, along with
when they are used
in other parts of the
book.
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The methods that we cover in this chapter will become important in1947

both subsequent mathematical chapters, such as Chapter 6 but also in ap-1948

plied chapters, such as dimensionality reduction in Chapters 10 or density1949

estimation in Chapter 11. This chapter’s overall structure is depicted in1950

the mind map of Figure 4.1.1951

4.1 Determinant and Trace1952

Determinants are important concepts in linear algebra. A determinant is
a mathematical object in the analysis and solution of systems of linear
equations. Determinants are only defined for square matrices A ∈ Rn×n,
that is matrices with the same number of rows and columns. In this book
we write this as det(A) (some textbooks may use |A|, which we find
confusing in terms of notation with the absolute value). However, we will
use the straight lines when we write out the full matrix. Recall that aij be
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the element in the ith row and jth column of a matrix A. Then we write

det(A) =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣ . (4.1)

The determinant of a square matrix A ∈ Rn×n is a function that mapsdeterminant 1953

A onto a real number. Before provide a definition of the determinant for1954

general n×nmatrices let us look at some motivating examples, and define1955

determinants for some special matrices.1956

Example 4.1 (Testing for Matrix Invertibility)
Let us begin with exploring if a square matrix A is invertible (see Sec-
tion 2.2.2). For the smallest cases, we already know when a matrix
is invertible. If A is a 1 × 1 matrix, i.e., it is a scalar number, then
A = a =⇒ A−1 = 1

a
. Thus a 1

a
= 1 holds, if and only if a 6= 0.

For the case of 2 × 2 matrices, by the definition of the inverse (Defini-
tion 2.3), we know thatAA−1 = I and thus we can write that the inverse
of A−1 is (from Equation 2.23)

A−1 =
1

a11a22 − a12a21

[
a22 −a12

−a21 a11

]
. (4.2)

Thus, A is invertible if and only if

a11a22 − a12a21 6= 0 . (4.3)

This quantity is the determinant of A ∈ R2×2, that is

det(A) =

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a12a21 . (4.4)

The example above points already at the relationship between determi-1957

nants and the existence of inverse matrices. The next theorem states the1958

same result for n× n matrices.1959

Theorem 4.1. For any square matrixA ∈ Rn×n it holds thatA is invertible1960

if and only if det(A) 6= 0.1961

We have explicit (closed form) expressions for determinants of small
matrices in terms of the elements of the matrix. For n = 1,

det(A) = det(a11) = a11 . (4.5)

For n = 2,

det(A) =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21 , (4.6)
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which we have observed in the example above. For n = 3 (known as
Sarrus’ rule),∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a21a32a13 + a31a12a23 (4.7)

− a31a22a13 − a11a32a23 − a21a12a33 .

For a memory aid of the product terms in Sarrus’ rule, try tracing the
elements of the triple products in the matrix. We call a square matrix A a
upper triangular matrix if aij = 0 for i > j, that is the matrix is zero below upper triangular

matrixits diagonal. Analogously, we define a lower triangular matrix as a matrix
lower triangular
matrix

with zeros above its diagonal. For an upper/lower triangular matrix A,
the determinant is the product of the diagonal elements:

det(A) =
n∏
i=1

aii. (4.8)

The determinant is
the signed volume
of the parallelepiped
formed by the
columns of the
matrix.

Example 4.2 (Determinants as Measures of Volume)
The notion of a determinant is natural when we consider it as a mapping
from a set of n vectors spanning an object in Rn. It turns out that the
determinant is then the signed volume of an n-dimensional parallelepiped
formed by columns of a matrix A.

Figure 4.2
Determinants can
measure areas
spanned by vectors.
The area A of the
parallelogram
(shaded region)
spanned by the
vectors b and g is
given by the
determinant
det([b, g]).

For n = 2 the columns of the matrix form a parallelogram. As the an-
gle between vectors gets smaller the area of a parallelogram shrinks, too.
Figure 4.2 illustrates this setting. Assume two linearly independent vectors
b, g that form the columns of a matrixA = [b, g]. Then, the absolute value
of the determinant of A is the area of the parallelogram with vertices
0, b, g, b+g. In particular, if the two vectors b, g were linearly dependent
so that b = λg for some λ ∈ R they no longer form a two-dimensional
parallelogram. Therefore, the corresponding area is 0. On the contrary, if
b, g were al and lie along the canonical coordinate axes e1, e2 then they
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would reduce to b =

[
b
0

]
and g =

[
0
g

]
and the determinant∣∣∣∣b 0

0 g

∣∣∣∣ = bg − 0 = bg (4.9)

becomes the familiar formula: area = height × length.
The sign of the determinant measures the orientation of the spanning

vectors b, g with respect to the standard coordinate system e1, e2. In our
figure, flipping the spanning order to g, b swaps the columns of A and
reverses the orientation of the shaded surface A.

This intuition extends to higher dimensions. In R3, we consider three
vectors r, b, g ∈ R3 spanning the edges of a parallelepiped, i.e., a solid
with faces that are parallel parallelograms (see Figure 4.3). The absolute
value of the determinant of the 3× 3 matrix [r, b, g] is the volume of the
solid. Thus, the determinant acts as a function that measures the signed
volume formed by column vectors composed in a matrix.

Figure 4.3
Determinants can
measure volumes
spanned by vectors.
The volume of the
parallelepiped
(shaded volume)
spanned by vectors
r, b, g is given by
the determinant
det([r, b, g]).

Consider the three linearly independent vectors r, g, b ∈ R3 given as

r =

 2
0
−8

 , g =

6
1
0

 , b =

 1
4
−1

 . (4.10)

A = [r, g, b] =

 2 6 1
0 1 4
−8 0 −1

 . (4.11)

Therefore, the volume is given as

V = |det(A)| = 186 . (4.12)

Computing the determinant of an n× n matrix requires a general algo-1962

rithm to solve the cases for n > 3, which we are going to explore in the fol-1963

lowing. The theorem below reduces the problem of computing the deter-1964
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minant of an n×nmatrix to computing the determinant of (n−1)×(n−1)1965

matrices. By recursively applying the Laplace expansion we can therefore1966

compute determinants of n × n matrices by ultimately computing deter-1967

minants of 2× 2 matrices.1968

Theorem 4.2 (Laplace Expansion). Consider a matrix A ∈ Rn×n. Then,1969

for all j = 1, . . . , n:1970

1. Expansion along column j det(Ak,j) is called
a minor and
(−1)k+j det(Ak,j)

a cofactor.det(A) =
n∑
k=1

(−1)k+jakj det(Ak,j) . (4.13)

2. Expansion along row j

det(A) =
n∑
k=1

(−1)k+jajk det(Aj,k) . (4.14)

Here Ak,j ∈ R(n−1)×(n−1) is the submatrix of A that we obtain when delet-1971

ing row k and column j.1972

Example 4.3 (Laplace Expansion)
Let us compute the determinant of

A =

1 2 3
3 1 2
0 0 1

 (4.15)

using the Laplace expansion along the first row. By applying (4.14) we
obtain∣∣∣∣∣∣
1 2 3
3 1 2
0 0 1

∣∣∣∣∣∣ = (−1)1+1 · 1
∣∣∣∣1 2
0 1

∣∣∣∣+ (−1)1+2 · 2
∣∣∣∣3 2
0 1

∣∣∣∣+ (−1)1+3 · 3
∣∣∣∣3 1
0 0

∣∣∣∣ .
(4.16)

Then we can use (4.6) to compute the determinants of all 2 × 2 matrices
and obtain.

det(A) = 1(1− 0)− 2(3− 0) + 3(0− 0) = −5 .

For completeness we can compare this result to computing the determi-
nant using Sarrus’ rule (4.7):

det(A) = 1·1·1+3·0·3+0·2·2−0·1·3−1·0·2−3·2·1 = 1−6 = −5 . (4.17)

For A ∈ Rn×n the determinant exhibits the following properties:1973

• The determinant of a product is the product of the determinant, det(AB) =1974

det(A)det(B).1975
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• Determinants are invariant to transposition det(A) = det(A>).1976

• If A is regular (Section 2.2.2) then det(A−1) = 1
det(A)

1977

• Similar matrices (Defintion 2.21) possess the same determinant. There-1978

fore, for a linear mapping Φ : V → V all transformation matrices AΦ1979

of Φ have the same determinant. Thus, the determinant is invariant to1980

the choice of basis of a linear mapping.1981

• Adding a multiple of a column/row to another one does not change1982

det(A).1983

• Multiplication of a column/row with λ ∈ R scales det(A) by λ. In1984

particular, det(λA) = λn det(A).1985

• Swapping two rows/columns changes the sign of det(A).1986

Because of the last three properties, we can use Gaussian elimination (see1987

Section 2.1) to compute det(A) by bringingA into row-echelon form. We1988

can stop Gaussian elimination when we haveA in a triangular form where1989

the elements below the diagonal are all 0. Recall from Equation (4.8) that1990

the determinant is then the product of the diagonal elements.1991

Theorem 4.3. A square matrix A ∈ Rn×n has det(A) 6= 0 if and only if1992

rkA = n. In other words a square matrix is invertible if and only if it is full1993

rank.1994

When mathematics was mainly performed by hand, the determinant1995

calculation was considered an essential way to analyze matrix invertibil-1996

ity. However, contemporary approaches in machine learning use direct1997

numerical methods that superseded the explicit calculation of the deter-1998

minant. For example, in Chapter 2 we learned that inverse matrices can1999

be computed by Gaussian elimination. Gaussian elimination can thus be2000

used to compute the determinant of a matrix.2001

Determinants will play an important theoretical role for the following2002

sections, especially when we learn about eigenvalues and eigenvectors2003

(Section 4.2) through the characteristic polynomial of a matrix.2004

Definition 4.4. The trace of a square matrixA ∈ Rn×n is a linear functiontrace

denoted by tr(A) and defined as

tr(A) :=
n∑
i=1

aii , (4.18)

in other words, the trace is the sum of the diagonal elements of A.2005

Remark. For A,B ∈ Rn×n the trace satisfies the following properties:2006

1. tr(A+B) = tr(A) + tr(B)2007

2. tr(αA) = αtr(A) , α ∈ R2008

3. tr(In) = n2009

4. tr(AB) = tr(BA)2010
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It can be shown that only one function satisfies these four properties to-2011

gether – the trace (Gohberg et al., 2012). ♦2012

Remark. The properties of the trace of matrix products are more general:2013

• The trace is invariant under cyclic permutations, i.e., cyclic permutations

tr(AKL) = tr(KLA) (4.19)

for matrices A ∈ Ra×k,K ∈ Rl×l,L ∈ Rl×a. This property generalizes2014

to products of arbitrarily many matrices.2015

• As a special case of (4.19) it follows that the trace is invariant under
permutations of two non-square matrices A ∈ Rm×n and B ∈ Rn×m:

tr(AB) = tr(BA) . (4.20)

In particular, this means that for two vectors x,y ∈ Rn

tr(xy>) = tr(y>x) = y>x ∈ R . (4.21)

♦2016

Remark. Given some linear map Φ : V → V , we define the trace of this
map by considering the trace of matrix representation of φ. We need to
choose a basis for V and describe Φ as a matrixA relative to this basis, and
taking the trace of this square matrix. Assume that B is transformation
matrix between bases of V . Then, we can write

tr(BAB−1) = tr(B−1BA) = tr(IA) = tr(A) . (4.22)

Thus, while matrix representations of linear mappings are basis dependent2017

its trace is independent of the basis. ♦2018

The trace is useful in certain classes of machine learning models where2019

data is fitted using linear regression models. The trace captures model2020

complexity in these models and can be used to compare between models2021

(a more principled foundation for model comparison is discussed in detail2022

in Section 8.5).2023

In this section, we covered determinants and traces as functions char-2024

acterizing a square matrix. Taking together our understanding of determi-2025

nants and traces we can now define an important equation describing a2026

matrix A in terms of a polynomial, which we will use extensively in the2027

following sections.2028

Definition 4.5 (Characteristic Polynomial). For λ ∈ R and a square ma-
trix A ∈ Rn×n

pA(λ) = det(A− λI) (4.23)

= c0 + c1λ+ c2λ
2 + · · ·+ cn−1λ

n−1 + (−1)nλn , (4.24)

c0, . . . , cn−1 ∈ R, is the characteristic polynomial of A. In particular, characteristic
polynomial

c0 = det(A) , (4.25)

cn−1 = (−1)n−1tr(A) . (4.26)
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The characteristic polynomial will allow us to compute eigenvalues and2029

eigenvectors, covered in the next section.2030

4.2 Eigenvalues and Eigenvectors2031

We will now get to know a new way to characterize a matrix and, its as-2032

sociated linear mapping. Let us recall from Section 2.7.1 that every linear2033

mapping has a unique transformation matrix given an ordered basis. We2034

can interpret linear mappings and their associated transformation matri-2035

ces by performing an “Eigen” analysis. Eigen is a German word meaning2036

“characteristic”, “self” or “own”. As we will see the eigenvalues of a lin-2037

ear mapping will tell us how a special set of vectors, the eigenvectors, are2038

transformed by the linear mapping.2039

Definition 4.6. Let A ∈ Rn×n be a square matrix. Then λ ∈ R is an
eigenvalue of A and a nonzero x ∈ Rn is the corresponding eigenvector ofeigenvalue

eigenvector A if

Ax = λx . (4.27)

We call this the eigenvalue equation.eigenvalue equation2040

Remark. In linear algebra literature and software, it is a often a conven-2041

tion that eigenvalues are sorted in descending order, so that the largest2042

eigenvalue and associated eigenvector are called the first eigenvalue and2043

its associated eigenvector, and the second largest called the second eigen-2044

value and its associated eigenvector, and so on. However textbooks and2045

publications may have different or no notion of orderings. We do not want2046

to presume an ordering in our book. ♦2047

Definition 4.7 (Collinearity & Codirection). Two vectors that point in the2048

same direction are called codirected. Two vectors are collinear if they pointcodirected
collinear

2049

in the same or the opposite direction.2050

Remark (Non-uniqueness of Eigenvectors). If x is an eigenvector of A
associated with eigenvalue λ then for any c ∈ R \ {0} it holds that cx is
an eigenvector of A with the same eigenvalue since

A(cx) = cAx = cλx = λ(cx) . (4.28)

Thus, all vectors that are collinear to x are also eigenvectors of A.2051

♦2052

Theorem 4.8. λ ∈ R is eigenvalue ofA ∈ Rn×n if and only if λ is a root of2053

the characteristic polynomial pA(λ) of A.2054

Definition 4.9 (Eigenspace and Eigenspectrum). For A ∈ Rn×n the set2055

of all eigenvectors of A associated with an eigenvalue λ spans a subspace2056

of Rn, which is called eigenspace of A with respect to λ and is denotedeigenspace 2057
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by Eλ. The set of all eigenvalues of A is called the eigenspectrum, or justeigenspectrum 2058

spectrum, of A.2059

There are a number of ways to think about these characteristics2060

• The eigenvector is a special vector that, left multiplying with the matrix2061

A merely stretches the vector by a factor – the eigenvalue.2062

• Recall the definition of the kernel from Section 2.7.3, it follows that
Eλ = ker(A− λI) since

Ax = λx ⇐⇒ Ax− λx = 0 (4.29)

⇐⇒ (A− λI)x = 0 ⇐⇒ x ∈ ker(A− λI). (4.30)

• Similar matrices (see Definition 2.21) possess the same eigenvalues.2063

Therefore, a linear mapping Φ has eigenvalues that are independent2064

from the choice of basis of its transformation matrix. This makes eigen-2065

values, together with the determinant and the trace, the key character-2066

istic parameters of a linear mapping as they are all invariant under basis2067

change.2068

Example 4.4 (Eigenvalues, Eigenvectors and Eigenspaces)
Here is an example of how to find the eigenvalues and eigenvectors of a
2× 2 matrix.

A =

[
4 2
1 3

]
. (4.31)

Step 1: Characteristic Polynomial
From our definition of the eigenvector x and eigenvalue λ for A there
will be a vector such that Ax = λx, i.e., (A − λI)x = 0. Since x 6= 0
by definition of the eigenvectors, this condition requires that the kernel
(nullspace) ofA−λI contains more elements than just 0. This means that
A− λI is not invertible and therefore det(A− λI) = 0. Hence we need
to compute the roots of the characteristic polynomial (Equation (4.23)).

Step 2: Eigenvalues
The characteristic polynomial is given as

pA(λ) = det(A− λI) = det

([
4 2
1 3

]
−
[
λ 0
0 λ

])
=

∣∣∣∣4− λ 2
1 3− λ

∣∣∣∣
(4.32)

= (4− λ)(3− λ)− 2 · 1 . (4.33)

We factorize the characteristic polynomial

p(λ) = (4− λ)(3− λ)− 2 · 1 = 10− 7λ+ λ2 = (2− λ)(5− λ) (4.34)

and obtain the roots λ1 = 2 and λ2 = 5.
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Step 3: Eigenvectors and Eigenspaces
We find the eigenvectors that correspond to these eigenvalues by looking
at vectors x such that [

4− λ 2
1 3− λ

]
x = 0 . (4.35)

For λ = 5 we obtain[
4− 5 2

1 3− 5

] [
x1

x2

]
=

[−1 2
1 −2

] [
x1

x2

]
= 0 . (4.36)

We now solve this homogeneous equation system and obtain a solution
space

E5 = span[

[
2
1

]
] , (4.37)

where for c 6= 0 all vectors c[2, 1]> are eigenvectors for λ = 5. Note, that
this eigenspace is one-dimensional (spanned by a single vector) but that
in other cases where we have multiple eigenvalues (see Definition 4.13)
the eigenspace may have more than one dimension.

Analogously, we find the eigenvector for λ = 2 by solving the homoge-
neous equation system[

4− 2 2
1 3− 2

]
x =

[
2 2
1 1

]
x = 0 . (4.38)

This means any vector x =

[
x1

x2

]
where x2 = −x1, such as

[
1
−1

]
is an

eigenvector with eigenvalue 2. The corresponding eigenspace is given as

E2 = span[

[
1
−1

]
] . (4.39)

Remark (Eigenvalues and Eigenspaces). If λ is an eigenvalue ofA ∈ Rn×n2069

then the corresponding eigenspace Eλ is the solution space of the homo-2070

geneous linear equation system (A−λI)x = 0. Geometrically, the eigen-2071

vector corresponding to a nonzero eigenvalue points in a direction that is2072

stretched by the linear mapping, and the eigenvalue is the factor by which2073

it is stretched. If the eigenvalue is negative, the direction is of the stretch-2074

ing is flipped. In particular, the eigenvector does not change its direction2075

under A. ♦2076

Remark. The following statements are equivalent:2077

• λ is eigenvalue of A ∈ Rn×n2078

• There exists an x ∈ Rn \ {0} with Ax = λx or equivalently, (A −2079

λIn)x = 0 can be solved non-trivially, i.e., x 6= 0.2080
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• rk(A− λIn) < n2081

• det(A− λIn) = 02082

♦2083

Useful properties regarding eigenvalues and eigenvectors of various ma-2084

trix types include2085

• A matrixA and its transposeA> possess the same eigenvalues, but not2086

necessarily the same eigenvectors.2087

• Symmetric matrices always have real-valued eigenvalues.2088

• Symmetric positive definite matrices always have positive, real eigen-2089

values.2090

• The eigenvectors of symmetric matrices are always orthogonal to each2091

other.2092

Theorem 4.10. Given a matrix A ∈ Rm×n we can always obtain a S that
is a symmetric positive semi-definite matrix by computing

S = A>A . (4.40)

Understanding why this theorem holds is insightful for how we can2093

use symmetrised matrices: Symmetry requires S = S> and by inserting2094

(4.40) we obtain S = A>A = A>(A>)> = (A>A)> = S>. More-2095

over, positive semi-definiteness (Section 3.2.3) requires that x>Sx > 02096

and inserting (4.40) we obtain x>Sx = x>A>Ax = (x>A>)(Ax) =2097

(Ax)>(Ax) > 0, because the scalar product computes a sum of squares2098

(which are themselves always positive or zero).2099

Theorem 4.11 (Hogben (2006)). Consider a square matrix A ∈ Rn×n2100

with distinct eigenvalues λ1, . . . , λn and corresponding eigenvectors x1, . . . ,xn.2101

Then the eigenvectors x1, . . . ,xn are linearly independent.2102

The theorem states that eigenvectors belonging to different eigenvalues2103

form a linearly independent set. For symmetric matrices we can state a2104

stronger version of Theorem 4.11.2105

Theorem 4.12 (Meyer (2000)). Any symmetric matrix A = A> ∈ Rn×n.2106

has n independent eigenvectors that form an orthogonal basis for Rn.2107

Graphical Intuition in Two Dimensions2108

Let us gain some intuition for determinants, eigenvectors, eigenvalues and2109

how linear maps affect space. Figure 4.4 depicts five transformation matri-2110

ces and their impact on a square grid of points. The square grid of points2111

are contained within a box of dimensions 2×2 with its centre at the origin.2112

• A1 =

[
1
2

0
0 2

]
. The direction of the two eigenvectors correspond to the2113

canonical basis vectors in R2, i.e. to two cardinal axes. The horizontal2114

axis is compressed by factor 1
2

(eigenvalue λ1 = 1
2
) and the vertical axis2115
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Figure 4.4
Determinants and
eigenspaces.
Overview of five
linear mappings and
their associated
transformation
matrices
Ai ∈ R2×2 project
81 color-coded
points x ∈ R2 (left
column of plots) to
target points Aix
(right column of
plots). The central
column depicts the
first eigenvector
associated with
eigenvalue λ1, the
second eigenvector
associated with
eigenvalue λ2, as
well as the value of
the determinant.
Each row depicts
the effect of one of
five transformation
mappings in the
standard basis
Ai, i = {1, . . . , 5}.

is extended by a factor of 2 (eigenvalue λ2 = 2). The mapping is area2116

preserving (det(A1) = 1 = 2 × 1
2
). Note, that while the area covered2117

by the box of points remained the same, the circumference around the2118

box has increased by 20%.2119

• A2 =

[
1 1

2

0 1

]
corresponds to a shearing mapping , i.e., it shears the2120

points along the horizontal axis to the right if they are on the positive2121

half of the vertical axis, and to the left vice versa. This mapping is area2122

preserving (det(A2) = 1). The eigenvalue λ1 = 1 = λ)2 is repeated2123

and the hence the eigenvectors are co-linear (drawn here for emphasis2124
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in two opposite directions). This indicating that the mapping acts only2125

along one direction (the horizontal axis). In geometry, the area preserv-2126

ing properties of this type of shearing parallel to an axis is also known2127

as Cavalieri’s principle of equal areas for parallelograms (Katz, 2004).2128

Note, that the repeated identical eigenvalues make the two eigenvec-2129

tors collinear, these are drawn in opposite directions to emphasize the2130

shearing. Note, that the while the mapping is area preserving the cir-2131

cumference around the box of points has increased.2132

• A3 =

[
cos(π

6
) − sin(π

6
)

sin(π
6
) cos(π

6
)

]
= 1

2

[√
3 −1

1
√

3

]
The rotation matrix A3 ro-2133

tates the points by π
6

(or 30◦ degrees) anti-clockwise, and has complex2134

eigenvalues (reflecting that the mapping is a rotation) and no real val-2135

ued eigenvalues (hence no eigenvectors are drawn). A pure rotation2136

has to be area preserving, and hence the determinant is 1. Moreover,2137

the circumference around the box of points has not changed. For more2138

details on rotations we refer to Figure 3.14 in the corresponding section2139

on rotations.2140

• A4 =

[
1 −1
−1 1

]
reflects a mapping in the standard basis that collapses2141

a two-dimensional domain onto a one-dimensional image space, hence2142

the area is 0. We can see this because one eigenvalue is 0, collapsing2143

the space in direction of the (red) eigenvector corresponding to λ1 = 0,2144

while the orthogonal (blue) eigenvector stretches space by a factor of2145

2 = λ2. Note, that while the area of the box of points vanishes the2146

circumference does increase by around 41%.2147

• A5 =

[
1 1

2
1
2

1

]
is a shear-and-stretch mapping that shrinks space space2148

by 75% (|det(A5)| = 3
4
), stretching space along the (blue) eigenvector2149

of λ2 by 50% and compressing it along the orthogonal (red) eigenvector2150

by a factor of 50%.2151

Example 4.5 (Eigenspectrum of a biological neural network)

Figure 4.5
Application of the
eigenspectrum to
characterize a
biological neural
network. See text
for details.
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Methods to analyze and learn from network data are an essential com-
ponent of machine learning methods. Key to understanding networks
is the connectivity between network nodes, especially if two nodes are
connected to each other or not. In data science applications, it is often
useful to study the matrix that captures this connectivity data. In Fig-
ure 4.5, we see the left plot showing the connectivity matrix (277× 277),
also referred to as adjacency matrix, of the complete neural network of
the worm C. Elegans. Each row/column represents one of the 277 neu-
rons of this worm’s brain and the connectivity matrix A has a value of
aij = 1 (white pixel) if neuron i talks to neuron j through a synapse,
and aij = 0 (black pixel) otherwise. The neural network connectivity ma-
trix is not symmetric, which implies that eigenvalues may not be real val-
ued. Therefore we compute a version of the connectivity matrix as follows
Asym = 1

2
(A + A>). This new matrix Asym has a value of 1 whenever

two neurons are connected (irrespective of the direction of the connec-
tion) and zero otherwise. In the right panel, we show the eigenspectrum
of Asym in a scatter plot, on the horizontal axis we have the order of
the eigenvalues from the largest (left most) to smallest eigenvalue and on
the vertical axis the absolute of the eigenvalue. The S-like shape of this
eigenspectrum is typical for many biological neural networks.

Definition 4.13. Let a square matrixA have an eigenvalue λi. The algebraicalgebraic
multiplicity

2152

multiplicity of λi is the number of times the root appears in the character-2153

istic polynomial.2154

Definition 4.14. Let a square matrixA have an eigenvalue λi. The geometricgeometric
multiplicity

2155

multiplicity of λi is the total number of linearly independent eigenvec-2156

tors associated with λi. In other words it is the dimensionality of the2157

eigenspace spanned by the eigenvectors associated with λi.2158
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Remark. A specific eigenvalue’s geometric multiplicity must be at least2159

one, as by definition every eigenvalue has at least one associated eigen-2160

vector. An eigenvalue’s geometric multiplicity cannot exceed its algebraic2161

multiplicity, but it may be lower. ♦2162

Example 4.6

The matrixA =

[
2 1
0 2

]
has two repeated eigenvalues λ1 = λ2 = 2 and an

algebraic multiplicity of 2. The eigenvalue has however only one distinct

eigenvector x1 =

[
0
1

]
and thus geometric multiplicity 1.

Before we conclude our considerations of eigenvalues and eigenvectors2163

it is useful to tie these matrix characteristics together with the previously2164

covered concept of the determinant and the trace.2165

Theorem 4.15. The determinant of a matrix A ∈ Rn×n is the product of
its eigenvalues, i.e.,

det(A) =
n∏
i=1

λi , (4.41)

where λi are (possibly repeated) eigenvalues of A.2166

Theorem 4.16. The trace of a matrix A ∈ Rn×n is the sum of its eigenval-
ues, i.e.,

tr(A) =
n∑
i=1

λi , (4.42)

where λi are (possibly repeated) eigenvalues of A.2167

While we leave these two theorems without a proof, we point to the2168

application of the determinant and trace of the characteristic polynomial2169

as a way to derive them.2170

Remark. A geometric intuition for these two theorems goes as follows2171

(see also Figure 4.2 and corresponding text for other examples): Imagine2172

a unit cube (a box with equal sides of length 1) in R3. We then map the2173

8 corner points of this box through our matrix A and obtain a new box,2174

defined by the mapped 8 new corner points. We know that the eigenval-2175

ues capture the scaling of the basis with respect to the standard basis.2176

Thus, they capture how the volume of the unit cube (which has volume 1)2177

was transformed into our box. Thus, the determinant as product of eigen-2178

values is akin to the volume of the box, a large determinant suggests a2179

large expansion of volume and vice versa. In contrast the trace is a sum of2180

eigenvalues, i.e. a sum of length scales. Consider a gift ribbon we would2181

want to tie around the box. The length of ribbon is proportional to the2182
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length of the sides of the box. The trace of A captures therefore a notion2183

of how the matrix acts on the circumference of a volume. ♦2184

Example 4.7 (Google’s PageRank – Webpages as Eigenvectors)
Google uses the eigenvector corresponding to the maximal eigenvalue of
a matrix A to determine the rank of a page for search. The idea that the
PageRank algorithm, developed at Stanford University by Larry Page and
Sergey Brin in 1996, came up up was that the importance of any web page
can be judged by looking at the pages that link to it. For this, they write
down all websites as a huge directed graph that shows which page links to
which. PageRank computes the weight (importance) xi > 0 of a website
ai by counting the number of pages pointing to ai. PageRank also take the
importance of the website into account that links to a website to ai. Then,
the navigation behavior of a user can be described by a transition matrixA
of this graph that tells us with what (click) probability somebody will end
up on a different website. The matrix A has the property that for any ini-
tial rank/importance vector x of a website the sequence x,Ax,A2x, . . .
converges to a vector x∗. This vector is called the PageRank and satisfiesPageRank

Ax∗ = x∗, i.e., it is an eigenvector (with corresponding eigenvalue 1) of
A. After normalizing by x∗, such that ‖x∗‖ = 1 we can interpret the en-
tries as probabilities. More details and different perspectives on PageRank
can be found in the original technical report (Page et al., 1999).

4.3 Cholesky Decomposition2185

There are many ways to factorize special types of matrices that we en-2186

counter often in machine learning. In the positive real numbers we have2187

the square-root operation that yields us a decomposition of the number2188

into components, for example, 9 = 3 · 3. For matrices, we need to be2189

careful that we compute a square-root like operation on positive quanti-2190

ties. For symmetric, positive definite matrices (see Section 3.2.3) we can2191

choose from a number of square-root equivalent operations. The CholeskyCholesky
decomposition

2192

decomposition or Cholesky factorization provides a square-root equivalent
Cholesky
factorization

2193

operations that is very useful.2194

Theorem 4.17. Cholesky Decomposition: A symmetric positive definite ma-
trix A can be factorized into a product A = LL>, where L is a lower
triangular matrix with positive diagonal elements:a11 · · · a1n

...
. . .

...
an1 · · · ann

 =

l11 · · · 0
...

. . .
...

ln1 · · · lnn


l11 · · · ln1

...
. . .

...
0 · · · lnn

 . (4.43)

L is called the Cholesky factor of A.Cholesky factor 2195
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Example 4.8
It is not immediately apparent why the Cholesky decomposition should
exist for any symmetric, positive definite matrix. While we omit the proof
we can go through an 3× 3 matrix example.

A =

a11 a21 a31

a21 a22 a32

a31 a32 a33

 ≡ LL> =

l11 0 0
l21 l22 0
l31 l32 l33

l11 l21 l31

0 l22 l32

0 0 l33

 (4.44)

Expanding the right hand side yields

A =

 l211 l21l11 l31l11

l21l11 l221 + l222 l31l21 + l32l22

l31l11 l31l21 + l32l22 l231 + l232 + l233

 .
Comparing the left hand side and the right hand side shows that there is
a simple pattern in the diagonal elements (lii):

l11 =
√
a11 , l22 =

√
a22 − l221 , l33 =

√
a33 − (l231 + l232) .

(4.45)

Similarly for the elements below the diagonal (lij , where i > j) there is
also a repeating pattern:

l21 =
1

l11

a21 , l31 =
1

l11

a31 , l32 =
1

l22

(a32 − l31l21) . (4.46)

Thus, we have now constructed the Cholesky decomposition for any semi-
positive definite 3×3 matrix. The key realization is that we can backwards
calculate what the components lij for the L should be, given the values
aij for A and previously computed values of lij .

The Cholesky decomposition is an important tool for the numerical2196

computations underlying machine learning. The Cholesky decomposition2197

is used as a computationally more efficient and numerically more stable2198

way to solve systems of equations that form symmetric positive definite2199

matrices, than computing the inverse of such a matrix, and is thus used2200

under the hood in numerical linear algebra packages.2201

For matrices that are symmetric positive definite such as the covari-2202

ance of a multivariate Gaussian 6.6, one approach is to transform the2203

matrix into a set of upper or lower triangular matrices. After applying the2204

Cholesky decomposition we efficiently compute the inverse L−1 of a tri-2205

angular matrix by back substitution. Then the original matrix inverse is2206

computed simply by multiplying the two inverses as A−1 = (LL>)−1 =2207

(L−1)>(L−1). As bonus, the determinant is also much easier to com-2208

pute, because det(A) = det(L)2, and the determinant of the triangular2209
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Cholesky factorL is the product of its diagonal elements so that det(A) =2210 ∏
i l

2
ii.2211

4.4 Eigendecomposition and Diagonalization2212

Diagonal matrices are of the form

D =

c1 · · · 0
...

. . .
...

0 · · · cn

 (4.47)

and possess a very simple structure. Therefore, they allow fast computa-2213

tion of determinants, powers and inverses. The determinant is the product2214

of its diagonal entries, a matrix power Dk is given by each diagonal ele-2215

ment raised to the power k, and the inverse D−1 is the reciprocal of its2216

diagonal elements if all of them are non-zero.2217

In this section, we will look at how to transform matrices into diagonal2218

form. This is an important application of the basis change we discussed in2219

Section 2.7.2 and eigenvalues from Section 4.2.2220

Let us recall that two matrices A,D are similar (Definition 2.21) if2221

there exists an invertible matrix P , such that D = P−1AP . More specif-2222

ically, we will look at matrices A that are similar to a diagonal matrix D2223

that contains the eigenvalues of A on its diagonal.2224

Definition 4.18 (Diagonalizable). A matrix A ∈ Rn×n is diagonalizablediagonalizable 2225

if it is similar to a diagonal matrix, in other words there exists a matrix2226

P ∈ Rn×n so that D = P−1AP .2227

In the following, we will see that diagonalizing a matrix A ∈ Rn×n is a2228

way of expressing the same linear mappping but in another basis (see Sec-2229

tion 2.6.1). Specifically we will try to diagonalize a matrix A by finding2230

a new basis that consists of the eigenvectors of A. We present two theo-2231

rems, first for square matrices (Theorem 4.19) then for symmetric matri-2232

ces (Theorem 4.21). The following results parallels the discussion we had2233

about eigenvalues and eigenvectors (Theorem 4.11 and Theorem 4.12).2234

We first explore how to compute P so as to diagonalize A. Let A ∈
Rn×n, let λ1, . . . , λn be a set of scalars, and let p1, . . . ,pn be a set of
vectors in Rn. Then we set P = [p1, . . . ,pn] and let D ∈ Rn×n be a
diagonal matrix with diagonal entries λ1, . . . , λn. Then we can show that

AP = PD (4.48)

if and only if λ1, . . . , λn are the eigenvalues of A and the pi are the cor-2235

responding eigenvectors of A.2236

We can see that this statement holds because

AP = A[p1, . . . ,pn] = [Ap1, . . . ,Apn] (4.49)
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PD = [p1, . . . ,pn]

λ1 0
. . .

0 λn

 = [λ1p1, . . . , λnpn] . (4.50)

Thus, (4.48) implies that

Ap1 = λ1p1 (4.51)
...

Apn = λnpn (4.52)

and vice versa.2237

Thus, the matrix P must be composed of columns of eigenvectors. But2238

this is not sufficient to know if we can diagonalize A, as our definition2239

of diagonalization requires that P is invertible. From Theorem 4.3 we2240

know that our square matrix P is only invertible (has determinant 6= 0)2241

if it has full rank. This implies that the eigenvectors p1, . . . ,pn must be2242

linearly independent. Moreover, consider that Theorem 4.11 tells us when2243

A is diagonalizable by having n independent eigenvectors, namely in only2244

those cases where A has n distinct eigenvalues. Taking together these2245

arguments we can now combine them to formulate a key theorem of this2246

chapter.2247

Theorem 4.19. Eigendecomposition/Diagonalization theorem. A square ma- Diagonalization

trix A ∈ Rn×n can be factored as

A = PDP−1 (4.53)

where P is an invertible matrix of eigenvectors and D is a diagonal matrix2248

which diagonal entries are the eigenvalues of A, if and only if A has n2249

independent eigenvectors (i.e. rk(P ) = n).2250

Definition 4.20. A defective matrix is a square matrix if it does not have a defective matrix2251

complete set of eigenvectors (i.e. n linearly independent eigenvectors or2252

the sum of the dimensions of the eigenspaces is n) and is therefore not2253

diagonalizable (see also Theorem 4.11).2254

Remark. • Any defective matrix must has fewer than n distinct eigenval-2255

ues because distinct eigenvalues have linearly independent eigenvec-2256

tors. Specifically, a defective matrix has at least one eigenvalue λ with2257

an algebraic multiplicity m > 1 and fewer than m linearly independent2258

eigenvectors associated with λ.2259

• The Jordan Normal Form of a matrix offers a decomposition that works Jordan Normal
Form

2260

for defective matrices but is beyond the scope of this book (Lang, 1987).2261

♦2262

For symmetric matrices we can obtain even stronger outcomes for the2263

eigenvalue decomposition.2264
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Theorem 4.21. A symmetric matrix S = S> ∈ Rn×n can always be diago-
nalized into

S = PDP> (4.54)

where P is matrix of n orthogonal eigenvectors and D is a diagonal matrix2265

of its n eigenvalues.2266

Proof By Theorem 4.12 we know that P = [p1, . . . ,pn] has n orthogonal
eigenvectors of S with eigenvalues λ1, . . . , λn. We can then write

(P>P )ij = p>i pj (4.55)

where

p>i pj =

{
1 if i = j

0 if i 6= j
(4.56)

and therefore P>P = I and P−1 = P>.2267

We observe the following product

λiPpi = λi [p1, . . . ,pn]pi = λiei, (4.57)

which we will use in the following derivation.

P>SP = P>S [p1, . . . ,pn] (4.58)

= P> [Sp1, . . . ,Spn] (4.59)

= P> [λ1p1, . . . , λnpn] (4.60)

= [p1, . . . ,pn]
>

[λ1p1, . . . , λnpn] (4.61)

= [λ1e1, . . . , λnen] =

λ1 0
. . .

0 λn

 = D (4.62)

2268

Geometric intuition for the eigendecomposition2269

We can interpret the eigendecomposition of a matrix as follows (see also2270

Figure 4.6): Let A be the transformation matrix of a linear mapping with2271

respect to the standard basis. P−1 performs a basis change from the stan-2272

dard basis into the eigenbasis. This maps the eigenvectors pi (red and2273

green arrows in Figure 4.6) onto the standard axes ei. Then, the diagonal2274

D scales thevectors along these axes by the eigenvalues λiei and, finally,2275

P transforms these scaled vectors back into the standard/canonical coor-2276

dinates (yielding λipi).2277
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Figure 4.6 Intuition
behind the
eigendecomposition
of a A ∈ R2×2 in
the standard basis
as sequential
transformations.
Top-left to
bottom-left: P>

performs a basis
change (here drawn
in R2 and depicted
as a rotation-like
operation) mapping
the eigenvectors
into the standard
basis. Bottom-left-
to-bottom right D
performs a scaling
along the remapped
orthogonal
eigenvectors,
depicted here by a
circle being
stretched to an
ellipse. Bottom-left
to top-left: P
undoes the basis
change (depicted as
a reverse rotation)
and restores the
original coordinate
frame.

Example 4.9
Let us compute the eigendecomposition of a (symmetric) matrix A =[
2 1
1 2

]
.

Step 1: Compute the eigenvalues and eigenvectors
The matrix has eigenvalues

det(A− λI) = det

([
2− λ 1

1 2− λ

])
(4.63)

= (2− λ)2 − 1 = λ2 − 2λ+ 3

= (λ− 3)(λ− 1) = 0. (4.64)

So the eigenvalues of A are λ1 = 1 and λ2 = 3 and the associated nor-
malized eigenvectors are obtained via[

2 1
1 2

]
p1 = 1p1 (4.65)

[
2 1
1 2

]
p2 = 3p2 . (4.66)
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This yields

p1 =
1√
2

[
1
−1

]
,p2 =

1√
2

[
1
1

]
. (4.67)

Step 2: Check for existence
The matrix is symmetric, we therefore know that the eigenvectors are
linearly independent and the eigenvalues are distinct (but we can also
quickly eye-ball this to validate our calculations), and so a diagonalization
is possible.

Step 3: Compute the diagonalizing matrix P
To compute the diagonalizing matrix we collect these normalized eigen-
vectors together

P = [p1, p2] =
1√
2

[
1 1
−1 1

]
(4.68)

so that we obtain

AP =
1√
2

[
2 1
1 2

] [
1 1
−1 1

]
=

1√
2

[
1 3
−1 3

]
=

1√
2

[
1 1
−1 1

] [
1 0
0 3

]
= PD . (4.69)

We can now obtain the matrices of the eigendecomposition by right mul-
tiplying with P−1. Alternatively as the matrix A is symmetric we can use
the orthogonality property of its eigenvectors with P> = P−1 and solve
for A directly to obtain the eigendecomposition:

A = PAP> (4.70)[
2 1
1 2

]
=

1

2

[
1 1
−1 1

] [
1 0
0 3

] [
1 −1
1 1

]
. (4.71)

The eigenvalue decomposition of a matrix has a number of convenient2278

properties2279

• Diagonal matrices D have the nice property that they can be efficiently
raised to a power. Therefore we can find a matrix power for a general
matrix A via the eigenvalue decomposition

Ak = (PDP−1)k = PDkP−1 . (4.72)

Computing Dk is efficient because we apply this operation individually2280

to any diagonal element.2281

• A different property of diagonal matrices is that they can be used to2282

decouple variables. This will be important in probability theory to in-2283
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terpret random variables, e.g., for the Gaussian distributions we will2284

encounter in Section 6.6 and in applications such as dimensionality re-2285

duction Chapter 10.2286

The eigenvalue decomposition requires square matrices, and for non-2287

symmetric square matrices it is not guaranteed that we can transform2288

them into diagonal form. It would be useful to be able to perform a de-2289

composition on general matrices. In the next section, we introduce a more2290

general matrix decomposition technique, the Singular Value Decomposi-2291

tion.2292

4.5 Singular Value Decomposition2293

The Singular Value Decomposition (SVD) of a matrix is a central matrix2294

decomposition method in linear algebra. It has been referred to as the2295

“fundamental theorem of linear algebra” (Strang, 1993) because it can be2296

applied to all matrices, not only to square matrices, and it always exists.2297

Moreover, as we will explore in the following, the SVD of a linear map-2298

ping Φ : V → W quantifies the resulting change between the underlying2299

geometry of these two vector spaces. We recommend Kalman (1996); Roy2300

and Banerjee (2014) for a deeper overview of the mathematics of the SVD.2301

Theorem 4.22 (SVD theorem). Let Am×n be a rectangular matrix of rank
r, with r ∈ [0,min(m,n)]. The Singular Value Decomposition or SVD of A Singular Value

Decomposition

SVD
is a decomposition of A of the form

m A

n

= U

m

m Σ

n

n

V >
n

(4.73)

where U ∈ Rm×m is an orthogonal matrix composed of column vectors ui,2302

i = 1, . . . ,m, and V ∈ Rn×n is an orthogonal matrix of column vectors2303

vj , j = 1, . . . , n, and Σ is an m × n matrix with Σii = σi > 0 and2304

Σij = 0, i 6= j. The SVD is always possible for any matrix A.2305

The σi are called the singular values, ui are called the left-singular vec- singular values

left-singular vectors

2306

tors and vj are called the right-singular vectors. By convention the singular
right-singular
vectors

2307

vectors are ordered, i.e., σ1 > σ2 > σr > 0.2308

We will see a proof of this theorem later in this section. The SVD al-2309

lows us to decompose general matrices, and the existence of the unique2310

singular value matrix Σ requires attention. Observe that the Σ ∈ Rm×n is singular value
matrix

2311

rectangular, that is it is non-square. In particular note that Σ is the same2312

size as A. This means that Σ has a diagonal submatrix that contains the2313

singular values and needs additional zero vectors that increase the dimen-2314

sion.2315
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Specifically, if m > n then the matrix Σ has diagonal structure up to
row n and then consists of 0> row vectors from n+ 1 to m below

Σ =



σ1 0 0

0
. . . 0

0 0 σn
0 . . . 0
...

...
0 . . . 0


. (4.74)

Conversely, if m < n the matrix Σ has a diagonal structure up to col-
umn m and columns that consist of 0 from m+ 1 to n.

Σ =

σ1 0 0 0 . . . 0

0
. . . 0 0 0

0 0 σn 0 . . . 0

 (4.75)

4.5.1 Geometric Intuitions for the SVD2316

The SVD has a number of interesting geometric intuitions to offer to de-2317

scribe a transformation matrix. Broadly there are two intuitive views we2318

can have. First we consider the SVD as sequential operations performed2319

on the bases (discussed in the following), and second we consider the2320

SVD as operations performed on sets of (data) points as described in Ex-2321

ample 4.10.2322

The SVD can be interpreted as a decomposition of a linear mapping2323

(recall Section 2.7.1) Φ : Rn → Rm into three operations (see Figure 4.72324

for the following). The SVD intuition follows superficially a similar struc-2325

ture to our eigendecomposition intuition (confront Figure 4.7 for the SVD2326

with Figure 4.6 for the eigendecomposition: Broadly speaking the SVD2327

performs a basis change (V >) followed by a scaling and augmentation2328

(or reduction) in dimensionality (Σ) and then performs a second basis2329

change (U). The SVD entails a number of important details and caveats2330

which is why we will review our intuition in more detail and precision,2331

than ew have then for the eigendecomposition.2332

Assume we are given a transformation matrix of Φ with respect to the2333

standard bases B and C of Rn and Rm, respectively. Moreover, assume a2334

second basis B̃ of Rn and C̃ of Rm. Then2335

1. V performs a basis change in the domain Rn from B̃ (represented2336

by the red and green vectors v1 and v2 in Figure 4.7 top left) to the2337

canonical basis B. It is useful here to recall our discussion of basis2338

changes Section 2.7.2 and orthogonal matrices and orthonormal bases2339

in Section ??), as V > = V −1 performs a basis change from B to B̃2340

(the red and green vectors are now aligned with the canonical basis in2341

Figure 4.7 bottom left).2342
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Figure 4.7 Intuition
behind SVD of a
A ∈ R3×2 in the
standard basis as
sequential
transformations.
Top-left to
bottom-left: V >

performs a basis
change in R2.
Bottom-left-to-
bottom right Σ

performs a scaling
and increases the
dimensionality from
R2 to R3. The
ellipse in the
bottom-right lives in
R3 and the third
dimension is
orthogonal to the
surface of the
elliptical disk.
Bottom-left to
top-left: U performs
a second basis
change within R3.

2. Having changed the coordinate system to B̃, Σ scales the new coordi-2343

nates by the singular values σi (and adding or deleting dimensions),2344

i.e., Σ is the transformation matrix of Φ with respect to B̃ and C̃ (rep-2345

resented by the red and green vectors being stretched and lying in the2346

e1-e2 plane which is now embedded in a third dimension in Figure 4.72347

bottom right) .2348

3. U performs a basis change in the codomainRm from C̃ into the canon-2349

ical basis of Rm (represented by a rotation of red and green vectors out2350

of the plane of the e1-e2 plane in Figure 4.7 bottom right).2351

The SVD expresses a change of basis in both the domain and codomain:2352

The columns ofU and V are the bases B̃ ofRn and C̃ ofRm, respectively.2353

Note, how this is in contrast with the eigendecomposition that operates2354

within the same vector space (where the same basis change is applied and2355

then undone). What makes the SVD special is that these two (different)2356

bases are simultaneously linked by the singular values matrix Σ. We refer2357

to Section 2.7.2 and Figure 2.9 for a more detailed discussion on basis2358

change.2359
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Figure 4.8 SVD and
mapping of data
points. The panels
follow the same
anti-clockwise
structure of
Figure 4.7. See main
text for details.

Example 4.10
Data points and the SVD. Consider a mapping of a square grid of points
X ∈ R2 which fit in a box of size 2 × 2 centered at the origin. Using the
standard basis we map these points using

A =

1 −2
0 1
1 0

 (4.76)

= UΣV > (4.77)

=

 0.913 0 −0.408
−0.365 0.4472 −0.816
0.182 0.894 0.4082

2.449 0
0 1.0
0 0

[0.4472 −0.894
0.8941 0.4472

]
(4.78)

.
We start with a set of points X (colored dots, see top left panel of Fig-

ure 4.8) arranged in a grid.
The points X after rotating them using V > ∈ R2×2 are shown in the

bottom-left panel of Figure 4.8. After a mapping Σ to the codomain R3
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(see bottom right panel in Figure 4.8) we can see how all the points lie on
the e1-e2 plane. The third dimension was added, and the arrangement of
points has been stretched by the singular values.

The direct mapping of the points X by A to the codomain R3 equals
the transformation of X by UΣV >, where U performs a rotation within
the codomain R3 so that the mapped points are no longer restricted to the
e1-e2 plane; they still are on a plane (see top-right panel of Figure 4.8.

4.5.2 Existence and Construction of the SVD2360

We will next discuss why the SVD exists and show how to compute it in2361

detail. The SVD of a general matrix is related to the eigendecomposition2362

of a square matrix and has some similarities.2363

Remark. Compare the eigenvalue decomposition of a symmetric matrix

S = S> = PDP> (4.79)

(which always exists) to the structure of the SVD of

S = UΣV > . (4.80)

We identify

U = P = V , (4.81)

D = Σ , (4.82)

so that the SVD of symmetric matrices is their eigenvalue decomposition.2364

♦2365

In the following we will explore why Theorem 4.22 should hold and2366

how it is constructed. Computing the SVD of A ∈ Rm×n its existence is2367

equivalent to finding two sets of orthonormal bases U = (u1, . . . ,um)2368

and V = (v1, . . . ,vn) of the domain Rm and the codomain Rn, respec-2369

tively. From these ordered bases we will construct the matrices U and V ,2370

respectively.2371

Our plan is to start with constructing the orthonormal set of right-2372

singular vectors v1, . . . ,vn ∈ Rn. We then construct the orthonormal set2373

of left-singular vectors u1, . . . ,un ∈ Rn. Thereafter, we will link the two2374

and require that the orthogonality of the vi is preserved under the trans-2375

formation of A. This is important because we know the images Avi form2376

a set of orthogonal vectors. We will then need to normalize these images2377

by scalar factors, which will turn out to be the singular values, so that the2378

images are also normalized in length.2379

Let us begin with constructing the right-singular vectors. We have previ-
ously learned that the eigenvalue decomposition is a method to construct
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an orthonormal basis, and it always exists for symmetric matrices by The-
orem 4.21. Moreover, from Theorem 4.10 we can always construct a sym-
metric matrix A>A ∈ Rn×n from any rectangular matrix A ∈ Rm×n .
Thus, we can always diagonalize A>A and obtain

A>A = PDP> = P

λ1 · · · 0
...

. . .
...

0 · · · λn

P> . (4.83)

Take note that the λi > 0 are the eigenvalues of A>A. Let us assume the
SVD of A exists and inject (4.73) into (4.83).

A>A = (UΣV >)>(UΣV >) = V Σ>U>UΣV > . (4.84)

where U ,V are orthogonal matrices. Therefore, with U>U = I we ob-
tain

A>A = V Σ>ΣV > = V

σ
2
1 0 0

0
. . . 0

0 0 σ2
n

V > . (4.85)

Comparing now (4.83) and (4.85) we identify

V = P , (4.86)

σ2
i = λi . (4.87)

Therefore, the eigenvectors P ofA>A are the right-singular vectors V of2380

A (see (4.86)). They form an orthonormal basis because of Theorem 4.21,2381

for the domain of the SVD. Moreover, the eigenvalues of A>A are the2382

squared singular values of Σ (see (4.87)).2383

Let us now repeat this derivation but this time we will focus on ob-
taining the left singular vectors U instead of V . Therefore we start again
by computing the SVD of a symmetric matrix, this time AA> ∈ Rm×m
(instead of the above A>A ∈ Rn×n). We inject again (4.73) and obtain:

AA> = (UΣV >)(UΣV >)> = UΣ>V >V ΣU> (4.88)

= U

σ
2
1 0 0

0
. . . 0

0 0 σ2
m

U> . (4.89)

We can now obtain from the same arguments about symmetric matrices2384

and their diagonalization, now applied to AA>, the orthonormal eigen-2385

vectors of A>A. These are the left-singular vectors U and form an or-2386

thonormal basis set in the codomain of the SVD.2387

This leaves the question of the structure of the matrix Σ. We need to
show that regardless of n > m or n < m, that AA> and A>A have the
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same non-zero eigenvalues: Let us assume that λ is a non-zero eigenvalue
of AA> and x is an eigenvector belonging to λi. Then

(AA>)x = λx (4.90)

left multiplying by A yields and pulling on the right-hand side the scalar
factor λ forward

A(AA>)x = A(λx) = λ(Ax) (4.91)

and we can use (2.30) to reorder the left-hand side factors

(A>A)(A>x) = λ(Ax) . (4.92)

This is the eigenvalue equation for AA>. Therefore, λ is the same eigen-2388

value for AA> and A>A, and Ax is its eigenvector. Thus, both matrices2389

have the same non-zero eigenvalues. Thus, the Σ matrices in the SVD for2390

both cases have to be the same.2391

The last step in the proof is to link up all the parts so far. We have now
an orthonormal set of right-singular vectors in V . But, to finish construc-
tion of the SVD we link them to the orthonormal vectors U . To reach this
goal we use the fact the images of the vi underA have to be orthonormal,
too. Using the results from Section 3.4, we require that the inner product
betweenAvi andAvj must be 0 for i 6= j. For any two orthogonal eigen-
vectors vi,vj , i 6= j it holds that

(Avi)
>(Avj) = v>i (A>A)vj = v>i (λjvj) = λjv

>
i vj = 0 . (4.93)

For the case m > r this holds for all pairsAv1, . . . ,Avr the images are2392

a basis of Rm, while if any further vectors Avi, i > r exist, they must be2393

in the nullspace of A (see remark after proof for the converse case).2394

To complete the SVD construction we need left-singular vectors that are
orthonormal: we normalize the images of the right-singular vectors Avi
and call them ui,

ui =
Avi
‖Avi‖

=
1√
λi
Avi =

1

σi
Avi (4.94)

where the last equality was obtained from (4.87) and from equation (4.89)2395

showing us that the eigenvalues of AA> are such that σ2
i = λi.2396

Therefore, the eigenvectors of A>A, we which we know are the righ-2397

singular vectors vi and their normalized images underA, the left singular2398

vectors ui, form two self-consistent sets of orthonomal bases that are cou-2399

pled by the singular value matrix Σ.2400

Remark. Let us rearrange (4.94) to obtain the singular value equation singular value
equation

Avi = σiui , i = 1, . . . , r . (4.95)

This equation closely resembles the eigenvalue equation (4.27), but the2401

vectors on the left and the right-hand sides are not the same.2402
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For n > m (4.95) holds only for i 6 m and (4.95) say nothing about2403

the ui for i > m, but we know by construction that they are orthonormal.2404

Conversely for m > n, then (4.95) holds only for i 6 n. For i > n we2405

haveAvi = 0 and we still know that the vi form an orthonormal set. This2406

means that the SVD also supplies an orthonormal basis of the kernel (or2407

null space) or A, the set of vectors x with Ax = 0 (see Section 2.7.3).2408

Moreover, collecting the vi as the columns of V and ui as the columns
of U yields

AV = UΣ . (4.96)

where Σ has the same dimensions asA and a diagonal structure for rows2409

1, . . . , r. Hence, right-multiplying with V > = V −1 yields A = UΣV >,2410

which is again our singular value decomposition of A. ♦2411

Example 4.11
Let us find the singular value decomposition of

A =

[
1 0 1
−2 1 0

]
. (4.97)

Step 1: Compute the symmetrized matrix A>A

A>A =

[
1 0 1
−2 1 0

]1 −2
0 1
1 0

 =

 5 −2 1
−2 1 2
1 0 1

 . (4.98)

Step 2: Compute the eigenvalue decomposition of A>A
We compute the singular values and right-singular vectors through the
eigenvalue decomposition of A>A

A>A =

 5 −2 1
−2 1 0
1 0 1

 (4.99)

=


5√
30

0 −1√
2

−2√
30

1√
5

−2√
2

1√
30

2√
5

1√
2


6 0 0

0 1 0
0 0 0




5√
30

−2√
30

1√
30

0 1√
5

2√
5

−1√
2

−2√
2

1√
2

 = PDP> .

(4.100)

Note, that due to our orthonormality requirement implies that we chose
the 3rd column of P so as to be orthogonal to the other two columns. As
the singular values σi are the square root of the eigenvalues of A>A we
obtain them straight fromD. Note that because rk(A) = 2 there are only
two non-zero singular values, σ1 =

√
6 and σ2 = 1. The singular value

matrix must be the same size as A, hence,

Σ =

[√
6 0 0

0 1 0

]
. (4.101)
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We also have obtained already the right-singular vectors because

V = P =


5√
30

0 −1√
2

−2√
30

1√
5

−2√
2

1√
30

2√
5

1√
2

 . (4.102)

Step 3: Compute the normalized image of the right-singular vectors
We now find the left singular-vectors by computing the image of the right-
singular vectors underA and normalizing them by dividing them by their
corresponding singular value.

u1 =
1

σ1

Av1 =
1√
6

[
1 0 1
−2 1 0

]
5√
30
−2√
30
1√
30

 =

[
1√
5

− 2√
5

]
, (4.103)

u2 =
1

σ2

Av2 =
1

1

[
1 0 1
−2 1 0

] 0
1√
5

2√
5

 =

[
2√
5

1√
5

]
(4.104)

U = [u1,u2] =
1√
5

[
1 2
−2 1

]
. (4.105)

Note that in practice the approach illustrated here has poor numerical be-
haviour, and the SVD ofA is computed without resorting to the eigenvalue
decomposition of A>A.

4.5.3 Eigenvalue Decomposition vs Singular Value Decomposition2412

Let us consider the eigendecomposition A = PDP−1 and SVD A =2413

UΣV > and review the core elements of the past sections.2414

• The SVD always exists for any matrix Rn×m. The eigendecomposition is2415

only defined for square matrices Rn×n and only exists if we can find a2416

basis of eigenvectors (or n independent eigenvectors).2417

• The vectors in the eigendecomposition matrix P are not necessarily2418

orthogonal, so the change of basis is not a simple rotation and scaling.2419

On the other hand, the vectors in the matrices U and V in the SVD are2420

orthonormal, so they do represent rotations (or possibly reflections).2421

• Both the eigendecomposition and the SVD are compositions of three2422

linear mappings:2423

1. Change of basis in the domain2424

2. Independent scaling of each new basis vector and mapping from do-2425

main to co-domain2426

3. Change of basis in the co-domain2427
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Figure 4.9 Movie
ratings of three
people for four
movies and its SVD
decomposition.

A key difference between the eigendecomposition and the SVD is that2428

in the SVD, domain and co-domain can be vector spaces of different2429

dimensions.2430

• In the SVD, the left and right singular vector matricesU and V are gen-2431

erally not inverse of each other. In the eigendecomposition the eigen-2432

vector matrices P and P−1 are inverses of each other.2433

• In the SVD, the entries in the diagonal matrix Σ are all real and nonneg-2434

ative, which is not generally true for the diagonal matrix in the eigen-2435

decomposition.2436

• The SVD and the eigendecomposition are closely related through their2437

projections2438

– The left-singular vectors of A are eigenvectors of AA>2439

– The right-singular vectors of A are eigenvectors of A>A.2440

– The non-zero singular values of A are the square roots of the non-2441

zero eigenvalues of AA>, and equal the non-zero eigenvalues of2442

A>A.2443

• For symmetric matrices the eigenvalue decomposition and the SVD are2444

one and the same.2445

Example 4.12 (Finding Structure in Movie Ratings and Consumers)
Let us understand a way to interpret the practical meaning of the SVD by
analysing data on people and their preferred movies. Consider 3 viewers
(Ali, Beatrix, Chandra) rating 4 different movies (Star Wars, Blade Runner,
Amelie, Delicatessen). Their ratings are values between 0 (worst) and 5
(best) and encoded in a data matrixA ∈ R4×3 (see Figure 4.9). Each row
represents a movie and each column a user. Thus, the column vectors of
movie ratings, one for each viewer, are xAli, xBeatrix, xChandra.

Factoring A using SVD provides a way to capture the relationships of
how people rate movies, and especially if there is a structure linking which
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people like which movies. Applying the SVD to our data matrix makes a
number of assumptions

1. All viewers rate movies consistently using the same linear mapping.
2. There are no errors or noise in the ratings data.
3. We interpret the left-singular vectors ui as stereotypical movies and the

right-singular vectors vj as stereotypical viewers.

We then make the assumption that any viewer’s specific movie preferences
can be expressed as a linear combination of the vj . Similarly, any, movie’s
like-ability can be expressed as a linear combination of the ui.

Let us look at the specific outcome of performing SVD: The first left-
singular vector u1 has large absolute values for the two science fiction
movies and a large first singular value (red shading in Figure 4.9). Thus,
this groups a type of users with a set of movies – we interpret this here as
the notion of a science fiction theme. Similarly, the first right-singular v1

shows large absolute values for Ali and Beatrix which give high ratings to
science fiction movies (green shading in Figure 4.9). This suggests that v1

may reflect an idealized notion of a science fiction lover.
Similarly, u2, seems to capture a French art house film theme, and v2

may be reflecting that Chandra is to close to an idealized lover of such
movies. An idealized science fiction lover is a purist and only loves science
fiction movies, so a science fiction lover v1 gives a rating of zero to ev-
erything but science fiction themed – this logic is implied by us requiring
a diagonal substructure for the singular value matrix. A specific movie is
therefore represented by how it decomposes (linearly) into its stereotypi-
cal movies. Likewise a person would be represented by how they decom-
pose (via linear combination) into movie themes.

Remark. It is worth discussing briefly SVD terminology and conventions2446

as there are different versions used in the literature—the mathematics2447

remains invariant to these differences— but can confuse the unaware2448

reader:2449

• For convenience in notation and abstraction we use here an SVD nota-2450

tion where the SVD is described as having two square left- and right-2451

singular vector matrices, but a non-square singular value matrix. Our2452

definition (4.73) for the SVD is sometimes called the full SVD. full SVD2453

• Some authors define the SVD a bit differently, forA ∈ Rm×n andm > n

A
m×n

= U
m×n,

Σ
n×n,

V T

n×n
(4.106)

Some authors call this the reduced SVD (e.g. Datta (2010)) other re- reduced SVD2454

fer to this as the SVD (e.g. Press et al. (2007)). This alternative for-2455

mat changes merely how the matrices are constructed but leaves the2456

mathematical structure of the SVD unchanged. The convenience of this2457
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alternative notation is that Σ is diagonal, as in the eigenvalue decom-2458

position. However, it looses the interpretation of Σ as a transformation2459

matrix.2460

• In Section 4.6, we will learn about matrix approximation techniques2461

using the SVD, which is also called the truncated SVD.truncated SVD 2462

• One can also define the SVD of a rank-r matrix A so that U is an2463

m × r matrix, Σ as a diagonal matrix r × r, and V as r × n matrix.2464

This construction is very similar to our definition, and ensures that the2465

diagonal matrix Σ has only non-zero entries along the diagonal. The2466

main convenience of this alternative notation is that Σ is diagonal, as2467

in the eigenvalue decomposition.2468

• One could also introduce the restriction that the SVD forA only applies2469

to m × n matrices with m > n. However, this restriction is practically2470

unnecessary. When m < n the SVD decomposition will yield Σ with2471

more zero columns than rows and, consequently, the singular values2472

σm+1, . . . , σn are implicitly 0.2473

♦2474

The SVD is used in a variety of applications in machine learning from2475

least squares problems in curve fitting to solving systems of linear equa-2476

tions. These applications harness various important properties of the SVD,2477

its relation to the rank of a matrix and its ability to approximate matrices2478

of a given rank with lower rank matrices. Substituting the SVD form of a2479

matrix in computations rather use the original matrix has often the advan-2480

tage of making the calculation more robust to numerical rounding errors.2481

As we will explore in the next section the SVD’s ability to approximate2482

matrices with “simpler” matrices in a principled manner opens up ma-2483

chine learning applications ranging from dimensionality reduction, topic2484

modeling to data compression and clustering.2485

4.6 Matrix Approximation2486

We will now investigate how the SVD allows us to represent a matrix A2487

as a sum of simpler matrices Ai.2488

Let us construct a rank-1 m× n matrix Ai as

Ai = uiv
>
i (4.107)

which is formed by the outer product of ith orthogonal column vector of
U and V , respectively (see Figure 4.10 for a a visual example). For a
matrix A of rank r the matrix can be decomposed into a sum of rank-1
matrices as follows Ai:

A =
r∑
i=1

σiuiv
>
i =

r∑
i=1

σiAi (4.108)

where the outer product matrices Ai are weighed by the size of the ith2489
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Figure 4.10 (Top
left) A grayscale
image is a
280× 350 matrix of
values between 0

(black) and 1

(white). (Middle left
to Bottom right)
rank-1 matrices
A1 . . .A5 and their
corresponding
singular values
σ1, . . . , σ5. Note,
that the grid like
structure of each
rank-1 matrix is
imposed by the
outer-product of the
left and right
singular vectors.

singular value σi. Thus, the sum of the outer products of matching left2490

and right singular vectors (weighted by their singular value) is equal to2491

A. Note, that any terms i > r are zero, as the singular values will be2492

0. We can see why (4.107) holds: the diagonal structure of the singular2493

value matrix Σ multiplies only matching left- and right-singular vectors2494

(ui,v>i ) and adds them up, while setting non-matching left- and right-2495

singular vectors (ui,v>j , i 6= j) to zero.2496

In the previous paragraph we introduced a low-rank matrixAi (of rank
1). We summed up the r individual rank-1 matrices to obtain a rank r
matrix A. What happens if the sum does not over all matrices Ai from
i = 1 . . . r but instead run the sum only up to an intermediate value k < r.
We are obtaining now an approximation of A that we call the rank-k rank-k

approximationapproximation Â(k)

Â(k) =
k∑
i=1

σiuiv
>
i (4.109)

of A with rk(Â) = k.2497

It would be useful if we could measure how large the difference be-2498

tween A and its approximation Â(k) is in terms of a single number – we2499

thus need the notion of a norm. We have already used norms on vectors2500

that measure the length of a vector. By analogy we can also define a norm2501

on matrices (one of the many ways to define matrix norms).2502

Definition 4.23 (Spectral norm of a matrix). The spectral norm of a ma-
trix A ∈ Rm×n is defined as the following for x ∈ Rn

‖A‖2 := max
x

‖Ax‖2
‖x‖2

x 6= 0. (4.110)

The operator norm implies how long any vector x can at most become2503

once it is multiplied byA. This maximum lengthening is given by the SVD2504

of A.2505
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Figure 4.11 (Top
left) The same
grayscale image as
in Figure 4.10.
(Middle left to
Bottom right) Image
reconstruction using
the low-rank
approximation of
the SVD: (Top
middle) is
Â(1) = σ1A1. (Top
right) is the rank-2
approximation
Â(2) =

σ1A1 + σ2A2.
(Bottom left to
Bottom right) are
Â(3) to Â(5). Note
how the shape of
the trees becomes
increasingly visible
and clearly
recognizable in the
a rank-6
approximation.
While the original
image requires
280× 350 = 98000

numbers, the rank-6
approximation
requires us only to
store only the 6
singular values and
the 6 left and right
singular vectors
(255 and 380
dimensional each)
for a total of
6×(250+380+1) =

3786 numbers – just
about 4% of the
original.

Theorem 4.24. The spectral norm of A is its largest singular value σ1.2506

We provide here a derivation of the largest singular value of matrix A,
illustrating the relation between the spectral norm and SVD.

‖A‖2 = max
x

‖Ax‖2
‖x‖2

= max
x

√√√√‖Ax‖22
‖x‖22

(4.111)

= max
x

√
(xA)>(Ax)

x>x
= max

x

√
x>(A>A)x

x>x
(4.112)

the matrix A>A is symmetric by construction and therefore we can com-
pute the eigenvalue decomposition A>A = PDP>

‖A‖2 = max
x

√
x>(PDP>)x

x>x
, (4.113)

(4.114)

where D is a diagonal matrix containing the eigenvalues. Recall that P>

and P perform merely a basis change and then undo it. Therefore, the
most a vector x can be lengthened is if it is collinear with the eigenvector
associated with the largest eigenvalue.

‖A‖2 =
√
λ1 (4.115)

the largest eigenvalue ofA>A is by (4.87) the largest singular value ofA

‖A‖2 = σ1 (4.116)

Theorem 4.25 (Eckart-Young (or Eckart-Young-Minsky) theorem)). Let
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A ∈ Rm×n be a matrix of rank r and and B ∈ Rm×n be a matrix of rank
k. For any k 6 r such that Â(k) =

∑k
i σiuiv

>
i , it holds that∥∥∥A− Â(k)

∥∥∥
2

= σk+1 (4.117)

= min
rk(B)6k

‖A−B‖2 . (4.118)

Remark. We can interpret the rank-k approximation obtained with the2507

SVD is a projection of the full rank matrix A onto the lower-dimensional2508

space of rank at-most-k matrices. Of all possible projections the SVD rank-2509

k approximation minimizes the difference with respect to the spectral2510

norm between A and any rank-k matrix. ♦2511

We can retrace some of the steps to understand why (4.117) should
hold. We observe that the difference between A − Â(k) is a matrix con-
taining the sum of the remaining rank-1 matrices

A− Â(k) =
r∑

i=k+1

σiuiv
>
i (4.119)

Thus, by applying the definition of the spectral norm, (4.110), the most2512

a vector can be lengthened by the difference matrix is given its largest2513

singular value i.e. σk+1, which is the difference matrix’s spectral norm.2514

Let us proceed to better understand (4.118) validity. We assume that
there is another matrix B with rk(B) 6 k such that

‖A−B‖2 <
∥∥∥A− Â(k)

∥∥∥
2

(4.120)

Then there exists an (n − k)-dimensional nullspace Z ⊆ Rn such that
x ∈ Z =⇒ Bx = 0. In other words, have an n-dimensional space Rn in
which lies a lower dimensional nullspace of B. Then it follows that

‖Ax‖2 = ‖(A−B)x‖2 , (4.121)

and by using a version of the Cauchy-Schwartz inequality (3.5) that en-
compasses norms of matrices we obtain

‖Ax‖2 6 ‖A−B‖2 ‖x‖2 < σk+1 ‖x‖2 (4.122)

Therefore, V is a (n−k) dimensional subspace where ‖Ax‖2 < σk+1 ‖x‖2.2515

On the other hand there is a (n+1)-dimensional subspace where ‖Ax‖2 >2516

σk+1 ‖x‖2 which is spanned by the right singular vector vk+1 ofA. Adding2517

up dimensions of these two spaces yields a number greater n, as there2518

must be a non-zero vector in both spaces. This is a contradiction because2519

of the Rank-Nullity Theorem (recall Theorem 2.23 in Section 2.7.3).2520

The Eckart-Young theorem implies that we can use SVD to reduce a2521

rank-r matrix A to a rank-k matrix Â in a principled, optimal (in the2522

spectral norm sense) manner. The effect of the low-rank approximation2523

is that we can obtain a more compact representation of the values of the2524
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matrix with limited loss of information, this is a form of data compres-2525

sion. Therefore, the low-rank approximation of a matrix appears in many2526

machine learning applications, such as image processing, noise filtering,2527

and regularization of ill-posed problems. Furthermore, it plays a key role2528

in dimensionality reduction and principal component analysis as we shall2529

see in Chapter 10.2530

Example 4.13 (Finding Structure in Movie Ratings and Consumers
(continued))
Following from our previous movie rating example we can now apply the
concept of low-rank approximation to describe the data matrix. Recall
that our first singular value captures the notion of science fiction theme
in movies and science fiction lovers. Thus, by using only the first singular
value term in a rank-1 decomposition of the movie rating matrix we obtain
the following predicted ratings

M 1 =σ1(u1v
>
1 ) (4.123)

=9.6438


−0.6710
−0.7197
−0.0939
−0.1515

 [−0.7367 −0.6515 −0.1811
]

(4.124)

=


4.7673 4.2154 1.1718
5.1138 4.5218 1.2570
0.6671 0.5899 0.1640
1.0765 0.9519 0.2646

 (4.125)

This first rank-1 approximation M 1 is insightful: it tells us that Ali and
Beatrix like science fiction movies such as Star Wars and Bladerunner (en-
tries have values > 4), but on the other hand fails to capture the ratings
of the other movies by Chandra. This is not surprising as Chandra’s type
of movies are not captured by the first singular value. The second singu-
lar value however gives us a better rank-1 approximation for those movie
theme-movie lovers types.

M 2 =σ2(u2v
>
2 ) (4.126)

=6.3639


0.0236
0.2054
−0.7705
−0.6030

 [0.0852 0.1762 −0.9807
]

(4.127)

=


0.0128 0.0265 −0.1475
0.1114 0.2304 −1.2820
−0.4178 −0.8642 4.8084
−0.3270 −0.6763 3.7631

 (4.128)

In this second rank-1 approximation M 2 we capture Chandra’s ratings
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and movie types well, but for the science fiction movies and people the
predictions are, not surprisingly, poor.

This leads us to consider the rank-2 approximation Â(2) where we com-
bine the first two rank-1 approximations

Â(2) =M 1 +M 2 (4.129)

=


4.7801 4.2419 1.0244
5.2252 4.7522 −0.0250
0.2493 −0.2743 4.9724
0.7495 0.2756 4.0278

 (4.130)

Â(2) is close to the original movie ratings table

A =


5 4 1
5 5 0
0 0 5
1 0 4

 (4.131)

and this suggests that we can ignore the third singular value (after all
it is much smaller than the first two). We can interpret this as to imply
that in the data table there really is no evidence of a third movie-theme-
movie lovers category. This also means that the entire space of movie
themes-movie lovers is spanned in our example by a two-dimensional
space spanned by science fiction and French art house movies and lovers.

4.7 Matrix Phylogeny2531

In Chapter 2 and 3 we covered the basics of linear algebra and analytic2532

geometry, in this chapter we now looked at fundamental characteristics2533

and methods on matrices and linear mappings. We are depicting in Fig-2534

ure 4.12 the phylogenetic tree of relationships between different types of2535

matrices (black arrows indicating “is a subset of”) and the covered opera-2536

tions we can perform on them (in red). For example, we already learned The word
phylogenetic
describes how we
capture the
relationships among
individuals or
groups and derived
from the greek
words for “tribe”
and “source”.

2537

in Chapter 2 about square matrices, which are a subset of all (complex)2538

matrices (top level node in the tree). We will then learn here that we can2539

compute a specific characteristic (determinant) in Section 4.1 that will2540

inform us whether a square matrix has an associate inverse matrix, thus2541

if it belongs to the class of non-singular, invertible matrices.2542

Going backward through the chapter, we start with the most general2543

case of real matrices Rn×m for which we can define a pseude-inverse to2544

“invert” them, as well as perform singular value decomposition (SVD)2545

(Theorem 4.22). This superset of matrices is divided into the square Rn×n2546

matrices for which we can define the characteristic feature of the deter-2547

minant and the trace (Section 4.1).2548
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Here the set of matrices splits in two: If the square Rn×n matrix has n2549

distinct eigenvalues (or equivalently n linearly independent eigenvectors)2550

then the matrix is non-defective and a unique diagonalisation/eigende-2551

composition exists for these matrices (Theorem 4.11). In other cases we2552

know that a multiplicity of eigenvalues may result (see Definitions 4.132553

and 4.14).2554

Alternatively, if this square Rn×n matrix has a non-zero determinant,2555

than the matrix is non-singular, i.e. an inverse matrix exists (Theorem 4.1).2556

Non-singular matrices are closed under addition and multiplication, have2557

an identity element (I) and an inverse element, thus they form a group.2558

Note, that non-singular and non-defective matrices are not identical2559

sets, as for example a rotation matrix will be invertible (determinant is2560

non-zero) but not diagonalizable in the real numbers (non-distinct real2561

eigenvalues).2562

Let us follow the branch of non-defective square A ∈ Rn×n matrices.2563

A is normal if the condition A>A = AA> holds. Moreover, if the more2564

restrictive condition holds A>A = AA> = I, then the matrix is called2565

orthogonal (see Definition 3.8) and is a subset of the non-singular (in-2566

vertible) matrices and satisfy the very useful condition A> = A−1. Or-2567

thogonal matrices are closed under addition and multiplication, have an2568

identity element (I) and an inverse element, thus they also form a group.2569

The normal matrices have a frequently encountered subset, the symmet-2570

ric matrices S ∈ Rn×n which satisfy S = S>. Symmetric matrices have2571

only real eigenvalues. A subset of the symmetric matrices are the positive2572

definite matrices P that satisfy the condition of x>Px > 0, then a unique2573

a unique Cholesky decomposition exists (Theorem 4.17). Positive defi-2574

nite matrices have only positive eigenvalues and are always invertible (i.e.2575

have a non-zero determinant).2576

Another subset of the symmetric matrices are the diagonal matricesD2577

in which the entries outside the main diagonal are all zero. Diagonal ma-2578

trices are closed under multiplication and addition, but do not necessarily2579

form a group (this is only the case if all diagonal entries are non-zero so2580

that the matrix is invertible). A prominent special case of the diagonal2581

matrices is the identity matrix I.2582

4.8 Further Reading2583

Most of the content in this chapter establishes underlying mathematics2584

and connects them to methods for studying mappings, many of these un-2585

derly machine learning at the level of underpinning software solutions and2586

building blocks for almost all machine learning theory. Matrix characteri-2587

zation using determinants, eigenspectra and eigenspaces are fundamental2588

features and conditions for categorizing and analyzing matrices, this ex-2589

tends to all forms of representations of data and mappings involving data,2590
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as well as judging the numerical stability of computational operations on2591

such matrices(Press et al., 2007).2592

Determinants are fundamental tools in order to invert matrices and2593

compute eigenvalues “by hand”, yet for almost all but the smallest in-2594

stances computation by Gaussian elimination outperforms determinants2595

(Press et al., 2007). Determinants remain however a powerful theoretical2596

concept, e.g. to gain intuition about the orientation of a basis based on2597

the sign of the determinant. Eigenvectors can be used to perform change2598

of basis operations so as to transform complicated looking data into more2599

meaningful orthogonal, features vectors. Similarly, matrix decomposition2600

methods such as Cholesky decomposition reappear often when we have2601

to compute or simulate random events (Rubinstein and Kroese, 2016).2602

Eigendecomposition is fundamental in enabling us to extract mean-2603

ingful and interpretable information that characterizes linear mappings.2604

Therefore, eigendecomposition underlies a general class of machine learn-2605

ing algorithms called spectral methods that perform eigendecomposition of2606

a positive-definite kernel. These spectral decomposition methods encom-2607

pass classical approaches to statistical data analysis, such as2608

• Principal Components Analysis (PCA (Pearson, 1901a), see also Chap-2609

ter 10), in which a low-dimensional subspace that explains most of the2610

variability in the data is sought.2611

• Fisher Discriminant Analysis, which aims to determine a separating hy-2612

perplane for data classification (Mika et al., 1999).2613

• Multidimensional Scaling (MDS) (Carroll and Chang, 1970).2614

The computational efficiency of these methods typically results from find-2615

ing the best rank-k approximation to a symmetric, positive semidefinite2616

matrix. More contemporary examples of spectral methods have different2617

origins , but each of them requires the computation of the eigenvectors2618

and eigenvalues of a positive-definite kernel, such as2619

• Isomap (Tenenbaum et al., 2000),2620

• Laplacian eigenmaps (Belkin and Niyogi, 2003),2621

• Hessian eigenmaps (Donoho and Grimes, 2003),2622

• Spectral clustering (Shi and Malik, 2000).2623

The core computations of these are generally underpinned by low-rank2624

matrix approximation techniques (Belabbas and Wolfe, 2009), as we en-2625

countered here via the SVD.2626

The SVD allows us to discover some of the same kind of information as2627

the eigendecomposition. However, the SVD is more generally applicable2628

to non-square matrices, such as tables of data. These matrix factorisation2629

methods become relevant whenever we want to identify heterogeneity2630

in data when we want to perform data compression by approximation,2631

e.g. instead of storing (n × m values just storing (n + m) × k values,2632
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or when we want to perform data preprocessing, e.g. to decorrelate pre-2633

dictor variables of a design matrix (e.g. Ormoneit et al. (2001)). SVD2634

is the basic two-dimensional version of a more general decomposition of2635

data in, so called, tensors (Kolda and Bader, 2009). Tensors reflect higher-2636

dimensional arrays and SVD-like and low-rank approximation s on tensors2637

are for example the CP (Carroll and Chang, 1970) or Tucker Decomposi-2638

tion (Tucker, 1966).2639

The SVD low-rank approximation is frequently used in machine learn-2640

ing for both computational efficiency reasons. This is because it reduces2641

the amount of memory and operations with non-zero multiplications we2642

need to perform on potentially very large matrices of data (Trefethen and2643

Bau III, 1997). Moreover, low-rank approximation is used to operate on2644

matrices that may contain missing values as well as for purposes of lossy2645

compression and dimensionality reduction (Moonen and De Moor, 1995;2646

Markovsky, 2011).2647

Exercises2648

4.1 Compute the determinant using the Laplace expansion (using the the first
row) and the Sarrus Rule for

A =

 1 3 5

2 4 6

0 2 4

 (4.132)

4.2 Compute the following determinant efficiently.
2 0 1 2 0

2 −1 0 1 1

0 1 2 1 2

−2 0 2 −1 2

2 0 0 1 1

 (4.133)

4.3 Let us compute the eigenspaces of
[
1 0

1 1

]
,
[
−2 2

2 1

]
2649

4.4 Compute the eigenspaces of

A =


0 −1 1 1

−1 1 −2 3

2 −1 0 0

1 −1 1 0

 (4.134)

4.5 Diagonalizability of a matrix is unrelated to its invertibility. Determine for2650

the following for matrices it if is diagonalizable and/or invertible
[
1 0

0 1

]
,2651 [

1 0

0 0

]
,
[
1 1

0 1

]
and

[
0 1

0 0

]
2652

4.6 Find the SVD of the following matrix

A =

[
3 2 2

2 3 −2

]
(4.135)
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4.7 Let us find the singular value decomposition of

A =

[
2 2

−1 1

]
. (4.136)

4.8 Find the best rank-1 approximation of

A =

[
3 2 2

2 3 −2

]
(4.137)
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Vector Calculus

2680

Many algorithms in machine learning are inherently based on optimizing2681

an objective function with respect to a set of desired model parameters2682

that control how well a model explains the data: Finding good parame-2683

ters can be phrased as an optimization problem. Examples include linear2684

regression (see Chapter 9), where we look at curve-fitting problems, and2685

we optimize linear weight parameters to maximize the likelihood; neural-2686

network auto-encoders for dimensionality reduction and data compres-2687

sion, where the parameters are the weights and biases of each layer, and2688

where we minimize a reconstruction error by repeated application of the2689

chain-rule; Gaussian mixture models (see Chapter 11) for modeling data2690

distributions, where we optimize the location and shape parameters of2691

each mixture component to maximize the likelihood of the model. Fig-2692

ure 5.1 illustrates some of these problems, which we typically solve by us-2693

ing optimization algorithms that exploit gradient information (first-order2694

methods). Figure 5.2 gives an overview of how concepts in this chapter2695

are related and how they are connected to other chapters of the book.2696

In this chapter, we will discuss how to compute gradients of functions,2697

which is often essential to facilitate learning in machine learning models.2698

Therefore, vector calculus is one of the fundamental mathematical tools2699

we need in machine learning.2700

Figure 5.1 Vector
calculus plays a
central role in (a)
regression (curve
fitting) and (b)
density estimation,
i.e., modeling data
distributions.

−4 −2 0 2 4
x
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−2

0

2

4

y

Training data

MLE

(a) Regression problem: Find parameters,
such that the curve explains the observations
(circles) well.

−10 −5 0 5 10
x1

−10

−5

0

5

10

x
2

(b) Density estimation with a Gaussian mixture
model: Find means and covariances, such that
the data (dots) can be explained well.
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Figure 5.2 A mind
map of the concepts
introduced in this
chapter, along with
when they are used
in other parts of the
book.

Difference quotient

Partial derivatives

Jacobian
Hessian

Taylor series

Chapter 7
Optimization

Chapter 9
Regression

Chapter 10
Dimensionality

reduction

Chapter 11
Density estimation

Chapter 12
Classification

defines
collected
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used
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in
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Figure 5.3 The
average incline of a
function f between
x0 and x0 + δx is
the incline of the
secant (blue)
through f(x0) and
f(x0 + δx) and
given by δy/δx.δy

δx

f(x)

x

y

f(x0)

f(x0 + δx)

5.1 Differentiation of Univariate Functions2701

In the following, we briefly revisit differentiation of a univariate function,2702

which we may already know from school. We start with the difference2703

quotient of a univariate function y = f(x), x, y ∈ R, which we will2704

subsequently use to define derivatives.2705

Definition 5.1 (Difference Quotient). The difference quotient difference quotient
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δy

δx
:=

f(x+ δx)− f(x)

δx
(5.1)

computes the slope of the secant line through two points on the graph of2706

f . In Figure 5.3 these are the points with x-coordinates x0 and x0 + δx.2707

The difference quotient can also be considered the average slope of f2708

between x and x+δx if we assume a f to be a linear function. In the limit2709

for δx → 0, we obtain the tangent of f at x, if f is differentiable. The2710

tangent is then the derivative of f at x.2711

Definition 5.2 (Derivative). More formally, for h > 0 the derivative of fderivative

at x is defined as the limit

df

dx
:= lim

h→0

f(x+ h)− f(x)

h
, (5.2)

and the secant in Figure 5.3 becomes a tangent.2712

Example 5.1 (Derivative of a Polynomial)
We want to compute the derivative of f(x) = xn, n ∈ N. We may already
know that the answer will be nxn−1, but we want to derive this result
using the definition of the derivative as the limit of the difference quotient.

Using the definition of the derivative in (5.2) we obtain

df

dx
= lim

h→0

f(x+ h)− f(x)

h
(5.3)

= lim
h→0

(x+ h)n − xn
h

(5.4)

= lim
h→0

∑n
i=0

(
n
i

)
xn−ihi − xn
h

. (5.5)

We see that xn =
(
n
0

)
xn−0h0. By starting the sum at 1 the xn-term cancels,

and we obtain

df

dx
= lim

h→0

∑n
i=1

(
n
i

)
xn−ihi

h
(5.6)

= lim
h→0

n∑
i=1

(
n

i

)
xn−ihi−1 (5.7)

= lim
h→0

(
n

1

)
xn−1 +

n∑
i=2

(
n

i

)
xn−ihi−1

︸ ︷︷ ︸
→0 as h→0

(5.8)

=
n!

1!(n− 1)!
xn−1 = nxn−1 . (5.9)
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5.1.1 Taylor Series2713

The Taylor series is a representation of a function f as an infinite sum of2714

terms. These terms are determined using derivatives of f evaluated at x0.2715

Definition 5.3 (Taylor Polynomial). The Taylor polynomial of degree n of Taylor polynomial

f : R→ R at x0 is defined as

Tn(x) :=
n∑
k=0

f (k)(x0)

k!
(x− x0)k , (5.10)

where f (k)(x0) is the kth derivative of f at x0 (which we assume exists)2716

and f(k)(x0)

k!
are the coefficients of the polynomial.2717

Definition 5.4 (Taylor Series). For a smooth function f ∈ C∞, f : R→ R,
the Taylor series of f at x0 is defined as Taylor series

T∞(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)k . (5.11)

For x0 = 0, we obtain the Maclaurin series as a special instance of the f ∈ C∞ means that
f is continuously
differentiable
infinitely many
times.
Maclaurin series

2718

Taylor series. If f(x) = T∞(x) then f is called analytic.

analytic

2719

Remark. In general, a Taylor polynomial of degree n is an approximation2720

of a function, which does not need to be a polynomial. The Taylor poly-2721

nomial is similar to f in a neighborhood around x0. However, a Taylor2722

polynomial of degree n is an exact representation of a polynomial f of2723

degree k 6 n since all derivatives f (i), i > k vanish. ♦2724

Example 5.2 (Taylor Polynomial)
We consider the polynomial

f(x) = x4 (5.12)

and seek the Taylor polynomial T6, evaluated at x0 = 1. We start by com-
puting the coefficients f (k)(1) for k = 0, . . . , 6:

f(1) = 1 (5.13)

f ′(1) = 4 (5.14)

f ′′(1) = 12 (5.15)

f (3)(1) = 24 (5.16)

f (4)(1) = 24 (5.17)

f (5)(1) = 0 (5.18)

f (6)(1) = 0 (5.19)
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Therefore, the desired Taylor polynomial is

T6(x) =
6∑
k=0

f (k)(x0)

k!
(x− x0)k (5.20)

= 1 + 4(x− 1) + 6(x− 1)2 + 4(x− 1)3 + (x− 1)4 + 0 . (5.21)

Multiplying out and re-arranging yields

T6(x) = (1− 4 + 6− 4 + 1) + x(4− 12 + 12− 4)

+ x2(6− 12 + 6) + x3(4− 4) + x4 (5.22)

= x4 = f(x) , (5.23)

i.e., we obtain an exact representation of the original function.

Example 5.3 (Taylor Series)
Consider the function

f(x) = sin(x) + cos(x) ∈ C∞ . (5.24)

Figure 5.4 Taylor
polynomials. The
original function
f(x) =

sin(x) + cos(x)

(black, solid) is
approximated by
Taylor polynomials
(dashed) around
x0 = 0.
Higher-order Taylor
polynomials
approximate the
function f better
and more globally.
T10 is already
similar to f in
[−4, 4].

−4 −2 0 2 4
x

−2

0

2

4

y

f
T0

T1

T5

T10

We seek a Taylor series expansion of f at x0 = 0, which is the Maclaurin
series expansion of f . We obtain the following derivatives:

f(0) = sin(0) + cos(0) = 1 (5.25)

f ′(0) = cos(0)− sin(0) = 1 (5.26)

f ′′(0) = − sin(0)− cos(0) = −1 (5.27)

f (3)(0) = − cos(0) + sin(0) = −1 (5.28)

f (4)(0) = sin(0) + cos(0) = f(0) = 1 (5.29)
...
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We can see a pattern here: The coefficients in our Taylor series are only
±1 (since sin(0) = 0), each of which occurs twice before switching to the
other one. Furthermore, f (k+4)(0) = f (k)(0).

Therefore, the full Taylor series expansion of f at x0 = 0 is given by

T∞(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)k (5.30)

= 1 + x− 1

2!
x2 − 1

3!
x3 +

1

4!
x4 +

1

5!
x5 − · · · (5.31)

= 1− 1

2!
x2 +

1

4!
x4 ∓ · · ·+ x− 1

3!
x3 +

1

5!
x5 ∓ · · · (5.32)

=
∞∑
k=0

(−1)k
1

(2k)!
x2k +

∞∑
k=0

(−1)k
1

(2k + 1)!
x2k+1 (5.33)

= cos(x) + sin(x) , (5.34)

where we used the power series representations power series
representations

cos(x) =
∞∑
k=0

(−1)k
1

(2k)!
x2k , (5.35)

sin(x) =
∞∑
k=0

(−1)k
1

(2k + 1)!
x2k+1 . (5.36)

Figure 5.4 shows the corresponding first Taylor polynomials Tn for n =
0, 1, 5, 10.

5.1.2 Differentiation Rules2725

In the following, we briefly state basic differentiation rules, where we2726

denote the derivative of f by f ′.2727

Product Rule: (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x) (5.37)

Quotient Rule:
(
f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

(g(x))2
(5.38)

Sum Rule: (f(x) + g(x))′ = f ′(x) + g′(x) (5.39)

Chain Rule:
(
g(f(x))

)′
= (g ◦ f)′(x) = g′(f(x))f ′(x) (5.40)

Here, g ◦ f is a function composition x 7→ f(x) 7→ g(f(x)).2728

Example 5.4 (Chain rule)
Let us compute the derivative of the function h(x) = (2x + 1)4 using the
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chain rule. With

h(x) = (2x+ 1)4 = g(f(x)) , (5.41)

f(x) = 2x+ 1 , (5.42)

g(f) = f4 (5.43)

we obtain the derivatives of f and g as

f ′(x) = 2 , (5.44)

g′(f) = 4f3 , (5.45)

such that the derivative of h is given as

h′(x) = g′(f)f ′(x) = (4f3) · 2 (5.42)
= 4(2x+ 1)3 · 2 = 8(2x+ 1)3 , (5.46)

where we used the chain rule, see (5.40), and substituted the definition
of f in (5.42) in g′(f).

5.2 Partial Differentiation and Gradients2729

Differentiation as discussed in Section 5.1 applies to functions f of a2730

scalar variable x ∈ R. In the following, we consider the general case2731

where the function f depends on one or more variables x ∈ Rn, e.g.,2732

f(x) = f(x1, x2). The generalization of the derivative to functions of sev-2733

eral variables is the gradient.2734

We find the gradient of the function f with respect to x by varying one2735

variable at a time and keeping the others constant. The gradient is then2736

the collection of these partial derivatives.2737

Definition 5.5 (Partial Derivative). For a function f : Rn → R, x 7→
f(x), x ∈ Rn of n variables x1, . . . , xn we define the partial derivatives aspartial derivatives

∂f

∂x1

= lim
h→0

f(x1 + h, x2, . . . , xn)− f(x)

h
...

∂f

∂xn
= lim

h→0

f(x1, . . . , xn−1, xn + h)− f(x)

h

(5.47)

and collect them in the row vector

∇xf = gradf =
df

dx
=
[
∂f(x)

∂x1

∂f(x)

∂x2
· · · ∂f(x)

∂xn

]
∈ R1×n , (5.48)

where n is the number of variables and 1 is the dimension of the image/2738

range of f . Here, we defined the column vector x = [x1, . . . , xn]> ∈ Rn.2739

The row vector in (5.48) is called the gradient of f or the Jacobian and isgradient

Jacobian

2740

the generalization of the derivative from Section 5.1.2741
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Remark. This definition of the Jacobian is a special case of the general2742

definition of the Jacobian for vector-valued functions as the collection of2743

partial derivatives. We will get back to this in Section 5.3. ♦2744

Example 5.5 (Partial Derivatives using the Chain Rule)
For f(x, y) = (x+ 2y3)2, we obtain the partial derivatives We can use results

from scalar
differentiation: Each
partial derivative is
a derivative with
respect to a scalar.

∂f(x, y)

∂x
= 2(x+ 2y3)

∂

∂x
(x+ 2y3) = 2(x+ 2y3) , (5.49)

∂f(x, y)

∂y
= 2(x+ 2y3)

∂

∂y
(x+ 2y3) = 12(x+ 2y3)y2 . (5.50)

where we used the chain rule (5.40) to compute the partial derivatives.

Remark (Gradient as a Row Vector). It is not uncommon in the literature2745

to define the gradient vector as a column vector, following the conven-2746

tion that vectors are generally column vectors. The reason why we define2747

the gradient vector as a row vector is twofold: First, we can consistently2748

generalize the gradient to a setting where f : Rn → Rm no longer maps2749

onto the real line (then the gradient becomes a matrix). Second, we can2750

immediately apply the multi-variate chain-rule without paying attention2751

to the dimension of the gradient. We will discuss both points later. ♦2752

Example 5.6 (Gradient)
For f(x1, x2) = x2

1x2 + x1x
3
2 ∈ R, the partial derivatives (i.e., the deriva-

tives of f with respect to x1 and x2) are

∂f(x1, x2)

∂x1

= 2x1x2 + x3
2 (5.51)

∂f(x1, x2)

∂x2

= x2
1 + 3x1x

2
2 (5.52)

and the gradient is then

df

dx
=
[
∂f(x1,x2)

∂x1

∂f(x1,x2)

∂x2

]
=
[
2x1x2 + x3

2 x2
1 + 3x1x

2
2

]
∈ R1×2 .

(5.53)

5.2.1 Basic Rules of Partial Differentiation2753

Product rule:
(fg)′ = f ′g + fg′,
Sum rule:
(f + g)′ = f ′ + g′,
Chain rule:
(g(f))′ = g′(f)f ′

In the multivariate case, where x ∈ Rn, the basic differentiation rules that2754

we know from school (e.g., sum rule, product rule, chain rule; see also2755

Section 5.1.2) still apply. However, when we compute derivatives with re-2756

spect to vectors x ∈ Rn we need to pay attention: Our gradients now2757
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involve vectors and matrices, and matrix multiplication is no longer com-2758

mutative (see Section 2.2.1), i.e., the order matters.2759

Here are the general product rule, sum rule and chain rule:

Product Rule:
∂

∂x

(
f(x)g(x)

)
=
∂f

∂x
g(x) + f(x)

∂g

∂x
(5.54)

Sum Rule:
∂

∂x

(
f(x) + g(x)

)
=
∂f

∂x
+
∂g

∂x
(5.55)

Chain Rule:
∂

∂x
(g ◦ f)(x) =

∂

∂x

(
g(f(x))

)
=
∂g

∂f

∂f

∂x
(5.56)

Let us have a closer look at the chain rule. The chain rule (5.56) resem-This is only an
intuition, but not
mathematically
correct since the
partial derivative is
not a fraction.

2760

bles to some degree the rules for matrix multiplication where we said that2761

neighboring dimensions have to match for matrix multiplication to be de-2762

fined, see Section 2.2.1. If we go from left to right, the chain rule exhibits2763

similar properties: ∂f shows up in the “denominator” of the first factor2764

and in the “numerator” of the second factor. If we multiply the factors to-2765

gether, multiplication is defined, i.e., the dimensions of ∂f match, and ∂f2766

“cancels”, such that ∂g/∂x remains.2767

5.2.2 Chain Rule2768

Consider a function f : R2 → R of two variables x1, x2. Furthermore,
x1(t) and x2(t) are themselves functions of t. To compute the gradient of
f with respect to t, we need to apply the chain rule (5.56) for multivariate
functions as

df

dt
=
[
∂f
∂x1

∂f
∂x2

] [∂x1(t)

∂t
∂x2(t)

∂t

]
=

∂f

∂x1

∂x1

∂t
+
∂f

∂x2

∂x2

∂t
(5.57)

where d denotes the gradient and ∂ partial derivatives.2769

Example 5.7
Consider f(x1, x2) = x2

1 + 2x2, where x1 = sin t and x2 = cos t, then

df

dt
=

∂f

∂x1

∂x1

∂t
+
∂f

∂x2

∂x2

∂t
(5.58)

= 2 sin t
∂ sin t

∂t
+ 2

∂ cos t

∂t
(5.59)

= 2 sin t cos t− 2 sin t = 2 sin t(cos t− 1) (5.60)

is the corresponding derivative of f with respect to t.

If f(x1, x2) is a function of x1 and x2, where x1(s, t) and x2(s, t) are
themselves functions of two variables s and t, the chain rule yields the
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partial derivatives

∂f

∂s
=

∂f

∂x1

∂x1

∂s
+
∂f

∂x2

∂x2

∂s
, (5.61)

∂f

∂t
=

∂f

∂x1

∂x1

∂t
+
∂f

∂x2

∂x2

∂t
, (5.62)

and the gradient is obtained by the matrix multiplication

df

d(s, t)
=
∂f

∂x

∂x

∂(s, t)
=
[
∂f
∂x1

∂f
∂x2

]
︸ ︷︷ ︸

= ∂f
∂x

[
∂x1

∂s
∂x1

∂t
∂x2

∂s
∂x2

∂t

]
︸ ︷︷ ︸

= ∂x
∂(s,t)

. (5.63)

This compact way of writing the chain rule as a matrix multiplication only The chain rule can
be written as a
matrix
multiplication.

2770

makes sense if the gradient is defined as a row vector. Otherwise, we will2771

need to start transposing gradients for the matrix dimensions to match.2772

This may still be straightforward as long as the gradient is a vector or a2773

matrix; however, when the gradient becomes a tensor (we will discuss this2774

in the following), the transpose is no longer a triviality.2775

Remark (Verifying the Correctness of a Gradient Implementation). The2776

definition of the partial derivatives as the limit of the corresponding dif-2777

ference quotient, see (5.47), can be exploited when numerically checking2778

the correctness of gradients in computer programs: When we compute Gradient checking2779

gradients and implement them, we can use finite differences to numer-2780

ically test our computation and implementation: We choose the value h2781

to be small (e.g., h = 10−4) and compare the finite-difference approxima-2782

tion from (5.47) with our (analytic) implementation of the gradient. If the2783

error is small, our gradient implementation is probably correct. “Small”2784

could mean that
√∑

i(dhi−dfi)2∑
i(dhi+dfi)2

< 10−6, where dhi is the finite-difference2785

approximation and dfi is the analytic gradient of f with respect to the ith2786

variable xi. ♦2787

5.3 Gradients of Vector-Valued Functions2788

Thus far, we discussed partial derivatives and gradients of functions f :2789

Rn → Rmapping to the real numbers. In the following, we will generalize2790

the concept of the gradient to vector-valued functions (vector fields) f :2791

Rn → Rm, where n,m > 1.2792

For a function f : Rn → Rm and a vector x = [x1, . . . , xn]> ∈ Rn, the
corresponding vector of function values is given as

f(x) =

f1(x)
...

fm(x)

 ∈ Rm . (5.64)
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Writing the vector-valued function in this way allows us to view a vector-2793

valued function f : Rn → Rm as a vector of functions [f1, . . . , fm]>,2794

fi : Rn → R that map onto R. The differentiation rules for every fi are2795

exactly the ones we discussed in Section 5.2.2796

Therefore, the partial derivative of a vector-valued function f : Rn → Rmpartial derivative of
a vector-valued
function

with respect to xi ∈ R, i = 1, . . . n, is given as the vector

∂f

∂xi
=


∂f1
∂xi

...
∂fm
∂xi

 =

 limh→0
f1(x1,...,xi−1,xi+h,xi+1,...xn)−f1(x)

h
...

limh→0
fm(x1,...,xi−1,xi+h,xi+1,...xn)−fm(x)

h

 ∈ Rm .
(5.65)

From (5.48), we know that we obtain the gradient of f with respect
to a vector as the row vector of the partial derivatives. In (5.65), every
partial derivative ∂f/∂xi is a column vector. Therefore, we obtain the
gradient of f : Rn → Rm with respect to x ∈ Rn by collecting these
partial derivatives:

df(x)

dx
= ∂f(x)

∂x1
· · · ∂f(x)

∂xn

[ ]
=

∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

... ...
∂fm(x)
∂x1

· · · ∂fm(x)
∂xn


 ∈ Rm×n .

(5.66)

Definition 5.6 (Jacobian). The collection of all first-order partial deriva-
tives of a vector-valued function f : Rn → Rm is called the Jacobian. TheJacobian

Jacobian J is an m× n matrix, which we define and arrange as follows:The gradient of a
function
f : Rn → Rm is a
matrix of size
m× n.

J = ∇xf =
df(x)

dx
=
[
∂f(x)

∂x1
· · · ∂f(x)

∂xn

]
(5.67)

=


∂f1(x)

∂x1
· · · ∂f1(x)

∂xn

...
...

∂fm(x)

∂x1
· · · ∂fm(x)

∂xn

 , (5.68)

x =

x1

...
xn

 , J(i, j) =
∂fi
∂xj

. (5.69)

In particular, a function f : Rn → R1, which maps a vector x ∈ Rn onto2797

a scalar (e.g., f(x) =
∑n

i=1 xi), possesses a Jacobian that is a row vector2798

(matrix of dimension 1× n), see (5.48).2799

Remark. (Variable Transformation and Jacobian Determinant)2800

In Section 4.1, we saw that the determinant can be used to compute
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Figure 5.5 The
determinant of the
Jacobian of f can
be used to compute
the magnifier
between the blue
and orange area.

b1

b2 c1 c2

f

the area of a parallelogram. If we are given two vectors b1 = [1, 0]>,
b2 = [0, 1]> as the sides of the unit square (blue, see Figure 5.5), the area
of this square is ∣∣∣∣1 0

0 1

∣∣∣∣ = 1 . (5.70)

If we now take a parallelogram with the sides c1 = [−2, 1]>, c2 = [1, 1]>

(orange in Figure 5.5) its area is given as the absolute value of the deter-
minant ∣∣∣∣det

([−2 1
1 1

])∣∣∣∣ = | − 3| = 3 , (5.71)

i.e., the area of this is exactly 3 times the area of the unit square. We2801

can find this scaling factor by finding a mapping that transforms the unit2802

square into the other square. In linear algebra terms, we effectively per-2803

form a variable transformation from (b1, b2) to (c1, c2). In our case, the2804

mapping is linear and the absolute value of the determinant of this map-2805

ping gives us exactly the scaling factor we are looking for.2806

We will describe two approaches to identify this mapping. First, we ex-2807

ploit the fact that the mapping is linear so that we can use the tools from2808

Chapter 2 to identify this mapping. Second, we will find the mapping2809

using partial derivatives using the tools we have been discussing in this2810

chapter.2811

Approach 1 To get started with the linear algebra approach, we
identify both {b1, b2} and {c1, c2} as bases of R2 (see Section 2.6.1 for a
recap). What we effectively perform is a change of basis from (b1, b2) to
(c1, c2), and we are looking for the transformation matrix that implements
the basis change. Using results from Section 2.7.2, we identify the desired
basis change matrix as

J =

[−2 1
1 1

]
, (5.72)

such that Jb1 = c1 and Jb2 = c2. The absolute value of the determi-2812

nant of J , which yields the scaling factor we are looking for, is given as2813

|det(J)| = 3, i.e., the area of the square spanned by (c1, c2) is three times2814

greater than the area spanned by (b1, b2).2815

Approach 2 The linear algebra approach works nicely for linear2816
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transformations; for nonlinear transformations (which become relevant in2817

Chapter 6), we can follow a more general approach using partial deriva-2818

tives.2819

For this approach, we consider a function f : R2 → R2 that performs
a variable transformation. In our example, f maps the coordinate repre-
sentation of any vector x ∈ R2 with respect to (b1, b2) onto the coordi-
nate representation y ∈ R2 with respect to (c1, c2). We want to identify
the mapping so that we can compute how an area (or volume) changes
when it is being transformed by f . For this we need to find out how f(x)
changes if we modify x a bit. This question is exactly answered by the
Jacobian matrix df

dx
∈ R2×2. Since we can write

y1 = −2x1 + x2 (5.73)

y2 = x1 + x2 (5.74)

we obtain the functional relationship between x and y, which allows us
to get the partial derivatives

∂y1

∂x1

= −2 ,
∂y1

∂x2

= 1 ,
∂y2

∂x1

= 1 ,
∂y2

∂x2

= 1 (5.75)

and compose the Jacobian as

J =

[
∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

]
=

[−2 1
1 1

]
. (5.76)

The Jacobian represents the coordinate transformation we are lookingGeometrically, the
Jacobian
determinant gives
the magnification/
scaling factor when
we transform an
area or volume.

2820

for and is exact if the coordinate transformation is linear (as in our case),2821

and (5.76) recovers exactly the basis change matrix in (5.72). If the co-2822

ordinate transformation is nonlinear, the Jacobian approximates this non-2823

linear transformation locally with a linear one. The absolute value of the2824

Jacobian determinant |det(J)| is the factor areas or volumes are scaled by
Jacobian
determinant

2825

when coordinates are transformed. In our case, we obtain |det(J)| = 3.2826

The Jacobian determinant and variable transformations will become2827

relevant in Section 6.5 when we transform random variables and prob-2828

ability distributions. These transformations are extremely relevant in ma-2829

chine learning in the context of training deep neural networks using the2830

reparametrization trick, also called infinite perturbation analysis.2831

♦2832

Figure 5.6
Overview of the
dimensionality of
(partial) derivatives.

f (x)
x

∂f

∂x

Throughout this chapter, we have encountered derivatives of functions.2833

Figure 5.6 summarizes the dimensions of those gradients. If f : R →2834

R the gradient is simply a scalar (top-left entry). For f : RD → R the2835

gradient is a 1 × D row vector (to-right entry). For f : R → RE , the2836

gradient is an E × 1 column vector, and for f : RD → RE the gradient is2837

an E ×D matrix.2838
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Example 5.8 (Gradient of a Vector-Valued Function)
We are given

f(x) = Ax , f(x) ∈ RM , A ∈ RM×N , x ∈ RN .
To compute the gradient df/dx we first determine the dimension of
df/dx: Since f : RN → RM , it follows that df/dx ∈ RM×N . Second,
to compute the gradient we determine the partial derivatives of f with
respect to every xj:

fi(x) =
N∑
j=1

Aijxj =⇒ ∂fi
∂xj

= Aij (5.77)

Finally, we collect the partial derivatives in the Jacobian and obtain the
gradient as

df

dx
=


∂f1
∂x1

· · · ∂f1
∂xN

...
...

∂fM
∂x1

· · · ∂fM
∂xN

 =

A11 · · · A1N

...
...

AM1 · · · AMN

 = A ∈ RM×N . (5.78)

Example 5.9 (Chain Rule)
Consider the function h : R→ R, h(t) = (f ◦ g)(t) with

f : R2 → R (5.79)

g : R→ R2 (5.80)

f(x) = exp(x1x
2
2) , (5.81)

x =

[
x1

x2

]
= g(t) =

[
t cos t
t sin t

]
(5.82)

and compute the gradient of h with respect to t. Since f : R2 → R and
g : R→ R2 we note that

∂f

∂x
∈ R1×2 ,

∂g

∂t
∈ R2×1 . (5.83)

The desired gradient is computed by applying the chain-rule:

dh

dt
=
∂f

∂x

∂x

∂t
=
[
∂f
∂x1

∂f
∂x2

][∂x1

∂t
∂x2

∂t

]
(5.84)

=
[
exp(x1x

2
2)x2

2 2 exp(x1x
2
2)x1x2

][cos t− t sin t
sin t+ t cos t

]
(5.85)

= exp(x1x
2
2)
(
x2

2(cos t− t sin t) + 2x1x2(sin t+ t cos t)
)
, (5.86)

where x1 = t cos t and x2 = t sin t, see (5.82).
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Example 5.10 (Gradient of a Least-Squared Loss in a Linear Model)
Let us consider the linear model

y = Φθ , (5.87)

where θ ∈ RD is a parameter vector, Φ ∈ RN×D are input features and
y ∈ RN are the corresponding observations. We define the functionsWe will discuss this

model in much
more detail in
Chapter 9 in the
context of linear
regression, where
we need derivatives
of the least-squares
loss L with respect
to the parameters θ.

L(e) := ‖e‖2 , (5.88)

e(θ) := y −Φθ . (5.89)

We seek ∂L
∂θ

, and we will use the chain rule for this purpose. L is called a
least-squares loss function.least-squares loss

Before we start our calculation, we determine the dimensionality of the
gradient as

∂L

∂θ
∈ R1×D . (5.90)

The chain rule allows us to compute the gradient as

∂L

∂θ
=
∂L

∂e

∂e

∂θ
, (5.91)

where the dth element is given bydLdtheta =
np.einsum(
’n,nd’,
dLde,dedtheta)

∂L

∂θ
[1, d] =

N∑
n=1

∂L

∂e
[n]
∂e

∂θ
[n, d] . (5.92)

We know that ‖e‖2 = e>e (see Section 3.2) and determine

∂L

∂e
= 2e> ∈ R1×N . (5.93)

Furthermore, we obtain

∂e

∂θ
= −Φ ∈ RN×D , (5.94)

such that our desired derivative is
∂L

∂θ
= −2e>Φ

(5.89)
= − 2(y> − θ>Φ>)︸ ︷︷ ︸

1×N

Φ︸︷︷︸
N×D

∈ R1×D . (5.95)

Remark. We would have obtained the same result without using the chain
rule by immediately looking at the function

L2(θ) := ‖y −Φθ‖2 = (y −Φθ)>(y −Φθ) . (5.96)

This approach is still practical for simple functions like L2 but becomes
impractical for deep function compositions. ♦
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Figure 5.7
Visualization of
gradient
computation of a
matrix with respect
to a vector. We are
interested in
computing the
gradient of
A ∈ R4×2 with
respect to a vector
x ∈ R3. We know
that gradient
dA
dx
∈ R4×2×3. We

follow two
equivalent
approaches to arrive
there: (a) Collating
partial derivatives
into a Jacobian
tensor; (b)
Flattening of the
matrix into a vector,
computing the
Jacobian matrix,
re-shaping into a
Jacobian tensor.

A ∈ R4×2 x ∈ R3

∂A

∂x1

∈ R4×2

∂A

∂x2

∈ R4×2

∂A

∂x3

∈ R4×2

x1

x2

x3

dA

dx
∈ R4×2×3

4

2

3

Partial derivatives:

collate

(a) Approach 1: We compute the partial derivative
∂A
∂x1

, ∂A
∂x2

, ∂A
∂x3

, each of which is a 4× 2 matrix, and col-
late them in a 4× 2× 3 tensor.

A ∈ R4×2 x ∈ R3

x1

x2

x3

dA

dx
∈ R4×2×3

re-shape re-shapegradient

A ∈ R4×2 Ã ∈ R8

dÃ

dx
∈ R8×3

(b) Approach 2: We re-shape (flatten) A ∈ R4×2 into a
vector Ã ∈ R8. Then, we compute the gradient dÃ

dx
∈

R8×3. We obtain the gradient tensor by re-shaping this gra-
dient as illustrated above.

5.4 Gradients of Matrices2839

We will encounter situations where we need to take gradients of matri-2840

ces with respect to vectors (or other matrices), which results in a multi-2841

dimensional tensor. For example, if we compute the gradient of an m× n2842
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matrix with respect to a p × q matrix, the resulting Jacobian would be2843

(p× q)× (m× n), i.e., a four-dimensional tensor (or array).2844

Since matrices represent linear mappings, we can exploit the fact that2845

there is a vector-space isomorphism (linear, invertible mapping) between2846

the space Rm×n of m × n matrices and the space Rmn of mn vectors.2847

Therefore, we can re-shape our matrices into vectors of lengths mn and2848

pq, respectively. The gradient using these mn vectors results in a Jacobian2849

of size pq × mn. Figure 5.7 visualizes both approaches. In practical ap-Matrices can be
transformed into
vectors by stacking
the columns of the
matrix
(“flattening”).

2850

plications, it is often desirable to re-shape the matrix into a vector and2851

continue working with this Jacobian matrix: The chain rule (5.56) boils2852

down to simple matrix multiplication, whereas in the case of a Jacobian2853

tensor, we will need to pay more attention to what dimensions we need2854

to sum out.2855

Example 5.11 (Gradient of Vectors with Respect to Matrices)
Let us consider the following example, where

f = Ax , f ∈ RM ,A ∈ RM×N ,x ∈ RN (5.97)

and where we seek the gradient df/dA. Let us start again by determining
the dimension of the gradient as

df

dA
∈ RM×(M×N) . (5.98)

By definition, the gradient is the collection of the partial derivatives:

df

dA
=


∂f1
∂A
...

∂fM
∂A

 , ∂fi
∂A
∈ R1×(M×N) . (5.99)

To compute the partial derivatives, it will be helpful to explicitly write out
the matrix vector multiplication:

fi =
N∑
j=1

Aijxj, i = 1, . . . ,M , (5.100)

and the partial derivatives are then given as

∂fi
∂Aiq

= xq . (5.101)

This allows us to compute the partial derivatives of fi with respect to a
row of A, which is given as

∂fi
∂Ai,:

= x> ∈ R1×1×N , (5.102)

∂fi
∂Ak 6=i,:

= 0> ∈ R1×1×N (5.103)
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where we have to pay attention to the correct dimensionality. Since fi
maps onto R and each row of A is of size 1×N , we obtain a 1× 1×N -
sized tensor as the partial derivative of fi with respect to a row of A.

We stack the partial derivatives to obtain the desired gradient as

∂fi
∂A

=



0>

...
0>

x>

0>

...
0>


∈ R1×(M×N) . (5.104)

Example 5.12 (Gradient of Matrices with Respect to Matrices)
Consider a matrix L ∈ Rm×n and f : Rm×n → Rn×n with

f(L) = L>L =: K ∈ Rn×n . (5.105)

where we seek the gradient dK/dL. To solve this hard problem, let us
first write down what we already know: We know that the gradient has
the dimensions

dK

dL
∈ R(n×n)×(m×n) , (5.106)

which is a tensor. If we compute the partial derivative of f with respect to
a single entry Lij , i, j ∈ {1, . . . , n}, of L, we obtain an n× n-matrix

∂K

∂Lij
∈ Rn×n . (5.107)

Furthermore, we know that

dKpq

dL
∈ R1×m×n (5.108)

for p, q = 1, . . . , n, where Kpq = fpq(L) is the (p, q)-th entry of K =
f(L).

Denoting the i-th column of L by li, we see that every entry of K is
given by an inner product of two columns of L, i.e.,

Kpq = l>p lq =
m∑
k=1

LkpLkq . (5.109)

When we now compute the partial derivative ∂Kpq

∂Lij
, we obtain

∂Kpq

∂Lij
=

m∑
k=1

∂

∂Lij
LkpLkq = ∂pqij , (5.110)
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∂pqij =


Liq if j = p, p 6= q
Lip if j = q, p 6= q
2Liq if j = p, p = q
0 otherwise

(5.111)

From (5.106), we know that the desired gradient has the dimension
(n × n) × (m × n), and every single entry of this tensor is given by ∂pqij
in (5.111), where p, q, j = 1, . . . , n and i = q, . . . ,m.

5.5 Useful Identities for Computing Gradients2856

In the following, we list some useful gradients that are frequently required
in a machine learning context (Petersen and Pedersen, 2012):

∂

∂X
f(X)> =

(
∂f(X)

∂X

)>
(5.112)

∂

∂X
tr(f(X)) = tr

(
∂f(X)

∂X

)
(5.113)

∂

∂X
det(f(X)) = det(f(X))tr

(
f−1(X)

∂f(X)

∂X

)
(5.114)

∂

∂X
f−1(X) = −f−1(X)

∂f(X)

∂X
f−1(X) (5.115)

∂a>X−1b

∂X
= −(X−1)>ab>(X−1)> (5.116)

∂x>a

∂x
= a> (5.117)

∂a>x

∂x
= a> (5.118)

∂a>Xb

∂X
= ab> (5.119)

∂x>Bx

∂x
= x>(B +B>) (5.120)

∂

∂s
(x−As)>W (x−As) = −2(x−As)>WA for symmetric W

(5.121)

Here, we use tr as the trace operator (see Definition 4.3) and det is the2857

determinant (see Section 4.1).2858

5.6 Backpropagation and Automatic Differentiation2859

In many machine learning applications, we find good model parameters2860

by performing gradient descent (Chapter 7), which relies on the fact that2861
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we can compute the gradient of a learning objective with respect to the2862

parameters of the model. For a given objective function, we can obtain the2863

gradient with respect to the model parameters using calculus and applying2864

the chain rule, see Section 5.2.2. We already had a taste in Section 5.32865

when we looked at the gradient of a squared loss with respect to the2866

parameters of a linear regression model.2867

Consider the function

f(x) =
√
x2 + exp(x2) + cos

(
x2 + exp(x2)

)
. (5.122)

By application of the chain rule, and noting that differentiation is linear
we compute the gradient

df

dx
=

2x+ 2x exp(x2)

2
√
x2 + exp(x2)

− sin
(
x2 + exp(x2)

) (
2x+ 2x exp(x2)

)
= 2x

(
1

2
√
x2 + exp(x2)

− sin
(
x2 + exp(x2)

)) (
1 + exp(x2)

)
.

(5.123)

Writing out the gradient in this explicit way is often impractical since it2868

often results in a very lengthy expression for a derivative. In practice,2869

it means that, if we are not careful, the implementation of the gradient2870

could be significantly more expensive than computing the function, which2871

is an unnecessary overhead. For training deep neural network models, the2872

backpropagation algorithm (Kelley, 1960; Bryson, 1961; Dreyfus, 1962; backpropagation2873

Rumelhart et al., 1986) is an efficient way to compute the gradient of an2874

error function with respect to the parameters of the model.2875

5.6.1 Gradients in a Deep Network2876

In machine learning, the chain rule plays an important role when opti-
mizing parameters of a hierarchical model (e.g., for maximum likelihood
estimation). An area where the chain rule is used to an extreme is Deep
Learning where the function value y is computed as a deep function com-
position

y = (fK ◦ fK−1 ◦ · · · ◦ f1)(x) = fK(fK−1(· · · (f1(x)) · · · )) , (5.124)

where x are the inputs (e.g., images), y are the observations (e.g., class
labels) and every function fi, i = 1, . . . ,K possesses its own parameters.
In neural networks with multiple layers, we have functions fi(xi−1) =
σ(Aixi−1 + bi) in the ith layer. Here xi−1 is the output of layer i − 1 We discuss the case

where the activation
functions are
identical to
unclutter notation.

and σ an activation function, such as the logistic sigmoid 1
1+e−x , tanh or a

rectified linear unit (ReLU). In order to train these models, we require the
gradient of a loss function L with respect to all model parameters Aj, bj
for j = 1, . . . ,K. This also requires us to compute the gradient of L with
respect to the inputs of each layer. For example, if we have inputs x and
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Figure 5.8 Forward
pass in a multi-layer
neural network to
compute the loss L
as a function of the
inputs x and the
parameters Ai, bi.

x fK

A1, b1 AK−1, bK−1

LfL−1

AK−2, bK−2

f 1

A2, b2

Figure 5.9
Backward pass in a
multi-layer neural
network to compute
the gradients of the
loss function.

x fK

A1, b1 AK−1, bK−1

LfL−1

AK−2, bK−2

f 1

A2, b2

observations y and a network structure defined by

f 0 := x (5.125)

f i := σi(Ai−1f i−1 + bi−1) , i = 1, . . . ,K , (5.126)

see also Figure 5.8 for a visualization, we may be interested in finding
Aj, bj for j = 0, . . . ,K − 1, such that the squared loss

L(θ) = ‖y − fK(θ,x)‖2 (5.127)

is minimized, where θ = {A0, b0, . . . ,AK−1, bK−1}.2877

To obtain the gradients with respect to the parameter set θ, we require
the partial derivatives of L with respect to the parameters θj = {Aj, bj}
of each layer j = 0, . . . ,K − 1. The chain rule allows us to determine the
partial derivatives as

∂L

∂θK−1

=
∂L

∂fK

∂fK
∂θK−1

(5.128)

∂L

∂θK−2

=
∂L

∂fK

∂fK
∂fK−1

∂fK−1

∂θK−2

(5.129)

∂L

∂θK−3

=
∂L

∂fK

∂fK
∂fK−1

∂fK−1

∂fK−2

∂fK−2

∂θK−3

(5.130)

∂L

∂θi
=

∂L

∂fK

∂fK
∂fK−1

· · · ∂f i+2

∂f i+1

∂f i+1

∂θi
(5.131)

The orange terms are partial derivatives of the output of a layer with re-2878

spect to its inputs, whereas the blue terms are partial derivatives of the2879

output of a layer with respect to its parameters. Assuming, we have al-2880

ready computed the partial derivatives ∂L/∂θi+1, then most of the com-2881

putation can be reused to compute ∂L/∂θi. The additional terms that2882

we need to compute are indicated by the boxes. Figure 5.9 visualizes2883

that the gradients are passed backward through the network. A more2884
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Figure 5.10 Simple
graph illustrating
the flow of data
from x to y via
some intermediate
variables a, b.

x a b y

in-depth discussion about gradients of neural networks can be found at2885

https://tinyurl.com/yalcxgtv.2886

There are efficient ways of implementing this repeated application of2887

the chain rule using backpropagation (Kelley, 1960; Bryson, 1961; Drey- backpropagation2888

fus, 1962; Rumelhart et al., 1986). A good discussion about backpropaga-2889

tion and the chain rule is available at https://tinyurl.com/ycfm2yrw.2890

5.6.2 Automatic Differentiation2891

Automatic
differentiation is
different from
symbolic
differentiation and
numerical
approximations of
the gradient, e.g., by
using finite
differences.

It turns out that backpropagation is a special case of a general technique2892

in numerical analysis called automatic differentiation. We can think of au-

automatic
differentiation

2893

tomatic differentation as a set of techniques to numerically (in contrast to2894

symbolically) evaluate the exact (up to machine precision) gradient of a2895

function by working with intermediate variables and applying the chain2896

rule. Automatic differentiation applies a series of elementary arithmetic2897

operations, e.g., addition and multiplication and elementary functions,2898

e.g., sin, cos, exp, log. By applying the chain rule to these operations, the2899

gradient of quite complicated functions can be computed automatically.2900

Automatic differentiation applies to general computer programs and has2901

forward and reverse modes.2902

Figure 5.10 shows a simple graph representing the data flow from in-
puts x to outputs y via some intermediate variables a, b. If we were to
compute the derivative dy/dx, we would apply the chain rule and obtain

dy

dx
=

dy

db

db

da

da

dx
. (5.132)

Intuitively, the forward and reverse mode differ in the order of multi- In the general case,
we work with
Jacobians, which
can be vectors,
matrices or tensors.

plication. Due to the associativity of matrix multiplication we can choose
between

dy

dx
=

(
dy

db

db

da

)
da

dx
, (5.133)

dy

dx
=

dy

db

(
db

da

da

dx

)
. (5.134)

Equation (5.133) would be the reverse mode because gradients are prop- reverse mode2903

agated backward through the graph, i.e., reverse to the data flow. Equa-2904

tion (5.134) would be the forward mode, where the gradients flow with forward mode2905

the data from left to right through the graph.2906

In the following, we will focus on reverse mode automatic differentia-2907

tion, which is backpropagation. In the context of neural networks, where2908

the input dimensionality is often much higher than the dimensionality of2909
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the labels, the reverse mode is computationally significantly cheaper than2910

the forward mode. Let us start with an instructive example.2911

Example 5.13
Consider the function

f(x) =
√
x2 + exp(x2) + cos

(
x2 + exp(x2)

)
(5.135)

from (5.122). If we were to implement a function f on a computer, we
would be able to save some computation by using intermediate variables:intermediate

variables
a = x2 , (5.136)

b = exp(a) , (5.137)

c = a+ b , (5.138)

d =
√
c , (5.139)

e = cos(c) , (5.140)

f = d+ e . (5.141)

Figure 5.11
Computation graph
with inputs x,
function values f
and intermediate
variables a, b, c, d, e.

x (·)2 a

exp(·) b

+ c

√·

cos(·)

d

e

+ f

This is the same kind of thinking process that occurs when applying the
chain rule. Observe that the above set of equations require fewer opera-
tions than a direct naive implementation of the function f(x) as defined
in (5.122). The corresponding computation graph in Figure 5.11 shows
the flow of data and computations required to obtain the function value
f .

The set of equations that include intermediate variables can be thought
of as a computation graph, a representation that is widely used in imple-
mentations of neural network software libraries. We can directly compute
the derivatives of the intermediate variables with respect to their corre-
sponding inputs by recalling the definition of the derivative of elementary
functions. We obtain:

∂a

∂x
= 2x , (5.142)

∂b

∂a
= exp(a) , (5.143)

∂c

∂a
= 1 =

∂c

∂b
, (5.144)
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∂d

∂c
=

1

2
√
c
, (5.145)

∂e

∂c
= − sin(c) , (5.146)

∂f

∂d
= 1 =

∂f

∂e
. (5.147)

By looking at the computation graph in Figure 5.11, we can compute
∂f/∂x by working backward from the output, and we obtain the follow-
ing relations:

∂f

∂c
=
∂f

∂d

∂d

∂c
+
∂f

∂e

∂e

∂c
, (5.148)

∂f

∂b
=
∂f

∂c

∂c

∂b
, (5.149)

∂f

∂a
=
∂f

∂b

∂b

∂a
+
∂f

∂c

∂c

∂a
, (5.150)

∂f

∂x
=
∂f

∂a

∂a

∂x
. (5.151)

Note that we have implicitly applied the chain rule to obtain ∂f/∂x. By
substituting the results of the derivatives of the elementary functions, we
get

∂f

∂c
= 1 · 1

2
√
c

+ 1 · (− sin(c)) , (5.152)

∂f

∂b
=
∂f

∂c
· 1 , (5.153)

∂f

∂a
=
∂f

∂b
exp(a) +

∂f

∂c
· 1 , (5.154)

∂f

∂x
=
∂f

∂a
· 2x . (5.155)

By thinking of each of the derivatives above as a variable, we observe
that the computation required for calculating the derivative is of similar
complexity as the computation of the function itself. This is quite counter-
intuitive since the mathematical expression for the derivative ∂f

∂x
(5.123)

is significantly more complicated than the mathematical expression of the
function f(x) in (5.122).

Automatic differentiation is a formalization of the example above. Let
x1, . . . , xd be the input variables to the function, xd+1, . . . , xD−1 be the
intermediate variables and xD the output variable. Then the computation
graph can be expressed as an equation

For i = d+ 1, . . . , D : xi = gi(xPa(xi)) (5.156)
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where gi(·) are elementary functions and xPa(xi) are the parent nodes of
the variable xi in the graph. Given a function defined in this way, we can
use the chain rule to compute the derivative of the function in a step-by-
step fashion. Recall that by definition f = xD and hence

∂f

∂xD
= 1. (5.157)

For other variables xi, we apply the chain rule

∂f

∂xi
=

∑
xj :xi∈Pa(xj)

∂f

∂xj

∂xj
∂xi

=
∑

xj :xi∈Pa(xj)

∂f

∂xj

∂gj
∂xi

, (5.158)

where Pa(xj) is the set of parent nodes of xj in the computation graph.2912

Equation (5.156) is the forward propagation of a function, whereas (5.158)Auto-differentiation
in reverse mode
requires a parse
tree.

2913

is the backpropagation of the gradient through the computation graph. For2914

neural network training we backpropagate the error of the prediction with2915

respect to the label.2916

The automatic differentiation approach above works whenever we have2917

a function that can be expressed as a computation graph, where the ele-2918

mentary functions are differentiable. In fact, the function may not even be2919

a mathematical function but a computer program. However, not all com-2920

puter programs can be automatically differentiated, e.g., if we cannot find2921

differential elementary functions. Programming structures, such as for2922

loops and if statements require more care as well.2923

5.7 Higher-order Derivatives2924

So far, we discussed gradients, i.e., first-order derivatives. Sometimes, we2925

are interested in derivatives of higher order, e.g., when we want to use2926

Newton’s Method for optimization, which requires second-order deriva-2927

tives (Nocedal and Wright, 2006). In Section 5.1.1, we discussed the Tay-2928

lor series to approximate functions using polynomials. In the multivariate2929

case, we can do exactly the same. In the following, we will do exactly this.2930

But let us start with some notation.2931

Consider a function f : R2 → R of two variables x, y. We use the2932

following notation for higher-order partial derivatives (and for gradients):2933

• ∂2f
∂x2 is the second partial derivative of f with respect to x2934

• ∂nf
∂xn is the nth partial derivative of f with respect to x2935

• ∂2f
∂y∂x

= ∂
∂y

(
∂f
∂x

)
is the partial derivative obtained by first partial differ-2936

entiating with respect to x and then with respect to y2937

• ∂2f
∂x∂y

is the partial derivative obtained by first partial differentiating by2938

y and then x2939

The Hessian is the collection of all second-order partial derivatives.Hessian 2940
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Figure 5.12 Linear
approximation of a
function. The
original function f
is linearized at
x0 = −2 using a
first-order Taylor
series expansion.

−4 −2 0 2 4
x

−2

−1

0

1

f
(x

)

f (x)

f (x0) f (x0) + f ′(x0)(x− x0)

If f(x, y) is a twice (continuously) differentiable function then

∂2f

∂x∂y
=

∂2f

∂y∂x
, (5.159)

i.e., the order of differentiation does not matter, and the corresponding
Hessian matrix Hessian matrix

H =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

]
(5.160)

is symmetric. Generally, for x ∈ Rn and f : Rn → R, the Hessian is an2941

n× n matrix. The Hessian measures the local geometry of curvature.2942

Remark (Hessian of a Vector Field). If f : Rn → Rm is a vector field, the2943

Hessian is an (m× n× n)-tensor. ♦2944

5.8 Linearization and Multivariate Taylor Series2945

The gradient ∇f of a function f is often used for a locally linear approxi-
mation of f around x0:

f(x) ≈ f(x0) + (∇xf)(x0)(x− x0) . (5.161)

Here (∇xf)(x0) is the gradient of f with respect to x, evaluated at x0.2946

Figure 5.12 illustrates the linear approximation of a function f at an input2947

x0. The orginal function is approximated by a straight line. This approx-2948

imation is locally accurate, but the further we move away from x0 the2949

worse the approximation gets. Equation (5.161) is a special case of a mul-2950

tivariate Taylor series expansion of f at x0, where we consider only the2951

first two terms. We discuss the more general case in the following, which2952

will allow for better approximations.2953

Definition 5.7 (Multivariate Taylor Series). For the multivariate Taylor multivariate Taylor
series
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Figure 5.13
Visualizing outer
products. Outer
products of vectors
increase the
dimensionality of
the array by 1 per
term.

(a) Given a vector δ ∈ R4, we obtain the outer product δ2 := δ ⊗
δ = δδ> ∈ R4×4 as a matrix.

(b) An outer product δ3 := δ⊗δ⊗δ ∈ R4×4×4 results in a third-order tensor
(“three-dimensional matrix”), i.e., an array with three indexes.

series, we consider a function

f : RD → R (5.162)

x 7→ f(x) , x ∈ RD , (5.163)

that is smooth at x0.2954

When we define the difference vector δ := x− x0, the Taylor series of
f at (x0) is defined as

f(x) =
∞∑
k=0

Dk
xf(x0)

k!
δk , (5.164)

where Dk
xf(x0) is the k-th (total) derivative of f with respect to x, eval-2955

uated at x0.2956

Definition 5.8 (Taylor Polynomial). The Taylor polynomial of degree n ofTaylor polynomial

f at x0 contains the first n+ 1 components of the series in (5.164) and is
defined as

Tn =
n∑
k=0

Dk
xf(x0)

k!
δk . (5.165)

Remark (Notation). In (5.164) and (5.165), we used the slightly sloppy
notation of δk, which is not defined for vectors x ∈ RD, D > 1, and k >
1. Note that both Dk

xf and δk are k-th order tensors, i.e., k-dimensional

arrays. The k-th order tensor δk ∈ R
k times︷ ︸︸ ︷

D×D×...×D is obtained as a k-foldA vector can be
implemented as a
1-dimensional array,
a matrix as a
2-dimensional array.

outer product, denoted by ⊗, of the vector δ ∈ RD. For example,

δ2 = δ ⊗ δ = δδ> , δ2[i, j] = δ[i]δ[j] (5.166)

δ3 = δ ⊗ δ ⊗ δ , δ3[i, j, k] = δ[i]δ[j]δ[k] . (5.167)
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Figure 5.13 visualizes two such outer products. In general, we obtain the
following terms in the Taylor series:

Dk
xf(x0)δk =

∑
a

· · ·
∑
k

Dk
xf(x0)[a, . . . , k]δ[a] · · · δ[k] , (5.168)

where Dk
xf(x0)δk contains k-th order polynomials.2957

Now that we defined the Taylor series for vector fields, let us explicitly
write down the first terms Dk

xf(x0)δk of the Taylor series expansion for
k = 0, . . . , 3 and δ := x− x0:

np.einsum(
’i,i’,Df1,d)

np.einsum(
’ij,i,j’,
Df2,d,d)

np.einsum(
’ijk,i,j,k’,
Df3,d,d,d)

k = 0 : D0
xf(x0)δ0 = f(x0) ∈ R (5.169)

k = 1 : D1
xf(x0)δ1 = ∇xf(x0)︸ ︷︷ ︸

1×D

δ︸︷︷︸
D×1

=
∑
i

∇xf(x0)[i]δ[i] ∈ R (5.170)

k = 2 : D2
xf(x0)δ2 = tr

(
H︸︷︷︸
D×D

δ︸︷︷︸
D×1

δ>︸︷︷︸
1×D

)
= δ>Hδ (5.171)

=
∑
i

∑
j

H[i, j]δ[i]δ[j] ∈ R (5.172)

k = 3 : D3
xf(x0)δ3 =

∑
i

∑
j

∑
k

D3
xf(x0)[i, j, k]δ[i]δ[j]δ[k] ∈ R

(5.173)

♦2958

Example 5.14 (Taylor-Series Expansion of a Function with Two Vari-
ables)
Consider the function

f(x, y) = x2 + 2xy + y3 . (5.174)

We want to compute the Taylor series expansion of f at (x0, y0) = (1, 2).
Before we start, let us discuss what to expect: The function in (5.174) is
a polynomial of degree 3. We are looking for a Taylor series expansion,
which itself is a linear combination of polynomials. Therefore, we do not
expect the Taylor series expansion to contain terms of fourth or higher
order to express a third-order polynomial. This means, it should be suffi-
cient to determine the first four terms of (5.164) for an exact alternative
representation of (5.174).

To determine the Taylor series expansion, start of with the constant term
and the first-order derivatives, which are given by

f(1, 2) = 13 (5.175)
∂f

∂x
= 2x+ 2y =⇒ ∂f

∂x
(1, 2) = 6 (5.176)

∂f

∂y
= 2x+ 3y2 =⇒ ∂f

∂y
(1, 2) = 14 . (5.177)
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Therefore, we obtain

D1
x,yf(1, 2) = ∇x,yf(1, 2) =

[
∂f
∂x

(1, 2) ∂f
∂y

(1, 2)
]

=
[
6 14

]
∈ R1×2

(5.178)

such that

D1
x,yf(1, 2)

1!
δ =

[
6 14

] [x− 1
y − 2

]
= 6(x− 1) + 14(y − 2) . (5.179)

Note that D1
x,yf(1, 2)δ contains only linear terms, i.e., first-order polyno-

mials.
The second-order partial derivatives are given by

∂2f

∂x2
= 2 =⇒ ∂2f

∂x2
(1, 2) = 2 (5.180)

∂2f

∂y2
= 6y =⇒ ∂2f

∂y2
(1, 2) = 12 (5.181)

∂2f

∂y∂x
= 2 =⇒ ∂2f

∂y∂x
(1, 2) = 2 (5.182)

∂2f

∂x∂y
= 2 =⇒ ∂2f

∂x∂y
(1, 2) = 2 . (5.183)

When we collect the second-order partial derivatives, we obtain the Hes-
sian

H =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
=

[
2 2
2 6y

]
, (5.184)

such that

H(1, 2) =

[
2 2
2 12

]
∈ R2×2 . (5.185)

Therefore, the next term of the Taylor-series expansion is given by

D2
x,yf(1, 2)

2!
δ2 =

1

2
δ>H(1, 2)δ (5.186)

=
[
x− 1 y − 2

] [2 2
2 12

] [
x− 1
y − 2

]
(5.187)

= (x− 1)2 + 2(x− 1)(y − 2) + 6(y − 2)2 . (5.188)

Here,D2
x,yf(1, 2)δ2 contains only quadratic terms, i.e., second-order poly-

nomials.
The third-order derivatives are obtained as

D3
x,yf =

[
∂H
∂x

∂H
∂y

]
∈ R2×2×2 , (5.189)
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D3
x,yf [:, :, 1] =

∂H

∂x
=

[
∂3f
∂x3

∂3f
∂x2∂y

∂3f
∂x∂y∂x

∂3f
∂x∂y2

]
, (5.190)

D3
x,yf [:, :, 2] =

∂H

∂y
=

[
∂3f
∂y∂x2

∂3f
∂y∂x∂y

∂3f
∂y2∂x

∂3f
∂y3

]
. (5.191)

Since most second-order partial derivatives in the Hessian in (5.184) are
constant the only non-zero third-order partial derivative is

∂3f

∂y3
= 6 =⇒ ∂3f

∂y3
(1, 2) = 6 . (5.192)

Higher-order derivatives and the mixed derivatives of degree 3 (e.g.,
∂f3

∂x2∂y
) vanish, such that

D3
x,yf [:, :, 1] =

[
0 0
0 0

]
, D3

x,yf [:, :, 2] =

[
0 0
0 6

]
(5.193)

and

D3
x,yf(1, 2)

3!
δ3 = (y − 2)3 , (5.194)

which collects all cubic terms (third-order polynomials) of the Taylor se-
ries.

Overall, the (exact) Taylor series expansion of f at (x0, y0) = (1, 2) is

f(x) = f(1, 2) +D1
x,yf(1, 2)δ+

D2
x,yf(1, 2)

2!
δ2 +

D3
x,yf(1, 2)

3!
δ3 (5.195)

= f(1, 2) +
∂f(1, 2)

∂x
(x− 1) +

∂f(1, 2)

∂y
(y − 2) (5.196)

+
1

2!

(
∂2f(1, 2)

∂x2
(x− 1)2 +

∂2f(1, 2)

∂y2
(y − 2)2 (5.197)

+ 2
∂2f(1, 2)

∂x∂y
(x− 1)(y − 2)

)
+

1

6

∂3f(1, 2)

∂y3
(y − 2)3 (5.198)

= 13 + 6(x− 1) + 14(y − 2) (5.199)

+ (x− 1)2 + 6(y − 2)2 + 2(x− 1)(y − 2) + (y − 2)3 . (5.200)

In this case, we obtained an exact Taylor series expansion of the polyno-
mial in (5.174), i.e., the polynomial in (5.200) is identical to the original
polynomial in (5.174). In this particular example, this result is not sur-
prising since the original function was a third-order polynomial, which
we expressed through a linear combination of constant terms, first-order,
second order and third-order polynomials in (5.200).
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5.9 Further Reading2959

Further details of matrix differentials, along with a short review of the re-2960

quired linear algebra can be found in Magnus and Neudecker (2007). Au-2961

tomatic differentiation has had a long history, and the reader is referred to2962

Griewank and Walther (2003, 2008); Elliott (2009) and their references.2963

In machine learning (and other disciplines), we often need to compute
expectations, i.e., we need to solve integrals of the form

Ex[f(x)] =

∫
f(x)p(x)dx . (5.201)

Even if p(x) is in a convenient form (e.g., Gaussian), this integral gen-2964

erally cannot be solved analytically. The Taylor series expansion of f is2965

one way of finding an approximate solution: Assuming p(x) = N
(
µ, Σ

)
2966

is Gaussian, then the first-order Taylor series expansion around µ locally2967

linearizes the nonlinear function f . For linear functions, we can compute2968

the mean (and the covariance) exactly if p(x) is Gaussian distributed (see2969

Section 6.6). This property is heavily exploited by the Extended KalmanExtended Kalman
Filter

2970

Filter (Maybeck, 1979) for online state estimation in nonlinear dynami-2971

cal systems (also called “state-space models”). Other deterministic ways2972

to approximate the integral in (5.201) are the unscented transform (Julierunscented transform2973

and Uhlmann, 1997), which does not require any gradients, or the LaplaceLaplace
approximation

2974

approximation (Bishop, 2006), which uses the Hessian for a local Gaussian2975

approximation of p(x) at the posterior mean.2976

Exercises2977

5.1 Compute the derivative f ′(x) for

f(x) = log(x4) sin(x3) . (5.202)

5.2 Compute the derivative f ′(x) of the logistic sigmoid

f(x) =
1

1 + exp(−x)
. (5.203)

5.3 Compute the derivative f ′(x) of the function

f(x) = exp(− 1
2σ2 (x− µ)2) , (5.204)

where µ, σ ∈ R are constants.2978

5.4 Compute the Taylor polynomials Tn, n = 0, . . . , 5 of f(x) = sin(x) + cos(x)2979

at x0 = 0.2980

5.5 Consider the following functions

f1(x) = sin(x1) cos(x2) , x ∈ R2 (5.205)

f2(x,y) = x>y , x,y ∈ Rn (5.206)

f3(x) = xx> , x ∈ Rn (5.207)

1. What are the dimensions of ∂fi∂x ?2981
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2. Compute the Jacobians2982

5.6 Differentiate f with respect to t and g with respect to X, where

f(t) = sin(log(t>t)) , t ∈ RD (5.208)

g(X) = tr(AXB) , A ∈ RD×E ,X ∈ RE×F ,B ∈ RF×D , (5.209)

where tr denotes the trace.2983

5.7 Compute the derivatives df/dx of the following functions by using the chain2984

rule. Provide the dimensions of every single partial derivative. Describe your2985

steps in detail.2986

1.

f(z) = log(1 + z) , z = x>x , x ∈ RD

2.

f(z) = sin(z) , z = Ax+ b , A ∈ RE×D,x ∈ RD, b ∈ RE

where sin(·) is applied to every element of z.2987

5.8 Compute the derivatives df/dx of the following functions.2988

Describe your steps in detail.2989

1. Use the chain rule. Provide the dimensions of every single partial deriva-
tive.

f(z) = exp(− 1
2z)

z = g(y) = y>S−1y

y = h(x) = x− µ

where x,µ ∈ RD, S ∈ RD×D.2990

2.

f(x) = tr(xx> + σ2I) , x ∈ RD

Here tr(A) is the trace of A, i.e., the sum of the diagonal elements Aii.2991

Hint: Explicitly write out the outer product.2992

3. Use the chain rule. Provide the dimensions of every single partial deriva-
tive. You do not need to compute the product of the partial derivatives
explicitly.

f = tanh(z) ∈ RM

z = Ax+ b, x ∈ RN ,A ∈ RM×N , b ∈ RM .

Here, tanh is applied to every component of z.2993
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Probability and Distributions

2932

Probability, loosely speaking, is the study of uncertainty. Probability can2933

be thought of as the fraction of times an event occurs, or as a degree of2934

belief about an event. We then would like to use this probability to mea-2935

sure the chance of something occurring in an experiment. As mentioned in2936

the introduction (Chapter 1), we would often like to quantify uncertainty:2937

uncertainty in the data, uncertainty in the machine learning model, and2938

uncertainty in the predictions produced by the model. Quantifying un-2939

certainty requires the idea of a random variable, which is a function thatrandom variable 2940

maps outcomes of random experiments to real numbers. Associated with2941

the random variable is a number corresponding to each possible mapping2942

of outcomes to real numbers. This set of numbers specifies the probability2943

of occurrence, and is called the probability distribution.probability
distribution

2944

Probability distributions are used as a building block for other concepts,2945

such as model selection (Section 8.4) and graphical models (Section 8.5).2946

In this section, we present the three concepts that define a probability2947

space: the state space, the events and the probability of an event. The pre-2948

sentation is deliberately slightly hand wavy since a rigorous presentation2949

would occlude the main idea.2950

6.1 Construction of a Probability Space2951

The theory of probability aims at defining a mathematical structure to2952

describe random outcomes of experiments. For example, when tossing a2953

single coin, one cannot determine the outcome, but by doing a large num-2954

ber of coin tosses, one can observe a regularity in the average outcome.2955

Using this mathematical structure of probability, the goal is to perform2956

automated reasoning, and in this sense probability generalizes logical rea-2957

soning (Jaynes, 2003).2958

6.1.1 Philosophical Issues2959

When constructing automated reasoning systems, classical Boolean logic2960

does not allow us to express certain forms of plausible reasoning. Consider2961

the following scenario: We observe that A is false. We find B becomes less2962

plausible although no conclusion can be drawn from classical logic. We2963
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6.1 Construction of a Probability Space 167

Figure 6.1 A mind
map of the concepts
related to random
variables and
probability
distributions, as
described in this
chapter.

random variable & distribution
(discrete or continuous)

sum rule product rule

Bayes’ Theorem

Summary Statistic

Mean Variance

Transformations

Independence

Inner Product

Gaussian

Binomial

Beta

Sufficient Statistics

Exponential Family

apply to

apply
to

derived
from

derived from

property of

is a is
a

apply to

between
between

example of

example of

co
nj

ug
at

e
of pr

op
er

ty
of

ha
s

fin
ite

observe that B is true. It seems A becomes more plausible. We use this2964

form of reasoning daily: Our friend is late. We have three hypotheses H1,2965

H2, H3. Was she H1 abducted by aliens, H2 abducted by kidnappers or H32966

delayed by traffic. How do we conclude H3 is the most plausible answer?2967

Seen in this way, probability theory can be considered a generalization of “For plausible
reasoning it is
necessary to extend
the discrete true and
false values of truth
to continuous plau-
sibilities.”(Jaynes,
2003)

2968

Boolean logic. In the context of machine learning, it is often applied in2969

this way to formalize the design of automated reasoning systems. Further2970

arguments about how probability theory is the foundation of reasoning2971

systems can be found in (Pearl, 1988).2972

The philosophical basis of probability and how it should be somehow2973

related to what we think should be true (in the logical sense) was studied2974

by Cox (Jaynes, 2003). Another way to think about it is that if we are2975

precise about our common sense constructing probabilities. E.T. Jaynes2976

(1922–1998) identified three mathematical criteria, which must apply to2977

all plausibilities:2978

1. The degrees of plausibility are represented by real numbers.2979

2. These numbers must be based on the rules of common sense.2980

1. Consistency or non-contradiction: when the same result can be reached2981

through different means, the same plausibility value must be found2982

in all cases.2983

2. Honesty: All available data must be taken into account.2984

3. Reproducibility: If our state of knowledge about two problems are2985

the same, then we must assign the same degree of plausibility to2986

both of them.2987
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The Cox-Jaynes’s theorem proves these plausibilities to be sufficient to2988

define the universal mathematical rules that apply to plausibility p, up2989

to an arbitrary monotonic function. Crucially, these rules are the rules of2990

probability.2991

Remark. In machine learning and statistics, there are two major interpre-2992

tations of probability: the Bayesian and frequentist interpretations (Bishop,2993

2006). The Bayesian interpretation uses probability to specify the degree2994

of uncertainty that the user has about an event, and is sometimes referred2995

to as subjective probability or degree of belief. The frequentist interpreta-2996

tion The frequentist interpretation considers probability to be the relative2997

frequencies of events, in the limit when one has infinite data. }2998

It is worth noting that some machine learning literature on probabilistic2999

models use lazy notation and jargon, which is confusing. Multiple distinct3000

concepts are all referred to as “probability distribution”, and the reader3001

has to often disentangle the meaning from the context. One trick to help3002

make sense of probability distributions is to check whether we are trying3003

to model something categorical (a discrete random variable) or some-3004

thing continuous (a continous random variable). The kinds of questions3005

we tackle in machine learning are closely related to whether we are con-3006

sidering categorical or continuous models.3007

6.1.2 Probability and Random Variables3008

Modern probability is based on a set of axioms proposed by Kolmogorov (Ja-3009

cod and Protter, 2004, Chapter 1 and 2) that introduce the three concepts3010

of state space, event space and probability measure.3011

The state space ⌦3012

The state space is the set of all possible outcomes of the exper-state space 3013

iment, usually denoted by ⌦. For example, two successive coin3014

tosses have a state space of {hh, tt, ht, th}, where “h” denotes3015

“heads” and “t” denotes “tails”.3016

The events A3017

The events can be observed after the experiment is done, i.e., theyevents 3018

are realizations of an experiment. The event space is often de-3019

noted by A and is also often the set of all subsets of ⌦. In the two3020

coins example, one possible element of A is the event when both3021

tosses are the same, that is {hh, tt}.3022

The probability P (A)3023

With each event A 2 A, we associate a number P (A) that mea-3024

sures the probability or belief that the event will occur. P (A) is3025

called the probability of A.probability 3026

The probability of a single event must lie in the interval [0, 1], and the3027

total probability over all states in the state space must sum to 1, i.e.,3028
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P

A2A P (A) = 1. We associate this number (the probability) to a par-3029

ticular event occurring, and intuitively understand this as the chance that3030

this event occurs. This association or mapping is called a random vari- random variable3031

able. This brings us back to the concepts at the beginning of this chapter,3032

where we can see that a random variable is a map from ⌦ to R. The name We omit the
definition of a
random variable as
this will become too
technical for the
purpose of this
book.

3033

“random variable” is a great source of misunderstanding as it is neither3034

random nor is it a variable. It is a function.3035

Remark. The state space ⌦ above unfortunately is referred to by differ-3036

ent names in different books. Another common name for ⌦ is sample3037

space (Grinstead and Snell, 1997; Jaynes, 2003), and state space is some-3038

times reserved for referring to states in a dynamical system (Hasselblatt3039

and Katok, 2003). Other names sometimes used to describe ⌦ are: sample3040

description space, possibility space and (very confusingly) event space.3041

}3042

We say that a random variable is distributed according to a particular3043

probability distribution, which defines the probability mapping between3044

the event and the probability of the event. The two concepts are inter-3045

twined, but for ease of presentation we will discuss some properties with3046

respect to random variables and others with respect to their distributions.3047

An outline of the concepts presented in this chapter are shown in Fig-3048

ure 6.1.3049

6.1.3 Statistics3050

Probability theory and statistics are often presented together, and in some3051

sense they are intertwined. One way of contrasting them is by the kinds of3052

problems that are considered. Using probability we can consider a model3053

of some process where the underlying uncertainty is captured by random3054

variables, and we use the rules of probability to derive what happens. Us-3055

ing statistics we observe that something has happened, and try to figure3056

out the underlying process that explains the observations. In this sense3057

machine learning is close to statistics in its goals, that is to construct a3058

model that adequately represents the process that generated the data.3059

When the machine learning model is a probabilistic model, we can use3060

the rules of probability to calculate the “best fitting” model for some data.3061

Another aspect of machine learning systems is that we are interested3062

in generalization error. This means that we are actually interested in the3063

performance of our system on instances that we will observe in future,3064

which are not identical to the instances that we have seen so far. This3065

analysis of future performance relies on probability and statistics, most3066

of which is beyond what will be presented in this chapter. The interested3067

reader is encouraged to look at the books by Shalev-Shwartz and Ben-3068

David (2014); Boucheron et al. (2013). We will see more about statistics3069

in Chapter 8.3070
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Figure 6.2
Visualization of a
discrete bivariate
probability mass
function, with
random variables x
and y. This diagram
is from Bishop
(2006).
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6.2 Discrete and Continuous Probabilities3071

Let us focus our attention on ways to describe the probability of an event,3072

as introduced in Section 6.1. Depending on whether the state space is dis-3073

crete or continuous, the natural way to refer to distributions is different.3074

When the state space ⌦ is discrete, we can specify the probability that a3075

random variable x takes a particular value X 2 ⌦, denoted as P (x = X).3076

The expression P (x = X) for a discrete random variable x is known as theMany probability
textbooks tend to
use capital letters X
for random
variables, and small
letters x for their
values.

3077

probability mass function. We will discuss discrete random variables in the

probability mass
function

3078

following subsection. When the state space ⌦ is continuous, for example3079

the real line R, it is more natural to specify the probability that a random3080

variable x is in an interval. By convention we specify the probability that3081

a random variable x is less than a particular value X, denoted P (x 6 X).3082

The expression P (x 6 X) for a continuous random variable x is known as3083

the cumulative distribution function. We will discuss continuous randomcumulative
distribution function

3084

variables in Section 6.2.2. We will revisit the nomenclature and contrast3085

discrete and continuous random variables in Section 6.2.3.3086

6.2.1 Discrete Probabilities3087

When the state space is discrete, we can imagine the probability distri-
bution of multiple random variables as filling out a (multidimensional)
array of numbers. We define the joint probability as the entry of both val-joint probability

ues jointly.

P (x = Xi, y = Yi) =
nij

N
. (6.1)

To be precise, the above table defines the probability mass function (pmf)probability mass
function

3088

of a discrete probability distribution. For two random variables x and y,3089

the probability that x = X and y = Y is (lazily) written as p(x, y) and is3090

called the joint probability. The marginal probability is obtained by sum-marginal probability3091

ming over a row or column. The conditional probability is the fraction of aconditional
probability

3092

row or column in a particular cell.3093
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Example 6.1
Consider two random variables x and y, where x has five possible states
and y has three possible states, as shown in Figure 6.2. The value ci is
the sum of the individual probabilities for the ith column, that is ci =P3

j=1 nij . Simularly, the value rj is the row sum, that is rj =
P5

i=1 nij .
Using these definitions, we can compactly express the distribution of x

and y by themselves.
The probability distribution of each random variable, the marginal

probability, which can be seen as the sum over a row or column

P (x = Xi) =
ci

N
=

P3
j=1 nij

N
(6.2)

and

P (y = Yj) =
rj

N
=

P5
i=1 nij

N
, (6.3)

where ci and rj are the ith column and jth row of the probability ta-
ble, respectively. Recall that by the axioms of probability (Section 6.1) we
require that the probabilities sum up to one, that is

3X

i=1

P (x = Xi) = 1 and
5X

j=1

P (y = Yj) = 1 . (6.4)

The conditional probability is the fraction of a row or column in a par-
ticular cell. For example the conditional probability of y given x is

p(y = Yj |x = Xi) =
nij

ci
, (6.5)

and the conditional probability of x given y is

p(x = Xi | y = Yj) =
nij

rj
, (6.6)

The marginal probability that x takes the value X irrespective of the3094

value of random variable y is (lazily) written as p(x). If we consider only3095

the instances where x = X, then the fraction of instances (the conditional3096

probability) for which y = Y is written (lazily) as p(y |x).3097

Example 6.2
Consider a statistical experiment where we perform a medical test for This toy example is

essentially a coin
flip example.

cancer two times. There are two possible outcomes for each test, and
hence there are four outcomes in total. The state space or sample space
⌦ of this experiment is then (cancer, cancer), (cancer, healthy), (healthy,
cancer), (healthy, healthy). The event we are interested in is the total

c�2018 Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Press.



172 Probability and Distributions

number of times the repeated medical test returns a cancerous answer,
where we can see from the above state space can occur in no test, either
one of the tests or both tests. Therefore the event space A is 0, 1, 2. Let
variable x denote the number of times the medical test returns “cancer”.
Then x is a random variable (a function) that counts the number of times
“cancer” appears. It can be represented as a table as below

x((cancer, cancer)) = 2 (6.7)
x((cancer, healthy)) = 1 (6.8)
x((healthy, cancer)) = 1 (6.9)
x((healthy, healthy)) = 0. (6.10)

Let us assume that this useless test returns at random a value of “cancer”
with probability 0.3, ignoring any real world information. This assumption
also implies that the two tests are independent of each other, which we
will discuss in Section 6.4.3. Note that since there are two states which
map to the same event, where only one of the tests say “cancer”. Therefore
the probability mass function of x is given by the table below

P (x = 2) = 0.09 (6.11)
P (x = 1) = 0.42 (6.12)
P (x = 0) = 0.49. (6.13)

In machine learning, we use discrete probability distributions to model3098

categorical variables, i.e., variables that take a finite set of unordered val-categorical variables3099

ues. These could be categorical features such as the gender of a person3100

when used for predicting the salary of a person, or categorical labels such3101

as letters of the alphabet when doing handwritten recognition. Discrete3102

distributions are often used to construct probabilistic models that com-3103

bine a finite number of continuous distributions. We will see the Gaussian3104

mixture model in Chapter 11.3105

6.2.2 Continuous Probabilities3106

When we consider real valued random variables, that is when we consider3107

state spaces which are intervals of the real line R we have corresponding3108

definitions to the discrete case (Section 6.2.1). We will sweep measure3109

theoretic considerations under the carpet in this book, and pretend as if3110

we can perform operations as if we have discrete probability spaces with3111

finite states. However this simplification is not precise for two situations:3112

when we repeat something infinitely often, and when we want to draw a3113

point from an interval. The first situation arises when we discuss general-3114

ization error in machine learning (Chapter 8). The second situation arises3115
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Figure 6.3
Examples of
Uniform
distributions. (left)
discrete, (right)
continuous. See
example for details
of the distributions.

when we want to discuss continuous distributions such as the Gaussian3116

(Section 6.6). For our purposes, the lack of precision allows a more brief3117

introduction to probability. A reader interested a measure based approach3118

is referred to Billingsley (1995).3119

Definition 6.1 (Probability Density Function). A function f : RD ! R is3120

called a probability density function (pdf) if probability density
function

3121

1. 8x 2 RD : f(x) > 03122

2. Its integral exists and
Z

RD

f(x)dx = 1 . (6.14)

Here, x 2 RD is a (continuous) random variable. For discrete random3123

variables, the integral in (6.14) is replaced with a sum.3124

Definition 6.2 (Cumulative Distribution Function). A cumulative distribu- cumulative
distribution functiontion function (cdf) of a multivariate real-valued random variable x 2 RD

is given by

Fx(X) = P (x1 6 X1, . . . , xD 6 XD) (6.15)

where the right hand side represents the probability that random vari-
able xi takes the value smaller than Xi. This can be expressed also as the
integral of the probability density function,

Fx(X) =
Z

x

�1
f(x)dx. (6.16)

6.2.3 Contrasting Discrete and Continuous Distributions3125

Let us consider both discrete and continuous distributions, and contrast3126

them. The aim here is to see that while both discrete and continuous dis-3127

tributions seem to have similar requirements, such as the total probability3128
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mass is 1, they are subtly different. Since the total probability mass of3129

a discrete random variable is 1 (Equation (6.4)), and there are a finite3130

number of states, the probability of each state must lie in the interval3131

[0, 1]. However the analogous requirement for continuous random vari-3132

ables (Equation (6.14)) does not imply that the value of the density is less3133

than 1 for all values. We illustrate this using the uniform distribution foruniform distribution3134

both discrete and continuous random variables.3135

Example 6.3
We consider two examples of the uniform distribution, where each state
is equally likely to occur. This example illustrates the difference between
discrete and continuous probability distributions.

Let z be a discrete uniform random variable with three states {z =
�1.1, z = 0.3, z = 1.5}. Note that the actual values of these states are
not meaningful here, and we deliberately used numbers to drive home
the point that we do not want to use (and should ignore) the ordering of
the states. The probability mass function can be represented as a table of
probability values.

Z

P (z = Z)

�1.1

1
3

0.3

1
3

1.5

1
3

Alternatively one could think of this as a graph (left of Figure 6.3),
where we use the fact that the states can be located on the x-axis, and the
y-axis represents the probability of a particular state. The y-axis in the left
of Figure 6.3 is deliberately extended such that is it the same as the right
figure.

Let x be a continuous random variable taking values in the range 0.9 6
x 6 1.6, as represented by the graph on the right in Figure 6.3. Observe
that the height of the density can be more than 1. However, it needs to
hold that

Z 1.6

0.9

p(x)dx = 1 . (6.17)

Very often the literature uses lazy notation and nomenclature that can3136

be confusing to a beginner. For a value X of a state space ⌦, p(x) denotes3137

the probability that random variable x takes value X, i.e., P (x = X), which3138

is known as the probability mass function. This is often referred to as3139

the “distribution”. For continuous variables, p(x) is called the probability3140

density function (often referred to as a density), and to make things even3141

more confusing the cumulative distribution function P (x 6 X) is often3142

also referred to as the “distribution”. In this chapter we often will use the3143
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Table 6.1
Nomenclature for
probability
distributions.

“point probability” “interval probability”

discrete P (x = X) not applicable
probability mass function

continuous p(x) P (x 6 X)
probability density function cumulative distribution function

notation x or x to refer to univariate and multivariate random variables3144

respectively. We summarise the nomenclature in Table 6.1.3145

Remark. We will be using the expression “probability distribution” not3146

only for discrete distributions but also for continuous probability density3147

functions, although this is technically incorrect. However, this is consistent3148

with the majority of machine learning literature. }3149

6.3 Sum Rule, Product Rule and Bayes’ Theorem3150

When we think of a probabilisitic model as an extension to logical reason-3151

ing, as we discussed in Section 6.1.1, the rules of probability presented3152

here follow naturally from fulfilling the desiderata (Jaynes, 2003, Chapter3153

2). Probabilistic modelling provides a principled foundation for designing3154

machine learning methods. Once we have defined probability distribu-3155

tions (Section 6.2) corresponding to the uncertainties of the data and our3156

problem, it turns out that there are only two fundamental rules, the sum3157

rule and the product rule, that govern probabilistic inference.3158

Before we define the sum rule and product rule, let us briefly explore3159

how to use probabilistic models to capture uncertainty (Ghahramani, 2015).3160

At the lowest modelling level, measurement noise introduces model un-3161

certainty. for example the measurement error in a camera sensor. We will3162

see in Chapter 9 how to use Gaussian (Section 6.6) noise models for linear3163

regression. At higher modelling levels, we would be interested to model3164

the uncertainty of the coefficients in linear regression. This uncertainty3165

captures which values of these parameters will be good at predicting new3166

data. Finally at the highest levels, we may want to capture uncertainties3167

about the model structure. We discuss model selection issues in Chapter 8.3168

Once we have the probabilistic models, the basic rules of probability pre-3169

sented in this section are used to infer the unobserved quantities given3170

the observed data. The same rules of probability are used for inference3171

(transforming prior probabilities to posterior probabilities) and learning3172

(estimating the likelihood of the model for a given dataset).3173

Given the definitions of marginal and conditional probability for dis-3174

crete and continuous random variables in the previous section, we can3175

now present the two fundamental rules in probability theory. These two3176

rules arise naturally (Jaynes, 2003) from the requirements we discussed3177

in Section 6.1.1. Recall that p(x, y) is the joint distribution of the two3178
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random variables x, y, p(x), p(y) are the corresponding marginal distribu-3179

tions, and p(y |x) is the conditional distribution of y given x.3180

The first rule, the sum rule is expressed for discrete random variables assum rule

p(x) =
X

y

p(x, y) sum rule/marginalization property . (6.18)

The sum above is over the set of states of the random variable Y. The
sum rule is also known as the marginalization property. For continuousmarginalization

property probability distributions, the sum is replaced by an integral

p(x) =
Z

y

p(x, y)dy . (6.19)

The sum rule relates the joint distribution to a marginal distribution. In3181

general, when the joint distribution contains more than two random vari-3182

ables, the sum rule can be applied to any subset of the random variables,3183

resulting in a marginal distribution of potentially more than one random3184

variable.3185

Remark. Many of the computational challenges of probabilistic modelling3186

are due to the application of the sum rule. When there are many vari-3187

ables or discrete variables with many states, the sum rule boils down to3188

performing a high dimensional sum or integral. Performing high dimen-3189

sional sums or integrals are generally computationally hard, in the sense3190

that there is no known polynomial time algorithm to calculate them ex-3191

actly. }3192

The second rule, known as the product rule, relates the joint distributionproduct rule

to the conditional distribution

p(x, y) = p(y |x)p(x) product rule. (6.20)

The product rule can be interpreted as the fact that every joint distribu-3193

tion of two random variables can be factorized (written as a product)3194

of two other distributions. The two factors are the marginal distribution3195

of the first random variable p(x), and the conditional distribution of the3196

second random variable given the first p(y |x). Observe that since the or-3197

dering of random variables is arbitrary in p(x, y) the product rule also3198

implies p(x, y) = p(x | y)p(y). To be precise, Equation (6.20) is expressed3199

in terms of the probability mass functions for discrete random variables.3200

For continuous random variables, the product rule is expressed in terms of3201

the probability density functions (recall the discussion in Section 6.2.3).3202

In machine learning and Bayesian statistics, we are often interested in
making inferences of random variables given that we have observed other
random variables. Let us assume, we have some prior knowledge p(x)
about a random variable x and some relationship p(y |x) between x and a
second random variable y. If we now observe y, we can use Bayes’ theoremBayes’ theorem is

also called the
“probabilistic
inverse”

to draw some conclusions about x given the observed values of y. Bayes’

Bayes’ theorem Draft (2018-07-04) from Mathematics for Machine Learning. Errata and feedback to https://mml-book.com.

https://mml-book.com


6.4 Summary Statistics and Independence 177

theorem or Bayes’ law

p(y |x) = p(x | y)p(y)
p(y)

(6.21)

is a direct consequence of the sum and product rules in (6.18)–(6.20).3203

Example 6.4 (Applying the Sum and Product Rule)
We prove Bayes’ theorem by using the sum and product rule. First we
observe that we can apply the product rule in two ways,

p(x,y) = p(y | x)p(x) = p(x | y)p(y) . (6.22)

Simple algebra then gives us (6.21). Very often in machine learning, the
evidence term p(x) is hard to estimate, and we rewrite it by using the sum
and product rule.

p(x) =
X

y

p(x,y) =
X

y

p(x | y)p(y) . (6.23)

We now have an alternative formulation

p(y | x) = p(x | y)p(y)P
y
p(x | y)p(y) . (6.24)

In Equation (6.21), p(y) is the prior, which encapsulates our prior knowl- prior3204

edge of y, p(x | y) is the likelihood that describes how x and y are related. likelihood
The likelihood is
sometimes also
called the
“measurement
model”.

3205

The quantity p(x) is the marginal likelihood or evidence and is a normal-

evidence

3206

izing constant (independent of y). The posterior p(x | y) expresses exactly

posterior

3207

what we are interested in, i.e., what we know about x if we observe y. We3208

will see an application of this in Maximum-A-Posteriori estimation (Sec-3209

tion 9.2.3).3210

6.4 Summary Statistics and Independence3211

We are often interested in summarizing and contrasting random variables.3212

A statistic of a random variable is a deterministic function of that random3213

variable. The summary statistics of a distribution provide one useful view3214

how a random variable behaves, and as the name suggests, provides num-3215

bers that summarize the distribution. The following describes the mean3216

and the variance, two well known summary statistics. Then we discuss3217

two ways to compare a pair of random variables: first how to say that two3218

random variables are independent, and second how to compute an inner3219

product between them.3220
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6.4.1 Means and Covariances3221

Mean and (co)variance are often useful to describe properties of probabil-3222

ity distributions (expected values and spread). We will see in Section 6.73223

that there is a useful family of distributions (called the exponential fam-3224

ily) where the statistics of the random variable capture all the possible3225

information. The definitions in this section are stated for a general multi-3226

variate continuous random variable, because it is more intuitive to think3227

about means and covariances in terms of real numbers. Analogous defini-3228

tions exist for discrete random variables where the integral is replaced by3229

a sum.3230

In one dimension, the mean value is the average value. It is the value3231

obtained by summing up all values and dividing by the number of items. In3232

more than one dimension, the sum becomes vector addition and the idea3233

still holds. To account for the fact that we are dealing with a continuous3234

random variable x 2 RD with a particular density p(x), the sum becomes3235

an integral, and the addition is weighted by the density.3236

Definition 6.3 (Mean). The mean of a random variable x 2 RD is definedmean

as

Ex[x] =
Z

xp(x)dx =

2

64
E[x1]

...
E[xD]

3

75 2 RD
, (6.25)

where the subscript indicates the corresponding dimension of x.3237

In one dimension, there are two other intuitive notions of “average”3238

which are the median and the mode. The median is the “middle” value ifmedian
mode

3239

we sort the values, that is intuitively it is a typical value. For distributions3240

which are asymmetric or has long tails, the median provides an estimate of3241

a typical value that is closer to human intuition than the mean value. TheThe generalization
of the median to
higher dimensions is
non-trivial, as there
is no obvious way to
“sort” in more than
one dimension.

3242

mode is the most frequently occurring value, which is the highest peak in3243

the density p(x). A particular density p(x) may have more than one mode,3244

and therefore finding the mode may be computationally challenging in3245

high dimensions.3246

The definition of the mean (Definition 6.3), is actually a special case of3247

an incredibly useful concept: the expected value.3248

Definition 6.4 (Expected value). The expected value of a function g of aexpected value

random variable x ⇠ p(x) is given by

Ex[g(x)] =
Z

g(x)p(x)dx . (6.26)

The mean is recovered if we set the function g in Definition 6.4 to the3249

identity function. This indicates that we can think about functions of ran-3250

dom variables, which we will revisit in Section 6.5.The expected value
of a function of a
random variable is
sometimes referred
to as the law of the
unconscious
statistician (Casella
and Berger, 2002,
Section 2.2).

3251
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Remark. The expected value is a linear operator. For example given a uni-
variate real valued function f(x) = ag(x) + bh(x) where a, b 2 R,

Ex[f(x)] =
Z

f(x)p(x)dx (6.27)

=
Z
[ag(x) + bh(x)]p(x)dx (6.28)

= a

Z
g(x)p(x)dx+ b

Z
h(x)p(x)dx (6.29)

= aEx[g(x)] + bEx[h(x)] (6.30)

This linear relationship holds in higher dimensions as well. }3252

For two random variables, we may wish to figure out their correspon-3253

dence to each other.3254

Definition 6.5 (Covariance (univariate)). The covariance between two
univariate random variables x, y 2 R is given by the expected product of
their deviations from their respective means, that is

Cov[x, y] = E
⇥
(x � E[x])(y � E[y])

⇤
. (6.31)

By using the linearity of expectations, the expression in Definition 6.5
can be rewritten as the expected value of the product minus the product
of the expected values

Cov[x, y] = E[xy] � E[x]E[y] . (6.32)

The covariance of a variable with itself Cov[x, x] is called the variance and variance3255

is denoted by V[x]. The square root of the variance is called the standard standard deviation3256

deviation and is denoted �(x).3257

The notion of covariance can be generalised to multivariate random3258

variables.3259

Definition 6.6 (Covariance). If we consider two random variables x 2
RD

,y 2 RE , the covariance between x and y is defined as covariance

Cov[x,y] = Ex,y[xy
>] � Ex[x]Ey[y]

> = Cov[y,x]> 2 RD⇥E
. (6.33)

Here, the subscript makes it explicit with respect to which variable we3260

need to average.3261

Covariance intuitively represents the notion of how dependent random3262

variables are to one another. We will revisit the idea of covariance again3263

in Section 6.4.33264

Definition 6.6 can be applied with the same multivariate random vari-3265

able in both arguments, which results in a useful concept that intuitively3266

captures the “spread” of a random variable.3267

Definition 6.7 (Variance). The variance of a random variable x 2 RD variance
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with mean vector µ is defined as

Vx[x] = Ex[(x � µ)(x � µ)>] = Ex[xx
>] � Ex[x]Ex[x]

> (6.34)

=

2

6664

Cov[x1, x1] Cov[x1, x2] . . . Cov[x1, xD]
Cov[x2, x1] Cov[x2, x2] . . . Cov[x2, xD]

...
...

. . .
...

Cov[xD, x1] . . . . . . Cov[xD, xD]

3

7775 2 RD⇥D
.

(6.35)

This matrix is called the covariance matrix of the random variable x.covariance matrix 3268

The covariance matrix is symmetric and positive definite and tells us some-3269

thing about the spread of the data.3270

The covariance matrix contains the variances of the marginals p(xi) =3271 R
p(x1, . . . , xD)dx\i on its diagonal, where “\i” denotes “all variables but3272

i”. The off-diagonal terms contain the cross-covariance terms Cov[xi, xj]cross-covariance 3273

for i, j = 1, . . . , D, i 6= j.3274

It generally holds that

Vx[x] = Covx[x,x] . (6.36)

The definitions above are often also called the population mean andpopulation mean
and covariance

3275

covariance. For a particular set of data we can obtain an estimate of the3276

mean, which is called the empirical mean or sample mean. The same holdsempirical mean

sample mean

3277

for the empirical covariance.3278

Definition 6.8 (Empirical Mean and Covariance). The empirical mean vec-empirical mean

tor is the arithmetic average of the observations for each variable, and is
written

x̄ =
1

N

NX

n=1

xn . (6.37)

The empirical covariance is a K ⇥ K matrixempirical covariance

⌃ =
1

N

NX

n=1

(xn � x̄)(xn � x̄)>. (6.38)

Empirical covariance matrices are positive semi-definite (see Section 3.2.3).3279

We use the sample
covariance in this
book. The unbiased
(sometimes called
corrected)
covariance has the
factor N � 1 in the
denominator.

3280

6.4.2 Three Expressions for the Variance3281

We now focus on a single random variable x, and use the empirical formu-
las above to derive three possible expressions for the variance. The deriva-
tion below is the same for the population variance, except that one needs
to take care of integrals. The standard definition of variance, correspond-
ing to the definition of covariance (Definition 6.5), is the expectation of
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the squared deviation of a random variable x from its expected value. That
is

1

N

NX

i=1

(xi � µ)2 (6.39)

where µ = 1
N

PN
i=1 xi is the mean. Observe that the variance as expressed3282

above is the mean of a new random variable z = (x � µ)2.3283

When estimating this empirically, we need to resort to a two pass algo-
rithm: one pass through the data to calculate the mean µ using (6.37), and
then a second pass using this estimate µ̂ calculate the variance. It turns
out that we can avoid two passes by rearranging the terms. The formula
in (6.39) can be converted to the so called raw score formula for variance

1

N

NX

i=1

(xi � µ)2 =
1

N

NX

i=1

x
2
i �

 
1

N

NX

i=1

xi

!2

. (6.40)

This expression in (6.40) can be remembered as “the mean of the square3284

minus the square of the mean”. It can be calculated in one pass through3285

data since we can accumulate xi (to calculate the mean) and x
2
i simulta-3286

neously. Unfortunately if implemented in this way, it is numerically unsta-3287

ble. The raw score version of the variance can be useful in machine learn- The two terms can
cancel out, resulting
is loss of numerical
precision in floating
point arithmetic.

3288

ing, for example when deriving the bias-variance decomposition (Bishop,3289

2006).3290

A third way to understand the variance is that it is a sum of pairwise
differences between all pairs of observations. By expanding the square we
can show that the sum of pairwise differences is two times the raw score
expression,

1

N 2

NX

i,j=1

(xi � xj)
2 = 2

2

4 1

N

NX

i=1

x
2
i �

 
1

N

NX

i=1

xi

!2
3

5 (6.41)

Observe that (6.41) is twice of (6.40). This means that we can express3291

the sum of pairwise distances (of which there are N
2 of them) as a sum3292

of deviations from the mean (of which there are N). Geometrically, this3293

means that there is an equivalence between the pairwise distances and3294

the distances from the center of the set of points.3295

6.4.3 Statistical Independence3296

Definition 6.9 (Independence). Two random variables x,y are statistically statistically
independentindependent if and only if

p(x,y) = p(x)p(y) . (6.42)

Intuitively, two random variables x and y are independent if the value3297
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of y (once known) does not add any additional information about x (and3298

vice versa).3299

If x,y are (statistically) independent then3300

• p(y | x) = p(y)3301

• p(x | y) = p(x)3302

• V[x + y] = V[x] +V[y]3303

• Cov[x,y] = 03304

Note that the last point above may not hold in converse, that is two ran-3305

dom variables can have covariance zero but are not statistically indepen-3306

dent.3307

Remark. Let us briefly mention the relationship between correlation andcorrelation 3308

covariance. The correlation matrix is the covariance matrix of standard-3309

ized random variables, x/�(x). In other words, each random variable is3310

divided by its standard deviation (the square root of the variance) in the3311

correlation matrix. }3312

Another concept that is important in machine learning is conditional3313

independence.3314

Definition 6.10 (Conditional Independence). Formally, x and y are conditionallyconditionally
independent given z independent given z if and only if

p(x,y | z) = p(x | z)p(y | z) . (6.43)

We write x ?? y | z.3315

Note that the definition of conditional independence above requires3316

that the relation in Equation (6.43) must hold true for every value of z.3317

The interpretation of Equation (6.43) above can be understood as “given3318

knowledge about z, the distribution of x and y factorizes”. Independence3319

can be cast as a special case of conditional independence if we write3320

x ?? y | ;.3321

By using the product rule of probability (Equation (6.20)), we can ex-
pand the left hand side of Equation 6.43 to obtain

p(x,y | z) = p(x | y, z)p(y | z). (6.44)

By comparing the right hand side of Equation (6.43) with Equation (6.44),
we see that p(y | z) appears in both, and therefore

p(x | y, z) = p(x | z). (6.45)

Equation (6.45) above provides an alternative definition of conditional3322

independence, that is x ?? y | z. This alternative presentation provides3323

the interpretation: “given that we know z, knowledge about y does not3324

change our knowledge of x”.3325
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6.4.4 Sums and Transformations of Random Variables3326

We may want to model a phenomenon that cannot be well explained by3327

textbook distributions (we introduce some in Section 6.6 and 6.7), and3328

hence may perform simple manipulations of random variables (such as3329

adding two random variables).3330

Consider two random variables x,y 2 RD. It holds that

E[x + y] = E[x] + E[y] (6.46)
E[x � y] = E[x] � E[y] (6.47)
V[x + y] = V[x] +V[y] + Cov[x,y] + Cov[y,x] (6.48)
V[x � y] = V[x] +V[y] � Cov[x,y] � Cov[y,x] (6.49)

Mean and (co)variance exhibit some useful properties when it comes to
affine transformation of random variables. Consider a random variable x

with mean µ and covariance matrix ⌃ and a (deterministic) affine trans-
formation y = Ax + b of x. Then y is itself a random variable whose
mean vector and covariance matrix are given by

Ey[y] = Ex[Ax + b] = AEx[x] + b = Aµ + b , (6.50)

Vy[y] = Vx[Ax + b] = Vx[Ax] = AVx[x]A
> = A⌃A

>
, (6.51)

respectively. Furthermore, This can be shown
directly by using the
definition of the
mean and
covariance.

Cov[x,y] = E[x(Ax + b)>] � E[x]E[Ax + b]> (6.52)

= E[x]b> + E[xx
>]A> � µb

> � µµ
>
A

> (6.53)

= µb
> � µb

> +
�
E[xx

>] � µµ
>�

A
> (6.54)

(6.34)
= ⌃A

>
, (6.55)

where ⌃ = E[xx
>] � µµ

> is the covariance of x.3331

6.4.5 Inner Products of Random Variables3332

Recall the definition of inner products from Section 3.2. Another example
for defining an inner product between unusual types are random variables
or random vectors. If we have two uncorrelated random variables x, y

then

V[x+ y] = V[x] +V[y] (6.56)

Since variances are measured in squared units, this looks very much like3333

the Pythagorean theorem for right triangles c2 = a
2 + b

2.3334

In the following, we see whether we can find a geometric interpretation3335

of the variance relation of uncorrelated random variables in (6.56).3336

Random variables can be considered vectors in a vector space, and we
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Figure 6.4
Geometry of
random variables. If
random variables x
and y are
uncorrelated they
are orthogonal
vectors in a
corresponding
vector space, and
the Pythagorean
theorem applies.

p
var[y]

p
var[x]

p var
[x+

y] =
p var

[x]
+ var

[y]

ac

b

can define inner products to obtain geometric properties of random vari-
ables. If we define

hx, yi := Cov[x, y] (6.57)

we see that the covariance is symmetric, positive definite1, and linear in
either argument2 The length of a random variable is

kxk =
q
Cov[x, x] =

q
V[x] = �[x] , (6.58)

i.e., its standard deviation. The “longer” the random variable, the more3337

uncertain it is; and a random variable with length 0 is deterministic.3338

If we look at the angle ✓ between random two random variables x, y,
we get

cos ✓ =
hx, yi

kxk kyk =
Cov[x, y]p
V[x]V[y]

. (6.59)

We know from Definition 3.6 that x ? y () hx, yi = 0. In our case this3339

means that x and y are orthogonal if and only if Cov[x, y] = 0, i.e., they3340

are uncorrelated. Figure 6.4 illustrates this relationship.3341

Remark. While it is tempting to use the Euclidean distance (constructed3342

from the definition of inner products above) to compare probability distri-3343

butions, it is unfortunately not the best way to obtain distances between3344

1Cov[x, x] > 0 and 0 () x = 0
2Cov[↵x+ z, y] = ↵Cov[x, y] + Cov[z, y] for ↵ 2 R.
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distributions. Due to the fact that the probability mass (or density) needs3345

to add up to 1, distributions live in a subspace which is called a mani-3346

fold. The study of this space of probability distributions is called informa-3347

tion geometry. Computing distances between distributions are done using3348

Bregman divergences or f -divergences, which is beyond the scope of this3349

book. Interested readers are referred to a recent book (Amari, 2016) writ-3350

ten by one of the founders of the field of information geometry. }3351

6.5 Change of Variables/Inverse transform3352

It may seem that there are very many known distributions to a beginner,3353

but in reality the set of distributions for which we have names are quite3354

limited. Therefore it is often useful to understand how transformations3355

of random variables are distributed. For example, assume that x is a ran-3356

dom variable distributed according to the univariate normal distribution3357

N
�
0, 1

�
, what is the distribution of x2? Another example which is quite3358

common in machine learning is: given that x1 and x2 are univariate stan-3359

dard normal, what is the distribution of 1
2
(x1 + x2)?3360

Remark. One option to work out the distribution of 1
2
(x1+x2) is to calcu-3361

late the mean and variance of x1 and x2 and then combine them. As we3362

saw in Section 6.4.4, we can calculate the mean and covariance of result-3363

ing random variables when we consider affine transformations of random3364

variables. However we may not be able to obtain the functional form of3365

the distribution under transformations. Furthermore we may be interested3366

in other transformations (for example nonlinear) of random variables. }3367

In this section, we need to be explicit about random variables and the3368

values they take, and hence we will use small letters x, y to denote ran-3369

dom variables and small capital letters X, Y to denote the values that the3370

random variables take. We will look at two approaches for obtaining dis-3371

tributions of transformations of random variables: a direct approach using3372

the definition of a cumulative distribution function; and a change of vari-3373

able approach that uses the chain rule of calculus (Section 5.2.2). The One can also use the
moment generating
function to study
transformations of
random
variables (Casella
and Berger, 2002,
Chapter 2).

3374

change of variable approach is widely used because it provides a “recipe”3375

for attempting to compute the resulting distribution due to a transforma-3376

tion. We will explain the techniques for univariate random variables, and3377

will only briefly provide the results for the general case of multivariate3378

random variables.3379

As mentioned in the introductory comments in this chapter, random3380

variables and probability distributions are closely associated with each3381

other. It is worth carefully teasing apart the two ideas, and in doing so we3382

will motivate why we need to transform random variables.3383
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Example 6.5
It is worth contrasting this example with the example in Section 6.2.1.
Consider a medical test the returns the number of cancerous cells that
can be found in the biopsy. The state space the the set of non-negative
integers. The random variable x is the square of the number of cancerous
cells. Given that we know the probability distribution corresponding to the
number of cancerous cells in a biopsy, how do we obtain the distribution
of random variable x?

Remark. An analogy to object oriented programming may provide an al-3384

ternative view for computer scientists. The distinction between random3385

variables and probability distributions can be thought of as the distinc-3386

tion between objects and classes. A probability distribution defines the3387

behaviour (the probability) corresponding to a particular statistical exper-3388

iment, which quantifies the uncertainty associated with the experiment. A3389

random variable is a particular instantiation of this statistical experiment,3390

which follows the probabilities defined by the distribution. }3391

Transformations of discrete random variables can be understood di-
rectly. Given a discrete random variable x with probability mass function
px(X) (Section 6.2.1), and an invertible function g(x) with inverse h(·).
Let y be the random variable transformed by g(x), that is y = g(x). Then

py(Y) = px(h(Y)). (6.60)

This can be seen by the following short derivation,

py(Y) = P (y = Y) definition of pmf (6.61)
= P (g(x) = Y) transformation of interest (6.62)
= P (x = h(Y)) inverse (6.63)
= px(h(Y)) definition of pmf. (6.64)

Therefore for discrete random variables, transformations directly change3392

the individual probability of events. The following discussion focuses on3393

continuous random variables and we will need both probability density3394

functions p(x) and cumulative distribution functions P (x 6 X).3395

6.5.1 Distribution Function Technique3396

The distribution function technique goes back to first principles, and uses3397

the definition of a cumulative distribution function (cdf) and the fact that3398

its differential is the probability density function (pdf) (Wasserman, 2004,3399

Chapter 2). For a random variable x, and a function U , we find the pdf of3400

the random variable y = U(x) by3401
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1. finding the cdf:

Fy(Y) = P (y 6 Y) (6.65)

2. then differentiating the cdf Fy(Y) to get the pdf f(y).

f(y) =
d

dy
Fy(Y) (6.66)

We also need to keep in mind that the domain of the random variable may3402

have changed due to the transformation.3403

Example 6.6
Let x be a continuous random variable with the following probability den-
sity function on 0 < x < 1

f(x) = 3x2
. (6.67)

What is the pdf of y = x
2?

Note that the function f is an increasing function of x and also the
resulting value of y is in the interval (0, 1).

Fy(Y) = P (y 6 Y) definition of cdf (6.68)
= P (x2 6 Y) transformation of interest (6.69)

= P (x 6 Y
1
2 ) inverse (6.70)

= Px(Y
1
2 ) definition of cdf (6.71)

=
Z Y

1
2

0

3t2dt cdf as a definite integral (6.72)

=
⇥
t
3
⇤t=Y

1
2

t=0
result of integration (6.73)

= Y
3
2 , 0 < Y < 1 (6.74)

Therefore the cdf of y is
Fy(Y) = Y

3
2 (6.75)

for 0 < Y < 1. To obtain the pdf, we differentiate the cdf

fy(Y) =
d

dY
Fy(Y) =

3

2
Y

1
2 (6.76)

for 0 < Y < 1.

In the previous example, we considered a monotonically increasing3404

function x
2. This means that we could compute an inverse function. In3405

general we require that the function of interest, y = U(x) has an inverse3406

x = U
�1(y). One useful result that can be obtained by applying the tech- Functions that have

inverses are called
injective functions
(Section 2.7).

3407

nique above when the transformation of interest is the cumulative distri-3408
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bution function of the random variable itself (Casella and Berger, 2002,3409

Theorem 2.1.10).3410

Theorem 6.11. Let x be a continous random variable with cumulative dis-
tribution function Fx(·). Then the random variable y defined as

y = Fx(X), (6.77)

has a uniform distribution.3411

Proof We need to show that the cumulative distribution function (cdf) of
y defines a distribution of a uniform random variable. Recall that by the
axioms of probability (Section 6.1) that probabilities must be non-negative
and sum to one. Therefore the range of possible values of y = Fx(X) is
in the interval [0, 1]. Note that for any Fx(·), the inverse F

�1
x (·) exists

because cdfs are monotone increasing, which we will use in the following
proof. Given any continuous random variable x, the definition of a cdf
gives

Fy(Y) = P (y 6 Y) (6.78)
= P (Fx(X) 6 Y) transformation of interest (6.79)
= P (x 6 F

�1
x (Y)) inverse exists (6.80)

= Fx(F
�1
x (Y)) definition of cdf (6.81)

= Y, (6.82)

where the last line is due to the fact that Fx(·) composed with its inverse3412

results in an identity transformation. The statement Fy(Y) = Y along with3413

the fact that y lies in the interval [0, 1] means that Fy(·) is the cdf of the3414

uniform random variable on the unit interval.3415

This result (Theorem 6.11) is known as the probability integral trans-probability integral
transform

3416

form, and is used to derive algorithms for sampling from distributions by3417

transforming the result of sampling from a uniform random variable. It is3418

also used for hypothesis testing whether a sample comes from a particular3419

distribution (Lehmann and Romano, 2005). The idea that the output of a3420

cdf gives a uniform distribution also forms the basis of copulas (Nelsen,3421

2006).3422

6.5.2 Change of Variables3423

The argument from first principles in the previous section relies on two3424

facts:3425

1. We can transform the cdf of y into an expression that is a cdf of x.3426

2. We can differentiate the cdf to obtain the pdf.3427

Let us break down the reasoning step by step, with the goal of deriving a3428

more general approach called change of variables.3429
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Consider a function of a random variable y = U(x) where x lies in the
interval a < x < b. By the definition of the cdf, we have

Fy(Y) = P (y 6 Y) . (6.83)

We are interested in a function U of the random variable

P (y 6 Y) = P (U(x) 6 Y) , (6.84)

and we assume that the function U is invertible. By multiplying both sides
with the inverse

P (U(x) 6 y) = P (U�1(U(x)) 6 U
�1(Y)) = P (x 6 U

�1(Y)) (6.85)

we obtain an expression of the cdf of x. Recall the definition of the cdf in
terms of the pdf

P (x 6 U
�1(Y)) =

Z U�1(Y)

a

f(x)dx . (6.86)

Now we have an expression of the cdf of y in terms of x.

Fy(Y) =
Z U�1(Y)

a

f(x)dx (6.87)

To obtain the pdf, we differentiate the expression above with respect to y. The fact that
integration and
differentiation are
somehow “inverses”
of each other is due
to a deep result
called the
Fundamental
Theorem of
Calculus.

Since the expression is in terms of x, we apply the chain rule of calculus
from (5.56) and obtain

fy(Y) =
d

dY
Fy(Y) =

d

dY

Z U�1(Y)

a

f(x)dx (6.88)

= fx(U
�1(Y)) ⇥

����det
✓

d

dY
U

�1(Y)

◆���� . (6.89)

This is called the change of variable technique. The term
�� d
dY
U

�1(Y)
�� mea- change of variable3430

sures how much a unit volume changes when applying U . Recall from3431

Section 4.1 that the existence of the determinant shows that we can in-3432

vert the Jacobian. Recall further that the determinant arises because our3433

differentials (cubes of volume) are transformed into parallelepipeds by3434

the determinant. In the last expression above, we have introduced the ab-3435

solute value of the differential. For decreasing functions, it turns out that3436

an additional negative sign is needed, and instead of having two types of3437

change of variable rules, the absolute value unifies both of them.3438

Remark. Observe that in comparison to the discrete case in Equation (6.60),3439

we have an additional factor
��� d
dy
U

�1(y)
���. The continuous case requires3440

more care because P (y = Y) = 0 for all Y. The probability density func-3441

tion fy(Y) does not have a description as a probability of an event involv-3442

ing y. }3443
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So far in this section we have been studying univariate change of vari-3444

ables. The case for multivariate random variables is analogous, but com-3445

plicated by fact that the absolute value cannot be used for multivariate3446

functions. Instead we use the determinant of the Jacobian matrix. Recall3447

from Equation (5.68) that the Jacobian is a matrix of partial derivatives.3448

Let us summarize the discussion above in the following theorem which3449

describes the recipe for multivariate change of variables.3450

Theorem 6.12. Let fx(X) be the value of the probability density of the mul-
tivariate continuous random variable x at X. If the vector valued function
y = U(x) is differentiable and invertible for all values within the range of
x, then for corresponding values of y, the probability density of y = U(x) is
given by

fy(Y) = fx(U
�1(Y)) ⇥

����det
✓

@

@Y
U

�1(Y)

◆���� . (6.90)

The theorem looks intimidating at first glance, but we only need to3451

understand that a change of variable of a multivariate random variable3452

follows the procedure of the univariate change of variable. That is first3453

we need to work out the inverse transform, and substitute that into the3454

density of x. Then calculate the determinant of the Jacobian and multiply3455

the result. The following example illustrates the case of a bivariate random3456

variable.3457

Example 6.7

Consider a bivariate random variable x =


x1

x2

�
with probability density

function

fx

✓
x1

x2

�◆
=

1

2⇡
exp

 

�1

2


x1

x2

�> 
x1

x2

�!

. (6.91)

We use the change of variable technique (Theorem 6.12) to derive the
effect of an linear transformation (Section 2.7) of the random variables.
Consider a matrix A 2 R2⇥2 defined as

A =


a b

c d

�
. (6.92)

What is the probability density function of the resulting transformed bi-
variate random variable y = Ax?

Recall that for change of variables, we require the inverse transfor-
mation of x as a function of y. Since we are considering linear trans-
formations, the inverse transformation is given matrix inverse from Sec-
tion 2.2.2. For 2 ⇥ 2 matrices, we can explicitly write out the formula,
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given by

x1

x2

�
= A

�1


y1

y2

�
=

1

ad � bc


d �b

�c a

� 
y1

y2

�
. (6.93)

Observe that ad � bc is the determinant (Section 4.1) of A. The corre-
sponding probability density function is given by

fx(X) = fx(A
�1Y) (6.94)

=
1

2⇡
exp

✓
�1

2
Y>

A
�>

A
�1Y

◆
. (6.95)

The partial derivative of a matrix times a vector with respect to the
vector is the matrix itself (Section 5.5) and therefore

@

@Y
A

�1Y = A
�1
. (6.96)

Recall from Section 4.1 that the determinant of the inverse is the inverse
of the determinant, and therefore the determinant of the Jacobian matrix
is given by

�� @
@Y

A
�1Y
�� = ad � bc. (6.97)

We are now able to apply the change of variable formula from Theo-
rem 6.12, by multiplying Equation (6.95) with Equation (6.97),

fy(Y) = fx(X) ⇥ |
�� @
@Y

A
�1Y
�� | (6.98)

=
1

2⇡
exp

✓
�1

2
Y>

A
�>

A
�1Y

◆
(ad � bc). (6.99)

While the example above is based on a bivariate random variable so3458

that we can compute the matrix inverse in closed form, the relation above3459

holds true for higher dimensions.3460

Remark. We will see in Section 6.6 that the density fx(X) above is actually3461

the standard Gaussian distribution, and the transformed density fy(Y) is a3462

bivariate Gaussian with covariance ⌃ = A
>
A. The linear transformation3463

A turns out to correspond to the Cholesky factorization (Section 4.3) of3464

⌃. }3465

6.6 Gaussian Distribution3466
The Gaussian
distribution arises
naturally when we
consider sums of
independent and
identically
distributed random
variables. This is
known as the
Central Limit
Theorem (Grinstead
and Snell, 1997).

The Gaussian distribution is the most important probability distribution3467

for continuous-valued random variables. It is also referred to as the normal

normal distribution

3468

distribution. Its importance originates from the fact that it has many com-3469

putationally convenient properties, which we will be discussing in the fol-3470

lowing. In particular, we will use it to define the likelihood and prior for3471
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Figure 6.5
Gaussian
distribution of two
random variables
x, y.

Figure 6.6
Gaussian
distributions
overlaid with 100
samples. Left:
Univariate
(1-dimensional)
Gaussian; The red
cross shows and
mean and the red
line the extent of
the variance. Right:
Multivariate
(2-dimensional)
Gaussian, viewed
from top. The red
cross shows the
mean and the
coloured lines
contour lines of the
density.

linear regression (Chapter 9), and consider a mixture of Gaussians for3472

density estimation (Chapter 11).3473

There are many other areas of machine learning that also benefit from3474

using a Gaussian distribution, for example Gaussian processes, variational3475

inference and reinforcement learning. It is also widely used in other appli-3476

cation areas such as signal processing (e.g., Kalman filter), control (e.g.,3477

linear quadratic regulator) and statistics (e.g. hypothesis testing).3478

For a univariate random variable, the Gaussian distribution has a den-
sity that is given by

p(x |µ,�2) =
1p
2⇡�2

exp

✓
(x � µ)2

2�2

◆
. (6.100)

The multivariate Gaussian distribution is fully characterized by a meanmultivariate
Gaussian
distribution
Also: multivariate
normal distribution
mean vector

vector µ and a covariance matrix ⌃ and defined as

covariance matrix

p(x | µ,⌃) = (2⇡)�
D
2 |⌃|�

1
2 exp

�
� 1

2
(x � µ)>⌃�1(x � µ)

�
, (6.101)

where x 2 RD is a random variable. We write x ⇠ N
�
x | µ, ⌃

�
or3479

x ⇠ N
�
µ, ⌃

�
. Figure 6.5 shows a bi-variate Gaussian (mesh), with the3480

corresponding contour plot. The special case of the Gaussian with zero3481

mean and identity variance, that is µ = 0 and ⌃ = I, is referred to as the3482

standard normal distribution.standard normal
distribution

3483

Gaussian distributions are widely used in statistical estimation and ma-3484
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chine learning because they have closed-form expressions for marginal3485

and conditional distributions. In Chapter 9, we use these closed form ex-3486

pressions extensively for linear regression. A major advantage of mod-3487

elling with Gaussian distributed random variables is that variable trans-3488

formations (Section 6.5) are often not needed. Since the Gaussian distri-3489

bution is fully specified by its mean and covariance we often can obtain3490

the transformed distribution by applying the transformation to the mean3491

and covariance of the random variable.3492

6.6.1 Marginals and Conditionals of Gaussians are Gaussians3493

In the following, we present marginalization and conditioning in the gen-
eral case of multivariate random variables. If this is confusing at first read-
ing, the reader is advised to consider two univariate random variables in-
stead. Let x and y be two multivariate random variables, which may have
different dimensions. We would like to consider the effect of applying the
sum rule of probability and the effect of conditioning. We therefore explic-
itly write the Gaussian distribution in terms of the concatenated random
variable [x,y]>,

p(x,y) = N
✓

µx

µy

�
,


⌃xx ⌃xy

⌃yx ⌃yy

�◆
. (6.102)

where ⌃xx = Cov[x,x] and ⌃yy = Cov[y,y] are the marginal covari-3494

ance matrices of x and y, respectively, and ⌃xy = Cov[x,y] is the cross-3495

covariance matrix between x and y.3496

The conditional distribution p(x | y) is also Gaussian (illustrated on the
bottom right of Figure 6.7) and given by

p(x | y) = N
�
µx | y, ⌃x | y

�
(6.103)

µx | y = µx +⌃xy⌃
�1
yy (y � µy) (6.104)

⌃x | y = ⌃xx � ⌃xy⌃
�1
yy ⌃yx . (6.105)

Note that in the computation of the mean in (6.104) the y-value is an3497

observation and no longer random.3498

Remark. The conditional Gaussian distribution shows up in many places,3499

where we are interested in posterior distributions:3500

• The Kalman filter (Kalman, 1960), one of the most central algorithms3501

for state estimation in signal processing, does nothing but computing3502

Gaussian conditionals of joint distributions (Deisenroth and Ohlsson,3503

2011).3504

• Gaussian processes (Rasmussen and Williams, 2006), which are a prac-3505

tical implementation of a distribution over functions. In a Gaussian pro-3506

cess, we make assumptions of joint Gaussianity of random variables. By3507
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Figure 6.7 Top:
Bivariate Gaussian;
Bottom left:
Marginal of a joint
Gaussian
distribution is
Gaussian; Bottom
right: The
conditional
distribution of a
Gaussian is also
Gaussian

(Gaussian) conditioning on observed data, we can determine a poste-3508

rior distribution over functions.3509

• Latent linear Gaussian models (Roweis and Ghahramani, 1999; Mur-3510

phy, 2012), which include probabilistic PCA (Tipping and Bishop, 1999).3511

}3512

The marginal distribution p(x) of a joint Gaussian distribution p(x,y),
see (6.102), is itself Gaussian and computed by applying the sum-rule
in (6.18) and given by

p(x) =
Z

p(x,y)dy = N
�
x | µx, ⌃xx

�
. (6.106)

The corresponding result holds for p(y), which is obtained by marginaliz-3513

ing with respect to x. Intuitively, looking at the joint distribution in (6.102),3514

we ignore (i.e., integrate out) everything we are not interested in. This is3515

illustrated on the bottom left of Figure 6.7.3516

Example 6.8
Consider the bivariate Gaussian distribution (illustrated in Figure 6.7)

p(x, y) = N
✓

0
2

�
,


0.3 �1
�1 5

�◆
. (6.107)

We can compute the parameters of the univariate Gaussian, conditioned
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on y = �1, by applying (6.104) and (6.105) to obtain the mean and
variance respectively. Numerically, this is

µx | y=�1 = 0 + (�1)(0.2)(�1 � 2) = 0.6 (6.108)

and
�
2
x | y=�1 = 0.3 � (�1)(0.2)(�1) = 0.1. (6.109)

Therefore the conditional Gaussian is given by

p(x | y = �1) = N
�
0.6, 0.1

�
. (6.110)

The marginal distribution p(x) in contrast can be obtained by applying
(6.106), which is essentially using the mean and variance of the random
variable x, giving us

p(x) = N
�
0, 0.3

�
(6.111)

6.6.2 Product of Gaussians3517

In machine learning, we often assume that examples are perturbed by
Gaussian noise, leading to a Gaussian likelihood for linear regression. Fur-
thermore we may wish to assume a Gaussian prior (Section 9.3). The ap-
plication of Bayes rule to compute the posterior results in a multiplication
of the likelihood and the prior, that is the multiplication of two Gaussians.
The product of two Gaussians N

�
x | a, A

�
N
�
x | b, B

�
is an unnormal-

ized Gaussian distribution cN
�
x | c, C

�
with

C = (A�1 + B
�1)�1 (6.112)

c = C(A�1
a + B

�1
b) (6.113)

c = (2⇡)�
D
2 |A + B|�

1
2 exp

�
� 1

2
(a � b)>(A + B)�1(a � b)

�
.

(6.114)

Note that the normalizing constant c itself can be considered a (normal-3518

ized) Gaussian distribution either in a or in b with an “inflated” covariance3519

matrix A + B, i.e., c = N
�
a | b, A + B

�
= N

�
b | a, A + B

�
.3520

Remark. For notation convenience, we will sometimes use N
�
x | m, S

�

to describe the functional form of a Gaussian even if x is not a random
variable. We have just done this above when we wrote

c = N
�
a | b, A + B

�
= N

�
b | a, A + B

�
. (6.115)

Here, neither a nor b are random variables. However, writing c in this way3521

is more compact than (6.114). }3522
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6.6.3 Sums and Linear Transformations3523

If x,y are independent Gaussian random variables (i.e., the joint is given
as p(x,y) = p(x)p(y)) with p(x) = N

�
x | µx, ⌃x

�
and p(y) = N

�
y | µy, ⌃y

�
,

then x + y is also Gaussian distributed and given by

p(x + y) = N
�
µx + µy, ⌃x +⌃y

�
. (6.116)

Knowing that p(x+y) is Gaussian, the mean and covariance matrix can be3524

determined immediately using the results from (6.46)–(6.49). This prop-3525

erty will be important when we consider i.i.d. Gaussian noise acting on3526

random variables as is the case for linear regression (Chapter 9).3527

Example 6.9
Since expectations are linear operations, we can obtain the weighted sum
of independent Gaussian random variables

p(ax + by) = N
�
aµx + bµy, a⌃x + b⌃y

�
. (6.117)

Remark. A case which will be useful in Chapter 11 is the weighted sum3528

of Gaussian densities. This is different from the weighted sum of Gaussian3529

random variables. }3530

In Theorem 6.13, the random variable z is from the mixture density of3531

the two random variables x and y. The theorem can be generalized to the3532

multivariate random variable case, since linearity of expectations holds3533

also for multivariate random variables. However the idea of a squared3534

random variable requires more care.3535

Theorem 6.13. Consider a weighted sum of two univariate Gaussian densi-
ties

p(z) = ↵p(x) + (1 � ↵)p(y) (6.118)

where the scalar 0 < ↵ < 1 is the mixture weight, and p(x) and p(y) are3536

univariate Gaussian densities (Equation (6.100)) with different parameters,3537

that is (µx,�
2
x) 6= (µy,�

2
y).3538

The mean of the mixture z is given by the weighted sum of the means of
each random variable,

E[z] = ↵µx + (1 � ↵)µy. (6.119)

The variance of the mixture z is the mean of the conditional variance and
the variance of the conditional mean,

V[z] =
⇥
↵�

2
x + (1 � ↵)�2

y

⇤
+
⇣⇥
↵µ

2
x + (1 � ↵)µ2

y

⇤
[↵µx + (1 � ↵)µy]

2
⌘
.

(6.120)

Proof The mean of the mixture z is given by the weighted sum of the
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means of each random variable. We apply the definition of the mean (Def-
inition 6.3), and plug in our mixture (Equation (6.118)) above

E[z] =
Z 1

�1
zp(z)dz (6.121)

=
Z 1

�1
↵zp(x) + (1 � ↵)zp(y)dz (6.122)

= ↵

Z 1

�1
zp(x)dz + (1 � ↵)

Z 1

�1
zp(y)dz (6.123)

= ↵µx + (1 � ↵)µy. (6.124)

To compute the variance, we can use the raw score version of the vari-
ance (Equation (6.40)), which requires an expression of the expectation of
the squared random variable. Here we use the definition of an expectation
of a function (the square) of a random variable (Definition 6.4).

E[z2] =
Z 1

�1
z
2
p(z)dz (6.125)

=
Z 1

�1
↵z

2
p(x) + (1 � ↵)z2p(y)dz (6.126)

= ↵

Z 1

�1
z
2
p(z)dz + (1 � ↵)

Z 1

�1
z
2
p(y)dz (6.127)

= ↵(µ2
x + �

2
x) + (1 � ↵)(µ2

y + �
2
y). (6.128)

where in the last equality, we again used the raw score version of the vari-3539

ance and rearranged terms such that the expectation of a squared random3540

variable is the sum of the squared mean and the variance.3541

Therefore the variance is given by subtracting the two terms above

V[z] = E[z2] � (E[z])2 (6.129)
= ↵(µ2

x + �
2
x) + (1 � ↵)(µ2

y + �
2
y) � (↵µx + (1 � ↵)µy)

2 (6.130)

=
⇥
↵�

2
x + (1 � ↵)�2

y

⇤
+
⇣⇥
↵µ

2
x + (1 � ↵)µ2

y

⇤
[↵µx + (1 � ↵)µy]

2
⌘
.

(6.131)

Observe for a mixture, the individual components can be considered to be3542

conditional distributions (conditioned on the component identity). The3543

last line is an illustration of the conditional variance formula: “The vari-3544

ance of a mixture is the mean of the conditional variance and the variance3545

of the conditional mean”.3546

Remark. The derivation above holds for any density, but in the case of3547

the Gaussian since it is fully determined by the mean and variance, the3548

mixture density can be determined in closed form. }3549

Recall the example in Section 6.5, where we considered a bivariate stan-3550

dard Gaussian random variable X and performed a linear transformation3551

AX on it. The outcome was a Gaussian random variable with zero mean3552
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and covariance A
>
A. Observe that adding a constant vector will change3553

the mean of the distribution, without affecting its variance, that is the3554

random variable x + µ is Gaussian with mean µ and identity covariance.3555

Therefore, a linear (or affine) transformation of a Gaussian random vari-3556

able is Gaussian distributed.3557

Consider a Gaussian distributed random variable x ⇠ N
�
x | µ, ⌃

�
. For

a given matrix A of appropriate shape, let y be a random variable y = Ax

which is a transformed version of x. We can compute the mean of y by
using the fact that the expectation is a linear operator (Equation (6.50))
as follows:

E[Ax] = AE[x] = Aµ. (6.132)

Similarly the variance of y can be found by using Equation (6.51):

V[Ax] = AV[x]A> = A⌃A
>
. (6.133)

This means that the random variable y is distributed according to

p(y) = N
�
x | Aµ, A⌃A

>�
. (6.134)

Let us now consider the reverse transformation: when we know that a
random variable has a mean that is a linear transformation of another
random variable. For a given matrix A of appropriate shape, let y be a
Gaussian random variable with mean Ax, i.e.,

p(y) = N
�
y | Ax, ⌃

�
. (6.135)

What is the corresponding probability distribution p(x)? If A is invert-
ible, then we can write x = A

�1
y and apply the transformation in the

previous paragraph. However in general A is not invertible, and we use
an approach similar to the that of the pseudo-inverse (Equation 3.54).
That is we pre-multiply both sides with A

> and then invert A
>
A which

is symmetric and positive definite, giving us the relation

y = Ax () (A>
A)�1

A
>
y = x . (6.136)

Hence, x is a linear transformation of y, and we obtain

p(x) = N
�
x | (A>

A)�1
A

>
y, (A>

A)�1
A

>⌃A(A>
A)�1

�
. (6.137)

6.6.4 Sampling from Multivariate Gaussian Distributions3558

We will not explain the subtleties of random sampling on a computer. In3559

the case of a multivariate Gaussian, this process consists of three stages:3560

first we need a source of pseudo-random numbers that provide a uniform3561

sample in the interval [0,1], second we use a non-linear transformation3562

such as the Box-Müller transform (Devroye, 1986) to obtain a sample from3563

a univariate Gaussian, and third we collate a vector of these samples to3564

obtain a sample from a multivariate standard normal N
�
0, I

�
.3565
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For a general multivariate Gaussian, that is where the mean is non-zero3566

and the covariance is not the identity matrix, we use the properties of3567

linear transformations of a Gaussian random variable. Assume we are in-3568

terested in generating samples xi, i = 1, . . . , n, from a multivariate Gaus-3569

sian distribution with mean µ and covariance matrix ⌃. We would like3570

to construct the sample from a sampler that provides samples from the3571

multivariate standard normal N
�
0, I

�
.3572 To compute the

Cholesky
factorization of a
matrix, it is required
that the matrix is
symmetric and
positive definite
(Section 3.2.3).
Covariance matrices
possess this
property.

To obtain samples from a multivariate normal N
�
µ, ⌃

�
, we can use3573

the properties of a linear transformation of a Gaussian random variable: If3574

x ⇠ N
�
0, I

�
then y = Ax+µ, where AA

> = ⌃, is Gaussian distributed3575

with mean µ and covariance matrix ⌃. Recall from Section 4.3 that ⌃ =3576

AA
> is the Cholesky factorization of ⌃.3577

6.7 Conjugacy and the Exponential Family3578

Many of the probability distributions “with names” that we find in statis-3579

tics textbooks were discovered to model particular types of phenomena.3580

The distributions are also related to each other in complex ways (Leemis3581

and McQueston, 2008). For a beginner in the field, it can be overwhelming3582

to figure out which distribution to use. In addition, many of these distribu-3583

tions were discovered at a time that statistics and computation was done “Computers” were a
job description.

3584

by pencil and paper. It is natural to ask what are meaningful concepts3585

in the computing age (Efron and Hastie, 2016). In the previous section,3586

we saw that many of the operations required for inference can be conve-3587

niently calculated when the distribution is Gaussian. It is worth recalling3588

at this point the desiderata for manipulating probability distributions.3589

1. There is some “closure property” when applying the rules of probability,3590

e.g., Bayes’ theorem.3591

2. As we collect more data, we do not need more parameters to describe3592

the distribution.3593

3. Since we are interested in learning from data, we want parameter esti-3594

mation to behave nicely.3595

It turns out that the class of distributions called the exponential family pro- exponential family3596

vides the right balance of generality while retaining favourable computa-3597

tion and inference properties. Before we introduce the exponential family,3598

let us see three more members of “named” probability distributions.3599

Example 6.10
The Bernoulli distribution is a distribution for a single binary variable x 2 Bernoulli

distribution{0, 1} and is governed by a single continuous parameter µ 2 [0, 1] that
represents the probability of x = 1. The Bernoulli distribution is defined
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Figure 6.8
Examples of the
Binomial
distribution for
µ 2 {0.1, 0.4, 0.75}
and N = 15.
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as

p(x |µ) = µ
x(1 � µ)1�x

, x 2 {0, 1} , (6.138)
E[x] = µ , (6.139)
V[x] = µ(1 � µ) , (6.140)

where E[x] and V[x] are the mean and variance of the binary random
variable x.

An example where the Bernoulli distribution can be used is when we3600

are interested in modeling the probability of “head” when flipping a coin.3601

Example 6.11
The Binomial distribution is a generalization of the Bernoulli distributionBinomial

distribution to a distribution over integers. In particular, the Binomial can be used to
describe the probability of observing m occurrences of x = 1 in a set of N
samples from a Bernoulli distribution where p(x = 1) = µ 2 [0, 1]. The
Binomial distribution is defined as

p(m |N,µ) =

 
N

m

!

µ
m(1 � µ)N�m

, (6.141)

E[m] = Nµ , (6.142)
V[m] = Nµ(1 � µ) (6.143)

where E[m] and V[m] are the mean and variance of m, respectively.

An example where the Binomial could be used is if we want to describe3602

the probability of observing m “heads” in N coin-flip experiments if the3603

probability for observing head in a single experiment is µ.3604

Example 6.12
The Beta distribution is a distribution over a continuous variable µ 2 [0, 1],
which is often used to represent the probability for some binary event

Draft (2018-07-04) from Mathematics for Machine Learning. Errata and feedback to https://mml-book.com.

https://mml-book.com


6.7 Conjugacy and the Exponential Family 201

Figure 6.9
Examples of the
Beta distribution for
different values of ↵
and �.
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(e.g., the parameter governing the Bernoulli distribution). The Beta dis-
tribution (illustrated in Figure 6.9) itself is governed by two parameters
↵ > 0, � > 0 and is defined as

p(µ |↵,�) = �(↵+ �)

�(↵)�(�)
µ
↵�1(1 � µ)��1 (6.144)

E[µ] =
↵

↵+ �
, V[µ] =

↵�

(↵+ �)2(↵+ � + 1)
(6.145)

where �(·) is the Gamma function defined as

�(t) :=
Z 1

0

x
t�1 exp(�x)dx, t > 0 . (6.146)

�(t+ 1) = t�(t) . (6.147)

Note that the fraction of Gamma functions in (6.144) normalizes the Beta
distribution.

Intuitively, ↵ moves probability mass toward 1, whereas � moves prob-3605

ability mass toward 0. There are some special cases (Murphy, 2012):3606

• For ↵ = 1 = � we obtain the uniform distribution U [0, 1].3607

• For ↵,� < 1, we get a bimodal distribution with spikes at 0 and 1.3608

• For ↵,� > 1, the distribution is unimodal.3609

• For ↵,� > 1 and ↵ = �, the distribution is unimodal, symmetric and3610

centered in the interval [0, 1], i.e., the mode/mean is at 1
2
.3611

Remark. There is a whole zoo of distributions with names, and they are3612

related in different ways to each other (Leemis and McQueston, 2008).3613

It is worth keeping in mind that each named distribution is created for a3614

particular reason, but may have other applications. Knowing the reason3615

behind the creation of a particular distribution often allows insight into3616

how to best use it. We introduced the above three distributions to be able3617

to illustrate the concepts of conjugacy (Section 6.7.1) and exponential3618

families (Section 6.153). }3619
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6.7.1 Conjugacy3620

According to Bayes’ theorem (6.21), the posterior is proportional to the3621

product of the prior and the likelihood. The specification of the prior can3622

be tricky for two reasons: First, the prior should encapsulate our knowl-3623

edge about the problem before we see some data. This is often difficult to3624

describe. Second, it is often not possible to compute the posterior distribu-3625

tion analytically. However, there are some priors that are computationally3626

convenient: conjugate priors.conjugate priors 3627

Definition 6.14 (Conjugate Prior). A prior is conjugate for the likelihoodconjugate 3628

function if the posterior is of the same form/type as the prior.3629

Conjugacy is particularly convenient because we can algebraically cal-3630

culate our posterior distribution by updating the parameters of the prior3631

distribution.3632

Remark. When considering the geometry of probability distributions, con-3633

jugate priors retain the same distance structure as the likelihood (Agarwal3634

and III, 2010). }3635

To introduce a concrete example of conjugate priors, we describe below3636

the Binomial distribution (defined on discrete random variables) and the3637

Beta distribution (defined on continuous random variables).3638

Example 6.13 (Beta-Binomial Conjugacy)
Consider a Binomial random variable x ⇠ Bin(m |N,µ) where

p(x |µ,N) =

 
N

m

!

µ
m(1 � µ)N�m / µ

a(1 � µ)b (6.148)

for some constants a, b. We place a Beta prior on the parameter µ:

Beta(µ |↵,�) = �(↵+ �)

�(↵)�(�)
µ
↵�1(1 � µ)��1 / µ

↵�1(1 � µ)��1 (6.149)

If we now observe some outcomes x = (x1, . . . , xN) of a repeated coin-flip
experiment with h heads and t tails, we compute the posterior distribution
on µ as

p(µ | x = h) / p(x |µ)p(µ |↵,�) = µ
h(1 � µ)tµ↵�1(1 � µ)��1

(6.150)

= µ
h+↵�1(1 � µ)t+��1 / Beta(h+ ↵, t+ �) (6.151)

i.e., the posterior distribution is a Beta distribution as the prior, i.e., the
Beta prior is conjugate for the parameter µ in the Binomial likelihood
function.

Table 6.2 lists examples for conjugate priors for the parameters of some3639

of standard likelihoods used in probabilistic modeling. Distributions such3640
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Table 6.2 Examples
of conjugate priors
for common
likelihood functions.

Likelihood Conjugate prior Posterior
Bernoulli Beta Beta
Binomial Beta Beta
Gaussian Gaussian/inverse Gamma Gaussian/inverse Gamma
Gaussian Gaussian/inverse Wishart Gaussian/inverse Wishart
Multinomial Dirichlet Dirichlet

as Multinomial, inverse Gamma, inverse Wishart, and Dirichlet can be3641

found in any statistical text, and is for example described in Bishop (2006).3642

The Beta distribution is the conjugate prior for the parameter µ in both3643

the Binomial and the Bernoulli likelihood. For a Gaussian likelihood func-3644

tion, we can place a conjugate Gaussian prior on the mean. The reason3645

why the Gaussian likelihood appears twice in the table is that we need3646

distinguish the univariate from the multivariate case. In the univariate3647

(scalar) case, the inverse Gamma is the conjugate prior for the variance. Alternatively, the
Gamma prior is
conjugate for the
precision (inverse
variance) in the
Gaussian likelihood.

3648

In the multivariate case, we use a conjugate inverse Wishart distribution3649

as a prior on the covariance matrix. The Dirichlet distribution is the conju-

Alternatively, the
Wishart prior is
conjugate for the
precision matrix
(inverse covariance
matrix) in the
Gaussian likelihood.

3650

gate prior for the multinomial likelihood function. For further details, we3651

refer to Bishop (2006).3652

6.7.2 Sufficient Statistics3653

Recall that a statistic of a random variable is a deterministic function of3654

that random variable. For example if x = [x1, . . . ,xN ]> is a vector of3655

univariate Gaussian random variables, that is xn ⇠ N
�
µ, �

2
�
, then the3656

sample mean µ̂ = 1
N
(x1 + · · · + xN) is a statistic. Sir Ronald Fisher dis-3657

covered the notion of sufficient statistics: the idea that there are statistics sufficient statistics3658

that will contain all available information that can be inferred from data3659

corresponding to the distribution under consideration. In other words suf-3660

ficient statistics carry all the information needed to make inference about3661

the population, that is they are the statistics that are sufficient to represent3662

the distribution.3663

For a set of distributions parameterized by ✓, let x be a random vari-3664

able with distribution given an unknown ✓0. A vector �(x) of statistics3665

are called sufficient statistics for ✓0 if they contain all possible informa-3666

tion about ✓0. To be more formal about “contain all possible information”:3667

this means that the probability of x given ✓ can be factored into a part3668

that does not depend on ✓, and a part that depends on ✓ only via �(x).3669

The Fisher-Neyman factorization theorem formalizes this notion, which3670

we state below without proof.3671

Theorem 6.15 (Fisher-Neyman). Let x have probability density function
p(x | ✓). Then the statistics �(x) are sufficient for ✓ if and only if p(x | ✓) can
be written in the form

p(x | ✓) = h(x)g✓(�(x)). (6.152)
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where h(x) is a distribution independent of ✓ and g✓ captures all the depen-3672

dence on ✓ via sufficient statistics �(x).3673

Note that if p(x | ✓) does not depend on ✓ then �(x) is trivially a suffi-3674

cient statistic for any function �. The more interesting case is that p(x | ✓)3675

is dependent only on �(x) and not x itself. In this case, �(x) is a sufficient3676

statistic for x.3677

A natural question to ask is as we observe more data, do we need more3678

parameters ✓ to describe the distribution? It turns out that the answer3679

is yes in general, and this is studied in non-parametric statistics (Wasser-3680

man, 2007). A converse question is to consider which class of distributions3681

have finite dimensional sufficient statistics, that is the number of param-3682

eters needed to describe them do not increase arbitrarily. The answer is3683

exponential family distributions, described in the following section.3684

6.7.3 Exponential Family3685

At this point it is worth being a bit careful by discussing three possible3686

levels of abstraction we can have when considering distributions (of dis-3687

crete or continuous random variables). At the most concrete end of the3688

spectrum, we have a particular named distribution with fixed parame-3689

ters, for example a univariate Gaussian N
�
0, 1

�
with zero mean and unit3690

variance. In machine learning, we often fix the parametric form (the uni-3691

variate Gaussian) and infer the parameters from data. For example, we3692

assume a univariate Gaussian N
�
µ, �

2
�

with unknown mean µ and un-3693

known variance �
2, and use a maximum likelihood fit to determine the3694

best parameters (µ,�2). We will see an example of this when considering3695

linear regression in Chapter 9. A third level of abstraction is to consider3696

families of distributions, and in this book, we consider the exponential3697

family. The univariate Gaussian is an example of a member of the expo-3698

nential family. Many of the widely used statistical models, including all3699

the “named” models in Table 6.2, are members of the exponential family.3700

They can all be unified into one concept (Brown, 1986).3701

Remark. A brief historical anecdote: like many concepts in mathematics3702

and science, exponential families were independently discovered at the3703

same time by different researchers. In the years 1935–1936, Edwin Pitman3704

in Tasmania, Georges Darmois in Paris, and Bernard Koopman in New3705

York, independently showed that the exponential families are the only3706

families that enjoy finite-dimensional sufficient statistics under repeated3707

independent sampling (Lehmann and Casella, 1998). }3708

An exponential family is a family of probability distributions, parame-exponential family

terized by ✓ 2 RD, of the form

p(x | ✓) = h(x) exp (h✓,�(x)i � A(✓)) , (6.153)

where �(x) is the vector of sufficient statistics. In general, any inner prod-3709
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uct (Section 3.2) can be used in (6.153), and for concreteness we will use3710

the standard dot product here. Note that the form of the exponential fam-3711

ily is essentially a particular expression of g✓(�(x)) in the Fisher-Neyman3712

theorem (Theorem 6.15).3713

The factor h(x) can be absorbed into the dot product term by adding
another entry to the vector of sufficient statistics log h(x), and constrain-
ing the corresponding parameter ✓ = 1. The term A(✓) is the normal-
ization constant that ensures that the distribution sums up or integrates
to one and is called the log partition function. A good intuitive notion log partition

functionof exponential families can be obtained by ignoring these two terms and
considering exponential families as distributions of the form

p(x | ✓) / exp
�
✓
>
�(x)

�
. (6.154)

For this form of parameterization, the parameters ✓ are called the natural natural paramters3714

paramters. At first glance it seems that exponential families is a mundane3715

transformation by adding the exponential function to the result of a dot3716

product. However, there are many implications that allow for convenient3717

modelling and efficient computation to the fact that we can capture infor-3718

mation about data in �(x).3719

Example 6.14 (Gaussian as Exponential Family)

Consider the univariate Gaussian distribution N
�
µ, �

2
�
. Let �(x) =


x

x
2

�
.

Then by using the definition of the exponential family,

p(x | ✓) / exp(✓1x+ ✓2x
2) . (6.155)

Setting

✓ =


µ

�2
,� 1

2�2

�>
(6.156)

and substituting into (6.155) we obtain

p(x | ✓) / exp

✓
µx

�2
� x

2

2�2

◆
/ exp

✓
� 1

2�2
(x � µ)2

◆
. (6.157)

Therefore, the univariate Gaussian distribution is a member of the expo-

nential family with sufficient statistic �(x) =


x

x
2

�
.

Exponential families also provide a convenient way to find conjugate
pairs of distributions. In the following example, we will derive a result that
is similar to the Beta-Binomial conjugacy result of Section 6.7.1. Here we
will show that the Beta distribution is a conjugate prior for the Bernoulli
distribution.
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Example 6.15 (Beta-Bernoulli Conjugacy)
Let x 2 {0, 1} be distributed according to the Bernoulli distribution with
parameter ✓ 2 [0, 1], that is P (x = 1 | ✓) = ✓. This can also be expressed
as P (x | ✓) = ✓

x(1� ✓)1�x. Let ✓ be distributed according to a Beta distri-
bution with parameters ↵,�, that is p(✓ |↵,�) / ✓

↵�1(1 � ✓)��1.
Multiplying the Beta and the Bernoulli distributions, we get

p(✓ |x,↵,�) = P (x | ✓) ⇥ p(✓ |↵,�) (6.158)

/ ✓
x(1 � ✓)1�x ⇥ ✓

↵�1(1 � ✓)��1 (6.159)

= ✓
↵+x�1(1 � ✓)�+(1�x)�1 (6.160)

/ p(✓ |↵+ x,� + (1 � x)). (6.161)

The last line above is the Beta distribution with parameters (↵ + x,� +
(1 � x)).

Remark. The rewriting above of the Bernoulli distribution, where we use3720

Boolean variables as numerical 0 or 1 and express them in the exponents,3721

is a trick that is often used in machine learning textbooks. Another oc-3722

curence of this is when expressing the Multinomial distribution. }3723

As mentioned in the previous section, the main motivation for expo-3724

nential families is that they have finite-dimensional sufficient statistics.3725

Additionally, conjugate distributions are easy to write down, and the con-3726

jugate distributions also come from an exponential family. From an infer-3727

ence perspective, maximum likelihood estimation behaves nicely because3728

empirical estimates of sufficient statistics are optimal estimates of the pop-3729

ulation values of sufficient statistics (recall the mean and covariance of a3730

Gaussian). From an optimization perspective, the log-likelihood function3731

is concave allowing for efficient optimization approaches to be applied3732

(Chapter 7).3733

6.8 Further Reading3734

Probabilistic models in machine learning Bishop (2006); Murphy (2012)3735

provide a way for users to capture uncertainty about data and predictive3736

models in a principled fashion. Ghahramani (2015) presents a short re-3737

view of probabilistic models in machine learning. This chapter is rather3738

terse at times, and Grinstead and Snell (1997) provides a more relaxed3739

presentation that is suitable for self study. Readers interested in more3740

philosophical aspects of probability should consider Hacking (2001), whereas3741

a more software engineering approach is presented by Downey (2014).3742

Given a probabilistic model, we may be lucky enough to be able to com-3743

pute parameters of interest analytically. However in general analytic solu-3744

tions are rare and computational methods such as sampling (Brooks et al.,3745
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2011) and variational inference (Blei et al., 2017) are used. Ironically the3746

recent surge in interest in neural networks has resulted in a broader ap-3747

preciation of probabilisitic models. For example the idea of normalizing3748

flows (Rezende and Mohamed, 2015) relies on change of variables for3749

transforming random variables. An overview of methods for variational3750

inference as applied to neural networks is described in Chapters 16 to 203751

of Goodfellow et al. (2016).3752

A more technical audience interested in the details of probability the-3753

ory have many options (Jacod and Protter, 2004; Jaynes, 2003; Mackay,3754

2003) including some very technical discussions (Dudley, 2002; Shiryayev,3755

1984; Lehmann and Casella, 1998; Bickel and Doksum, 2006). We side3756

stepped a large part of the difficulty by glossing over measure theoretic3757

questions (Billingsley, 1995; Pollard, 2002), and by assuming without3758

construction that we have real numbers, and ways of defining sets on3759

real numbers as well as their appropriate frequency of occurrence. As ma-3760

chine learning allows us to model move intricate distributions on ever3761

move complex types of data, a developer of probabilistic machine learn-3762

ing models would have to understand these more technical aspects. Ma-3763

chine learning books with a probabilistic modelling focus includes Mackay3764

(2003); Bishop (2006); Murphy (2012); Barber (2012); Rasmussen and3765

Williams (2006).3766

Exercises3767

6.1 You have written a computer program that sometimes compiles and some-
times not (code does not change). You decide to model the apparent stochas-
ticity (success vs no success) x of the compiler using a Bernoulli distribution
with parameter µ:

p(x|µ) = µx(1� µ)1�x , x 2 {0, 1}

Choose a conjugate prior for the Bernoulli likelihood and compute the pos-3768

terior distribution p(µ|x1, . . . , xN ).3769

6.2 Consider the following time-series model:

xt+1 = Axt +w , w ⇠ N
�
0, Q

�

yt = Cxt + v , v ⇠ N
�
0, R

�

where w,v are i.i.d. Gaussian noise variables. Further, assume that p(x0) =3770

N
�
µ0, ⌃0

�
.3771

1. What is the form of p(x0,x1, . . . ,xT )? Justify your answer (you do not3772

have to explicitly compute the joint distribution). (1–2 sentences)3773

2. Assume that p(xt|y1, . . . ,yt) = N
�
µt, ⌃t

�
.3774

1. Compute p(xt+1|y1, . . . ,yt)3775

2. Compute p(xt+1,yt+1|y1, . . . ,yt)3776

3. At time t+1, we observe the value yt+1 = ŷ. Compute p(xt+1|y1, . . . ,yt+1).3777
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6.3 Prove the relationship in Equation 6.40, which relates the standard defini-3778

tion of the variance to the raw score expression for the variance.3779

6.4 Prove the relationship in Equation 6.41, which relates the pairwise differ-3780

ence between examples in a dataset with the raw score expression for the3781

variance.3782

6.5 Express the Bernoulli distribution in the natural parameter form of the ex-3783

ponential family (Equation (6.153)).3784

6.6 Express the Binomial distribution as an exponential family distribution. Also3785

express the Beta distribution is an exponential family distribution. Show that3786

the product of the Beta and the Binomial distribution is also a member of3787

the exponential family.3788

6.7 Iterated Expectations.
Consider two random variables x, y with joint distribution p(x, y). Show
that:

Ex[x] = Ey
⇥
Ex[x|y]

⇤

Here, Ex[x|y] denotes the expected value of x under the conditional distri-3789

bution p(x|y).3790

6.8 Manipulation of Gaussian Random Variables.
Consider a Gaussian random variable x ⇠ N

�
x |µx, ⌃x

�
, where x 2 RD.

Furthermore, we have

y = Ax+ b+w , (6.162)

where y 2 RE , A 2 RE⇥D, b 2 RE , and w ⇠ N
�
w |0, Q

�
is indepen-3791

dent Gaussian noise. “Independent” implies that x and w are independent3792

random variables and that Q is diagonal.3793

1. Write down the likelihood p(y|x).3794

2. The distribution p(y) =
R
p(y|x)p(x)dx is Gaussian.3 Compute the mean3795

µy and the covariance ⌃y. Derive your result in detail.3796

3. The random variable y is being transformed according to the measure-
ment mapping

z = Cy + v , (6.163)

where z 2 RF , C 2 RF⇥E , and v ⇠ N
�
v |0, R

�
is independent Gaus-3797

sian (measurement) noise.3798

• Write down p(z|y).3799

• Compute p(z), i.e., the mean µz and the covariance ⌃z. Derive your3800

result in detail.3801

4. Now, a value ŷ is measured. Compute the posterior distribution p(x|ŷ).43802

Hint for solution: Start by explicitly computing the joint Gaussian p(x,y).3803

This also requires to compute the cross-covariances Covx,y[x,y] and3804

Covy,x[y,x]. Then, apply the rules for Gaussian conditioning.3805

3An affine transformation of the Gaussian random variable x into Ax + b preserves Gaus-
sianity. Furthermore, the sum of this Gaussian random variable and the independent Gaussian
random variable w is Gaussian.

4This posterior is also Gaussian, i.e., we need to determine only its mean and covariance
matrix.
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3841

Since machine learning algorithms are implemented on a computer, the3842

mathematical formulations are expressed as numerical optimization meth-3843

ods. This chapter describes the basic numerical methods for training ma-3844

chine learning models. Training a machine learning model often boils3845

down to finding a good set of parameters. The notion of “good” is de-3846

termined by the objective function or the probabilistic model, which we3847

will see examples of in the second part of this book. Given an objective3848

function finding the best value is done using optimization algorithms.Since we consider
data and models in
RD the
optimization
problems we face
are continuous
optimization
problems, as
opposed to
combinatorial
optimization
problems for
discrete variables.

3849

This chapter covers two main branches of continuous optimization (Fig-3850

ure 7.1): unconstrained and constrained optimization. We will assume in3851

this chapter that our objective function is differentiable (see Chapter 5),3852

hence we have access to a gradient at each location in the space to help3853

us find the optimum value. By convention most objective functions in ma-3854

chine learning are intended to be minimized, that is the best value is the3855

minimum value. Intuitively finding the best value is like finding the val-3856

leys of the objective function, and the gradients point us uphill. The idea is3857

to move downhill (opposite to the gradient) and hope to find the deepest3858

point. For unconstrained optimization, this is the only concept we need,3859

but there are several design choices which we discuss in Section 7.1. For3860

constrained optimization, we need to introduce other concepts to man-3861

age the constraints (Section 7.2). We will also introduce a special class3862

of problems (convex optimization problems in Section 7.3) where we can3863

make statements about reaching the global optimum.3864

Consider the function in Figure 7.2. The function has a global minimumglobal minimum

around the value x = �4.5 which has the objective function value of
around �47. Since the function is “smooth” the gradients can be used to
help find the minimum by indicating whether we should take a step to the
right or left. This assumes that we are in the correct bowl, as there exists
another local minimum around the value x = 0.7. Recall that we can solvelocal minimum

for all the stationary points of a function by calculating its derivative andStationary points
are points that have
zero gradient.

setting it to zero. Let

`(x) = x
4 + 7x3 + 5x2

� 17x+ 3. (7.1)
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Figure 7.1 A mind
map of the concepts
related to
optimization, as
presented in this
chapter. There are
two main ideas:
gradient descent
and convex
optimization.

Continuous
optimization

Unconstrained
optimization

Constrained
optimization

Gradient descent

Stepsize

Momentum

Stochastic
gradient
descent

Lagrange multipliers Convex

Convex optimization
& duality Convex conjugate

Linear
programming

Quadratic
programming

Chapter 12
Classification

Its gradient is given by

d`(x)

dx
= 4x3 + 21x2 + 10x � 17. (7.2)

Since this is a cubic equation, it has three solutions when set to zero. Two
of them are minima and one is a maximum (around x = �1.4). Recall
that to check whether a stationary point is a minimum or maximum we
need to take the derivative a second time and check whether the second
derivative is positive or negative at the stationary point.

d2
`(x)

dx2
= 12x2 + 42x+ 10 (7.3)

By substituting our visually estimated values of x = �4.5,�1.4, 0.7 we3865

will observe that as expected the middle point is a maximum
⇣

d2`(x)
dx2 < 0

⌘
3866

and the other two stationary points are minimums.3867

Note that we have avoided analytically solving for values of x in the pre-3868

vious discussion, although for low order polynomials such as the above we3869

could. In general, we are unable to find analytic solutions, and hence we In fact according to
the Abel-Ruffini
theorem, also
known as Abel’s
impossibility
theorem, there is in
general no algebraic
solution for
polynomials of
degree 5 or more.

3870
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Figure 7.2 Example
objective function.
Gradients are
indicated by arrows,
and the global
minimum is
indicated by the
dashed blue line.

need to start at some value, say x0 = �10 and follow the gradient. The3871

gradient indicates that we should go right, but not how far (this is called3872

the step size). Furthermore, if we had started at the right side (e.g. x0 = 0)3873

the gradient would have led us to the wrong minimum. Figure 7.2 illus-3874

trates the fact that for x > �1, the gradient points towards the minimum3875

on the right of the figure, which has a larger objective value.3876

We will see in Section 7.3 a class of functions called convex functions3877

that do not exhibit this tricky dependency on the starting point of the3878

optimization algorithm. For convex functions all local minima are globalconvex functions 3879

minimum. It turns out that many machine learning objective functions3880

are designed such that they are convex, and we will see an example in3881

Chapter 12.3882

The discussion in this chapter so far was about a one dimensional func-3883

tion, where we are able to visualize the ideas of gradients, descent direc-3884

tions and optimal values. In the rest of this chapter we develop the same3885

ideas in high dimensions. Unfortunately we can only visualize the con-3886

cepts in one dimension, but some concepts do not generalize directly to3887

higher dimensions, therefore some care needs to be taken when reading.3888

7.1 Optimization using Gradient Descent3889

We now consider the problem of solving for the minimum of a real-valued
function

min
x

f(x) (7.4)
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Figure 7.3 Gradient
descent on a 2
dimensional
quadratic surface
(shown as a
heatmap). See
Example 7.1 for a
description.

where f : Rd
! R is an objective function that captures the machine3890

learning problem at hand. We assume that our function f is differentiable,3891

and we are unable to analytically find a solution in closed form.3892

Gradient descent is a first-order optimization algorithm. To find a local3893

minimum of a function using gradient descent, one takes steps propor-3894

tional to the negative of the gradient of the function at the current point.3895

Recall from Chapter 5 that the gradient points in the direction of the steep-3896

est ascent and it is orthogonal to the contour lines of the function we wish3897

to optimize. We use the
convention of row
vectors for
gradients.

3898

Let us consider multivariate functions. Imagine a surface (described by
the function f(x)) with a ball starting at a particular location x0. When
the ball is released, it will move downhill in the direction of steepest de-
scent. Gradient descent exploits the fact that f(x0) decreases fastest if one
moves from x0 in the direction of the negative gradient �((rf)(x0))> of
f at x0. We assume in this book that the functions are differentiable, and
refer the reader to more general settings in Section 7.4. Then, if

x1 = x0 � �((rf)(x0))
> (7.5)

for a small step size � > 0 then f(x1) 6 f(x0). Note that we use the3899

transpose for the gradient since otherwise the dimensions will not work3900

out.3901

This observation allows us to define a simple gradient-descent algo-
rithm: If we want to find a local optimum f(x⇤) of a function f : Rn

!

R, x 7! f(x), we start with an initial guess x0 of the parameters we wish
to optimize and then iterate according to

xi+1 = xi � �i((rf)(xi))
>
. (7.6)

For suitable step size �i, the sequence f(x0) > f(x1) > . . . converges to3902

a local minimum.3903
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Example 7.1
Consider a quadratic function in two dimensions

f

✓
x1

x2

�◆
=


x1

x2

�> 
2 1
1 20

� 
x1

x2

�
�


5
3

�> 
x1

x2

�
(7.7)

with gradient

rf

✓
x1

x2

�◆
=


2 1
1 20

� 
x1

x2

�
�


5
3

�
. (7.8)

Starting at the initial location x0 = [�3,�1]>, we iteratively apply (7.6)
to obtain a sequence of estimates that converge to the minimum value
(illustrated in Figure 7.3). We can see (both from the figure and by
plugging x0 into (7.8)) that the the gradient at x0 points north and
east, leading to x1 = [�1.98, 1.21]>. Repeating that argument gives us
x2 = [�1.32,�0.42]>, and so on.

Remark. Gradient descent can be relatively slow close to the minimum:3904

Its asymptotic rate of convergence is inferior to many other methods. Us-3905

ing the ball rolling down the hill analogy, when the surface is a long thin3906

valley the problem is poorly conditioned (Trefethen and Bau III, 1997).3907

For poorly conditioned convex problems, gradient descent increasingly3908

‘zigzags’ as the gradients point nearly orthogonally to the shortest direc-3909

tion to a minimum point, see Fig. 7.3. }3910

7.1.1 Stepsize3911

As mentioned earlier, choosing a good stepsize is important in gradient3912

descent. If the stepsize is too small, gradient descent can be slow. If theThe stepsize is also
called the learning
rate

3913

stepsize is chosen too large, gradient descent can overshoot, fail to con-3914

verge, or even diverge. We will discuss the use of momentum in the next3915

section. It is a method that smoothes out erratic behavior of gradient up-3916

dates and dampens oscillations.3917

Adaptive gradient methods rescale the stepsize at each iteration, de-3918

pending on local properties of the function. There are two simple heuris-3919

tics (Toussaint, 2012):3920

• When the function value increases after a gradient step, the step size3921

was too large. Undo the step and decrease the stepsize.3922

• When the function value decreases the step could have been larger. Try3923

to increase the stepsize.3924

Although the “undo” step seems to be a waste of resources, using this3925

heuristic guarantees monotonic convergence.3926
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Example 7.2 (Solving a Linear Equation System)
When we solve linear equations of the form Ax = b, in practice we solve
Ax � b = 0 approximately by finding x⇤ that minimizes the the squared
error

kAx � bk
2 = (Ax � b)>(Ax � b) (7.9)

if we use the Euclidean norm. The gradient of (7.9) with respect to x is

rx = 2(Ax � b)>A . (7.10)

We can use this gradient directly in a gradient descent algorithm. How-
ever for this particular special case, it turns out that there is an analytic
solution, which can be found by setting the gradient to zero. We can see
that this analytic solution is given by Ax = b. We will see more on solving
squared error problems in Chapter 9.

Remark. When applied to the solution of linear systems of equations Ax =3927

b gradient descent may converge slowly. The speed of convergence of gra-3928

dient descent is dependent on the condition number  = �(A)max

�(A)min
, which condition number3929

is the ratio of the maximum to the minimum singular value (Section 4.5)3930

of A. The condition number essentially measures the ratio of the most3931

curved direction versus the least curved direction, which corresponds to3932

our imagery that poorly conditioned problems are long thin valleys: they3933

are very curved in one direction, but very flat in the other. Instead of di-3934

rectly solving Ax = b, one could instead solve P
�1(Ax � b) = 0, where3935

P is called the preconditioner. The goal is to design P
�1 such that P

�1
A preconditioner3936

has a better condition number, but at the same time P
�1 is easy to com-3937

pute. For further information on gradient descent, pre-conditioning and3938

convergence we refer to (Boyd and Vandenberghe, 2004, Chapter 9). }3939

7.1.2 Gradient Descent with Momentum3940

As illustrated in Figure 7.3, the convergence of gradient descent may be3941

very slow if the curvature of the optimization surface is such that the there3942

are regions which are poorly scaled. The curvature is such that the gra-3943

dient descent steps hops between the walls of the valley, and approaches3944

the optimum in small steps. The proposed tweak to improve convergence3945

is to give gradient descent some memory.3946

Gradient descent with momentum (Rumelhart et al., 1986) is a method
that introduces an additional term to remember what happened in the
previous iteration. This memory dampens oscillations and smoothes out
the gradient updates. Continuing the ball analogy, the momentum term

Goh (2017) wrote
an intuitive blog
post on gradient
descent with
momentum.

emulates the phenomenon of a heavy ball which is reluctant to change
directions. The idea is to have a gradient update with memory to imple-
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ment a moving average. The momentum-based method remembers the
update �xi at each iteration i and determines the next update as a linear
combination of the current and previous gradients

xi+1 = xi � �i((rf)(xi))
> + ↵�xi (7.11)

�xi = xi � xi�1 = ��i�1((rf)(xi�1))
>
, (7.12)

where ↵ 2 [0, 1]. Sometimes we will only know the gradient approxi-3947

mately. In such cases the momentum term is useful since it averages out3948

different noisy estimates of the gradient. One particularly useful way to3949

obtain an approximate gradient is using a stochastic approximation, which3950

we discuss next.3951

7.1.3 Stochastic Gradient Descent3952

Computing the gradient can be very time consuming. However, often it is3953

possible to find a “cheap” approximation of the gradient. Approximating3954

the gradient is still useful as long as it points in roughly the same direction3955

as the true gradient.3956Stochastic gradient
descent Stochastic gradient descent (often shortened in SGD) is a stochastic ap-3957

proximation of the gradient descent method for minimizing an objective3958

function that is written as a sum of differentiable functions. The word3959

stochastic here refers to the fact that we acknowledge that we do not3960

know the gradient precisely, but instead only know a noisy approxima-3961

tion to it. By constraining the probability distribution of the approximate3962

gradients, we can still theoretically guarantee that SGD will converge.3963

In machine learning given n = 1, . . . , N data points, we often consider
objective functions which are the sum of the losses Ln incurred by each
example n. In mathematical notation we have the form

L(✓) =
NX

n=1

Ln(✓) (7.13)

where ✓ is the vector of parameters of interest, i.e., we want to find ✓ that
minimizes L. An example from regression (Chapter 9), is the negative log-
likelihood, which is expressed as a sum over log-likelihoods of individual
examples,

L(✓) = �

NX

n=1

log p(yn|xn,✓) (7.14)

where xn 2 RD are the training inputs, yn are the training targets and ✓3964

are the parameters of the regression model.3965

Standard gradient descent, as introduced previously, is a “batch” opti-
mization method, i.e., optimization is performed using the full training set
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by updating the vector of parameters according to

✓i+1 = ✓i � �i(rL(✓i))
> = ✓i � �i

NX

n=1

(rLn(✓i))
> (7.15)

for a suitable stepsize parameter �i. Evaluating the sum-gradient may re-3966

quire expensive evaluations of the gradients from all individual functions3967

Ln. When the training set is enormous and/or no simple formulas exist,3968

evaluating the sums of gradients becomes very expensive.3969

Consider the term
PN

n=1(rLn(✓i)) in (7.15) above: we can reduce the3970

amount of computation by taking a sum over a smaller set of Ln. In con-3971

trast to batch gradient descent, which uses all Ln for n = 1, . . . , N , we3972

randomly choose a subset of Ln for mini-batch gradient descent. In the3973

extreme case, we randomly select only a single Ln to estimate the gra-3974

dient. The key insight about why taking a subset of data is sensible is3975

to realise that for gradient descent to converge, we only require that the3976

gradient is an unbiased estimate of the true gradient. In fact the term3977 PN
n=1(rLn(✓i)) in (7.15) is an empirical estimate of the expected value3978

(Section 6.4.1) of the gradient. Therefore any other unbiased empirical3979

estimate of the expected value, for example using any subsample of the3980

data, would suffice for convergence of gradient descent.3981

Why should one consider using an approximate gradient? A major rea-3982

son is practical implementation constraints, such as the size of CPU/GPU3983

memory or limits on computational time. We can think of the size of the3984

subset used to estimate the gradient in the same way that we thought of3985

the size of a sample when estimating empirical means 6.4.1. In practice,3986

it is good to keep the size of the mini-batch as large as possible. Large3987

mini-batches reduce the variance in the parameter update. Furthermore This often leads to
more stable
convergence since
the gradient
estimator is less
noisy.

3988

large mini-batches take advantage of highly optimized matrix operations3989

in vectorized implementations of the cost and gradient. However when3990

we choose the mini-batch size, we need to make sure it fits into CPU/GPU3991

memory. Typical mini-batch sizes are 64, 128, 256, 512, 1024, which de-3992

pends on the way computer memory is laid out and accessed.3993

Remark. When the learning rate decreases at an appropriate rate, and sub-3994

ject to relatively mild assumptions, stochastic gradient descent converges3995

almost surely to local minimum (Bottou, 1998). }3996

If we keep the mini-batch size small, the noise in our gradient estimate3997

will allow us to get out of some bad local optima, which we may otherwise3998

get stuck in.3999

Stochastic gradient descent is very effective in large-scale machine learn-4000

ing problems (Bottou et al., 2018), such as training deep neural networks4001

on millions of images (Dean et al., 2012), topic models (Hoffman et al.,4002

2013), reinforcement learning (Mnih et al., 2015) or training large-scale4003

Gaussian process models (Hensman et al., 2013; Gal et al., 2014).4004
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Figure 7.4
Illustration of
constrained
optimization. The
unconstrained
problem (indicated
by the contour
lines) has a
minimum on the
right side (indicated
by the circle). The
box constraints
(�1 6 x 6 1 and
�1 6 y 6 1) require
that the optimal
solution are within
the box, resulting in
an optimal value
indicated by the
star.

7.2 Constrained Optimization and Lagrange Multipliers4005

In the previous section, we considered the problem of solving for the min-
imum of a function

min
x

f(x) (7.16)

where f : RD
! R.4006

In this section we have additional constraints. That is for real valued
functions gi : RD

! R for i = 1, . . . ,m we consider the constrained
optimization problem

min
x

f(x) (7.17)

subject to gi(x) 6 0 for all i = 1, . . . ,m

It is worth pointing out that the functions f and gi could be non-convex4007

in general, and we will consider the convex case in the next section.4008

One obvious, but not very practical, way of converting the constrained
problem (7.17) into an unconstrained one is to use an indicator function

J(x) = f(x) +
mX

i=1

1(gi(x)) (7.18)

where 1(z) is an infinite step function

1(z) =

(
0 if z 6 0

1 otherwise
. (7.19)
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This gives infinite penalty if the constraint is not satisfied, and hence4009

would provide the same solution. However, this infinite step function is4010

equally difficult to optimize. We can overcome this difficulty by introduc-4011

ing Lagrange multipliers. The idea of Lagrange multipliers is to replace the Lagrange multipliers4012

step function with a linear function.4013

We associate to problem (7.17) the Lagrangian by introducing the La- Lagrangian

grange multipliers �i > 0 corresponding to each inequality constraint re-
spectively (Boyd and Vandenberghe, 2004, Chapter 4).

L(x,�) = f(x) +
mX

i=1

�igi(x)

= f(x) + �
>
g(x) (7.20)

where in the last line we have a concatenated all constraints gi(x) into a4014

vector g(x), and all the Lagrange multipliers into a vector � 2 Rm.4015

We now introduce the idea of Lagrangian duality. In general, duality4016

in optimization is the idea of converting an optimization problem in one4017

set of variables x (called the primal variables), into another optimization4018

problem in a different set of variables � (called the dual variables). We4019

introduce two different approaches to duality: in this section we discuss4020

Lagrangian duality, and in Section 7.3.3 we discuss Legendre-Fenchel du-4021

ality.4022

Theorem 7.1. The problem in (7.17)

min
x

f(x)

subject to gi(x) 6 0 for all i = 1, . . . ,m

is known as the primal problem, corresponding to the primal variables x. primal problem

The associated Lagrangian dual problem is given by Lagrangian dual
problem

max
�2Rm

D(�) (7.21)

subject to � > 0, (7.22)

where � are the dual variables and D(�) = minx2Rd L(x,�).4023

Proof Recall that the difference between J(x) in (7.18) and the La-
grangian in (7.20) is that we have relaxed the indicator function to a
linear function. Therefore when � > 0, the Lagrangian L(x,�) is a lower
bound of J(x). Hence the maximum of L(x,�) with respect to � is J(x)

J(x) = max
�>0

L(x,�). (7.23)

Recall that the original problem was minimising J(x),

min
x2Rd

max
�>0

L(x,�). (7.24)

By the minimax inequality (Boyd and Vandenberghe, 2004) it turns out
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that, for any function swapping the order of the minimum and maximum
above results in a smaller value.

min
x2Rd

max
�>0

L(x,�) > max
�>0

min
x2Rd

L(x,�) (7.25)

This is also known as weak duality. Note that the inner part of the rightweak duality 4024

hand side is the dual objective function D(�) and the theorem follows.4025

In contrast to the original optimization problem which has constraints,4026

minx2Rd L(x,�) is an unconstrained optimization problem for a given4027

value of �. If solving minx2Rd L(x,�) is easy, then the overall problem4028

is easy to solve. The reason is that the outer problem (maximization over4029

�) is a maximum over a set of affine functions, and hence is a concave4030

function, even though f(·) and gi(·) may be non-convex. The maximum4031

of a concave function can be efficiently computed.4032

Assuming f(·) and gi(·) are differentiable, we find the Lagrange dual4033

problem by differentiating the Lagrangian with respect to x and setting4034

the differential to zero and solving for the optimal value. We will discuss4035

two concrete examples in Section 7.3.1 and 7.3.2, where f(·) and gi(·)4036

are convex.4037

Remark (Equality constraints). Consider (7.17) with additional equality
constraints

min
x

f(x) (7.26)

subject to gi(x) 6 0 for all i = 1, . . . ,m

hj(x) = 0 for all j = 1, . . . , n

We can model equality constraints by replacing them with two inequality4038

constraints. That is for each equality constraint hj(x) = 0 we equivalently4039

replace it by two constraints hj(x) 6 0 and hj(x) > 0. It turns out that4040

the resulting Lagrange multipliers are then unconstrained.4041

Therefore we constrain the Lagrange multipliers corresponding to the4042

inequality constraints in (7.26) to be non-negative, and leave the La-4043

grange multipliers corresponding to the equality constraints unconstrained.4044

}4045

7.3 Convex Optimization4046

We focus our attention of a particularly useful class of optimization prob-4047

lems, where we can guarantee global optimality. When f(·) is a convex4048

function, and when the constraints involving g(·) and h(·) are convex sets,4049

this is called a convex optimization problem. In this setting, we have strongconvex optimization
problem

strong duality

4050

duality: The optimal solution of the dual problem is the same as the opti-4051

mal solution of the primal problem. The distinction between convex func-
convex functions

4052

tions and convex sets are often not strictly presented in machine learning
convex sets

4053

literature, but one can often infer the implied meaning from context.4054
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Figure 7.5 Example
of a convex
function.

�2 0 2
x1

0

20

40

x
2

y = 3x2
� 5x + 2

Convex functions are functions such that a straight line between any4055

two points of the function lie above the function. Figure 7.2 shows a non-4056

convex function and Figure 7.3 shows a convex function. Another convex4057

function is shown in Figure 7.5.4058

Definition 7.2. A function f : RD
! R is a convex function if for all x,y convex function

in the domain of f , and for any scalar ✓ with 0 6 ✓ 6 1, we have Technically, the
domain of the
function f must also
be a convex set.

f(✓x + (1 � ✓)y) 6 ✓f(x) + (1 � ✓)f(y) (7.27)

Remark. A concave function is the negative of a convex function. } concave function4059

Figure 7.6 Example
of a convex set

Figure 7.7 Example
of a nonconvex set

The constraints involving g(·) and h(·) in (7.26) truncate functions at a4060

scalar value, resulting in sets. Another relation between convex functions4061

and convex sets is to consider the set obtained by “filling in” a convex4062

function. A convex function is a bowl like object, and we imagine pouring4063

water into it to fill it up. This resulting filled in set, called the epigraph4064

of the convex function, is a convex set. Convex sets are sets such that a4065

straight line connecting any two elements of the set lie inside the set. Fig-4066

ure 7.6 and Figure 7.7 illustrates convex and nonconvex sets respectively.4067

Definition 7.3. A set C is a convex set if for any x, y 2 C and for any

convex set

scalar ✓ with 0 6 ✓ 6 1, we have

✓x+ (1 � ✓)y 2 C (7.28)

If a function f : Rn
! R is differentiable, we can specify convexity in

terms of its gradient rxf(x) (Section 5.2). A function f(x) is convex if
and only if for any two points x,y,

f(y) > f(x) + rxf(x)
>(y � x). (7.29)

If we further know that a function f(x) is twice differentiable, that is the4068

Hessian (5.144) exists for all values in the domain of x, then the function4069

f(x) is convex if and only if r
2
x
f(x) is positive semi-definite (Boyd and4070

Vandenberghe, 2004).4071
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Example 7.3

Figure 7.8 The
negative entropy
function (which is
convex), and its
tangent at x = 2.

0 2 4
t

0

5

10

f
(x

)

tangent at x = 2
x log2 x

The negative entropy f(x) = x log2 x is convex for x > 0. A visualiza-
tion of the function is show in Figure 7.8, and we can see that the function
is convex. To illustrate the above definitions of convexity, let us check the
calculations for two points x = 2 and x = 4. Note that to prove convexity
of f(x) we would need to check for all points x 2 R.

Recall Definition 7.2. Consider a point midway between the two points
(that is ✓ = 0.5), then the left hand side is f(0.5⇥2+0.5⇥4) = 3 log2 3 ⇡

4.75. The right hand side is 0.5(2 log2 2) + 0.5(4 log2 4) = 1 + 4 = 5. And
therefore the definition is satisfied.

Since f(x) is differentiable, we can alternatively use (7.29). Calculating
the derivative of f(x), we obtain

rx(x log2 x) = 1 ⇥ log2 x+ x ⇥
1

x
(7.30)

= log2 x+ 1. (7.31)

Using the same two test points x = 2 and x = 4, the left hand side of
(7.29) is given by f(4) = 8. The right hand side is

f(x) + r
>

x
(y � x) = f(2) + rf(2) ⇥ (4 � 2) (7.32)

= 2 + 2 ⇥ 2 = 6. (7.33)

We can check that a function or set is convex from first principles by4072

recalling the definitions. In practice we often rely on operations that pre-4073

serve convexity to check that a particular function or set is convex. Al-4074

though the details are vastly different, this is again the idea of closure4075

that we introduced in Chapter 2 for vector spaces.4076
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Example 7.4
A nonnegative weighted sum of convex functions is convex. Observe that
if f is a convex function, and ↵ > 0 is a nonnegative scalar, then the
function ↵f is convex. We can see this by multiplying ↵ to both sides of
equation in Definition 7.2, and recalling that multiplying a nonnegative
number does not change the inequality.

If f1 and f2 are convex functions, then we have by the definition

f1(✓x + (1 � ✓)y) 6 ✓f1(x) + (1 � ✓)f1(y) (7.34)
f2(✓x + (1 � ✓)y) 6 ✓f2(x) + (1 � ✓)f2(y). (7.35)

Summing up both sides gives us

f1(✓x + (1 � ✓)y) + f2(✓x + (1 � ✓)y)

6 ✓f1(x) + (1 � ✓)f1(y) + ✓f2(x) + (1 � ✓)f2(y) (7.36)

where the right hand side can be rearranged to

✓(f1(x) + f2(x)) + (1 � ✓)(f1(y) + f2(y)) (7.37)

completing the proof that the sum of convex functions is convex.
Combining the two facts above, we see that ↵f1(x) + �f2(x) is convex

for ↵,� > 0. This closure property can be extended using a similar argu-
ment for nonnegative weighted sums of more than two convex functions.

Remark. The inequality defining convex functions, see 7.27, is sometimes4077

called Jensen’s inequality. In fact a whole class of inequalities for taking Jensen’s inequality4078

nonnegative weighted sums of convex functions are all called Jensen’s4079

inequality. }4080

In summary, a constrained optimization problem is called a convex opti- convex optimization
problemmization problem if

min
x

f(x) (7.38)

subject to gi(x) 6 0 for all i = 1, . . . ,m

hj(x) = 0 for all j = 1, . . . , n

where all the functions f(x) and gi(x) are convex functions, and all4081

hj(x) = 0 are convex sets. In the following two subsections, we will de-4082

scribe two classes convex optimization problems that are widely used and4083

well understood.4084

7.3.1 Linear Programming4085

Consider the special case when all the functions above are linear, that is

min
x2Rd

c
>
x (7.39)
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Figure 7.9
Illustration of a
linear program. The
unconstrained
problem (indicated
by the contour
lines) has a
minimum on the
right side. The
optimal value given
the constraints are
shown by the star.

subject to Ax 6 b

where A 2 Rm⇥d and b 2 Rm. This is known as a linear program. It has dLinear programs are
one of the most
widely used
approaches in
industry.

4086

variables and m linear constraints.4087

Example 7.5
An example of a linear program is illustrated in Figure 7.9, which has
two variables. The objective function is linear, resulting in linear contour
lines. The constraint set in standard form is translated into the legend. The
optimal value must lie in the shaded (feasible) region, and is indicated by
the star.

min
x2R2

�


5
3

�> 
x1

x2

�
(7.40)

subject to

2

66664

2 2
2 �4

�2 1
0 �1
0 1

3

77775


x1

x2

�
6

2

66664

33
8
5

�1
8

3

77775
(7.41)

The Lagrangian is given by

L(x,�) = c
>
x + �

>(Ax � b)
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where � 2 Rm is the vector of non-negative Lagrange multipliers. It is
easier to see what is going on by rearranging the terms corresponding to
x.

L(x,�) = (c + A
>
�)>x � �

>
b

Taking the derivative of L(x,�) with respect to x and setting it to zero
gives us

c + A
>
� = 0.

Therefore the dual Lagrangian is D(�) = ��
>
b. Recall we would like

to maximize D(�). In addition to the constraint due to the derivative of It is convention to
minimize the primal
and maximize the
dual.

L(x,�) being zero, we also have the fact that � > 0, resulting in the
following dual optimization problem

max
�2Rm

� b
>
� (7.42)

subject to c + A
>
� = 0

� > 0.

This is also a linear program, but with m variables. We have the choice4088

of solving the primal (7.39) or the dual (7.42) program depending on4089

whether m or d is larger. Recall that d is the number of variables and m is4090

the number of constraints in the primal linear program.4091

7.3.2 Quadratic Programming4092

Consider when the objective function is a convex quadratic function, and
the constraints are affine,

min
x2Rd

1

2
x

>
Qx + c

>
x (7.43)

subject to Ax 6 b

where A 2 Rm⇥d, b 2 Rm and c 2 Rd. The square symmetric matrix Q 24093

Rd⇥d is positive definite, and therefore the objective function is convex.4094

This is known as a quadratic program. Observe that it has d variables and4095

m linear constraints.4096

Example 7.6
An example of a quadratic program is illustrated in Figure 7.4, which has
two variables. The objective function is quadratic with a positive semidefi-
nite matrix Q, resulting in elliptical contour lines. The optimal value must
lie in the shaded (feasible) region, and is indicated by the star.

min
x2R2

1

2


x1

x2

�> 
2 1
1 4

� 
x1

x2

�
+


5
3

�> 
x1

x2

�
(7.44)
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subject to

2

664

1 0
�1 0
0 1
0 �1

3

775


x1

x2

�
6

2

664

1
1
1
1

3

775 (7.45)

The Lagrangian is given by

L(x,�) =
1

2
x

>
Qx + c

>
x + �

>(Ax � b)

=
1

2
x

>
Qx + (c + A

>
�)>x � �

>
b

where again we have rearranged the terms. Taking the derivative of L(x,�)
with respect to x and setting it to zero gives

Qx + (c + A
>
�) = 0

Assuming that Q is invertible, we get

x = �Q
�1(c + A

>
�) (7.46)

Substituting (7.46) into the primal Lagrangian L(x,�) we get the dual
Lagrangian

D(�) = �
1

2
(c +A

>
�)Q�1(c + A

>
�) � �

>
b

Therefore the dual optimization problem is given by

max
�2Rm

�
1

2
(c + A

>
�)Q�1(c + A

>
�) � �

>
b (7.47)

subject to � > 0. (7.48)

We will see an application of Quadratic Programming in machine learning4097

in Chapter 12.4098

7.3.3 Legendre-Fenchel Transform and Convex Conjugate4099

Let us revisit the idea of duality, which we saw in Section 7.2, without4100

considering constraints. One useful fact about convex sets is that a convex4101

set can be equivalently described by its supporting hyperplanes. A hyper-4102

plane is called a supporting hyperplane of a convex set if it intersects thesupporting
hyperplane

4103

convex set and the convex set is contained on just one side of it. Recall4104

that for a convex function, we can fill it up to obtain the epigraph which4105

is a convex set. Therefore we can also describe convex functions in terms4106

of their supporting hyperplanes. Furthermore observe that the supporting4107

hyperplane just touches the convex function, and is in fact the tangent to4108

the function at that point. And recall that the tangent of a function f(x) at4109
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a given point x0 is the evaluation of the gradient of that function at that4110

point df(x)
dx

���
x=x0

. In summary, because convex sets can be equivalently4111

described by its supporting hyperplanes, convex functions can be equiv-4112

alently described by a function of their gradient. The Legendre transform Legendre transform4113

formalizes this concept . Physics students are
often introduced to
the Legendre
transform as
relating the
Lagrangian and the
Hamiltonian in
classical mechanics.

4114

We begin with the most general definition which unfortunately has a4115

counterintuitive form, and look at special cases to try to relate the defini-4116

tion to the intuition above. The Legendre-Fenchel transform is a transfor-

Legendre-Fenchel
transform

4117

mation (in the sense of a Fourier transform) from a convex differentiable4118

function f(x) to a function that depends on the tangents s(x) = rxf(x).4119

It is worth stressing that this is a transformation of the function f(·) and4120

not the variable x or the function evaluated at a value. The Legendre-4121

Fenchel transform is also known as the convex conjugate (for reasons4122

we will see soon) and is closely related to duality (Hiriart-Urruty and4123

Lemaréchal, 2001, Chapter 5).4124

Definition 7.4. The convex conjugate of a function f : RD
! R is a convex conjugate

function f
⇤ defined by

f
⇤(s) = sup

x2RD

hs,xi � f(x) (7.49)

Note that the convex conjugate definition above does not need the func-4125

tion f to be convex nor differentiable. In the definition above, we have4126

used a general inner product (Section 3.2) but in the rest of this section4127

we will consider the standard dot product between finite dimensional vec-4128

tors (hs,xi = s
>
x) to avoid too many technical details.4129

To understand the above definition in a geometric fashion, consider an This derivation is
easiest to
understand by
drawing the
reasoning as it
progresses.

nice simple one dimensional convex and differentiable function, for ex-
ample f(x) = x

2. Note that since we are looking at a one dimensional
problem, hyperplanes reduce to a line. Consider a line y = sx+ c. Recall
that we are able to describe convex functions by their supporting hyper-
planes, so let us try to describe this function f(x) by its supporting lines.
Fix the gradient of the line s 2 R and for each point (x0, f(x0)) on the
graph of f , find the minimum value of c such that the line still inter-
sects (x0, f(x0)). Note that the minimum value of c is the place where a
line with slope s “just touches” the function f(x) = x

2. The line passing
through (x0, f(x0)) with gradient s is given by

y � f(x0) = s(x � x0) (7.50)

The y-intercept of this line is �sx0 + f(x0). The minimum of c for which
y = sx+ c intersects with the graph of f is therefore

inf
x0

�sx0 + f(x0). (7.51)

The convex conjugate above is by convention defined to be the negative4130

of this. The reasoning in this paragraph did not rely on the fact that we4131
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chose a one dimensional convex and differentiable function, and holds for4132

f : RD
! R which are nonconvex and non differentiable.4133

The classical
Legendre transform
is defined on convex
differentiable
functions in RD

Remark. Convex differentiable functions such as the example f(x) = x
2

is a nice special case, where there is no need for the supremum, and there
is a one to one correspondence between a function and its Legendre trans-
form. Let us derive this from first principles. For a convex differentiable
function, we know that at x0 the tangent touches f(x0), therefore

f(x0) = sx0 + c. (7.52)

Recall that we want to describe the convex function f(x) in terms of its
gradient rxf(x), and that s = rxf(x0). We rearrange to get an expres-
sion for �c to obtain

� c = sx0 � f(x0). (7.53)

Note that �c changes with x0 and therefore with s, which is why we can
think of it as a function of s, which we call f⇤(s).

f
⇤(s) = sx0 � f(x0). (7.54)

Compare (7.54) with Definition 7.4, and observe that (7.54) is a special4134

case (without the supremum). }4135

The conjugate function has nice properties, for example for convex4136

functions, applying the Legendre transform again gets us back to the origi-4137

nal function. In the same way that the slope of f(x) is s, the slope of f⇤(s)4138

is x. The following two examples show common uses of convex conjugates4139

in machine learning.4140

Example 7.7
To illustrate the application of convex conjugates, consider the quadratic
function based on a positive definite matrix K 2 Rn⇥n. We denote the
primal variable to be y 2 Rn and the dual variable to be ↵ 2 Rn.

f(y) =
�

2
y
>
K

�1
y (7.55)

Applying Definition 7.4, we obtain the function

f
⇤(↵) = sup

y2Rn

hy,↵i �
�

2
y
>
K

�1
y. (7.56)

Observe that the function is differentiable, and hence we can find the
maximum by taking the derivative and with respect to y setting it to zero.

@
⇥
hy,↵i �

�
2
y
>
K

�1
y
⇤

@y
= (↵ � �K

�1
y)> (7.57)

and hence when the gradient is zero we have y = 1
�
K↵. Substituting
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into (7.56) yields

f
⇤(↵) =

1

�
↵

>
K↵ �

�

2

✓
1

�
K↵

◆>

K
�1

✓
1

�
K↵

◆
(7.58)

=
1

2�
↵

>
K↵ . (7.59)

Example 7.8
In machine learning we often use sums of functions, for example the ob-
jective function of the training set includes a sum of the losses for each ex-
ample in the training set. In the following, we derive the convex conjugate
of a sum of losses `(t), where ` : R ! R. This also illustrates the applica-
tion of the convex conjugate to the vector case. Let L(t) =

Pn
i=1 `i(ti),

L
⇤(z) = sup

t2Rn

hz, ti �

nX

i=1

`i(ti) (7.60)

= sup
t2Rn

nX

i=1

ziti � `i(ti) definition of dot product (7.61)

=
nX

i=1

sup
t2Rn

ziti � `i(ti) (7.62)

=
nX

i=1

`
⇤

i (zi) definition of conjugate (7.63)

Recall that in Section 7.2 we derived a dual optimization problem using4141

Lagrange multipliers. Furthermore for convex optimization problems we4142

have strong duality, that is the solutions of the primal and dual problem4143

match. The Fenchel-Legendre transform described here also can be used4144

to derive a dual optimization problem. Furthermore then the function is4145

convex and differentiable, the supremum is unique. To further investigate4146

the relation between these two approaches, let us consider a linear equal-4147

ity constrained convex optimization problem.4148

Example 7.9
Let f(y) and g(x) be convex functions, and A a real matrix of appropriate
dimensions such that Ax = y. Then

min
x

f(Ax) + g(x) = min
Ax=y

f(y) + g(x). (7.64)
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By introducing the Lagrange multiplier u for the constraints Ax = y,

min
Ax=y

f(y) + g(x) = min
x,y

max
u

f(y) + g(x) + (Ax � y)>u (7.65)

= max
u

min
x,y

f(y) + g(x) + (Ax � y)>u (7.66)

where the last step of swapping max and min is due to the fact that f(y)
and g(x) are convex functions. By splitting up the dot product term and
collecting x and y,

max
u

min
x,y

f(y) + g(x) + (Ax � y)>u (7.67)

= max
u


min
y

�y
>
u + f(y)

�
+

h
min
x

(Ax)>u + g(x)
i

(7.68)

= max
u


min
y

�y
>
u + f(y)

�
+

h
min
x

x
>
A

>
u + g(x)

i
(7.69)

Recall the convex conjugate (Definition 7.4) and the fact that dot prod-For general inner
products, A> is
replaced by the
adjoint A⇤.

ucts are symmetric,

max
u


min
y

�y
>
u + f(y)

�
+

h
min
x

x
>
A

>
u + g(x)

i
(7.70)

= max
u

�f
⇤(u) � g

⇤(�A
>
u). (7.71)

Therefore we have shown that

min
x

f(Ax) + g(x) = max
u

�f
⇤(u) � g

⇤(�A
>
u). (7.72)

The Legendre-Fenchel conjugate turns out to be quite useful for ma-4149

chine learning problems that can be expressed as convex optimization4150

problems. In particular for convex loss functions that apply independently4151

to each example, the conjugate loss is a convenient way to derive a dual4152

problem.4153

7.4 Further Reading4154

Continuous optimization is an active area of research, and we do not try4155

to provide a comprehensive account of recent advances.4156

From a gradient descent perspective, there are two major weaknesses4157

which each have their own set of literature. The first challenge is the fact4158

that gradient descent is a first order algorithm, and does not use informa-4159

tion about the curvature of the surface. When there are long valleys, the4160

gradient points perpendicularly to the direction of interest. Conjugate gra-4161

dient methods avoid the issues faced by gradient descent by taking pre-4162

vious directions into account (Shewchuk, 1994). Second order methods4163
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such as Newton methods use the Hessian to provide information about the4164

curvature. Many of the choices for choosing stepsizes and ideas like mo-4165

mentum arise by considering the curvature of the objective function (Goh,4166

2017; Bottou et al., 2018). Quasi-Newton methods such as L-BFGS try to4167

use cheaper computational methods to approximate the Hessian (Nocedal4168

and Wright, 2006). Recently there has been interest in other metrics for4169

computing descent directions, resulting in approaches such as mirror de-4170

scent (Beck and Teboulle, 2003) and natural gradient (Toussaint, 2012).4171

The second challenge are non-differentiable functions. Gradient meth-4172

ods are not well defined when there are kinks in the function. In these4173

cases, subgradient methods can be used (Shor, 1985). For further infor-4174

mation and algorithms for optimizing non-differentiable functions, we re-4175

fer to the book by Bertsekas (1999). There is a vast amount of literature4176

on different approaches for numerically solving continuous optimization4177

problems, including algorithms for constrained optimization problems. A4178

good starting point to appreciate this literature are Luenberger (1969)4179

and Bonnans et al. (2006). A recent survey of continuous optimization is4180

Bubeck (2015).4181

Modern applications of machine learning often mean that the size of4182

datasets prohibit the use of batch gradient descent, and hence stochastic4183

gradient descent is the current workhorse of large scale machine learning4184

methods. Recent surveys of the literature include (Hazan, 2015; Bottou4185

et al., 2018).4186

For duality and convex optimization, the book by Boyd and Vanden-4187

berghe (Boyd and Vandenberghe, 2004) includes lectures and slides on-4188

line. A more mathematical treatment is provided by Bertsekas (2009).4189

Convex optimization is based upon convex analysis, and the reader inter-4190

ested in more foundational results about convex functions is referred to4191

Hiriart-Urruty and Lemaréchal (2001); Rockafellar (1970); Borwein and4192

Lewis (2006). Legendre-Fenchel transforms are also covered in the above4193

books on convex analysis, but more beginner friendly presentations are4194

available at Zia et al. (2009); Gonçalves (2014). The role of Legendre-4195

Fenchel transforms in the analysis of convex optimization algorithms is4196

surveyed in Polyak (2016).4197

Exercises4198

7.1 Consider the univariate function

f(x) = x3 + 2x2 + 5x� 3.

Find its stationary points and indicate whether they are maximum, mini-4199

mum or saddle points.4200

7.2 Consider the update equation for stochastic gradient descent (Equation (7.15)).4201

Write down the update when we use a mini-batch size of one.4202

7.3 Express the following optimization problem as a standard linear program in
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matrix notation

max
x2R2,⇠2R

p>x+ ⇠

subject to the constraints that ⇠ > 0, x0 6 0 and x1 6 3.4203

7.4 The hinge loss (which is the loss used by the Support Vector Machine) is
given by

L(↵) = max{0, 1� ↵}

If we are interested in applying gradient methods such as L-BFGS, and do
not want to resort to subgradient methods, we need to smooth the kink in
the hinge loss. Compute the convex conjugate of the hinge loss L⇤(�) where
� is the dual variable. Add a `2 proximal term, and compute the conjugate
of the resulting function

L⇤(�) +
�
2
�2

where � is a given hyperparameter.4204
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4203

In the first part of the book, we introduced the mathematics that form the4204

foundations of many machine learning methods. The hope is that a reader4205

would be able to learn the rudimentary forms of the language of mathe-4206

matics, which we will now use to describe and discuss machine learning.4207

The second part of the book introduces four pillars of machine learning:4208

• Regression (Chapter 9)4209

• Dimensionality reduction (Chapter 10)4210

• Density estimation (Chapter 11)4211

• Classification (Chapter 12)4212

Recall from Table 1.1 that these problems illustrate two supervised and4213

two unsupervised learning methods — one discrete and another continu-4214

ous. The main aim of this part of the book is to illustrate how the math-4215

ematical concepts introduced in the first part of the book can be used to4216

design machine learning algorithms that can be used to solve tasks within4217

the remit of the four pillars. We do not intend to introduce advanced ma-4218

chine learning concepts, but instead to provide a set of practical methods4219

that allow the reader to apply the knowledge they had gained from the4220

first part of the book. It also provides a gateway to the wider machine4221

learning literature for readers already familiar with the mathematics.4222

It is worth at this point to pause and consider the problem that a ma-4223

chine learning algorithm is designed to solve. As discussed in Chapter 1,4224

there are three major components of a machine learning system: data,4225

models and learning. The main question of machine learning is “what do4226

we mean by good models?”. That is we are interested to find models that4227

perform well on future data. The word model has many subtleties and we model4228

will revisit it multiple times in this chapter. It is also not entirely obvious4229

how to objectively define the word “good”, and one of the guiding prin-4230

ciples of machine learning is that good models should perform well on4231

unseen data. This requires us to define some performance metrics, such4232

as accuracy or distance from ground truth, as well as figuring out ways to4233

do well (under these performance metrics).4234

This chapter covers a few necessary bits and pieces of mathematical4235

and statistical language that are commonly used to talk about machine4236

237
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238 When Models meet Data

Table 8.1 Example
data from a
fictitious human
resource database
that is not in a
numerical format.

Name Gender Degree Postcode Age Annual Salary
Aditya M MSc W21BG 36 89563
Bob M PhD EC1A1BA 47 123543
Chloé F BEcon SW1A1BH 26 23989
Daisuke M BSc SE207AT 68 138769
Elisabeth F MBA SE10AA 33 113888

Table 8.2 Example
data from a
fictitious human
resource database
(see Table 8.1),
converted to a
numerical format.

Gender ID Degree Latitude Longitude Age Annual Salary
(in degrees) (in degrees) (in thousands)

-1 2 51.5073 0.1290 36 89.563
-1 3 51.5074 0.1275 47 123.543
+1 1 51.5071 0.1278 26 23.989
-1 1 51.5075 0.1281 68 138.769
+1 2 51.5074 0.1278 33 113.888

learning models. By doing so, we briefly outline the current best prac-4237

tices for training a model such that we do well on data that we have not4238

yet seen. We will introduce the framework for non-probabilistic models in4239

Section 8.1, the principle of maximum likelihood in Section 8.2, and the4240

idea of probabilistic models in Section 8.3. We briefly outline a graphi-4241

cal language for specifying probabilistic models in Section 8.4 and finally4242

discuss model selection in Section 8.5. The rest of this section expands4243

upon the three main components of machine learning: data, models and4244

learning.4245

Data as Vectors4246

We assume that our data can be read by a computer, and represented4247

adequately in a numerical format. Furthermore, data is assumed to be4248

tabular, where we think of each row of the table to represent a partic-4249

ular instance or example, and each column to be a particular feature/4250

representation of the instance. We do not discuss the important and chal-Data is assumed to
be in a tidy
format (Wickham,
2014; Codd, 1990).

4251

lenging aspects of identifying good representations (features). Many of4252

these aspects depend on domain expertise and require careful engineer-4253

ing, which in recent years have been put under the umbrella of data sci-4254

ence (Stray, 2016; Adhikari and DeNero, 2018). For example, in Table 8.1,4255

the gender column (a categorical variable) may be converted into num-4256

bers 0 representing “Male” and 1 representing “Female”. Alternatively, the4257

gender could be represented by numbers �1,+1, respectively (as shown4258

in Table 8.2). Furthermore, it is often important to use domain knowledge4259

when constructing the representation, such as knowing that university4260

degrees progress from Bachelor’s to Master’s to PhD or realizing that the4261

postcode provided is not just a string of characters but actually encodes4262

an area in London. In Table 8.2, we converted the data from Table 8.14263

to a numerical format, and each postcode is represented as two numbers,4264

a latitude and longitude. Even numerical data that could potentially be4265

directly read into a machine learning algorithm should be carefully con-4266
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Figure 8.1 Toy data
for linear regression.
Training data in
(xn, yn) pairs:
{(�4.200,�3.222),
(�2.700,�2.093),
(+0.300,+1.690),
(+1.200,�0.348),
(+3.800,+4.134)}.
We are interested in
the value of the
function at x = 2.5,
which is not part of
the training data.

�4 �2 0 2 4

x

�4

�2

0

2

4

y ?

sidered for units, scaling, and constraints. For the purposes of this book Without additional
information, one
should shift and
scale all columns of
the dataset such
that they mean 0
and variance 1.

4267

we assume that a domain expert already converted data appropriately,4268

i.e., each input xn is a D-dimensional vector of numbers, which are called4269

features, attributes or covariates. In general, however, xn could be a com-

features
attributes
covariates

4270

plex structured object (e.g., an image, a sentence, an email message, a4271

time series, a molecular shape, a graph, etc).4272

In this part of the book, we will use N to denote the number of exam-4273

ples in a dataset and index the examples with lowercase n = 1, . . . , N .4274

We assume that we are given a set of numerical data, represented as an4275

array of vectors, e.g., as illustrated in Figure 8.2. Each row is a particular4276

individual xn often referred to as an example or data point in machine example

data point

4277

learning. The subscript n refers to the fact that this is the n
th example out4278

of a total of N examples in the dataset. Each column represents a partic-4279

ular feature of interest about the example, and we index the features as feature4280

d = 1, . . . , D. Recall that data is represented as vectors, which means that4281

each example (each data point) is a D dimensional vector. The orientation of
the table originates
from the database
community,
although it would
actually be more
convenient in
machine learning
for vectors
representing
examples to be
columns.

4282

For supervised learning problems we have a label yn associated with4283

each example xn. A dataset is written as a set of example-label pairs4284

{(x1, y1), . . . , (xn, yn), . . . , (xN , yN)}. The table of examples {x1, . . .xN}4285

is often concatenated, and written as X 2 RN⇥D. Figure 8.1 illustrates4286

an example of a one dimensional input x and corresponding labels y.4287

Representing data as vectors xn allows us to use concepts from linear4288

algebra (introduced in Chapter 2). In many machine learning algorithms,4289

we need to additionally be able to compare two vectors. As we will see in4290

Chapters 9 and 12, computing the similarity or distance between two ex-4291

amples allows us to formalize the intuition that examples with similar fea-4292

tures should have similar labels. The comparison of two vectors requires4293

that we construct a geometry (explained in Chapter 3), and allows us to4294

optimize the resulting learning problem using techniques in Chapter 7.4295
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Figure 8.2 Example
function (black solid
diagonal line) and
its prediction at
x = 2.5. That is
f(2.5) = 0.25.
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Since we have vector representations of data, we can manipulate data to4296

find potentially better representations of it. We will discuss finding good4297

representations in two ways: finding lower-dimensional approximations4298

of the original feature vector, and using nonlinear higher-dimensional4299

combinations of the original feature vector. In Chapter 10 we will see an4300

example of finding a low-dimensional approximation of the original data4301

space by finding the principal components. Finding principal components4302

is closely related to concepts of eigenvalue and singular value decomposi-4303

tion as introduced in Chapter 4. For the high-dimensional representation,4304

we will see an explicit feature map �(·) that allows us to represent inputsfeature map 4305

xn using a higher dimensional representation �(xn). The main motiva-4306

tion for higher dimensional representations is that we can construct new4307

features as non-linear combinations of the original features, which in turn4308

may make the learning problem easier. We will discuss the feature map4309

in Section 9.2 and show how this feature map leads to a kernel in Sec-kernel 4310

tion 12.3.3. In recent years, deep learning methods (Goodfellow et al.,4311

2016) have shown promise in using the data itself to learn the features,4312

and has been very successful in areas such as computer vision, speech4313

recognition and natural language processing. We will not cover neural4314

networks in this part of the book, but the reader is referred to Section 5.64315

for the mathematical description of backpropagation, a key concept for4316

training neural networks.4317

Models are Functions4318

Once we have data in an appropriate vector representation, we can get to4319

the business of constructing a predictive function (known as a predictor).predictor 4320

In Chapter 1 we did not yet have the language to be precise about models.4321

Using the concepts from the first part of the book, we can now introduce4322

what ”model” means. We present two major approaches in this book: a4323
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Figure 8.3 Example
function (black solid
diagonal line) and
its predictive
uncertainty at
x = 2.5 (drawn as a
Gaussian).
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predictor as a function, and a predictor as a probabilistic model. We de-4324

scribe the former here and the latter in the next subsection.4325

A predictor is a function that, when given a particular input example
(in our case a vector of features), produces an output. For now consider
the output to be a single number, i.e., a real-valued scalar output. This can
be written as

f : RD ! R , (8.1)

where the input vector x is D-dimensional (has D features), and the func-4326

tion f then applied to it (written as f(x)) returns a real number. Fig-4327

ure 8.2 illustrates a possible function that can be used to compute the4328

value of the prediction for input values x.4329

In this book, we do not consider the general case of all functions, which
would involve the need for functional analysis. Instead we consider the
special case of linear functions

f(x) = ✓
>
x + ✓0 . (8.2)

This restriction means that the contents of Chapter 2 and 3 suffice for pre-4330

cisely stating the notion of a predictor for the non-probabilistic (in contrast4331

to the probabilistic view described next) view of machine learning. Linear4332

functions strike a good balance between the generality of the problems4333

that can be solved and the amount of background mathematics that is4334

needed.4335

Models are Probability Distributions4336

We often consider data to be noisy observations of some true underlying4337

effect, and hope that by applying machine learning we can identify the4338

signal from the noise. This requires us to have a language for quantify-4339

ing the effect of noise. We often would also like to have predictors that4340

express some sort of uncertainty, e.g., to quantify the confidence we have4341
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about the value of the prediction for a particular test data point. As we4342

have seen in Chapter 6 probability theory provides a language for quan-4343

tifying uncertainty. Figure 8.3 illustrates the predictive uncertainty of the4344

function as a Gaussian distribution.4345

Instead of considering a predictor as a single function, we could con-4346

sider predictors to be probabilistic models, i.e., models describing the dis-4347

tribution of possible functions. We limit ourselves in this book to the spe-4348

cial case of distributions with finite dimensional parameters, which allows4349

us to describe probabilistic models without needing stochastic processes4350

and random measures. For this special case we can think about probabilis-4351

tic models as multivariate probability distributions, which already allow4352

for a rich class of models.4353

We will introduce how to use concepts from probability (Chapter 6) to4354

define machine learning models in Section 8.3, and introduce a graphical4355

language for describing probabilistic models in a compact way in Sec-4356

tion 8.4.4357

Learning is Finding Parameters4358

The goal of learning is to find a model and its corresponding parame-4359

ters such that the resulting predictor will perform well on unseen data.4360

There are conceptually three distinct algorithmic phases when discussing4361

machine learning algorithms:4362

1. prediction or inference4363

2. training or parameter estimation4364

3. hyperparameter tuning or model selection4365

The prediction phase is when we use a trained predictor on previously un-4366

seen test data. In other words, the parameters and model choice is already4367

fixed and the predictor is applied to new vectors representing new input4368

data points. As outlined in Chapter 1 and the previous subsection, we will4369

consider two schools of machine learning in this book, corresponding to4370

whether the predictor is a function or a probabilistic model. When we4371

have a probabilistic model (discussed further in Section 8.3) the predic-4372

tion phase is called inference.4373

The training or parameter estimation phase is when we adjust our pre-4374

dictive model based on training data. We would like to find good predic-4375

tors given training data, and there are two main strategies for doing so:4376

finding the best predictor based on some measure of quality (sometimes4377

called finding a point estimate), or using Bayesian inference. Finding a4378

point estimate can be applied to both types of predictors, but Bayesian in-4379

ference requires probabilistic models. For the non-probabilistic model, we4380

follow the principle of empirical risk minimization, which we describe inempirical risk
minimization

4381

Section 8.1. Empirical risk minimization directly provides an optimization4382

problem for finding good parameters. With a statistical model the princi-4383

ple of maximum likelihood is used to find a good set of parameters (Sec-maximum likelihood4384
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tion 8.2). We can additionally model the uncertainty of parameters using4385

a probabilisitic model, which we will look at in more detail in Section 8.3.4386

We use numerical methods to find good parameters that “fit” the data,4387

and most training methods can be thought of as hill climbing approaches4388

to find the maximum of an objective, for example the maximum of a like-4389

lihood. To apply hill-climbing approaches we use the gradients described The convention in
optimization is to
minimize objectives.
Hence, there is often
an extra minus sign
in machine learning
objectives.

4390

Chapter 5 and implement numerical optimization approaches from Chap-4391

ter 7.4392

As mentioned in Chapter 1, we are interested in learning a model based4393

on data such that it performs well on future data. It is not enough for4394

the model to only fit the training data well, the predictor needs to per-4395

form well on unseen data. We simulate the behaviour of our predictor on4396

future unseen data using cross validation (Section 8.1.4). As we will see4397

in this chapter, to achieve the goal of performing well on unseen data,4398

we will need to balance between fitting well on training data and finding4399

“simple” explanations of the phenomenon. This trade off is achieved us-4400

ing regularization (Section 8.1.3) or by adding a prior (Section 8.2.2). In4401

philosophy, this is considered to be neither induction or deduction, and4402

is called abduction. According to the Stanford Encyclopedia of Philosophy, abduction
A good movie title is
“AI abduction”.

4403

abduction is the process of inference to the best explanation (Douven,4404

2017).4405

We often need to make high level modeling decisions about the struc-4406

ture of the predictor, such as the number of components to use or the4407

class of probability distributions to consider. The choice of the number of4408

components is an example of a hyperparameter, and this choice can af- hyperparameter4409

fect the performance of the model significantly. The problem of choosing4410

between different models is called model selection, which we describe in model selection4411

Section 8.5. For non-probabilistic models, model selection is often done4412

using cross validation, which is described in Section 8.1.4. We also use cross validation4413

model selection to choose hyperparameters of our model.4414

Remark. The distinction between parameters and hyperparameters is some-4415

what arbitrary, and is mostly driven by the distinction between what can4416

be numerically optimized versus what needs to utilize search techniques.4417

Another way to consider the distinction is to consider parameters as the4418

explicit parameters of a probabilistic model, and to consider hyperparam-4419

eters (higher level parameters) as parameters that control the distribution4420

of these explicit parameters. }4421

8.1 Empirical Risk Minimization4422

After having all the mathematics under our belt, we are now in a posi-4423

tion to introduce what it means to learn. The “learning” part of machine4424

learning boils down to estimating parameters based on training data.4425

In this section we consider the case of a predictor that is a function,4426
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and consider the case of probabilistic models in Section 8.2. We describe4427

the idea of empirical risk minimization, which was originally popularized4428

by the proposal of the support vector machine (described in Chapter 12).4429

However, its general principles are widely applicable and allows us to ask4430

the question of what is learning without explicitly constructing probabilis-4431

tic models. There are four main design choices, which we will cover in4432

detail in the following subsections:4433

Section 8.1.1 What is the set of functions we allow the predictor to take?4434

Section 8.1.2 How do we measure how well the predictor performs on4435

the training data?4436

Section 8.1.3 How do we construct predictors from only training data4437

that performs well on unseen test data?4438

Section 8.1.4 What is the procedure for searching over the space of mod-4439

els?4440

8.1.1 Hypothesis Class of Functions4441

Assume we are given N examples xn 2 RD and corresponding scalar la-
bels yn 2 R. We consider the supervised learning setting, where we obtain
pairs (x1, y1), . . . , (xN , yN). Given this data, we would like to estimate a
predictor f(·,✓) : RD ! R, parameterized by ✓. We hope to be able to
find a good parameter ✓

⇤ such that we fit the data well

f(xn,✓
⇤) ⇡ yn for all n = 1, . . . , N . (8.3)

In this section, we use the notation ŷn = f(xn,✓
⇤) to represent the output4442

of the predictor.4443

Example 8.1
We introduce the problem of least squares regression to illustrate empir-
ical risk minimization. A more comprehensive account of regression is
given in Chapter 9. When the label yn is real valued, a popular choice of
function class for predictors is the set of linear functions,

f(xn,✓) = ✓
>
xn + ✓0 . (8.4)

Observe that the predictor takes the vector of features representing a
single example xn as input and produces a real valued output. That is
f : RD ! R. The previous figures in this chapter had a straight line as a
predictor, which means that we have assumed a linear function. For nota-
tional convenience we often concatenate an additional unit feature to xn,

that is x̃n =


xn

1

�
. This is so that we can correspondingly concatenate the
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parameter vector ✓̃ =


✓

✓0

�
, and write the linear predictor as

f(x̃n, ✓̃) = ✓̃
>
x̃n . (8.5)

We will often overload the notation in this book to have tidier presenta-
tion: xn is used to mean the new concatenated vector.

Instead of a linear function, we may wish to consider non-linear func-
tions as predictors. Recent advances in neural network frameworks al-
lowed for efficient computation of more complex non-linear function
classes.

Remark. For ease of presentation we will describe empirical risk minimiza-4444

tion in terms of supervised learning. This simplifies the definition of the4445

hypothesis class and the loss function. }4446

Given the class of functions we want to search for a good predictor,4447

we now move on to the second ingredient of empirical risk minimization:4448

how to measure how well the predictor fits the training data.4449

8.1.2 Loss Function for Training4450

Consider the label yn for particular example; and the corresponding pre-4451

diction ŷn that we make based on xn. To define what it means to fit the4452

data well, we need to specify a loss function `(yn, ŷn) that takes two val- loss function4453

ues as input and produces a non-negative number (referred to as the loss)4454

representing how much error we have made on this particular prediction.4455

Our goal for finding a good parameter vector ✓
⇤ is to minimize the average The word error is

often used to mean
loss.

4456

loss on the set of N training examples.4457

One assumption that is commonly made in machine learning is that
the set of examples (x1, y1), . . . , (xN , yN) are independent and identically independent and

identically
distributed

distributed. The word independent (Section 6.4.3) means that two data
points (xi, yi) and (xj, yj) do not statistically depend on each other, mean-
ing that the empirical mean is a good estimate of the population mean
(Section 6.4.1). This implies that we can use the empirical mean of the
loss on the training data. For a given training set {(x1, y1), . . . , (xN , yN)} training set

which we collect into an example matrix X and label vector y, the aver-
age loss is given by

Remp(f,X,y) =
1

N

NX

n=1

`(yn, ŷn) (8.6)

where ŷn = f(xn,✓
⇤). Equation (8.6) is called the empirical risk. Note empirical risk4458

that the empirical risk depends on three arguments, the predictor f and4459

the data X,y. This general strategy for learning is called empirical risk empirical risk
minimization

4460

minimization.4461
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Example 8.2
Continuing the example of least squares regression, we specify that we
measure cost of making an error during training using the squared loss
`(yn, ŷn) = (yn � ŷn)2. We wish to minimize the empirical risk, which is
the average of the losses over the data

min
✓2RD

1

N

NX

n=1

(yn � f(xn,✓))
2
, (8.7)

where we have substituted the predictor ŷn = f(xn,✓). By using our
choice of a linear predictor f(xn,✓) = ✓

>
xn we obtain the optimization

problem

min
✓2RD

1

N

NX

n=1

(yn � ✓
>
xn)

2
. (8.8)

This equation can be equivalently expressed in matrix form by collecting
the labels into a vector y := [y1, . . . , yN ]> 2 RN and collecting the dataset
into a matrix X := [x1, . . . ,xN ]> 2 RN⇥D.

min
✓2RD

1

N
ky � X✓k2

. (8.9)

This is known as the least squares problem. There is a closed-form analytic
solution for this, by solving the normal equations, which we will discuss
in Section 9.2.

Note that we are not interested in a predictor that only performs well on
the training data. We are actually interested in a predictor that performs
well (has low risk) on unseen test data. More formally we are interested
in finding a predictor f (with parameters fixed) that minimizes expectedexpected risk

risk

Rtrue(f) = Ex,y`(y, f(x)) (8.10)

where y is the ground truth label, and f(x) is the prediction based on the4462

data x. The notation Rtrue(f) indicates that this is the true risk if we had4463

access to an infinite amount of data. The expectation is over the (infinite)Another phrase
commonly used for
expected risk is the
population risk.

4464

set of all possible data and labels. There are two practical questions that4465

arise from our desire to minimize expected risk which we address in the4466

following two subsections:4467

• How should we change our training procedure to generalize well?4468

• How do we estimate expected risk from (finite) data?4469

Remark. Many machine learning tasks are specified with an associated4470

performance measure, e.g., accuracy of prediction or root mean squared4471

error. The performance measure could be more complex, be cost sensitive4472
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and capture details about the particular application. In principle, the de-4473

sign of the loss function for empirical risk minimization should correspond4474

directly to the performance measure specified by the machine learning4475

task. In practice there is a often mismatch between the design of the loss4476

function and the performance measure. This could be due to issues such4477

as ease of implementation or efficiency of optimization. }4478

8.1.3 Regularization to Reduce Overfitting4479

This section describes an addition to empirical risk minimization that al-4480

lows it to generalize well (minimizing expected risk). Recall that the aim4481

of training a machine learning predictor is so that we can perform well4482

on unseen data, that is the predictor generalizes well. This unseen data is4483

referred to as the test set. Given a sufficiently rich class of functions for the test set4484

predictor f , we can essentially memorize the training data to obtain zero4485

empirical risk. While this is great to minimize the loss (and therefore the4486

risk) on the training data, we would not expect the predictor to generalize4487

well to unseen data. In practice we have only a finite set of data, and hence4488

we split our data into a training and a test set. The training set is used to4489

fit the model, and the test set (not seen by the machine learning algorithm4490

during training) is used to evaluate generalization performance. We use4491

the subscript train and test to denote the training and test set respectively.4492

We will revisit this idea of using a finite dataset to evaluate expected risk4493

in Section 8.1.4.4494

It turns out that empirical risk minimization can lead to overfitting, that overfitting4495

is the predictor fits too closely to the training data and does not general-4496

ize well to new data (Mitchell, 1997). This general phenomenon of having4497

very small training loss but large test loss tends to occur when we have lit-4498

tle data and a complex hypothesis class. For a particular predictor f (with4499

parameters fixed), the phenomenon of overfitting occurs when the risk4500

estimate from the training data Remp(f,Xtrain,ytrain) underestimates the4501

expected risk Rtrue(f). Since we estimate the expected risk Rtrue(f) by4502

using the empirical risk on the test set Remp(f,Xtest,ytest) if the test risk4503

is much larger than the training risk, this is an indication of overfitting.4504

Therefore, we need to somehow bias the search for the minimizer of4505

empirical risk by introducing a penalty term, which makes it harder for4506

the optimizer to return an overly flexible predictor. In machine learning,4507

the penalty term is referred to as regularization. Regularization is a way regularization4508

to compromise between accurate solution of empirical risk and the size or4509

complexity of the solution.4510

Example 8.3
Regularization is used to improve the conditioning of ill-conditioned least
squares problems. The simplest regularization strategy is to replace the
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least squares problem in the previous example

min
✓

1

N
ky � X✓k2

. (8.11)

with the “regularized” problem by adding a penalty term involving only ✓

min
✓

1

N
ky � X✓k2 +

�

2
k✓k2

. (8.12)

The additional term k✓k2 is known as a regularizer, and the parameterThe constant 1
2 in

front of the
regularizer is so that
when we take the
derivative, the
square and the half
cancels.

� is known as the regularization parameter. The regularization parame-
ter trades off minimizing the loss on the training set and the size of the
parameters ✓.

The regularization term is sometimes called the penalty term, what bi-4511

ases the vector ✓ to be closer to the origin. The idea of regularization also4512

appears in probabilisitic models as the prior probability of the parame-4513

ters. Recall from Section 6.7 that for the posterior distribution to be of the4514

same form as the prior, the prior distribution and the likelihood need to4515

be conjugate distributions. We will revisit this idea in Section 8.2.2. We4516

will see in Chapter 12 that the idea of the regularizer is equivalent to the4517

idea of a large margin.4518

8.1.4 Cross Validation to Assess the Generalization Performance4519

We mentioned in the previous section that we measure generalization er-4520

ror by estimating it by applying the predictor on test data. This data is also4521

sometimes referred to as the validation set. The validation set is a subsetvalidation set 4522

of the available training data that we keep aside. A practical issue with4523

this approach is that the amount of data is limited, and ideally we would4524

use as much of the data available to train the model. This would require to4525

keep our validation set V small, which then would lead to a noisy estimate4526

(with high variance) of the predictive performance. One solution to these4527

contradictory objectives (large training set, large validation set) is to use4528

cross validation. K-fold cross validation effectively partitions the data intocross validation 4529

K chunks, K � 1 of which form the training set D̃, and the last chunk4530

serves as the validation set V (similar to the idea outlined above). Cross-4531

validation iterates through (ideally) all combinations of assignments of4532

chunks to D̃ and V , see Figure 8.4. This procedure is repeated for all K4533

choices for the validation set, and the performance of the model from the4534

K runs is averaged.4535

We partition our training set into two sets D = D̃[V , such that they do
not overlap D̃ \ V = ;, where V is the validation set, and train our model
on D̃. After training, we assess the performance of the predictor f on
the validation set V (e.g., by computing root mean square error (RMSE)
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Figure 8.4 K-fold
cross validation. The
data set is divided
into K = 5 chunks,
K � 1 of which
serve as the training
set (blue) and one
as the validation set
(orange).

Training

Validation

of the trained model on the validation set). We cycle through all possi-
ble partitionings of validation and training sets and compute the average
generalization error of the predictor. Cross-validation effectively computes
the expected generalization error

EV [R(f,V)] ⇡ 1

K

KX

k=1

R(f,V(k)) , (8.13)

where R(f,V) is the risk (e.g., RMSE) on the validation set V for predictor4536

f .4537

A potential disadvantage of K-fold cross validation is the computa-4538

tional cost of training the model K times, which can be burdensome if4539

the training cost is computationally expensive. In practice, it is often not4540

sufficient to look at the direct parameters alone. For example, we need to4541

explore multiple complexity parameters (e.g., multiple regularization pa-4542

rameters), which may not be direct parameters of the model. Evaluating4543

the quality of the model, depending on these hyper-parameters may result4544

in a number of training runs that is exponential in the number of model4545

parameters.4546

However, cross validation is an embarrassingly parallel problem, i.e., embarrassingly
parallel

4547

little effort is needed to separate the problem into a number of parallel4548

tasks. Given sufficient computing resources (e.g., cloud computing, server4549

farms), cross validation does not require longer than a single performance4550

assessment.4551

Further Reading4552

Due to the fact that the original development of empirical risk minimiza-4553

tion (Vapnik, 1998) was couched in heavily theoretical language, many of4554

the subsequent developments have been theoretical. The area of study is4555

called statistical learning theory (von Luxburg and Schölkopf, 2011; Vap- statistical learning
theory

4556

nik, 1999; Evgeniou et al., 2000). A recent machine learning textbook4557

that builds on the theoretical foundations and develops efficient learning4558

algorithms is Shalev-Shwartz and Ben-David (2014).4559

The idea of regularization has its roots in the solution of ill-posed in-4560
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verse problems (Neumaier, 1998). It has deep relationships to the bias4561

variance tradeoff and feature selection (Bühlmann and Geer, 2011).4562

An alternative to cross validation is bootstrap and jackknife (Efron and4563

Tibshirani, 1993; Davidson and Hinkley, 1997; Hall, 1992).4564

8.2 Parameter Estimation4565

In Section 8.1 we did not explicitly model our problem using probability4566

distributions. In this section, we will see how to use probability distribu-4567

tions to model our uncertainty due to the observation process and our4568

uncertainty in the parameters of our predictors.4569

8.2.1 Maximum Likelihood Estimation4570

The idea behind maximum likelihood estimation (MLE) is to define a func-maximum likelihood
estimation tion of the parameters that enables us to find a model that fits the data

well. The estimation problem is focused on the likelihood function, orlikelihood

more precisely its negative logarithm. For data represented by random
variable x and for a family of probability densities p(x | ✓) parameterized
by ✓, the negative log likelihood is given bynegative log

likelihood
Lx(✓) = � log p(x | ✓). (8.14)

The notation Lx(✓) emphasizes the fact that the parameter ✓ is varying4571

and the data x is fixed. We very often drop the reference to x when writing4572

the negative log likelihood, as it is really a function of ✓, and write it as4573

L(✓) when the random variable representing the uncertainty in the data4574

is clear from the context.4575

Let us intepret what the probability density p(x | ✓) is modelling for a4576

fixed value of ✓. It is a distribution that models the uncertainty of the data.4577

In other words, once we have chosen the type of function we want as a4578

predictor, the likelihood provides the probability of observing data x.4579

In a complementary view, if we consider the data to be fixed (because4580

it has been observed), and we vary the parameters ✓, what does L(✓) tell4581

us? It tells us the (negative log) likelihood of that parameter setting. Based4582

on this second view, the maximum likelihood estimator is the parameter4583

setting that maximizes the function.4584

We consider the supervised learning setting, where we obtain pairs4585

(x1, y1), . . . , (xN , yN) with xn 2 RD and labels yn 2 R. We are interested4586

in constructing a predictor that takes a feature vector xn as input and4587

produces a prediction yn (or something close to it). That is given a vector4588

xn we want the probability distribution of the label yn. In other words4589

we specify the conditional probability distribution of the labels given the4590

examples for the particular parameter setting ✓.4591
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Example 8.4
The first example that is often used is to specify that the conditional
probability of the labels given the examples is a Gaussian distribution. In
other words we assume that we can explain our observation uncertainty
by independent Gaussian noise (refer to Section 6.6) with zero mean,
"n ⇠ N

�
0, �2

�
. We further assume that the linear model x

>
n ✓ is used for

prediction. This means we specify a Gaussian likelihood for each example
label pair xn, yn,

p(yn | xn,✓) = N
�
yn | x>

n ✓, �
2
�
. (8.15)

An illustration of a Gaussian likelihood for a given parameter ✓ is shown
in Figure 8.3. We will see in Section 9.2 how to explicitly expand the
expression above out in terms of the Gaussian distribution.

We assume that the set of examples (x1, y1), . . . , (xN , yN) are independent independent and
identically
distributed

and identically distributed. The word independent (Section 6.4.3) implies
that the likelihood of the whole dataset (y = [y1, . . . , yN ]> and X =
[x1, . . . ,xN ]> 2 RN⇥D) factorizes into a product of the likelihoods of
each individual example

p(y | X,✓) =
NY

n=1

p(yn | xn,✓) , (8.16)

where p(yn | xn,✓) is a particular distribution (which was Gaussian in the
example above (8.15)). The word identically distributed means that each
term in the product above is the same and all of them share the same
parameters. It is often easier from an optimization viewpoint to compute
functions that can be decomposed into sums of simpler functions, and Recall log(ab) =

log(a) + log(b)hence in machine learning we often consider the negative log-likelihood

L(✓) = � log p(y | X,✓) = �
NX

n=1

log p(yn | xn,✓). (8.17)

While it is temping to interpret the fact that ✓ is on the right of the condi-4592

tioning in p(yn|xn,✓) (8.15), and hence should be intepreted as observed4593

and fixed, this interpretation is incorrect. The negative log likelihood L(✓)4594

is a function of ✓.4595

Therefore, to find a good parameter vector ✓ that explains the data
(x1, y1), . . . , (xN , yN) well, we look for a ✓ that minimizes the negative
log likelihood

min
✓

L(✓) . (8.18)

Remark. The negative sign in (8.17) is a historical artefact that is due4596

to the convention that we want to maximize likelihood, but numerical4597

optimization literature tends to study minimization of functions. }4598
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Example 8.5
Continuing on our example of Gaussian likelihoods (8.15), the negative
log likelihood can be rewritten as

min
✓

L(✓) = �
NX

n=1

log p(yn | xn,✓) (8.19)

= �
NX

n=1

logN
�
yn | x>

n ✓, �
2
�

(8.20)

= �
NX

n=1

log
1p
2⇡�2

exp

✓
�(yn � x

>
n ✓)2

2�2

◆
(8.21)

= �
NX

n=1

log exp

✓
�(yn � x

>
n ✓)2

2�2

◆
�

NX

n=1

log
1p
2⇡�2

(8.22)

=
NX

n=1

(yn � x
>
n ✓)2

2�2
�

NX

n=1

log
1p
2⇡�2

. (8.23)

(8.24)

Observe that the first term in the last equation above is the least squares
problem.

It turns out that for Gaussian likelihoods the resulting optimization4599

problem corresponding to maximum likelihood estimation has a closed-4600

form solution. We will see more details on this in Chapter 9. For other4601

likelihood functions, i.e., if we model our noise with non-Gaussian dis-4602

tributions, maximum likelihood estimation may not have a closed-form4603

analytic solution. In this case, we resort to numerical optimization meth-4604

ods discussed in Chapter 7.4605

8.2.2 Maximum A Posteriori Estimation4606

If we have prior knowledge about the distribution of the parameters ✓ of
our distribution we can multiply an additional term to the likelihood. This
additional term is a prior probability distribution on parameters p(✓). For
a given prior, after observing some data x, how should we update the dis-
tribution of ✓? In other words, how should we represent the fact that we
have more specific knowledge after observing data x? Bayes’ theorem, as
discussed in Section 6.3, gives us a principled tool to update our probabil-
ity distributions of random variables. It allows us to compute a posteriorposterior

distribution p(✓ | x) (the more specific knowledge) on the paramters ✓

from general prior statements (prior distribution) p(✓) and the functionprior

p(x | ✓) that links the parameters ✓ and the observed data x (called the
likelihood):likelihood
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Figure 8.5 For the
given data, the
maximum likelihood
estimate of the
parameters results
in the black
diagonal line. The
orange square
shows the value of
the maximum
likelihood
prediction at
x = 2.5.

�4 �2 0 2 4

x

�4

�2

0

2

4

y

p(✓ | x) = p(x | ✓)p(✓)
p(x)

. (8.25)

Recall that we are interested in finding the parameter ✓ that maximizes
likelihood, and the distribution p(x) affects the value of the likelihood,
but does not affect the value of the parameter that achieves the maximum
likelihood. Therefore we can ignore the value of the denominator,

p(✓ | x) / p(x | ✓)p(✓) . (8.26)

The proportion relation above hides the density of the data p(x) which4607

may be difficult to estimate. Instead of estimating the minimum of the4608

negative log likelihood, we now estimate the minimum of the negative log4609

posterior, which is referred to as maximum a posteriori estimation (MAP). maximum a
posteriori
estimation

4610

Example 8.6
In addition to the assumption of Gaussian likelihood in the previous exam-
ple, we assume that the parameter vector is distributed as a multivariate
Gaussian with zero mean, that is p(✓) = N

�
0, ⌃

�
where ⌃ is the co-

variance matrix (Section 6.6). Note that the conjugate prior of a Gaussian
is also a Gaussian (Section 6.7.1) and therefore we expect the posterior
distribution to also be a Gaussian. We will see the details of maximum a
posteriori estimation in Chapter 9.

The idea of including prior knowledge about where good parameters4611

lie is widespread in machine learning. An alternative view which we saw4612

in Section 8.1 is the idea of regularization, which introduces an additional4613

term that biases the resulting parameters to be close to the origin.4614

Remark. The maximum likelihood estimate ✓ML possesses the following4615

properties (Lehmann and Casella, 1998; Efron and Hastie, 2016):4616
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Figure 8.6
Comparing the
Maximum
Likelihood estimate
and the Maximum A
Posteriori estimate
and their
predictions at
x = 2.5. The prior
biases the slope to
be less steep and the
intercept to be
closer to zero.
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• Asymptotic consistency: The MLE converges to the true value in the4617

limit of infinitely many observations, plus a random error that is ap-4618

proximately normal.4619

• The size of the samples necessary to achieve these properties can be4620

quite large.4621

• The error’s variance decays in 1/N where N is the number of data4622

points.4623

• Especially, in the “small” data regime, maximum likelihood estimation4624

can lead to overfitting.4625

}4626

Further Reading4627

When considering probabilistic models the principle of maximum likeli-
hood estimation generalizes the idea of least-squares regression for linear
models (which we will discuss in detail in Chapter 9). When restricting
the predictor to have linear form with an additional nonlinear function '

applied to the output,

p(yn|xn,✓) = '(✓>
xn) (8.27)

we can consider other models for other prediction tasks, such as binary4628

classification or modelling count data (McCullagh and Nelder, 1989). An4629

alternative view of this is to consider likelihoods that are from the ex-4630

ponential family (Section 6.7). The class of models, which have linear4631

dependence between parameters and data, and have potentially nonlin-4632

ear transformation ' (called a link function) is referred to as generalized4633

linear models (Agresti, 2002, Chapter 4).4634

Maximum likelihood estimation has a rich history, and was originally4635

proposed by Sir Ronald Fisher in the 1930s. We will expand upon the idea4636

of a probabilistic model in Section 8.3. One debate among researchers4637
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who use probabilistic models, is the discussion between Bayesian and fre-4638

quentist statistics. As mentioned in Section 6.1.1 it boils down to the defi-4639

nition of probability. Recall that one can consider probability to be a gener-4640

alization of logical reasoning to allow for uncertainty (Cheeseman, 1985;4641

Jaynes, 2003). The method of maximum likelihood estimation is frequen-4642

tist in nature, and the interested reader is pointed to Efron and Hastie4643

(2016) for a balanced view of both Bayesian and frequentist statistics.4644

There are some probabilisitic models where maximum likelihood es-4645

timation may not be possible. The reader is referred to more advanced4646

statistical textbooks, e.g., Casella and Berger (2002), for approaches such4647

as method of moments, M -estimation and estimating equations.4648

8.3 Probabilistic Modeling4649

In machine learning, we are frequently concerned with the interpretation4650

and analysis of data, e.g., for prediction of future events and decision mak-4651

ing. To make this task more tractable, we often build models that describe4652

the process that generates the data. For example, when we want to de-4653

scribe the outcome of a coin-flip experiment, we can describe this process4654

using a Bernoulli distribution as described in Chapter 6. In this example,4655

we can say that an outcome x 2 {head, tail} can be described as the con-4656

ditional distribution p(x |µ) where x is the outcome of the experiment4657

and µ is the probability of “heads”.4658

In this section, we will focus on probabilisitic models. The benefit of4659

using probabilistic models is that we have the set of tools from probability4660

(Chapter 6) available to us for modeling, inference, parameter estimation4661

and model selection.4662

Remark. Thinking about empirical risk minimization (Section 8.1) as “prob-4663

ability free” is incorrect. There is an underlying unknown probability dis-4664

tribution p(x, y) that governs the data generation, but the approach of4665

empirical risk minimization is agnostic to that choice of distribution. This4666

is in contrast to standard statistical approaches that require the knowl-4667

edge of p(x, y). Furthermore, since the distribution is a joint distribution4668

on both examples x and labels y, the labels can be non-deterministic. In4669

contrast to standard statistics we do not need to specify the noise distri-4670

bution for the labels y. }4671

8.3.1 MLE, MAP, and Bayesian Inference4672

Let us revisit the discussion about modeling with probability distributions
we had at the beginning of this chapter. There are three levels where we
can use a probability distribution. At the first level, we can use a prob-
ability distribution to model our uncertainty about the observation. For
example, in (8.15) we make the assumption that there is Gaussian noise
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(with mean 0 and variance �
2) that corrupts the observation of a linear

function. A way to express this is to write

yn = x
>
n ✓ + " where " ⇠ N

�
0, �2

�
. (8.28)

By making this assumption, we obtain the likelihood described in Sec-4673

tion 8.2.1 where we can then maximize.4674

At the second level, we can use a probability distribution to describe4675

our uncertainty about the parameters ✓. This is detailed in Section 8.2.2,4676

where we place a probability distribution to model the parameter vector4677

✓ that encodes our beliefs about the unknown parameters. The probabil-4678

ity distribution over parameters is known as the prior distribution, and4679

by using Bayes’ Theorem we obtain the posterior distribution over the4680

parameters ✓, which describes an “updated” prior belief, i.e., the belief4681

about the unknown parameters after having seen some data. Instead of4682

maximizing the likelihood, we can maximize the posterior with respect4683

to the model parameters ✓. This approach is called maximum a posteriorimaximum a
posteriori
estimation

4684

estimation (MAP estimation), and it will generally yield a different result

MAP estimation

4685

than maximum likelihood estimation. Note that in both maximum like-4686

lihood and maximum a posteriori cases in the previous paragraphs, the4687

estimated best solution is a single value of the parameter ✓.4688

With maximum likelihood or MAP estimates, we obtain a single best
parameter setting ✓

⇤, which we can use when making predictions. More
specifically, when predicting an outcome x⇤ we can do this by using ✓

⇤

directly in the likelihood function that connects parameters and data to
obtain a prediction p(x⇤ | ✓⇤). At the third level, we can use a probability
distribution when making predictions, instead of focusing on a single pa-
rameter setting ✓

⇤. To do so, we maintain a full probability distribution on
the parameters (MLE and MAP estimation pick a single parameter value)
and make predictions by accounting for all plausible parameter settings
✓ under this distribution. This is done by (weighted) averaging, i.e., inte-
gration so that the predictive distribution

p(x⇤) = E✓[p(x⇤ | ✓)] =
Z

p(x⇤ | ✓)p(✓)d✓ (8.29)

no longer depends on the parameters ✓ – they have been marginalized/4689

integrated out. This is referred to as Bayesian inference.Bayesian inference4690

8.3.2 Latent Variables4691

Taking a probabilistic view of machine learning implies that we also want4692

to treat predictors (models) as random variables. While data x1, . . . , xN4693

can be observed, these models themselves possess quantities/parameters4694

that are not directly observed. In the coin-flip experiment described in the4695

introduction to this section, the probability µ of “heads” is typically not4696
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known and depends on the coin we use. We describe these kind of un-4697

known quantities with a random variable. Given that these random vari-4698

ables cannot be observed but only inferred we call them hidden variables hidden variables4699

or latent variables. While we can make general statements about plausible latent variables4700

values of these latent variables prior to observing any data (e.g., by using4701

a prior distribution), a key challenge in machine learning is to infer more4702

about these unobserved variables given a dataset.4703

Remark. We tend to use the notation ✓ to represent the vector of un-4704

observed random variables. We also refer to ✓ as the parameters of the parameters4705

model. }4706

Recall from Section 8.2.2 that Bayes’ Theorem gives us a principled tool4707

to update our probability distribution over ✓ given observed data. Here4708

we go from a prior distribution on the latent variables to a posterior dis-4709

tribution after taking the likelihood into account. Since we can write the4710

numerator of (8.25) as the joint distribution p(✓,x) = p(x | ✓)p(✓) of4711

the latent variables and the data, this joint distribution is of central im-4712

portance and sufficient to compute the quantities of interest, either by4713

conditioning or marginalization (Section 6.2.1). For example, we obtain4714

the posterior distribution by conditioning so that we can make informed4715

statements about the latent variables, and we obtain the marginal like-4716

lihood (evidence) p(x) via marginalization where we integrate out the4717

latent variables. The marginal likelihood is very useful for model selec-4718

tion as we will discuss in Section 8.5. Hence, we can define a probabilistic A probabilistic
model in machine
learning describes
the joint distribution
of all latent and
observed variables.

4719

model in machine learning as the joint distribution p(✓,x) of all latent4720

and observed variables.4721

As mentioned above, in machine learning, it is important to get some
information about the latent variables given a dataset. The posterior dis-
tribution p(✓ | x) gives us complete information about the parameters af-
ter observing the data. We can then use the full posterior distribution
to make statements about future outcomes by averaging over all plau-
sible settings of the latent variables, that is we can predict/generate/
fantasize/hallucinate new data via

p(x) =
Z

p(x | ✓)p(✓)d✓ . (8.30)

Unfortunately, in most cases (in particular, when we choose non-conjugate4722

priors), we cannot compute the posterior distribution using Bayes’ theo-4723

rem because the computations quickly become intractable. A solution to4724

this problem is to estimate a single parameter vector ✓
⇤ that explains the4725

available data “best”, e.g., by maximum likelihood estimation as discussed4726

in Section 8.2. Then, we can make a prediction of new data directly via4727

the likelihood p(x | ✓⇤) – without needing integration.4728

Remark. In the machine learning literature, there can be a somewhat ar-4729

bitrary separation between “variables” and “parameters”. While parame-4730
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ters are estimated (e.g., via maximum likelihood) variables are usually4731

marginalized out as in (8.30). In this book, we are not so strict with this4732

separation because, in principle, we can place a prior on any parameter4733

and integrate it out, which would then turn the parameter into a variable4734

according to the separation above. }4735

There are modelling situations in machine learning where we may wish4736

to introduce new random variables z into the problem. In these scenar-4737

ios, the direct model of the problem (involving only x,✓) may be com-4738

putationally difficult to solve, but introducing a set of latent variables z4739

allows us to design an efficient algorithm. We will see an example of this4740

in Chapter 11, where we introduce the Gaussian mixture model and use4741

it for density estimation.4742

Further Reading4743

Probabilistic models in machine learning Bishop (2006); Barber (2012);4744

Murphy (2012) provide a way for users to capture uncertainty about4745

data and predictive models in a principled fashion. Ghahramani (2015)4746

presents a short review of probabilistic models in machine learning. Given4747

a probabilistic model, we may be lucky enough to be able to compute pa-4748

rameters of interest analytically. However, in general, analytic solutions4749

are rare and computational methods such as sampling (Brooks et al.,4750

2011) and variational inference (Blei et al., 2017) are used.4751

In recent years, there have been several proposed programming lan-4752

guages that aim to treat the variables defined in software as random vari-4753

ables corresponding to probability distributions. The long-term dream is to4754

be able to write complex functions of probability distributions, while un-4755

der the hood the compiler automatically takes care of the rules of Bayesian4756

inference. This is a rapidly changing field, but several examples of promis-4757

ing languages at the present are:4758

Stan http://mc-stan.org/4759

Edward http://edwardlib.org/4760

PyMC https://docs.pymc.io/4761

Pyro http://pyro.ai/4762

Tensorflow Probability https://github.com/tensorflow/probability4763

Infer.NET http://infernet.azurewebsites.net/4764

8.4 Directed Graphical Models4765

In this section we introduce a graphical language for specifying a proba-4766

bilistic models, called the directed graphical model. They provides a com-directed graphical
model
Directed graphical
models are also
known as Bayesian
networks.

4767

pact and succinct way to specify probabilistic models, and allows the4768

reader to visually parse dependencies between random variables. A graph-4769

ical model visually captures the way in which the joint distribution over4770
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all random variables can be decomposed into a product of factors depend-4771

ing only on a subset of these variables. In Section 8.3, we identified the4772

joint distribution of a probabilistic model as the key quantity of interest4773

because it comprises information about the prior, the likelihood and the4774

posterior. However, the joint distribution by itself can be quite compli-4775

cated, and it does not tell us anything about structural properties of the4776

probabilistic model. For example, the joint distribution p(a, b, c) does not4777

tell us anything about independence relations. This is the point where4778

graphical models come into play. This section relies on the concepts of in-4779

dependence and conditional independence, as described in Section 6.4.3.4780

In a graphical model, nodes are random variables; in Figure 8.7(a), the graphical model4781

nodes of the random variables a, b, c represent their respective (marginal)4782

probabilities p(a), p(b) and p(c). Edges represent probabilistic relations4783

between variables, e.g., conditional probabilities.4784

Remark. Not every distribution can be represented in a particular choice of4785

graphical model. A discussion of this can be found in Bishop (2006). }4786

Probabilistic graphical models have some convenient properties:4787

• They are a simple way to visualize the structure of a probabilistic model4788

• They can be used to design or motivate new kind of statistical models4789

• Inspection of the graph alone gives us insight into properties, e.g., con-4790

ditional independence4791

• Complex computations for inference and learning in statistical models4792

can be expressed in terms of graphical manipulations.4793

8.4.1 Graph Semantics4794

Figure 8.7
Examples of
directed graphical
models.

a b

c

(a) Fully connected.

x1 x2

x3 x4

x5

(b) Not fully connected.

Directed graphical
modelsDirected graphical models/Bayesian networks are a method for repre-
Bayesian networks

4795

senting conditional dependencies in a probabilistic model. They provide4796

a visual description of the conditional probabilities, hence, providing a4797

simple language for describing complex interdependence. The modular4798

description also entails computational simplification. Directed links (ar-4799

rows) between two nodes (random variables) are conditional probabili-4800

ties. For example, the arrow between a and b in Figure 8.7(a) gives the With additional
assumptions, the
arrows can be used
to indicate causal
relationships (Pearl,
2009), but we do
not make these
assumptions here.

4801

conditional probability p(b | a) of b given a.4802
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Directed graphical models can be derived from joint distributions if we4803

know something about their factorization.4804

Example 8.7
Consider the joint distribution

p(a, b, c) = p(c | a, b)p(b | a)p(a) (8.31)

of three random variables a, b, c. The factorization of the joint distribution
in (8.31) tells us something about the relationship between the random
variables:

• c depends directly on a and b

• b depends directly on a

• a depends neither on b nor on c

For the factorization in (8.31), we obtain the directed graphical model in
Figure 8.7(a).

In general, we can construct the corresponding directed graphical model4805

from a factorized joint distribution as follows:4806

1. Create a node for all random variables4807

2. For each conditional distribution, we add a directed link (arrow) to4808

the graph from the nodes corresponding to the variables on which the4809

distribution is conditioned on4810
The graph layout
depends on the
factorization of the
joint distribution.

The graph layout depends on the choice of factorization of the joint dis-4811

tribution.4812

We discussed how to get from a known factorization of the joint dis-4813

tribution to the corresponding directed graphical model. Now, we will go4814

exactly the opposite and describe how to extract the joint distribution of4815

a set of random variables from a given graphical model.4816

Example 8.8
Let us look at the graphical model in Figure 8.7(b) and exploit two obser-
vations:

• The joint distribution p(x1, . . . , x5) we seek is the product of a set of
conditionals, one for each node in the graph. In this particular example,
we will need five conditionals.

• Each conditional depends only on the parents of the corresponding
node in the graph. For example, x4 will be conditioned on x2.

With these two properties we arrive at the desired factorization of the joint
distribution

p(x1, x2, x3, x4, x5) = p(x1)p(x5)p(x2 |x5)p(x3 |x1, x2)p(x4 |x2) .
(8.32)
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Figure 8.8
Graphical models
for a repeated
Bernoulli
experiment.

µ

x1 xN

(a) Version with xn explicit.

µ

xn

n = 1, . . . , N

(b) Version with
plate notation.

µ

xn

↵

n = 1, . . . , N

(c) Hyperparameter ↵ on
the latent µ.

In general, the joint distribution p(x) = p(x1, . . . , xK) is given as

p(x) =
KY

k=1

p(xk | Pak) (8.33)

where Pak means “the parent nodes of xk”.4817

We conclude this subsection with a concrete example of the coin flip
experiment. Consider a Bernoulli experiment where the probability that
the outcome x of this experiment is “heads” is

p(x |µ) = Ber(µ) . (8.34)

We now repeat this experiment N times and observe outcomes x1, . . . , xN

so that we obtain the joint distribution

p(x1, . . . , xN |µ) =
NY

n=1

p(xn|µ) . (8.35)

The expression on the right hand side is a product of Bernoulli distri-4818

butions on each individual outcome because the experiments are inde-4819

pendent. Recall from Section 6.4.3 that statistical independence means4820

that the distribution factorizes. To write the graphical model down for4821

this setting, we make the distinction between unobserved/latent variables4822

and observed variables. Graphically, observed variables are denoted by4823

shaded nodes so that we obtain the graphical model in Figure 8.8(a). We4824

see that the single parameter µ is the same for all xn, n = 1, . . . , N . A4825

more compact, but equivalent, graphical model for this setting is given in4826

Figure 8.8(b), where we use the plate notation. The plate (box) repeats plate4827

everything inside (in this case the observations xn) N times. Therefore,4828

both graphical models are equivalent, but the plate notation is more com-4829

pact. Graphical models immediately allow us to place a hyper-prior on µ.4830

Figure 8.8(c) places a Beta(↵) prior on the latent variable µ. If we treat4831

↵ as a constant (deterministic parameter), i.e., not a random variable, we4832

omit the circle around it.4833
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Figure 8.9
D-separation
example.

a b c

d

e

8.4.2 Conditional Independence and D-Separation4834

Directed graphical models allow us to find conditional independence (Sec-4835

tion 6.4.3) relationship properties of the joint distribution only by looking4836

at the graph. A concept called d-separation (Pearl, 1988) is key to this.d-separation 4837

Consider a general directed graph in which A,B, C are arbitrary non-
intersecting sets of nodes (whose union may be smaller than the com-
plete set of nodes in the graph). We wish to ascertain whether a particular
conditional independence statement, A is conditionally independent of B
given C, denoted by

A ?? B | C , (8.36)

is implied by a given directed acyclic graph. To do so, we consider all4838

possible paths from any node in A to any nodes in B. Any such path is4839

said to be blocked if it includes any node such that either4840

• the arrows on the path meet either head to tail or tail to tail at the node,4841

and the node is in the set C, or4842

• the arrows meet head to head at the node and neither the node nor any4843

of its descendants is in the set C.4844

If all paths are blocked, then A is said to be d-separated from B by C,4845

and the joint distribution over all of the variables in the graph will satisfy4846

A ?? B | C.4847

Example 8.9 (Conditional Independence)
Consider the graphical model in Figure 8.9. By visual inspection we see
that

b ?? d | a, c , (8.37a)
a ?? c | b , (8.37b)
b 6?? d | c , (8.37c)
a 6?? c | b, e . (8.37d)

Directed graphical models allow a compact representation of probabil-4848

isitic models, and we will see examples of directed graphical models in4849
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Figure 8.10 Three
types of graphical
models: (a) Directed
graphical models
(Bayesian network);
(b) Undirected
graphical models
(Markov random
field); (c) Factor
graphs.

a b

c

(a) Directed graphical model

a b

c

(b) Undirected graphical
model

a b

c

(c) Factor graph

Chapter 9, 10 and 11. The representation along with the concept of con-4850

ditional independence, allows us to factorize the respective probabilisitic4851

models into expressions that are easier to optimize.4852

Further Reading4853

An introduction to probabilistic graphical models can be found in Bishop4854

(2006, Chapter 8), and an extensive description of the different applica-4855

tions and corresponding algorithmic implications can be found in Koller4856

and Friedman (2009).4857

There are three main types of probabilistic graphical models:4858

Directed graphical
models• Directed graphical models (Bayesian networks), see Figure 8.11(a)4859

Undirected
graphical models• Undirected graphical models (Markov random fields), see Figure 8.11(b)4860

Factor graphs• Factor graphs, see Figure 8.11(c)4861

Graphical models allow for graph-based algorithms for inference and4862

learning, e.g., via local message passing. Applications range from rank-4863

ing in online games (Herbrich et al., 2007) and computer vision (e.g.,4864

image segmentation, semantic labeling, image de-noising, image restora-4865

tion (Sucar and Gillies, 1994; Shotton et al., 2006; Szeliski et al., 2008;4866

Kittler and Föglein, 1984)) to coding theory (McEliece et al., 1998), solv-4867

ing linear equation systems (Shental et al., 2008) and iterative Bayesian4868

state estimation in signal processing (Bickson et al., 2007; Deisenroth and4869

Mohamed, 2012).4870

One topic which is particularly important in real applications that we4871

do not discuss in this book is the idea of structured prediction (Bakir4872

et al., 2007; Nowozin et al., 2014) which allow machine learning mod-4873

els to tackle predictions that are structured, for example sequences, trees4874

and graphs. The popularity of neural network models has allowed more4875

flexible probabilistic models to be used, resulting in many useful applica-4876

tions of structured models (Goodfellow et al., 2016, Chapter 16). In recent4877

years, there has been a renewed interest in graphical models due to its ap-4878

plications to causal inference (Rosenbaum, 2017; Pearl, 2009; Imbens and4879

Rubin, 2015; Peters et al., 2017).4880
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Figure 8.11 Nested
cross validation. We
perform two levels
of K fold cross
validation. The
inner level is used to
estimate the
performance of a
particular choice of
model or
hyperparameter on
a internal validation
set. The outer level
is used to estimate
generalization
performance for the
best choice of model
chosen by the inner
loop.

All labeled data

All training data Test data

To train model Validation

8.5 Model Selection4881

In machine learning, we often need to make high level modeling decisions4882

that critically influence the performance of the model. The choices we4883

make (e.g., the degree of the polynomial in a regression setting) influence4884

the number and type of free parameters in the model and thereby also the4885

flexibility and expressivity of the model. More complex models are more4886

flexible in the sense that they can be used to describe more data sets. For4887

instance, a polynomial of degree 1 (a line y = a0 + a1x) can only be4888

used to describe linear relations between inputs x and observations y. A4889

polynomial of degree 2 can additionally describe quadratic relationships4890

between inputs and observations.Note that a
polynomial
y = a0+a1x+a2x2

can also describe
linear functions by
setting a2 = 0, i.e.,
it is strictly more
expressive than a
first-order
polynomial.

4891

One would now think that very flexible models are generally preferable4892

to simple models because they are more expressive. A general problem4893

is that at training time we can only use the training set to evaluate the4894

performance of the model and learn its parameters. However, the per-4895

formance on the training set is not really what we are interested in. In4896

Section 8.2, we have seen that maximum likelihood estimation can lead4897

to overfitting, especially when the training data set is small. Ideally, our4898

model (also) works well on the test set (which is not available at training4899

time). Therefore, we need some mechanisms for assessing how a model4900

generalizes to unseen test data. Model selection is concerned with exactly4901

this problem.4902

8.5.1 Nested Cross Validation4903

We have already seen an approach (cross validation in Section 8.1.4) that4904

can be used for model selection. Recall that cross validation provides an4905

estimate of the generalization error by repeatedly splitting the dataset into4906

training and validation sets. We can apply this idea one more time, that4907

is for each split, we can perform another round of cross validation. This4908

is sometimes referred to as nested cross validation. We can test differentnested cross
validation

4909

model and hyperparameter choices in the inner loop. To distinguish the4910

two levels, the set used to estimate the generalization performance is often4911
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Figure 8.12
Bayesian inference
embodies Occam’s
razor (MacKay,
2003), see text for
description.

p(D|M2)

p(D|M1)

C1

Evidence

D

called the test set and the set used for choosing the best model is called test set4912

the validation set. validation set4913

EV [G(V) |M ] ⇡ 1

K

KX

k=1

G(V(k) |M) , (8.38)

where G(V) is the generalization error (e.g., RMSE) on the validation set4914

V for model M . We repeat this procedure for all models and choose the4915

model that performs best. Note that cross-validation not only gives us the4916

expected generalization error, but we can also obtain high-order statistics,4917

e.g., the standard error, an estimate of how uncertain the mean estimate The standard error
is defined as �p

K
,

where K is the
number of
experiments and �
the standard
deviation.

4918

is.4919

Once the model is chosen we can evaluate the final performance on the4920

test set.4921

8.5.2 Bayesian Model Selection4922

There are many approaches to model selection, some of which are covered4923

in this section. Generally, they all attempt to trade off model complexity4924

and data fit: The objective is to find the simplest model that explains the We assume that
simpler models are
less prone to
overfitting than
complex models.

4925

data reasonably well. This concept is also known as Occam’s Razor.

Occam’s Razor
We are looking for
the simplest model
that explains the
data.

4926

Remark. If we treat model selection as a hypothesis testing problem, we4927

are looking for the simplest hypothesis that is consistent with the data (Mur-4928

phy, 2012). }4929

One may consider placing a prior on models that favors simpler mod-4930

els. However, it is not necessary to do this: An “automatic Occam’s Ra-4931

zor” is quantitatively embodied in the application of Bayesian probabil-4932

ity (Spiegelhalter and Smith, 1980; MacKay, 1992; Jefferys and Berger,4933

1992). Figure 8.12 from MacKay (2003) gives us the basic intuition why4934

complex and very expressive models may turn out to be a less probably4935

choice for modeling a given dataset D. Let us think of the horizontal axis4936

representing the space of all possible datasets D. If we are interested in4937

the posterior probability p(Mi | D) of model Mi given the data D, we can4938
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employ Bayes’ theorem. Assuming a uniform prior p(M) over all mod-4939

els, Bayes’ theorem rewards models in proportion to how much they pre-4940

dicted the data that occurred. This probability of the data given modelNote that these
predictions are
quantified by a
normalized
probability
distribution on D,
i.e., it needs to
integrate/sum to 1.

4941

Mi, p(D |Mi), is called the evidence for Mi. A simple model M1 can only

evidence

4942

predict a small number of datasets, which is shown by p(D |M1); a more4943

powerful model M2 that has, e.g., more free parameters than M1, is able4944

to predict a greater variety of datasets. This means, however, that M24945

does not predict the datasets in region C1 as strongly as M1. Suppose that4946

equal prior probabilities have been assigned to the two models. Then, if4947

the data set falls in region C1, the less powerful model M1 is the more4948

probable model.4949

Above, we argued that models need to be able to explain the data, i.e.,4950

there should be a way to generate data from a given model. Furthermore4951

if the model has been appropriately learned from the data, then we expect4952

that the generated data should be similar to the empirical data. For this,4953

it is helpful to phrase model selection as a hierarchical inference problem,4954

which allows us to compute the posterior distribution over models.posterior
distribution over
models

4955

Figure 8.13
Illustration of the
hierarchical
generative process
in Bayesian model
selection. We place
a prior p(M) on the
set of models. For
each model, there is
a prior p(✓k |Mk)
on the
corresponding
model parameters,
which are then used
to generate the data
D.

Mk

✓k

D

Let us consider a finite number of models M = {M1, . . . ,MK}, where
each model Mk possesses parameters ✓k. In Bayesian model selection, we

Bayesian model
selection

place a prior p(M) on the set of models. The corresponding generative

generative process

process that allows us to generate data from this model is

Mk ⇠ p(M) (8.39)
✓k |Mk ⇠ p(✓k) (8.40)
D | ✓k ⇠ p(D | ✓k) (8.41)

and illustrated in Figure 8.13.4956

Given a training set D, we apply Bayes’ theorem and compute the pos-
terior distribution over models as

p(Mk | D) / p(Mk)p(D |Mk) . (8.42)

Note that this posterior no longer depends on the model parameters ✓k

because they have been integrated out in the Bayesian setting since

p(D |Mk) =
Z

p(D | ✓k)p(✓k |Mk)d✓k . (8.43)

From the posterior in (8.42), we determine the MAP estimate as

M
⇤ = argmax

Mk

p(Mk | D) . (8.44)

With a uniform prior p(Mk) = 1
K

, which gives every model equal
(prior) probability, determining the MAP estimate over models amounts
to picking the model that maximizes the model evidence/marginal likeli-

model evidence
marginal likelihood

hood

p(D |Mk) =
Z

p(D | ✓k)p(✓k |Mk)d✓k , (8.45)
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where p(✓k |Mk) is the prior distribution of the model parameters ✓k of4957

model Mk.4958

Remark (Likelihood and Marginal Likelihood). There are some important4959

differences between a likelihood and a marginal likelihood (evidence):4960

While the likelihood is prone to overfitting, the marginal likelihood is typ-4961

ically not as the model parameters have been marginalized out (i.e., we4962

no longer have to fit the parameters). Furthermore, the marginal likeli-4963

hood automatically embodies a trade-off between model complexity and4964

data fit (Occam’s razor). }4965

8.5.3 Bayes Factors for Model Comparison4966

Consider the problem of comparing two probabilistic models M1,M2,
given a data set D. If we compute the posteriors p(M1 | D) and p(M2 | D),
we can compute the ratio of the posteriors (posterior odds) posterior odds

p(M1 | D)

p(M2 | D)| {z }
posterior odds

=

p(D |M1)p(M1)
p(D)

p(D |M2)p(M2)
p(D)

=
p(M1)

p(M2)| {z }
prior odds

p(D |M1)

p(D |M2)| {z }
Bayes factor

(8.46)

The first fraction on the right-hand-side (prior odds) measures how much4967

our prior (initial) beliefs favor M1 over M2. The ratio of the marginal4968

likelihoods (second fraction on the right-hand-side) is called the Bayes Bayes factor4969

factor and measures how well the data D is predicted by M1 compared to4970

M2.4971

Remark. The Jeffreys-Lindley paradox states that the “Bayes factor always Jeffreys-Lindley
paradox

4972

favors the simpler model since the probability of the data under a complex4973

model with a diffuse prior will be very small” (Murphy, 2012). Here, a4974

diffuse prior refers to a prior that does not favor specific models, i.e.,4975

many models are a priori plausible under this prior. }4976

If we choose a uniform prior over models, the prior odds term in (8.46)
is 1, i.e., the posterior odds is the ratio of the marginal likelihoods (Bayes
factor)

p(D |M1)

p(D |M2)
. (8.47)

If the Bayes factor is greater than 1, we choose model M1, otherwise4977

model M2.4978

Remark (Computing the Marginal Likelihood). The marginal likelihood4979

plays an important role in model selection: We need to compute Bayes4980

factors (8.46) and posterior distributions over models (8.42).4981

Unfortunately, computing the marginal likelihood requires us to solve4982

an integral (8.45). This integration is generally analytically intractable,4983

and we will have to resort to approximation techniques, e.g., numerical4984
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integration (Stoer and Burlirsch, 2002), stochastic approximations using4985

Monte Carlo (Murphy, 2012) or Bayesian Monte Carlo techniques (O’Hagan,4986

1991; Rasmussen and Ghahramani, 2003).4987

However, there are special cases in which we can solve it. In Section 6.7.1,4988

we discussed conjugate models. If we choose a conjugate parameter prior4989

p(✓), we can compute the marginal likelihood in closed form. In Chap-4990

ter 9, we will do exactly this in the context of linear regression. }4991

Further Reading4992

We mentioned at the start of the section that there are high level modeling4993

choices that influence the performance of the model. Examples include:4994

• The degree of a polynomial in a regression setting4995

• The number of components in a mixture model4996

• The network architecture of a (deep) neural network4997

• The type of kernel in a support vector machine4998

• The dimensionality of the latent space in PCA4999

• The learning rate (schedule) in an optimization algorithm5000

Rasmussen and Ghahramani (2001) showed that the automatic Oc-5001

cam’s razor does not necessarily penalize the number of parameters in5002

a model but it is active in terms of the complexity of functions. They alsoIn parametric
models, the number
of parameters is
often related to the
complexity of the
model class.

5003

showed that the automatic Occam’s razor also holds for Bayesian non-5004

parametric models with many parameters, e.g., Gaussian processes.5005

If we focus on the maximum likelihood estimate, there exist a number of
heuristics for model selection that discourage overfitting. These are called
information criteria, and we choose the model with the largest value. The
Akaike Information Criterion (AIC) (Akaike, 1974)

log p(x | ✓) � M (8.48)

corrects for the bias of the maximum likelihood estimator by addition of5006

a penalty term to compensate for the overfitting of more complex models5007

(with lots of parameters). Here, M is the number of model parameters.5008

The Bayesian Information Criterion (BIC) (Schwarz, 1978)

ln p(x) = log
Z

p(x | ✓)p(✓)d✓ ⇡ log p(x | ✓) � 1

2
M lnN (8.49)

can be used for exponential family distributions. Here, N is the number5009

of data points and M is the number of parameters. BIC penalizes model5010

complexity more heavily than AIC.5011
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5020

In the following, we will apply the mathematical concepts from Chap-5021

ters 2, 5, 6 and 7 to solving linear regression (curve fitting) problems.5022

In regression, we want to find a function f that maps inputs x ∈ RD to regression5023

corresponding function values f(x) ∈ R given a set of training inputs5024

xn and corresponding observations yn = f(xn) + ε, where ε is a random5025

variable that comprises measurement noise and unmodeled processes. An5026

illustration of such a regression problem is given in Figure 9.1. A typi-5027

cal regression problem is given in Figure 9.1(a): For some input values5028

x we observe (noisy) function values y = f(x) + ε. The task is to in-5029

fer the function f that generated the data. A possible solution is given5030

in Figure 9.1(b), where we also show three distributions centered at the5031

function values f(x) that represent the noise in the data.5032

Regression is a fundamental problem in machine learning, and regres-5033

sion problems appear in a diverse range of research areas and applica-5034

tions, including time-series analysis (e.g., system identification), control5035

and robotics (e.g., reinforcement learning, forward/inverse model learn-5036

ing), optimization (e.g., line searches, global optimization), and deep-5037

learning applications (e.g., computer games, speech-to-text translation,5038

image recognition, automatic video annotation). Regression is also a key5039

ingredient of classification algorithms.5040

Figure 9.1
(a) Dataset;
(b) Possible solution
to the regression
problem.
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(a) Regression problem: Observed noisy
function values from which we wish to infer
the underlying function that generated the
data.
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(b) Regression solution: Possible function
that could have generated the data (blue)
with indication of the measurement noise of
the function value at the corresponding in-
puts (orange distributions).
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Finding a regression function requires solving a variety of problems,5041

including5042

• Choice of the model (type) and the parametrization of the regres-5043

sion function. Given a data set, what function classes (e.g., polynomi-5044

als) are good candidates for modeling the data, and what particular5045

parametrization (e.g., degree of the polynomial) should we choose?5046

Model selection, as discussed in Section 8.5, allows us to compare var-5047

ious models to find the simplest model that explains the training data5048

reasonably well.5049

• Finding good parameters. Having chosen a model of the regression5050

function, how do we find good model parameters? Here, we will need to5051

look at different loss/objective functions (they determine what a “good”5052

fit is) and optimization algorithms that allow us to minimize this loss.5053

• Overfitting and model selection. Overfitting is a problem when the5054

regression function fits the training data “too well” but does not gen-5055

eralize to unseen test data. Overfitting typically occurs if the underly-5056

ing model (or its parametrization) is overly flexible and expressive, see5057

Section 8.5. We will look at the underlying reasons and discuss ways to5058

mitigate the effect of overfitting in the context of linear regression.5059

• Relationship between loss functions and parameter priors. Loss func-5060

tions (optimization objectives) are often motivated and induced by prob-5061

abilistic models. We will look at the connection between loss functions5062

and the underlying prior assumptions that induce these losses.5063

• Uncertainty modeling. In any practical setting, we have access to only5064

a finite, potentially large, amount of (training) data for selecting the5065

model class and the corresponding parameters. Given that this finite5066

amount of training data does not cover all possible scenarios, we way5067

want to describe the remaining parameter uncertainty to obtain a mea-5068

sure of confidence of the model’s prediction at test time; the smaller the5069

training set the more important uncertainty modeling. Consistent mod-5070

eling of uncertainty equips model predictions with confidence bounds.5071

In the following, we will be using the mathematical tools from Chap-5072

ters 3, 5, 6 and 7 to solve linear regression problems. We will discuss5073

maximum likelihood and maximum a posteriori (MAP) estimation to find5074

optimal model parameters. Using these parameter estimates, we will have5075

a brief look at generalization errors and overfitting. Toward the end of5076

this chapter, we will discuss Bayesian linear regression, which allows us to5077

reason about model parameters at a higher level, thereby removing some5078

of the problems encountered in maximum likelihood and MAP estimation.5079
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Figure 9.2 Linear
regression without
features.
(a) Example
functions that fall
into this category.
(b) Training set.
(c) Maximum
likelihood estimate.
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(a) Example functions (straight
lines) that can be described us-
ing the linear model in (9.2).
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(b) Training set.

−10 −5 0 5 10
x

−10

0

10

y

(c) Maximum likelihood esti-
mate.

9.1 Problem Formulation5080

We consider the regression problem

y = f(x) + ε , (9.1)

where x ∈ RD are inputs and y ∈ R are noisy function values (targets).5081

Furthermore, ε ∼ N
(
0, σ2

)
is independent, identically distributed (i.i.d.)5082

measurement noise. In this particular case, ε is Gaussian distributed with5083

mean 0 and variance σ2. Our objective is to find a function that is close5084

(similar) to the unknown function that generated the data.5085

In this chapter, we focus on parametric models, i.e., we choose a para-
metrized function f and find parameters that “work well” for modeling the
data. In linear regression, we consider the special case that the parameters
appear linearly in our model. An example of linear regression is

y = f(x) + ε = x>θ + ε , (9.2)

where θ ∈ RD are the parameters we seek, and ε ∼ N
(
0, σ2

)
is i.i.d.

Gaussian measurement/observation noise. The class of functions described
by (9.2) are straight lines that pass through the origin. In (9.2), we chose
a parametrization f(x) = x>θ. For the time being we assume that the
noise variance σ2 is known. The noise model induces the likelihood likelihood

p(y |x,θ) = N
(
y |x>θ, σ2

)
, (9.3)

which is the probability of observing a target value y given that we know5086

the input location x and the parameters θ. Note that the only source of5087

uncertainty originates from the observation noise (as x and θ are assumed5088

known in (9.3))—without any observation noise, the relationship between5089

x and y would be deterministic and (9.3) would be a delta distribution.5090

For x, θ ∈ R the linear regression model in (9.2) describes straight lines5091

(linear functions), and the parameter θ would be the slope of the line.5092

Figure 9.2(a) shows some examples. This model is not only linear in the Linear regression
refers to models that
are linear in the
parameters.

5093

parameters, but also linear in the inputs x. We will see later that y = φ(x)θ5094

for nonlinear transformations φ is also a linear regression model because5095

“linear regression” refers to models that are “linear in the parameters”, i.e.,5096

models that describe a function by a linear combination of input features.5097
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In the following, we will discuss in more detail how to find good pa-5098

rameters θ and how to evaluate whether a parameter set “works well”.5099

9.2 Parameter Estimation5100

Consider the linear regression setting (9.2) and assume we are given a
training set D consisting of N inputs xn ∈ RD and corresponding ob-training set

servations/targets yn ∈ R, n = 1, . . . , N . The corresponding graphicalFigure 9.3
Probabilistic
graphical model for
linear regression.
Observed random
variables are
shaded,
deterministic/
known values are
without circles. The
parameters θ are
treated as
unknown/latent
quantities.

θ

yn

σ

xn

n = 1, . . . , N

model is given in Figure 9.3. Note that yi and yj are conditionally in-
dependent given their respective inputs xi,xj , such that the likelihood
function factorizes according to

p(y1, . . . , yN |x1, . . . ,xN) =
N∏
n=1

p(yn |xn) =
N∏
n=1

N
(
yn |x>nθ, σ2

)
. (9.4)

The likelihood and the factors p(yn |xn) are Gaussian due to the noise5101

distribution.5102

In the following, we are interested in finding optimal parameters θ∗ ∈
RD for the linear regression model (9.2). Once the parameters θ∗ are
found, we can predict function values by using this parameter estimate
in (9.2) so that at an arbitrary test input x∗ we predict the probability for
an output y∗ as

p(y∗ |x∗,θ∗) = N
(
y∗ |x>∗ θ∗, σ2

)
. (9.5)

In the following, we will have a look at parameter estimation by maxi-5103

mizing the likelihood, a topic that we already covered to some degree in5104

Section 8.2.5105

9.2.1 Maximum Likelihood Estimation5106

A widely used approach to finding the desired parameters θML is maximummaximum likelihood
estimation

5107

likelihood estimation where we find parameters θML that maximize the5108

likelihood (9.4).5109Maximizing the
likelihood means
maximizing the
probability of the
(training) data
given the
parameters.

We obtain the maximum likelihood parameters as

θML = arg max
θ

p(y |X,θ) , (9.6)

where we define the design matrix X := [x1, . . . ,xN ]> ∈ RN×D and

design matrix

5110

y := [y1, . . . , yN ]> ∈ RN as the collections of training inputs and targets,5111

respectively. Note that the nth row in the design matrixX corresponds to5112

the data point xn.5113The likelihood is not
a probability
distribution in the
parameters.

Remark. Note that the likelihood is not a probability distribution in θ: It5114

is simply a function of the parameters θ but does not integrate to 1 (i.e.,5115

it is unnormalized), and may not even be integrable with respect to θ.5116

However, the likelihood in (9.6) is a normalized probability distribution5117

in the data y. ♦5118
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Since the logarithm
is a (strictly)
monotonically
increasing function,
the optimum of a
function f is
identical to the
optimum of log f .

To find the desired parameters θML that maximize the likelihood, we5119

typically perform gradient ascent (or gradient descent on the negative5120

likelihood). In the case of linear regression we consider here, however,5121

a closed-form solution exists, which makes iterative gradient descent un-5122

necessary. In practice, instead of maximizing the likelihood directly, we5123

apply the log-transformation to the likelihood function and minimize the5124

negative log-likelihood.5125

Remark (Log Transformation). Since the likelihood function is a product5126

of N Gaussian distributions, the log-transformation is useful since a) it5127

does not suffer from numerical underflow, b) the differentiation rules will5128

turn out simpler. Numerical underflow will be a problem when we mul-5129

tiply N probabilities, where N is the number of data points, since we5130

cannot represent very small numbers, such as 10−256. Furthermore, the5131

log-transform will turn the product into a sum of log-probabilities such5132

that the corresponding gradient is a sum of individual gradients, instead5133

of a repeated application of the product rule (5.54) to compute the gradi-5134

ent of a product of N terms. ♦5135

To find the optimal parameters θML of our linear regression problem,
we minimize the negative log-likelihood

− log p(y |X,θ) = − log
N∏
n=1

p(yn |xn,θ) = −
N∑
n=1

log p(yn |xn,θ) , (9.7)

where we exploited that the likelihood (9.4) factorizes over the number5136

of data points due to our independence assumption on the training set.5137

In the linear regression model (9.2) the likelihood is Gaussian (due to
the Gaussian additive noise term), such that we arrive at

log p(yn |xn,θ) = − 1

2σ2
(yn − x>nθ)2 + const (9.8)

where the constant includes all terms independent of θ. Using (9.8) in The negative
log-likelihood
function is also
called error function.

the negative log-likelihood (9.7) we obtain (ignoring the constant terms)

L(θ) := − log p(y |X,θ) =
1

2σ2

N∑
n=1

(yn − x>nθ)2 (9.9a)

=
1

2σ2
(y −Xθ)>(y −Xθ) =

1

2σ2
‖y −Xθ‖2 , (9.9b)

where X = [x1, · · · ,xN ]> ∈ RN×D.5138

Remark. There is some notation overloading: We often summarize the5139

set of training inputs in X, whereas in the design matrix we additionally5140

assume a specific “shape”. ♦5141

In (9.9b) we used the fact that the sum of squared errors between the5142

observations yn and the corresponding model prediction x>nθ equals the5143
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squared distance between y and Xθ. Remember from Section 3.1 that5144

‖x‖2 = x>x if we choose the dot product as the inner product.5145

With (9.9b) we have now a concrete form of the negative log-likelihood5146

function we need to optimize. We immediately see that (9.9b) is quadratic5147

in θ. This means that we can find a unique global solution θML for mini-5148

mizing the negative log-likelihood L. We can find the global optimum by5149

computing the gradient of L, setting it to 0 and solving for θ.5150

Using the results from Chapter 5, we compute the gradient of L with
respect to the parameters as

dL
dθ

=
d

dθ

(
1

2σ2
(y −Xθ)>(y −Xθ)

)
(9.10a)

=
1

2σ2

d

dθ

(
y>y − 2y>Xθ + θ>X>Xθ

)
(9.10b)

=
1

σ2
(−y>X + θ>X>X) ∈ R1×D . (9.10c)

As a necessary optimality condition we set this gradient to 0 and obtain

dL
dθ

= 0
(9.10c)⇐⇒ θ>X>X = y>X (9.11a)

⇐⇒ θ> = y>X(X>X)−1 (9.11b)

⇐⇒ θML = (X>X)−1X>y . (9.11c)

We could right-multiply the first equation by (X>X)−1 because X>X is5151

positive definite (if we do not have two identical inputs xi,xj for i 6= j).5152

Remark. In this case, setting the gradient to 0 is a necessary and sufficient5153

condition and we obtain a global minimum since the Hessian ∇2
θL(θ) =5154

X>X ∈ RD×D is positive definite. ♦5155

Example 9.1 (Fitting Lines)
Let us have a look at Figure 9.2, where we aim to fit a straight line f(x) =
θx, where θ is an unknown slope, to a data set using maximum likelihood
estimation. Examples of functions in this model class (straight lines) are
shown in Figure 9.2(a). For the data set shown in Figure 9.2(b) we find
the maximum likelihood estimate of the slope parameter θ using (9.11c)
and obtain the maximum likelihood linear function in Figure 9.2(c).

Maximum Likelihood Estimation with Features5156Linear regression
refers to “linear-in-
the-parameters”
regression models,
but the inputs can
undergo any
nonlinear
transformation.

So far, we considered the linear regression setting described in (9.2),
which allowed us to fit straight lines to data using maximum likelihood
estimation. However, straight lines are not particularly expressive when it
comes to fitting more interesting data. Fortunately, linear regression offers
us a way to fit nonlinear functions within the linear regression framework:
Since “linear regression” only refers to “linear in the parameters”, we can
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perform an arbitrary nonlinear transformation φ(x) of the inputs x and
then linearly combine the components of the result. The model parame-
ters θ still appear only linearly. The corresponding linear regression model
is

y = φ>(x)θ + ε =
K−1∑
k=0

θkφk(x) + ε , (9.12)

where φ : RD → RK is a (nonlinear) transformation of the inputs x and5157

φk : RD → R is the kth component of the feature vector φ. feature vector5158

Example 9.2 (Polynomial Regression)
We are concerned with a regression problem y = φ>(x)θ+ε, where x ∈ R
and θ ∈ RK . A transformation that is often used in this context is

φ(x) =


φ0(x)
φ1(x)

...
φK−1(x)

 =



1
x
x2

x3

...
xK−1


∈ RK . (9.13)

This means, we “lift” the original one-dimensional input space into a
K-dimensional feature space consisting of all monomials xk for k =
0, . . . ,K − 1. With these features, we can model polynomials of degree
6 K − 1 within the framework of linear regression: A polynomial of de-
gree K − 1 is

f(x) =
K−1∑
k=0

θkx
k = φ>(x)θ (9.14)

where φ is defined in (9.13) and θ = [θ0, . . . , θK−1]> ∈ RK contains the
(linear) parameters θk.

Let us now have a look at maximum likelihood estimation of the param-
eters θ in the linear regression model (9.12). We consider training inputs
xn ∈ RD and targets yn ∈ R, n = 1, . . . , N , and define the feature matrix feature matrix

(design matrix) as design matrix

Φ :=

φ
>(x1)

...
φ>(xN)

 =


φ0(x1) · · · φK−1(x1)
φ0(x2) · · · φK−1(x2)

...
...

φ0(xN) · · · φK−1(xN)

 ∈ RN×K , (9.15)

where Φij = φj(xi) and φj : RD → R.5159
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Example 9.3 (Feature Matrix for Second-order Polynomials)
For a second-order polynomial and N training points xn ∈ R, n =
1, . . . , N , the feature matrix is

Φ =


1 x1 x2

1

1 x2 x2
2

...
...

...
1 xN x2

N

 . (9.16)

With the feature matrix Φ defined in (9.15) the negative log-likelihood
for the linear regression model (9.12) can be written as

− log p(y |X,θ) =
1

2σ2
(y −Φθ)>(y −Φθ) + const . (9.17)

Comparing (9.17) with the negative log-likelihood in (9.9b) for the “feature-
free” model, we immediately see we just need to replaceX with Φ. Since
both X and Φ are independent of the parameters θ that we wish to opti-
mize, we arrive immediately at the maximum likelihood estimatemaximum likelihood

estimate
θML = (Φ>Φ)−1Φ>y (9.18)

for the linear regression problem with nonlinear features defined in (9.12).5160

Remark. When we were working without features, we required X>X to5161

be invertible, which is the case when the rows of X are linearly inde-5162

pendent. In (9.18), we therefore require Φ>Φ to be invertible. This is5163

the case if and only if the rows of the feature matrix are linearly inde-5164

pendent. Nonlinear feature transformations can make previously linearly5165

dependent inputs X linearly independent (and vice versa). ♦5166

Example 9.4 (Maximum Likelihood Polynomial Fit)

Figure 9.4
Polynomial
regression. (a) Data
set consisting of
(xn, yn) pairs,
n = 1, . . . , 10; (b)
Maximum
likelihood
polynomial of
degree 4. −4 −2 0 2 4
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(a) Regression data set.
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Training data

MLE

(b) Polynomial of degree 4 determined by max-
imum likelihood estimation.

Consider the data set in Figure 9.5(a). The data set consists of N = 20
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pairs (xn, yn), where xn ∼ U [−5, 5] and yn = − sin(xn/5) + cos(xn) + ε,
where ε ∼ N

(
0, 0.22

)
.

We fit a polynomial of degree K = 4 using maximum likelihood esti-
mation, i.e., parameters θML are given in (9.18). The maximum likelihood
estimate yields function values φ>(x∗)θML at any test location x∗. The
result is shown in Figure 9.5(b).

Estimating the Noise Variance5167

Thus far, we assumed that the noise variance σ2 is known. However, we
can also use the principle of maximum likelihood estimation to obtain
σ2

ML for the noise variance. To do this, we follow the standard procedure:
we write down the log-likelihood, compute its derivative with respect to
σ2 > 0, set it to 0 and solve:

logp(y |X,θ, σ2) =
N∑
n=1

logN
(
yn |θ>φ(xn), σ2

)
(9.19a)

=
N∑
n=1

(
−1

2
log(2π)− 1

2
log σ2 − 1

2σ2
(yn − θ>φ(xn))2

)
(9.19b)

= −N
2

log σ2 − 1

2σ2

N∑
n=1

(yn − θ>φ(xn))2

︸ ︷︷ ︸
=:s

+ const . (9.19c)

The partial derivative of the log-likelihood with respect to σ2 is then

∂ log p(y |X,θ, σ2)

∂σ2
= − N

2σ2
+

1

2σ4
s = 0 (9.20a)

⇐⇒ N

2σ2
=

s

2σ4
(9.20b)

⇐⇒ σ2
ML =

s

N
=

1

N

N∑
n=1

(yn − θ>φ(xn))2 . (9.20c)

Therefore, the maximum likelihood estimate for the noise variance is the5168

mean squared distance between the noise-free function values θ>φ(xn)5169

and the corresponding noisy observations yn at xn, for n = 1, . . . , N .5170

9.2.2 Overfitting in Linear Regression5171

We just discussed how to use maximum likelihood estimation to fit linear
models (e.g., polynomials) to data. We can evaluate the quality of the
model by computing the error/loss incurred. One way of doing this is
to compute the negative log-likelihood (9.9b), which we minimized to
determine the MLE. Alternatively, given that the noise parameter σ2 is not
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Figure 9.5
Maximum
likelihood fits for
different polynomial
degrees M .
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(f) M = 9

a free model parameter, we can ignore the scaling by 1/σ2, so that we end
up with a squared-error-loss function ‖y −Φθ‖2. Instead of using this
squared loss, we often use the root mean squared error (RMSE)root mean squared

error (RMSE) √
‖y −Φθ‖2 /N =

√√√√ 1

N

N∑
n=1

(yn − φ>(xn)θ)2 , (9.21)

which (a) allows us to compare errors of data sets with different sizesThe RMSE is
normalized.

5172

and (b) has the same scale and the same units as the observed function5173

values yn. For example, assume we fit a model that maps post-codes (x5174

is given in latitude,longitude) to house prices (y-values are EUR). Then,5175

the RMSE is also measured in EUR, whereas the squared error is given5176

in EUR2. If we choose to include the factor σ2 from the original negative5177

log-likelihood (9.9b) then we end up with a “unit-free” objective.5178

For model selection (see Section 8.5) we can use the RMSE (or the5179

negative log-likelihood) to determine the best degree of the polynomial5180

by finding the polynomial degree M that minimizes the objective. Given5181

that the polynomial degree is a natural number, we can perform a brute-5182

force search and enumerate all (reasonable) values of M . For a training5183

set of size N it is sufficient to test 0 6M 6 N − 1. For M > N we would5184

need to solve an underdetermined system of linear equations so that we5185

would end up with infinitely many solutions.5186

Figure 9.5 shows a number of polynomial fits determined by maximum5187

likelihood for the dataset from Figure 9.5(a) with N = 10 observations.5188

We notice that polynomials of low degree (e.g., constants (M = 0) or lin-5189

ear (M = 1) fit the data poorly and, hence, are poor representations of the5190

true underlying function. For degrees M = 3, . . . , 5 the fits look plausible5191

and smoothly interpolate the data. When we go to higher-degree polyno-5192

mials, we notice that they fit the data better and better. In the extreme5193
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Figure 9.6 Training
and test error.

0 2 4 6 8 10
Degree of polynomial

0

2

4

6

8

10

R
M

S
E

Training error

Test error

case of M = N − 1 = 9, the function will pass through every single data5194

point. However, these high-degree polynomials oscillate wildly and are a5195

poor representation of the underlying function that generated the data,5196

such that we suffer from overfitting. overfitting

Note that the noise
variance σ2 > 0.

5197

Remember that the goal is to achieve good generalization by making5198

accurate predictions for new (unseen) data. We obtain some quantita-5199

tive insight into the dependence of the generalization performance on the5200

polynomial of degree M by considering a separate test set comprising 2005201

data points generated using exactly the same procedure used to generate5202

the training set. As test inputs, we chose a linear grid of 200 points in the5203

interval of [−5, 5]. For each choice of M , we evaluate the RMSE (9.21) for5204

both the training data and the test data.5205

Looking now at the test error, which is a qualitive measure of the gen-5206

eralization properties of the corresponding polynomial, we notice that ini-5207

tially the test error decreases, see Figure 9.6 (orange). For fourth-order5208

polynomials the test error is relatively low and stays relatively constant up5209

to degree 5. However, from degree 6 onward the test error increases signif-5210

icantly, and high-order polynomials have very bad generalization proper-5211

ties. In this particular example, this also is evident from the corresponding5212

maximum likelihood fits in Figure 9.5. Note that the training error (blue training error5213

curve in Figure 9.6) never increases when the degree of the polynomial in-5214

creases. In our example, the best generalization (the point of the smallest5215

test error) is obtained for a polynomial of degree M = 4. test error5216

9.2.3 Regularization and Maximum A Posteriori Estimation5217

We just saw that maximum likelihood estimation is prone to overfitting. It
often happens that the magnitude of the parameter values becomes rela-
tively big if we run into overfitting (Bishop, 2006). One way to mitigate
the effect of overfitting is to penalize big parameter values by a technique
called regularization. In regularization, we add a term to the log-likelihood regularization

that penalizes the magnitude of the parameters θ. A typical example is a
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regularized “loss function” of the form

− log p(y |X,θ) + λ ‖θ‖22 , (9.22)

where the second term is the regularizer, and λ > 0 controls the “strict-regularizer 5218

ness” of the regularization.5219

Remark. Instead of the Euclidean norm ‖·‖2, we can choose any p-norm5220

‖·‖p. In practice, smaller values for p lead to sparser solutions. Here,5221

“sparse” means that many parameter values θn = 0, which is also use-5222

ful for variable selection. For p = 1, the regularizer is called LASSO (leastLASSO 5223

absolute shrinkage and selection operator) and was proposed by Tibshi-5224

rani (1996). ♦5225

From a probabilistic perspective, adding a regularizer is identical to
placing a prior distribution p(θ) on the parameters and then selecting
the parameters that maximize the posterior distribution p(θ |X,y), i.e.,
we choose the parameters θ that are “most probable” given the training
data. The posterior over the parameters θ, given the training data X,y,
is obtained by applying Bayes’ theorem as

p(θ |X,y) =
p(y |X,θ)p(θ)

p(y |X)
. (9.23)

The parameter vector θMAP that maximizes the posterior (9.23) is called5226

the maximum a-posteriori (MAP) estimate.maximum
a-posteriori

MAP

5227

To find the MAP estimate, we follow steps that are similar in flavor
to maximum likelihood estimation. We start with the log-transform and
compute the log-posterior as

log p(θ |X,y) = log p(y |X,θ) + log p(θ) + const , (9.24)

where the constant comprises the terms that are independent of θ. We see5228

that the log-posterior in (9.24) is the sum of the log-likelihood p(y |X,θ)5229

and the log-prior log p(θ).5230

Remark (Relation to Regularization). Choosing a Gaussian parameter prior
p(θ) = N

(
0, b2I

)
, b2 = 1

2λ
, the (negative) log-prior term will be

− log p(θ) = λθ>θ︸ ︷︷ ︸
=λ‖θ‖22

+ const , (9.25)

and we recover exactly the regularization term in (9.22). This means that5231

for a quadratic regularization, the regularization parameter λ in (9.22)5232

corresponds to twice the precision (inverse variance) of the Gaussian (iso-5233

tropic) prior p(θ). Therefore, the log-prior in (9.24) reflects the impact5234

of the regularizer that penalizes implausible values, i.e., values that are5235

unlikely under the prior. ♦5236

To find the MAP estimate θMAP, we minimize the negative log-posterior
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distribution with respect to θ, i.e., we solve

θMAP ∈ arg min
θ
{− log p(y |X,θ)− log p(θ)} . (9.26)

We determine the gradient of the negative log-posterior with respect to θ
as

−d log p(θ |X,y)

dθ
= −d log p(y |X,θ)

dθ
− d log p(θ)

dθ
, (9.27)

where we identify the first term on the right-hand-side as the gradient of5237

the negative log-likelihood given in (9.10c).5238

More concretely, with a Gaussian prior p(θ) = N
(
0, b2I

)
on the param-

eters θ, the negative log-posterior for the linear regression setting (9.12),
we obtain the negative log posterior

− log p(θ |X,y) =
1

2σ2
(y −Φθ)>(y −Φθ) +

1

2b2
θ>θ + const . (9.28)

Here, the first term corresponds to the contribution from the log-likelihood,
and the second term originates from the log-prior. The gradient of the log-
posterior with respect to the parameters θ is then

−d log p(θ |X,y)

dθ
=

1

σ2
(θ>Φ>Φ− y>Φ) +

1

b2
θ> . (9.29)

We will find the MAP estimate θMAP by setting this gradient to 0:

1

σ2
(θ>Φ>Φ− y>Φ) +

1

b2
θ> = 0 (9.30a)

⇐⇒ θ>
(

1

σ2
Φ>Φ +

1

b2
I

)
− 1

σ2
y>Φ = 0 (9.30b)

⇐⇒ θ>
(

Φ>Φ +
σ2

b2
I

)
= y>Φ (9.30c)

⇐⇒ θ> = y>Φ

(
Φ>Φ +

σ2

b2
I

)−1

(9.30d)

so that we obtain the MAP estimate (by transposing both sides of the last Φ>Φ is symmetric
and positive
semidefinite and the
additional term is
strictly positive
definite, such that
all eigenvalues of
the matrix to be
inverted are
positive.

equality)

θMAP =

(
Φ>Φ +

σ2

b2
I

)−1

Φ>y . (9.31)

Comparing the MAP estimate in (9.31) with the maximum likelihood es-5239

timate in (9.18) we see that the only difference between both solutions5240

is the additional term σ2

b2
I in the inverse matrix. This term ensures that5241

Φ>Φ + σ2

b2
I is symmetric and strictly positive definite (i.e., its inverse5242

exists) and plays the role of the regularizer. regularizer5243
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Example 9.5 (MAP Estimation for Polynomial Regression)

Figure 9.7
Polynomial
regression:
Maximum
likelihood and MAP
estimates.
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In the polynomial regression example from Section 9.2.1, we place
a Gaussian prior p(θ) = N

(
0, I

)
on the parameters θ and determine

the MAP estimates according to (9.31). In Figure 9.7, we show both the
maximum likelihood and the MAP estimates for polynomials of degree 6
(left) and degree 8 (right). The prior (regularizer) does not play a signifi-
cant role for the low-degree polynomial, but keeps the function relatively
smooth for higher-degree polynomials. However, the MAP estimate can
only push the boundaries of overfitting – it is not a general solution to this
problem.

In the following, we will discuss Bayesian linear regression where we5244

average over all plausible sets of parameters instead of focusing on a point5245

estimate.5246

9.3 Bayesian Linear Regression5247

Previously, we looked at linear regression models where we estimated the5248

model parameters θ, e.g., by means of maximum likelihood or MAP esti-5249

mation. We discovered that MLE can lead to severe overfitting, in particu-5250

lar, in the small-data regime. MAP addresses this issue by placing a prior5251

on the parameters that plays the role of a regularizer.5252Bayesian linear
regression Bayesian linear regression pushes the idea of the parameter prior a step5253

further and does not even attempt to compute a point estimate of the pa-5254

rameters, but instead the full posterior over the parameters is taken into5255

account when making predictions. This means we do not fit any param-5256

eters, but we compute an average over all plausible parameters settings5257

(according to the posterior).5258
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9.3.1 Model5259

In Bayesian linear regression, we consider the model

prior p(θ) = N
(
m0, S0

)
,

likelihood p(y |x,θ) = N
(
y |φ>(x)θ, σ2

)
,

(9.32)

where we now explicitly place a Gaussian prior p(θ) = N
(
m0, S0

)
on Figure 9.8

Graphical model for
Bayesian linear
regression.

θ

y

σ

x

m0 S0

θ, which turns the parameter vector into a latent variable. The full proba-
bilistic model, i.e., the joint distribution of observed and latent variables,
y and θ, respectively, is

p(y,θ |x) = p(y |x,θ)p(θ) , (9.33)

which allows us to write down the corresponding graphical model in Fig-5260

ure 9.8, where we made the parameters of the Gaussian prior on θ explicit.5261

9.3.2 Prior Predictions5262

In practice, we are usually not so much interested in the parameter values
θ. Instead, our focus often lies in the predictions we make with those pa-
rameter values. In a Bayesian setting, we take the parameter distribution
and average over all plausible parameter settings when we make predic-
tions. More specifically, to make predictions at an input location x∗, we
integrate out θ and obtain

p(y∗ |x∗) =

∫
p(y∗ |x∗,θ)p(θ)dθ = Eθ[p(y∗ |x∗,θ)] , (9.34)

which we can interpret as the average prediction of y∗ |x∗,θ for all plausi-5263

ble parameters θ according to the prior distribution p(θ). Note that predic-5264

tions using the prior distribution only require to specify the input locations5265

x∗, but no training data.5266

In our model, we chose a conjugate (Gaussian) prior on θ so that the
predictive distribution is Gaussian as well (and can be computed in closed
form): With the prior distribution p(θ) = N

(
m0, S0

)
, we obtain the pre-

dictive distribution as

p(y∗ |x∗) = N
(
φ>(x∗)m0, φ

>(x∗)S0φ(x∗) + σ2
)
, (9.35)

where we used that (i) the prediction is Gaussian due to conjugacy and the5267

marginalization property of Gaussians, (ii), the Gaussian noise is indepen-5268

dent so that V[y∗] = V[φ>(x∗)θ]+V[ε], (iii) y∗ is a linear transformation5269

of θ so that we can apply the rules for computing the mean and covariance5270

of the prediction analytically by using (6.50) and (6.51), respectively.5271

In (9.35), the term φ>(x∗)S0φ(x∗) in the predictive variance explicitly5272

accounts for the uncertainty associated with the parameters θ, whereas σ2
5273

is the uncertainty contribution due to the measurement noise.5274
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Example 9.6 (Prior over Functions)
Let us consider a Bayesian linear regression problem with polynomials
of degree 5. We choose a parameter prior p(θ) = N

(
0, 1

4
I
)
. Figure 9.9

visualizes the distribution over functions induced by this parameter prior,
including some function samples from this prior.

Figure 9.9 Prior
over functions.
(a) Distribution over
functions
represented by the
mean function
(black line) and the
marginal
uncertainties
(shaded),
representing the
95% confidence
bounds;
(b) Samples from
the prior over
functions, which are
induced by the
samples from the
parameter prior.
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(b) Samples from the prior distribution over
functions.

So far, we looked at computing predictions using the parameter prior5275

p(θ). However, when we have a parameter posterior (given some train-5276

ing data X,y), the same principles for prediction and inference hold5277

as in (9.34) – we just need to replace the prior p(θ) with the posterior5278

p(θ |X,y). In the following, we will derive the posterior distribution in5279

detail before using it to make predictions.5280

9.3.3 Posterior Distribution5281

Given a training set of inputs xn ∈ RD and corresponding observations
yn ∈ R, n = 1, . . . , N , we compute the posterior over the parameters
using Bayes’ theorem as

p(θ |X,y) =
p(y |X,θ)p(θ)

p(y |X)
, (9.36)

where X is the collection of training inputs and y the collection of train-
ing targets. Furthermore, p(y |X,θ) is the likelihood, p(θ) the parameter
prior and

p(y |X) =

∫
p(y |X,θ)p(θ)dθ (9.37)

the marginal likelihood/evidence, which is independent of the parametersmarginal likelihood

evidence

5282

θ and ensures that the posterior is normalized, i.e., it integrates to 1. We5283

can think of the marginal likelihood as the likelihood averaged over all5284

possible parameter settings (with respect to the prior distribution p(θ)).5285
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In our specific model (9.32), the posterior (9.36) can be computed in
closed form as

p(θ |X,y) = N
(
θ |mN , SN

)
, (9.38a)

SN = (S−1
0 + σ−2Φ>Φ)−1 , (9.38b)

mN = SN(S−1
0 m0 + σ−2Φ>y) , (9.38c)

where the subscript N indicates the size of the training set. In the follow-5286

ing, we will detail how we arrive at this posterior.5287

Bayes’ theorem tells us that the posterior p(θ |X,y) is proportional to
the product of the likelihood p(y |X,θ) and the prior p(θ):

posterior p(θ |X,y) =
p(y |X,θ)p(θ)

p(y |X)
(9.39a)

likelihood p(y |X,θ) = N
(
y |Φθ, σ2I

)
(9.39b)

prior p(θ) = N
(
θ |m0, S0

)
(9.39c)

We will discuss two approaches to derive the desired posterior.5288

Approach 1: Linear Transformation of Gaussian Random Variables5289

Looking at the numerator of the posterior in (9.39a), we know that the
Gaussian prior times the Gaussian likelihood (where the parameters on
which we place the Gaussian appears linearly in the mean) is an (un-
normalized) Gaussian (see Section 6.6.2). If necessary, we can find the
normalizing constant using (6.114). If we want to compute that product
by using the results from (6.112)–(6.113) in Section 6.6.2, we need to
ensure the product has the “right” form, i.e.,

N
(
y |Φθ, σ2I

)
N
(
θ |m0, S0

)
= N

(
θ |µ, Σ

)
N
(
θ |m0, S0

)
(9.40)

for some µ,Σ. With this form we determine the desired product immedi-
ately as

N
(
θ |µ, Σ

)
N
(
θ |m0, S0

)
∝ N

(
θ |mN , SN

)
(9.41a)

SN = (S−1
0 + Σ−1)−1 (9.41b)

mN = SN(S−1
0 m0 + Σ−1µ) . (9.41c)

In order to get the “right” form, we need to turn N
(
y |Φθ, σ2I

)
into

N
(
θ |µ, Σ

)
for appropriate choices of µ,Σ. We will do this by using

a linear transformation of Gaussian random variables (see Section 6.6),
which allows us to exploit the property that linearly transformed Gaussian
random variables are Gaussian distributed. More specifically, we will find
µ = By and Σ = σ2BB> by linearly transforming the relationship
y = Φθ in the likelihood into By = θ for a suitable B. We obtain

y = Φθ
×Φ>⇐⇒ Φ>y = Φ>Φθ

×(Φ>Φ)−1

⇐⇒ (Φ>Φ)−1Φ>︸ ︷︷ ︸
=:B

y = θ (9.42)
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Therefore, we can write θ = By, and by using the rules for linear trans-
formations of the mean and covariance from (6.50)–(6.51) we obtain

N
(
θ |By, σ2BB>

)
= N

(
θ | (Φ>Φ)−1Φ>y, σ2(Φ>Φ)−1

)
(9.43)

after some re-arranging of the terms for the covariance matrix.5290

If we now look at (9.43) and define its mean as µ and covariance matrix
as Σ in (9.41c) and (9.41b), respectively, we obtain the covariance SN
and the mean mN of the parameter posterior N

(
θ |mN , SN

)
as

SN = (S−1
0 + σ−2Φ>Φ)−1 , (9.44a)

mN = SN(S−1
0 m0 + σ−2(Φ>Φ)︸ ︷︷ ︸

Σ−1

(Φ>Φ)−1Φ>y︸ ︷︷ ︸
µ

) (9.44b)

= SN(S−1
0 m0 + σ−2Φ>y) , (9.44c)

respectively. Note that the posterior mean mN equals the MAP estimateThe posterior mean
equals the MAP
estimate.

5291

θMAP from (9.31). This also makes sense since the posterior distribution is5292

unimodal (Gaussian) with its maximum at the mean.5293

Remark. The posterior precision (inverse covariance)

S−1
N = S−1

0 +
1

σ2
Φ>Φ (9.45)

of the parameters θ (see (9.44a)) contains two terms: S−1
0 is the prior5294

precision and 1
σ2 Φ>Φ is a data-dependent (precision) term. Both terms5295

(matrices) are symmetric and positive definite. The data-dependent term5296

1
σ2 Φ>Φ grows as more data is taken into account. This means (at least)Φ>Φ accumulates

contributions from
the data.

5297

two things:5298

• The posterior precision grows as more and more data is taken into ac-5299

count; therefore, the covariance, and with it the uncertainty about the5300

parameters, shrinks.5301

• The relative influence of the parameter prior vanishes for large N .5302

Therefore, forN →∞ the prior plays no role, and the parameter posterior5303

tends to a point estimate, the MAP estimate. ♦5304

Approach 2: Completing the Squares5305

Instead of looking at the product of the prior and the likelihood, we can5306

transform the problem into log-space and solve for the mean and covari-5307

ance of the posterior by completing the squares.5308

The sum of the log-prior and the log-likelihood is

logN
(
y |Φθ, σ2I

)
+ logN

(
θ |m0, S0

)
(9.46a)

= −1

2

(
σ−2(y −Φθ)>(y −Φθ) + (θ −m0)>S−1

0 (θ −m0

)
+ const

(9.46b)
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where the constant contains terms independent of θ. We will ignore the
constant in the following. We now factorize (9.46b), which yields

− 1

2

(
σ−2y>y − 2σ−2y>Φθ + θ>σ−2Φ>Φθ + θ>S−1

0 θ

− 2m>0 S
−1
0 θ +m>0 S

−1
0 m0

) (9.47a)

=− 1

2

(
θ>(σ−2Φ>Φ + S−1

0 )θ − 2(σ−2Φ>y + S−1
0 m0)>θ

)
+ const ,

(9.47b)

where the constant contains the black terms in (9.47a), which are inde-
pendent of θ. The orange terms are terms that are linear in θ, and the
blue terms are the ones that are quadratic in θ. By inspecting (9.47b), we
find that this equation is quadratic in θ. The fact that the unnormalized
log-posterior distribution is a (negative) quadratic form implies that the
posterior is Gaussian, i.e.,

p(θ |X,y) = exp(log p(θ |X,y)) ∝ exp(log p(y |X,θ) + log p(θ))

(9.48a)

∝ exp
(
− 1

2

(
θ>(σ−2Φ>Φ + S−1

0 )θ − 2(σ−2Φ>y + S−1
0 m0)>θ

))
,

(9.48b)

where we used (9.47b) in the last expression.5309

The remaining task is it to bring this (unnormalized) Gaussian into the
form that is proportional to N

(
θ |mN , SN

)
, i.e., we need to identify the

mean mN and the covariance matrix SN . To do this, we use the concept
of completing the squares. The desired log-posterior is completing the

squares

logN
(
θ |mN , SN

)
= −1

2

(
(θ −mN)>S−1

N (θ −mN)
)

+ const

(9.49a)

= −1

2

(
θ>S−1

N θ − 2m>NS
−1
N θ +m>NS

−1
N mN

)
. (9.49b)

Here, we factorized the quadratic form (θ −mN)>S−1
N (θ −mN) into a

term that is quadratic in θ alone (blue), a term that is linear in θ (orange),
and a constant term (black). This allows us now to find SN and mN by
matching the colored expressions in (9.47b) and (9.49b), which yields

S−1
N = Φ>σ−2IΦ + S−1

0 ⇐⇒ SN = (σ−2Φ>Φ + S−1
0 )−1 ,

(9.50)

m>NS
−1
N = (σ−2Φ>y + S−1

0 m0)> ⇐⇒ mN = SN(σ−2Φ>y + S−1
0 m0) .
(9.51)

This is identical to the solution in (9.44a)–(9.44c), which we obtained by5310

linear transformations of Gaussian random variables.5311
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Remark (Completing the Squares—General Approach). If we are given an
equation

x>Ax− 2a>x+ const1 , (9.52)

where A is symmetric and positive definite, which we wish to bring into
the form

(x− µ)>Σ(x− µ) + const2 , (9.53)

we can do this by setting

Σ := A , (9.54)

µ := Σ−1a (9.55)

and const2 = const1 − µ>Σµ. ♦5312

We can see that the terms inside the exponential in (9.48b) are of the
form (9.52) with

A := σ−2Φ>Φ + S−1
0 , (9.56)

a := σ−2Φ>y + S−1
0 m0 . (9.57)

Since A,a can be difficult to identify in equations like (9.47a), it is of-5313

ten helpful to bring these equations into the form (9.52) that decouples5314

quadratic term, linear terms and constants, which simplifies finding the5315

desired solution.5316

9.3.4 Posterior Predictions5317

In (9.34), we computed the predictive distribution of y∗ at a test input
x∗ using the parameter prior p(θ). In principle, predicting with the pa-
rameter posterior p(θ |X,y) is not fundamentally different given that
in our conjugate model the prior and posterior are both Gaussian (with
different parameters). Therefore, by following the same reasoning as in
Section 9.3.2 we obtain the (posterior) predictive distribution

p(y∗ |X,y,x∗) =

∫
p(y∗ |x∗,θ)p(θ |X,y)dθ (9.58a)

=

∫
N
(
y∗ |φ>(x∗)θ, σ

2
)
N
(
θ |mN , SN

)
dθ (9.58b)

= N
(
y∗ |φ>(x∗)mN , φ

>(x∗)SNφ(x∗) + σ2
)

(9.58c)

The term φ>(x∗)SNφ(x∗) reflects the posterior uncertainty associated5318

with the parameters θ. Note that SN depends on the training inputs X,5319

see (9.44a). The predictive mean coincides with the MAP estimate.5320

Remark (Mean and Variance of Noise-Free Function Values). In many
cases, we are not interested in the predictive distribution p(y∗ |X,y,x∗)
of a (noisy) observation. Instead, we would like to obtain the distribution
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of the (noise-free) latent function values f(x∗) = φ>(x∗)θ. We deter-
mine the corresponding moments by exploiting the properties of means
and variances, which yields

E[f(x∗) |X,y] = Eθ[φ
>(x∗)θ |X,y] = φ>(x∗)Eθ[θ |X,y]

= φ>(x∗)mN = m>Nφ(x∗) ,
(9.59)

Vθ[f(x∗) |X,y] = Vθ[φ
>(x∗)θ |X,y]

= φ>(x∗)Vθ[θ |X,y]φ(x∗)

= φ>(x∗)SNφ(x∗)

(9.60)

We see that the predictive mean is the same as the predictive mean for5321

noisy observations as the noise has mean 0, and the predictive variance5322

only differs by σ2, which is the variance of the measurement noise: When5323

we predict noisy function values, we need to include σ2 as a source of5324

uncertainty, but this term is not needed for noise-free predictions. Here,5325

the only remaining uncertainty stems from the parameter posterior. ♦5326
Integrating out
parameters induces
a distribution over
functions.

Remark (Distribution over Functions). The fact that we integrate out the5327

parameters θ induces a distribution over functions: If we sample θi ∼5328

p(θ |X,y) from the parameter posterior, we obtain a single function re-5329

alization θ>i φ(·). The mean function, i.e., the set of all expected function mean function5330

values Eθ[f(·) |θ,X,y], of this distribution over functions is m>Nφ(·).5331

The (marginal) variance, i.e., the variance of the function f(·), are given5332

by φ>(·)SNφ(·). ♦5333

Example 9.7 (Posterior over Functions)

Figure 9.10
Bayesian linear
regression and
posterior over
functions. (a)
Training data; (b)
posterior
distribution over
functions; (c)
Samples from the
posterior over
functions.
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(a) Training data.
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(b) Posterior over functions rep-
resented by the marginal un-
certainties (shaded) showing
the 95% predictive confidence
bounds, the maximum likeli-
hood estimate (MLE) and the
MAP estimate (MAP), which is
identical to the posterior mean
function.
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(c) Samples from the posterior
over functions, which are in-
duced by the samples from the
parameter posterior.

Let us revisit the Bayesian linear regression problem with polynomials
of degree 5. We choose a parameter prior p(θ) = N

(
0, 1

4
I
)
. Figure 9.9
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visualizes the prior over functions induced by the parameter prior and
sample functions from this prior.

Figure 9.10 shows the posterior over functions that we obtain
via Bayesian linear regression. The training dataset is shown in Fig-
ure 9.11(a); Figure 9.11(b) shows the posterior distribution over func-
tions, including the functions we would obtain via maximum likelihood
and MAP estimation. The function we obtain using the MAP estimate also
corresponds to the posterior mean function in the Bayesian linear regres-
sion setting. Figure 9.11(c) shows some plausible realizations (samples)
of functions under that posterior over functions.

Figure 9.11 shows some examples of the posterior distribution over5334

functions induced by the parameter posterior. For different polynomial de-5335

grees M the left panels show the maximum likelihood estimate, the MAP5336

estimate (which is identical to the posterior mean function) and the 95%5337

predictive confidence bounds, represented by the shaded area. The right5338

panels show samples from the posterior over functions: Here, we sampled5339

parameters θi from the parameter posterior and computed the function5340

φ>(x∗)θi, which is a single realization of a function under the posterior5341

distribution over functions. For low-order polynomials, the parameter pos-5342

terior does not allow the parameters to vary much: The sampled functions5343

are nearly identical. When we make the model more flexible by adding5344

more parameters (i.e., we end up with a higher-order polynomial), these5345

parameters are not sufficiently constrained by the posterior, and the sam-5346

pled functions can be easily visually separated. We also see in the corre-5347

sponding panels on the left how the uncertainty increases, especially at5348

the boundaries. Although for a 7th-order polynomial the MAP estimate5349

yields a reasonable fit, the Bayesian linear regression model additionally5350

tells us that the posterior uncertainty is huge. This information can be crit-5351

ical when we use these predictions in a decision-making system, where5352

bad decisions can have significant consequences (e.g., in reinforcement5353

learning or robotics).5354

9.3.5 Computing the Marginal Likelihood5355

In Section 8.5.2, we highlighted the importance of the marginal likelihood
for Bayesian model selection. In the following, we compute the marginal
likelihood for Bayesian linear regression with a conjugate Gaussian prior
on the parameters, i.e., exactly the setting we have been discussing in this
chapter. Just to re-cap, we consider the following generative process:

θ ∼ N
(
m0, S0

)
(9.61a)

yn |xn,θ ∼ N
(
x>nθ, σ

2
)
, (9.61b)
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Figure 9.11
Bayesian linear
regression. Left
panels: Shaded
areas indicate the
95% predictive
confidence bounds.
The mean of the
Bayesian linear
regression model
coincides with the
MAP estimate. The
predictive
uncertainty is the
sum of the noise
term and the
posterior parameter
uncertainty, which
depends on the
location of the test
input. Right panels:
Sampled functions
from the posterior
distribution.
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(a) Posterior distribution for polynomials of degreeM = 3 (left) and samples from the posterior
over functions (right).
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(b) Posterior distribution for polynomials of degreeM = 5 (left) and samples from the posterior
over functions (right).
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(c) Posterior distribution for polynomials of degreeM = 7 (left) and samples from the posterior
over functions (right).

n = 1, . . . , N . The marginal likelihood is given by The marginal
likelihood can be
interpreted as the
expected likelihood
under the prior, i.e.,
Eθ [p(y |X,θ)].

p(y |X) =

∫
p(y |X,θ)p(θ)dθ (9.62a)

=

∫
N
(
y |Xθ, σ2I

)
N
(
θ |m0, S0

)
dθ , (9.62b)

where we integrate out the model parameters θ. We compute the marginal5356

likelihood in two steps: First, we show that the marginal likelihood is5357
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Gaussian (as a distribution in y); Second, we compute the mean and co-5358

variance of this Gaussian.5359

1. The marginal likelihood is Gaussian: From Section 6.6.2 we know that5360

(i) the product of two Gaussian random variables is an (unnormal-5361

ized) Gaussian distribution, (ii) a linear transformation of a Gaussian5362

random variable is Gaussian distributed. In (9.62b), we require a linear5363

transformation to bringN
(
y |Xθ, σ2I

)
into the formN

(
θ |µ, Σ

)
for5364

some µ,Σ. Once this is done, the integral can be solved in closed form.5365

The result is the normalizing constant of the product of the two Gaus-5366

sians. The normalizing constant itself has Gaussian shape, see (6.114).5367

2. Mean and covariance. We compute the mean and covariance matrix
of the marginal likelihood by exploiting the standard results for means
and covariances of affine transformations of random variables, see Sec-
tion 6.4.4. The mean of the marginal likelihood is computed as

Eθ[y |X] = Eθ[Xθ + ε] = XEθ[θ] = Xm0 . (9.63)

Note that ε ∼ N
(
0, σ2I

)
is a vector of i.i.d. random variables. The

covariance matrix is given as

Covθ[y] = Cov[Xθ] + σ2I = X Covθ[θ]X> + σ2I (9.64a)

= XS0X
> + σ2I (9.64b)

Hence, the marginal likelihood is

p(y |X) = (2π)−
N
2 det(XS0X

> + σ2I)−
1
2

× exp
(
− 1

2
(y −Xm0)>(XS0X

> + σ2I)−1(y −Xm0)
)
.

(9.65)

The marginal likelihood can now be used for Bayesian model selection as5368

discussed in Section 8.5.2.5369

9.4 Maximum Likelihood as Orthogonal Projection5370

Having crunched through much algebra to derive maximum likelihood
and MAP estimates, we will now provide a geometric interpretation of
maximum likelihood estimation. Let us consider a simple linear regression
setting

y = xθ + ε, ε ∼ N
(
0, σ2

)
, (9.66)

in which we consider linear functions f : R → R that go through the5371

origin (we omit features here for clarity). The parameter θ determines the5372

slope of the line. Figure 9.12(a) shows a one-dimensional dataset.5373

With a training data set X = [x1, . . . , xN ]> ∈ RN , y = [y1, . . . , yN ]> ∈
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Figure 9.12
Geometric
interpretation of
least squares. (a)
Dataset; (b)
Maximum
likelihood solution
interpreted as a
projection.

−4 −2 0 2 4
x

−4

−2

0

2

4

y

(a) Regression dataset consisting of noisy ob-
servations yn (blue) of function values f(xn)

at input locations xn.
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(b) The orange dots are the projections of
the noisy observations (blue dots) onto the
line θMLx. The maximum likelihood solution to
a linear regression problem finds a subspace
(line) onto which the overall projection er-
ror (orange lines) of the observations is mini-
mized.

RN , we recall the results from Section 9.2.1 and obtain the maximum
likelihood estimator for the slope parameter as

θML = (X>X)−1X>y =
X>y

X>X
∈ R . (9.67)

This means for the training inputs X we obtain the optimal (maxi-
mum likelihood) reconstruction of the training data, i.e., the approxima-
tion with the minimum least-squares error

XθML = X
X>y

X>X
=
XX>

X>X
y . (9.68)

As we are basically looking for a solution of y = Xθ, we can think Linear regression
can be thought of as
a method for solving
systems of linear
equations.

5374

of linear regression as a problem for solving systems of linear equations.5375

Therefore, we can relate to concepts from linear algebra and analytic ge-5376

ometry that we discussed in Chapters 2 and 3. In particular, looking care-
Maximum
likelihood linear
regression performs
an orthogonal
projection.

5377

fully at (9.68) we see that the maximum likelihood estimator θML in our5378

example from (9.66) effectively does an orthogonal projection of y onto5379

the one-dimensional subspace spanned by X. Recalling the results on or-5380

thogonal projections from Section 3.7, we identify XX>

X>X
as the projection5381

matrix, θML as the coordinates of the projection onto the one-dimensional5382

subspace of RN spanned by X and XθML as the orthogonal projection of5383

y onto this subspace.5384

Therefore, the maximum likelihood solution provides also a geometri-5385

cally optimal solution by finding the vectors in the subspace spanned by5386

X that are “closest” to the corresponding observations y, where “clos-5387

est” means the smallest (squared) distance of the function values yn to5388

xnθ. This is achieved by orthogonal projections. Figure 9.12(b) shows the5389

orthogonal projection of the noisy observations onto the subspace that5390
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minimizes the squared distance between the original dataset and its pro-5391

jection, which corresponds to the maximum likelihood solution.5392

In the general linear regression case where

y = φ>(x)θ + ε, ε ∼ N
(
0, σ2

)
(9.69)

with vector-valued features φ(x) ∈ RK , we again can interpret the maxi-
mum likelihood result

y ≈ ΦθML , (9.70)

θML = Φ(Φ>Φ)−1Φ>y (9.71)

as a projection onto a K-dimensional subspace of RN , which is spanned5393

by the columns of the feature matrix Φ, see Section 3.7.2.5394

If the feature functions φk that we use to construct the feature ma-
trix Φ are orthonormal (see Section 3.6), we obtain a special case where
the columns of Φ form an orthonormal basis (see Section 3.5), such that
Φ>Φ = I. This will then lead to the projection

Φ(Φ>Φ)−1Φy = ΦΦ>y =

(
K∑
k=1

φkφ
>
k

)
y (9.72)

so that the coupling between different features has disappeared and the5395

maximum likelihood projection is simply the sum of projections of y onto5396

the individual basis vectors φk, i.e., the columns of Φ. Many popular basis5397

functions in signal processing, such as wavelets and Fourier bases, are5398

orthogonal basis functions. When the basis is not orthogonal, one can5399

convert a set of linearly independent basis functions to an orthogonal basis5400

by using the Gram-Schmidt process (Strang, 2003).5401

9.5 Further Reading5402

In this chapter, we discussed linear regression for Gaussian likelihoods
and conjugate Gaussian priors on the parameters of the model. This al-
lowed for closed-form Bayesian inference. However, in some applications
we may want to choose a different likelihood function. For example, in
a binary classification setting, we observe only two possible (categorical)classification

outcomes, and a Gaussian likelihood is inappropriate in this setting. In-
stead, we can choose a Bernoulli likelihood that will return a probability
of the predicted label to be 1 (or 0). We refer to the books by Bishop
(2006); Murphy (2012); Barber (2012) for an in-depth introduction to
classification problems. A different example where non-Gaussian likeli-
hoods are important is count data. Counts are non-negative integers, and
in this case a Binomial or Poisson likelihood would be a better choice than
a Gaussian. All these examples fall into the category of generalized lineargeneralized linear

models models, a flexible generalization of linear regression that allows for re-
sponse variables that have error distribution models other than a Gaussian
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distribution. The GLM generalizes linear regression by allowing the linear
model to be related to the observed values via a smooth and invertible
function σ(·) that may be nonlinear so that y = σ(f), where f = θ>φ(x)
is the linear regression model from (9.12). We can therefore think of a
generalized linear model in terms of function composition y = σ◦f where
f is a linear regression model and σ the activation function. Note, that al-
though we are talking about “generalized linear models” the outputs y are
no longer linear in the parameters θ. In logistic regression, we choose the logistic regression

logistic sigmoid σ(f) = 1
1+exp(−f)

∈ [0, 1], which can be interpreted as the logistic sigmoid

probability of observing a binary output y = 1 of a Bernoulli random vari-
able. The function σ(·) is called transfer function or activation function, its transfer function

activation functioninverse is called the canonical link function. From this perspective, it is
canonical link
function
For ordinary linear
regression the
activation function
would simply be the
identity.

Generalized linear
models are the
building blocks of
deep neural
networks.

also clear that generalized linear models are the building blocks of (deep)
feedforward neural networks: If we consider a generalized linear model
y = σ(Ax+ b), where A is a weight matrix and b a bias vector, we iden-
tify this generalized linear model as a single-layer neural network with
activation function σ(·). We can now recursively compose these functions
via

xk+1 = fk(xk)

fk(xk) = σk(Akxk + bk)
(9.73)

for k = 0, . . . ,K − 1 where x0 are the input features and xK = y5403

are the observed outputs, such that fK−1 ◦ · · · ◦ f 0 is a K-layer deep5404

neural network. Therefore, the building blocks of this deep neural net-5405

work are the generalized linear models defined in (9.73). A great post5406

on the relation between GLMs and deep networks is available at https:5407

//tinyurl.com/glm-dnn. Neural networks (Bishop, 1995; Goodfellow5408

et al., 2016) are significantly more expressive and flexible than linear re-5409

gression models. However, maximum likelihood parameter estimation is a5410

non-convex optimization problem, and marginalization of the parameters5411

in a fully Bayesian setting is analytically intractable.5412

We briefly hinted at the fact that a distribution over parameters in-5413

duces a distribution over regression functions. Gaussian processes (Ras- Gaussian processes5414

mussen and Williams, 2006) are regression models where the concept of5415

a distribution over function is central. Instead of placing a distribution5416

over parameters a Gaussian process places a distribution directly on the5417

space of functions without the “detour” via the parameters. To do so, the5418

Gaussian process exploits the kernel trick (Schölkopf and Smola, 2002), kernel trick5419

which allows us to compute inner products between two function values5420

f(xi), f(xj) only by looking at the corresponding input xi,xj . A Gaus-5421

sian process is closely related to both Bayesian linear regression and sup-5422

port vector regression but can also be interpreted as a Bayesian neural5423

network with a single hidden layer where the number of units tends to5424

infinity (Neal, 1996; Williams, 1997). An excellent introduction to Gaus-5425
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sian processes can be found in (MacKay, 1998; Rasmussen and Williams,5426

2006).5427

We focused on Gaussian parameter priors in the discussions in this chap-5428

ters because they allow for closed-form inference in linear regression mod-5429

els. However, even in a regression setting with Gaussian likelihoods we5430

may choose a non-Gaussian prior. Consider a setting where the inputs are5431

x ∈ RD and our training set is small and of size N � D. This means that5432

the regression problem is under-determined. In this case, we can choose5433

a parameter prior that enforces sparsity, i.e., a prior that tries to set as5434

many parameters to 0 as possible (variable selection). This prior providesvariable selection 5435

a stronger regularizer than the Gaussian prior, which often leads to an in-5436

creased prediction accuracy and interpretability of the model. The Laplace5437

prior is one example that is frequently used for this purpose. A linear re-5438

gression model with the Laplace prior on the parameters is equivalent to5439

linear regression with L1 regularization (LASSO) (Tibshirani, 1996). TheLASSO 5440

Laplace distribution is sharply peaked at zero (its first derivative is discon-5441

tinuous) and it concentrates its probability mass closer to zero than the5442

Gaussian distribution, which encourages parameters to be 0. Therefore,5443

the non-zero parameters are relevant for the regression problem, which is5444

the reason why we also speak of “variable selection”.5445
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Dimensionality Reduction with Principal
Component Analysis

5578

Working directly with high-dimensional data, such as images, comes with A 640× 480 pixels
color image is a data
point in a
million-dimensional
space, where every
pixel responds to
three dimensions,
one for each color
channel (red, green,
blue).

5579

some difficulties: it is hard to analyze, interpretation is difficult, visualiza-5580

tion is nearly impossible, and (from a practical point of view) storage of5581

the data vectors can be expensive. However, high-dimensional data often5582

has properties that we can exploit. For example, high-dimensional data is5583

often overcomplete, i.e., many dimensions are redundant and can be ex-5584

plained by a combination of other dimensions. Furthermore, dimensions5585

in high-dimensional data are often correlated so that the data possesses an5586

intrinsic lower-dimensional structure. Dimensionality reduction exploits5587

structure and correlation and allows us to work with a more compact rep-5588

resentation of the data, ideally without losing information. We can think5589

of dimensionality reduction as a compression technique, similar to jpeg or5590

mp3, which are compression algorithms for images and music.5591

In this chapter, we will discuss principal component analysis (PCA), an principal component
analysis

5592

algorithm for linear dimensionality reduction. PCA, proposed by Pearson
dimensionality
reduction

5593

(1901b) and Hotelling (1933), has been around for more than 100 years5594

and is still one of the most commonly used techniques for data compres-5595

sion and data visualization. It is also used for the identification of sim-5596

ple patterns, latent factors and structures of high-dimensional data. In5597

the signal processing community, PCA is also known as the Karhunen- Karhunen-Loève
transform

5598

Loève transform. In this chapter, we derive PCA from first principles, draw-5599

ing on our understanding of basis and basis change (see Sections 2.6.15600

and 2.7.2), projections (see Section 3.7), eigenvalues (see Section 4.2),5601

Gaussian distributions (see Section 6.5) and constrained optimization (see5602

Section 7.2).5603

Dimensionality reduction generally exploits a property of high-dimen-5604

sional data (e.g., images) that it often lies on a low-dimensional subspace,5605

and that many dimensions are highly correlated, redundant or contain5606

little information. Figure 10.1 gives an illustrative example in two dimen-5607

sions. Although the data in Figure 10.1(a) does not quite lie on a line, the5608

data does not vary much in the x2-direction, so that we can express it as if5609

it was on a line – with nearly no loss, see Figure 10.1(b). To describe the5610

data in Figure 10.1(b), only the x1-coordinate is required, and the data5611

lies in a one-dimensional subspace of R2.5612

In the context of Table 1.1, the problem of dimensionality reduction falls5613
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306 Dimensionality Reduction with Principal Component Analysis
Figure 10.1
Illustration:
Dimensionality
reduction. (a) The
original dataset
does not vary much
along the x2
direction. (b) The
data from (a) can be
represented using
the x1-coordinate
alone with nearly no
loss.
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(a) Dataset with x1 and x2 coordinates.

−5.0 −2.5 0.0 2.5 5.0
x1

−4

−2

0

2

4

x
2

(b) Compressed dataset where only the x1 coor-
dinate is relevant.

Figure 10.2
Graphical
illustration of PCA.
In PCA, we find a
compressed version
x̃ of original data x
that has an intrinsic
lower-dimensional
representation z.

x x̃z

original compressed

RD RD

RM

into the category of an unsupervised learning problem with continuous5614

latent variables.5615

10.1 Problem Setting5616

In PCA, we are interested in finding projections x̃n of data points xn that5617

are as similar to the original data points as possible, but which have a sig-5618

nificantly lower intrinsic dimensionality. Figure 10.1 gives an illustration5619

what this could look like.5620

More concretely, we consider an i.i.d. dataset X = {x1, . . . ,xN}, xn ∈
RD, with mean 0 that possesses the data covariance matrixdata covariance

matrix

S =
1

N

N∑
n=1

xnx
>
n . (10.1)

Furthermore, we assume there exists a low-dimensional compressed rep-
resentation (code)

zn = B>xn ∈ RM (10.2)

of xn, where we define the projection matrix

B := [b1, . . . , bM ] ∈ RD×M . (10.3)
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Figure 10.3
Examples of
handwritten digits
from the MNIST
dataset. http:
//yann.lecun.

com/exdb/mnist/
We assume that the columns of B are orthonormal so that b>i bj = 05621

if and only if i 6= j. We seek an M -dimensional subspace U ⊆ RD, The columns
b1, . . . , bM of B
form a basis of the
M -dimensional
subspace in which
the projected data
x̃ = BB>x ∈ RD
live.

5622

dim(U) = M < D onto which we project the data. We denote the pro-5623

jected data by x̃n ∈ U , and their coordinates (with respect to the basis5624

vectors b1, . . . , bM of U) by zn. Our aim is to find projections x̃n ∈ RD5625

(or equivalently the codes zn and the basis vectors b1, . . . , bM) so that5626

they are as similar to the original data xn and minimize the loss due to5627

compression.5628

In Section 10.2, we will find low-dimensional representations that re-5629

tain as much information as possible and minimize the compression loss.5630

An alternative derivation of PCA is given in Section 10.3, we will be look-5631

ing at minimizing the squared reconstruction error ‖xn − x̃n‖2 between5632

the original data xn and its projection x̃n.5633

Figure 10.2 illustrates the setting we consider in PCA, where z repre-5634

sents the intrinsic lower dimension of the compressed data x̃ and plays5635

the role of a bottleneck, which controls how much information can flow5636

between x and x̃. In PCA, we consider a linear relationship between the5637

original data x and its low-dimensional code z so that z = B>x and5638

x̃ = Bz for a suitable matrix B.5639

Example 10.1 (Coordinate Representation/Code)
Consider R2 with the canonical basis e1 = [1, 0]>, e2 = [0, 1]>. From
Chapter 2 we know that x ∈ R2 can be represented as a linear combina-
tion of these basis vectors, e.g.,[

5
3

]
= 5e1 + 3e2 . (10.4)

However, when we consider vectors of the form

x̃ =

[
0
z

]
∈ R2 , z ∈ R , (10.5)

they can always be written as 0e1 + ze2. To represent these vectors it is
sufficient to remember/store the coordinate/code z of x̃ with respect to
the e2 vector. The dimension of a

vector space
corresponds to the
number of its basis
vectors (see
Section 2.6.1).

More precisely, the set of x̃ vectors (with the standard vector addition
and scalar multiplication) forms a vector subspace U (see Section 2.4)
with dim(U) = 1 because U = span[e2].

Throughout this chapter, we will use the MNIST digits dataset as a re-5640
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308 Dimensionality Reduction with Principal Component Analysis

Figure 10.4 PCA
finds a
lower-dimensional
subspace (line) that
maintains as much
variance (spread of
the data) as possible
when the data
(blue) is projected
onto this subspace
(orange).

occurring example, which contains 60, 000 examples of handwritten digits5641

0–9. Each digit is a grayscale image of size 28 × 28, i.e., it contains 7845642

pixels so that we can interpret every image in this dataset as a vector5643

x ∈ R784. Examples of these digits are shown in Figure 10.3.5644

10.2 Maximum Variance Perspective5645

Figure 10.1 gave an example of how a two-dimensional dataset can be5646

represented using a single coordinate. In Figure 10.1(b), we chose to ig-5647

nore the x2-coordinate of the data because it did not add too much in-5648

formation so that the compressed data is similar to the original data in5649

Figure 10.1(a). We could have chosen to ignore the x1-coordinate, but5650

then the compressed data had been very dissimilar from the original data,5651

and much information in the data would have been lost.5652

If we interpret information content in the data as how “space filling”5653

the data set is, then we can describe the information contained in the data5654

by looking at the spread of the data. From Section 6.4.1 we know that the5655

variance is an indicator of the spread of the data, and we can derive PCA as5656

a dimensionality reduction algorithm that maximizes the variance in the5657

low-dimensional representation of the data to retain as much information5658

as possible. Figure 10.4 illustrates this.5659

Considering the setting discussed in Section 10.1, our aim is to find5660

a matrix B (see (10.3)) that retains as much information as possible5661

when compressing data by projecting it onto the subspace spanned by5662

the columns b1, . . . , bM ofB. Retaining most information after data com-5663

pression is equivalent to capturing the largest amount of variance in the5664

low-dimensional code (Hotelling, 1933).5665

Remark. (Centered Data) For the data covariance matrix in (10.1) we
assumed centered data. We can make this assumption without loss of gen-
erality: Let us assume that µ is the mean of the data. Using the properties
of the variance, which we discussed in Section 6.4.3 we obtain

Vz[z] = Vx[B>(x− µ)] = Vx[B>x−B>µ] = Vx[B>x] , (10.6)

i.e., the variance of the low-dimensional code does not depend on the5666

mean of the data. Therefore, we assume without loss of generality that the5667
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data has mean 0 for the remainder of this section. With this assumption5668

the mean of the low-dimensional code is also 0 since Ez[z] = Ex[B>x] =5669

B>Ex[x] = 0. ♦5670

10.2.1 Direction with Maximal Variance5671

We maximize the variance of the low-dimensional code using a sequential
approach. We start by seeking a single vector b1 ∈ RD that maximizes the
variance of the projected data, i.e., we aim to maximize the variance of
the first coordinate z1 of z ∈ RM so that The vector b1 will

be the first column
of the matrix B and
therefore the first of
M orthonormal
basis vectors that
span the
lower-dimensional
subspace.

V1 := V[z1] =
1

N

N∑
n=1

z2
1n (10.7)

is maximized, where we exploited the i.i.d. assumption of the data and
defined z1n as the first coordinate of the low-dimensional representation
zn ∈ RM of xn ∈ RD. Note that first component of zn is given by

z1n = b>1 xn , (10.8)

i.e., it is the coordinate of the orthogonal projection of xn onto the one-
dimensional subspace spanned by b1, see Section 3.7. We substitute (10.8)
into (10.7), which yields

V1 =
1

N

N∑
n=1

(b>1 xn)2 =
1

N

N∑
n=1

b>1 xnx
>
n b1 (10.9a)

= b>1

(
1

N

N∑
n=1

xnx
>
n

)
b1 = b>1 Sb1 , (10.9b)

where S is the data covariance matrix defined in (10.1). In (10.9a) we5672

have used the fact that the dot product of two vectors is symmetric with5673

respect to its arguments, that is b>1 xn = x>n b1.5674

Notice that arbitrarily increasing the magnitude of the vector b1 in-5675

creases V1, that is, a vector b1 that is two times longer can result in V15676

that is potentially four times larger. Therefore, we restrict all solutions to ‖b1‖2 = 1 ⇐⇒
‖b1‖ = 1.

5677

‖b1‖2 = 1, which results in a constrained optimization problem in which5678

we seek the direction along which the data varies most.5679

With the restriction of the solution space to unit vectors the vector b1

that points in the direction of maximum variance can be found by the
constrained optimization problem

max
b1
b>1 Sb1

subject to ‖b1‖2 = 1 .
(10.10)

Following Section 7.2, we obtain the Lagrangian

L(b1, λ) = b>1 Sb1 + λ1(1− b>1 b1) (10.11)
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to solve this constrained optimization problem. The partial derivatives of
L with respect to b1 and λ1 are

∂L

∂b1

= 2b>1 S − 2λ1b
>
1 (10.12)

∂L

∂λ1

= 1− b>1 b1 , (10.13)

respectively. Setting these partial derivatives to 0 gives us the relations

Sb1 = λ1b1 , (10.14)

b>1 b1 = 1 . (10.15)

By comparing with the definition of an eigenvalue decomposition (Sec-
tion 4.4), we see that b1 is an eigenvector of the data covariance matrix S,
and the Lagrange multiplier λ1 plays the role of the corresponding eigen-
value. This eigenvector property (10.14) allows us to rewrite our varianceThe quantity

√
λ1 is

also called the
loading of the unit
vector b1 and
represents the
standard deviation
of the data
accounted for by the
principal subspace
span[b1].

objective (10.10) as

V1 = b>1 Sb1 = λ1b
>
1 b1 = λ1 , (10.16)

i.e., the variance of the data projected onto a one-dimensional subspace
equals the eigenvalue that is associated with the basis vector b1 that spans
this subspace. Therefore, to maximize the variance of the low-dimensional
code we choose the basis vector associated with the largest eigenvalue of
the data covariance matrix. This eigenvector is called the first principalprincipal component
component. We can determine the effect/contribution of the principal com-
ponent b1 in the original data space by mapping the coordinate z1n back
into data space, which gives us the projected data point

x̃n = b1z1n = b1b
>
1 xn ∈ RD (10.17)

in the original data space.5680

Remark. Although x̃n is a D-dimensional vector it only requires a single5681

coordinate z1n to represent it with respect to the basis vector b1 ∈ RD. ♦5682

10.2.2 M -dimensional Subspace with Maximal Variance5683

Assume we have found the first m− 1 principal components as the m− 1
eigenvectors of S that are associated with the largest m − 1 eigenvalues.
Since S is symmetric, these eigenvectors form an ONB of an (m − 1)-
dimensional subspace of RD. Generally, the mth principal component can
be found by subtracting the effect of the first m− 1 principal components
b1, . . . , bm−1 from the data, thereby trying to find principal components
that compress the remaining information. We achieve this by first sub-
tracting the contribution of them−1 principal components from the data,
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similar to (10.17), so that we arrive at the new data matrix

X̂ := X −
m−1∑
i=1

bib
>
i X , (10.18)

where X = [x1, . . . ,xN ] ∈ RD×N contains the data points as column5684

vectors. The matrix X̂ := [x̂1, . . . , x̂N ] ∈ RD×N in (10.18) contains the5685

data that only contains the information that has not yet been compressed.5686

Remark (Notation). Throughout this chapter, we do not follow the con-5687

vention of collecting data x1, . . . ,xN as rows of the data matrix, but we5688

define them to be the columns ofX. This means that our data matrixX is5689

a D×N matrix instead of the conventional N ×D matrix. The reason for5690

our choice is that the algebra operations work out smoothly without the5691

need to either transpose the matrix or to redefine vectors as row vectors5692

that are left-multiplied onto matrices. ♦5693

To find the mth principal component, we maximize the variance

Vm = V[zm] =
1

N

N∑
n=1

z2
mn =

1

N

N∑
n=1

(b>mxn)2 = b>mŜbm , (10.19)

subject to ‖bm‖2 = 1, where we followed the same steps as in (10.9b)5694

and defined Ŝ as the data covariance matrix of X̂. As previously, when5695

we looked at the first principal component alone, we solve a constrained5696

optimization problem and discover that the optimal solution bm is the5697

eigenvector of Ŝ that is associated with the largest eigenvalue of Ŝ.5698

However, it also turns out that bm is an eigenvector of S. It holds that

Ŝ =
1

N

N∑
n=1

x̂nx̂
>
n

(10.18)
=

1

N

N∑
n=1

(
xn −

m−1∑
i=1

bib
>
i xn

)(
xn −

m−1∑
i=1

bib
>
i xn

)>
(10.20a)

=
1

N

N∑
n=1

xnx
>
n − 2xnx

>
n

m−1∑
i=1

bib
>
i +

m−1∑
i=1

bib
>
i xnx

>
n

m−1∑
i=1

bib
>
i ,

(10.20b)

where we exploited the symmetries x>n bi = b>i xn and bix>n = xnb
>
i to

summarize

−xnx>n
m−1∑
i=1

bib
>
i −

m−1∑
i=1

bib
>
i xnx

>
n = −2xnx

>
n

m−1∑
i=1

bib
>
i . (10.21)

If we take a vector bm with ‖bm‖ = 1 that is orthogonal to all b1, . . . , bm−1

and right-multiply bm to Ŝ in (10.20b) we obtain

Ŝbm =
1

N

N∑
n=1

x̂nx̂
>
n bm =

1

N

N∑
n=1

xnx
>
n bm = Sbm = λmbm . (10.22)
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Here we applied the orthogonality property b>i bm = 0 for i = 1, . . . ,m−1
(all terms involving sums up to m − 1 vanish). Equation (10.22) reveals
that bm is an eigenvector of both Ŝ and the original data covariance matrix
S. In the former case, λm is the largest eigenvalue, in latter case, λm is
the mth largest eigenvalue. With this the variance of the data projected
onto the mth principal component is

Vm = b>mSbm
(10.22)

= λmb
>
mbm = λm (10.23)

since b>mbm = 1. This means that the variance of the data, when projected5699

onto an M -dimensional subspace, equals the sum of the eigenvalues that5700

is associated with the corresponding eigenvectors of the data covariance5701

matrix.5702

Overall, to find an M -dimensional subspace of RD that retains as much
information as possible, PCA tells us to choose the columns of the matrix
B in (10.3) as the M eigenvectors of the data covariance matrix S that
are associated with the M largest eigenvalues. The maximum amount of
variance PCA can capture with the first M principal components is

VM =
M∑
m=1

λm , (10.24)

where the λm are the M largest eigenvalues of the data covariance matrix
S. Consequently, the variance lost by data compression via PCA is

JM :=
D∑

j=M+1

λj = VD − VM . (10.25)

Instead of these absolute quantities, we can also define the relative amount5703

of variance captured as VM

VD
, and the relative amount of variance lost by5704

compression as 1− VM

VD
.5705

10.3 Projection Perspective5706

In the following, we will derive PCA as an algorithm for linear dimension-5707

ality reduction that directly minimizes the average reconstruction error.5708

This perspective allows us to interpret PCA as an algorithm that imple-5709

ments an optimal linear auto-encoder. We will draw heavily from Chap-5710

ters 2 and 3.5711

In the previous section, we derived PCA by maximizing the variance5712

in the projected space to retain as much information as possible. In the5713

following, we will look at the difference vectors between the original data5714

xn and their reconstruction x̃n and minimize this distance so that xn and5715

x̃n are as close as possible. Figure 10.5 illustrates this setting.5716
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Figure 10.5
Illustration of the
projection approach
to PCA. We aim to
find a
lower-dimensional
subspace (line) so
that the difference
vector between
projected (orange)
and original (blue)
data is as short as
possible.10.3.1 Setting and Objective5717

Assume an (ordered) orthonormal basis (ONB) B = (b1, . . . , bD) of RD,5718

i.e., b>i bj = 1 if and only if i = j and 0 otherwise.5719

Remark. (Orthogonal Complement) Consider aD-dimensional vector space
V and an M -dimensional subspace U ⊆ V . Then its orthogonal comple- orthogonal

complementment U⊥ is a (D−M)-dimensional subspace of V and contains all vectors
in V that are orthogonal to every vector in U . Furthermore, U∩U⊥ = {0}
so that any vector x ∈ V can be (uniquely) decomposed into

x =
M∑
m=1

λmbm +
D−M∑
j=1

ψjb
⊥
j , λm, ψj ∈ R , (10.26)

where (b1, . . . , bM) is a basis of U and (b⊥1 , . . . , b
⊥
D−M) is a basis of U⊥.5720

♦5721

From Section 2.5 we know that for a basis (b1, . . . , bD) of RD any x ∈
RD can be written as a linear combination of the basis vectors of RD, i.e.,

x =
D∑
d=1

ζdbd =
M∑
m=1

ζmbm +
D∑

j=M+1

ζjbj (10.27)

for suitable coordinates ζd ∈ R.5722

We are interested in finding vectors x̃ ∈ RD, which live in lower-
dimensional subspace U ⊆ RD, dim(U) = M , so that

x̃ =
M∑
m=1

zmbm ∈ U ⊆ RD (10.28)

is as similar to x as possible. Note that at this point we need to assume5723

that the coordinates zm of x̃ and ζm of x are not identical. Vectors x̃ ∈ U could
be vectors on a
plane in R3. The
dimensionality of
the plane is 2, but
the vectors still have
three coordinates
with respect to the
standard basis of
R3.

5724

In the following, we use exactly this kind of representation of x̃ to find5725

optimal coordinates z and basis vectors b1, . . . , bM such that x̃ is as sim-5726

ilar to the original data point x, i.e., we aim to minimize the (Euclidean)5727

distance ‖x− x̃‖. Figure 10.6 illustrates this setting. Without loss of gen-5728

erality, we assume that the dataset X = {x1, . . . ,xN}, xn ∈ RD, is cen-5729

tered at 0, i.e., E[X ] = 0. Without the zero-mean assumption, we would5730
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Figure 10.6
Simplified
projection setting.
(a) A vector x ∈ R2

(red cross) shall be
projected onto a
one-dimensional
subspace U ⊆ R2

spanned by b. (b)
shows the difference
vectors between x
and some
candidates x̃.
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(b) Differences x− x̃ for 50 candidates x̃ are
shown by the red lines.

arrive at exactly the same solution but the notation would be substantially5731

more cluttered.5732

We are interested in finding the best linear projection ofX onto a lower-
dimensional subspace U of RD with dim(U) = M and orthonormal basis
vectors b1, . . . , bM . We will call this subspace U the principal subspace.principal subspace

The projections of the data points are denoted by

x̃n :=
M∑
m=1

zmnbm = Bzn ∈ RD , (10.29)

where zn := [z1n, . . . , zMn]> ∈ RM is the coordinate vector of x̃n with5733

respect to the basis (b1, . . . , bM). More specifically, we are interested in5734

having the x̃n as similar to xn as possible.5735

The similarity measure we use in the following is the squared Euclidean
norm ‖x− x̃‖2 between x and x̃. We therefore define our objective as
the minimizing the average squared Euclidean distance (reconstruction er-reconstruction error

ror) (Pearson, 1901b)

JM :=
1

N

N∑
n=1

‖xn − x̃n‖2 , (10.30)

where we make it explicit that the dimension of the subspace onto which5736

we project the data is M . In order to find this optimal linear projection,5737

we need to find the orthonormal basis of the principal subspace and the5738

coordinates zn ∈ RM of the projections with respect to this basis.5739

To find the coordinates zn and the ONB of the principal subspace we5740

follow a two-step approach. First, we optimize the coordinates zn for a5741

given ONB (b1, . . . , bM); second, we find the optimal ONB.5742

10.3.2 Finding Optimal Coordinates5743

Let us start by finding the optimal coordinates z1n, . . . , zMn of the projec-5744

tions x̃n for n = 1, . . . , N . Consider Figure 10.6(b) where the principal5745
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subspace is spanned by a single vector b. Geometrically speaking, finding5746

the optimal coordinates z corresponds to finding the representation of the5747

linear projection x̃ with respect to b that minimizes the distance between5748

x̃ − x. From Figure 10.6(b) it is clear that this will be the orthogonal5749

projection, and in the following we will show exactly this.5750

We assume an ONB (b1, . . . , bM) of U ⊆ RD. To find the optimal co-
ordinates zm with respect to this basis, we require the partial derivatives

∂JM
∂zin

=
∂JM
∂x̃n

∂x̃n
∂zin

, (10.31a)

∂JM
∂x̃n

= − 2

N
(xn − x̃n)> ∈ R1×D , (10.31b)

∂x̃n
∂zin

(10.29)
=

∂

∂zin

(
M∑
m=1

zmnbm

)
= bi (10.31c)

for i = 1, . . . ,M , such that we obtain

∂JM
∂zin

(10.31b)
(10.31c)

= − 2

N
(xn − x̃n)>bi

(10.29)
= − 2

N

(
xn −

M∑
m=1

zmnbm

)>
bi

(10.32a)

ONB
= − 2

N
(x>n bi − zin b>i bi︸︷︷︸

=1

) = − 2

N
(x>n bi − zin) . (10.32b)

Setting this partial derivative to 0 yields immediately the optimal coordi-
nates

zin = x>n bi = b>i xn (10.33)

for i = 1, . . . ,M and n = 1, . . . , N . This means, the optimal coordinates5751

zin of the projection x̃n are the coordinates of the orthogonal projection5752

(see Section 3.7) of the original data point xn onto the one-dimensional5753

subspace that is spanned by bi. Consequently: The coordinates of
the optimal
projection of xn
with respect to the
basis vectors
b1, . . . , bM are the
coordinates of the
orthogonal
projection of xn
onto the principal
subspace.

5754

• The optimal linear projection x̃n of xn is an orthogonal projection.5755

• The coordinates of x̃n with respect to the basis b1, . . . , bM are the coor-5756

dinates of the orthogonal projection of xn onto the principal subspace.5757

• An orthogonal projection is the best linear mapping we can find given5758

the objective (10.30).5759

• The coordinates ζm of x in (10.27) and the coordinates zm of x̃ in (10.28)5760

must be identical form = 1, . . . ,M in PCA sinceU⊥ = span[bM+1, . . . , bD]5761

is the orthogonal complement of U = span[b1, . . . , bM ].5762

Remark (Orthogonal Projections with Orthonormal Basis Vectors). Let us
briefly recap orthogonal projections from Section 3.7. If (b1, . . . , bD) is an
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Figure 10.7
Optimal projection
of a vector x ∈ R2

onto a
one-dimensional
subspace
(continuation from
Figure 10.6).
(a) Distances
‖x− x̃‖ for some
x̃ ∈ U .
(b) Orthogonal
projection and
optimal coordinates.
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−
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(a) Distances ‖x− x̃‖ for some x̃ = z1b ∈
U = span[b], see panel (b) for the setting.

−1 0 1 2
x1

0

1

2

x
2

b

U
x̃

(b) The vector x̃ that minimizes the distance
in panel (a) is its orthogonal projection onto
U . The coordinate of the projection x̃ with
respect to the basis vector b that spans U
is the factor we need to scale b in order to
“reach” x̃.

orthonormal basis of RD then

x̃ = bj(b
>
j bj︸ ︷︷ ︸
=1

)−1b>j x = bjb
>
j x ∈ RD (10.34)

is the orthogonal projection of x onto the subspace spanned by the jthx>bj is the
coordinate of the
orthogonal
projection of x onto
the one-dimensional
subspace spanned
by bj .

5763

basis vector, and zj = b>j x is the coordinate of this projection with respect5764

to the basis vector bj that spans that subspace since zjbj = x̃. Figure 10.75765

illustrates this setting.5766

More generally, if we aim to project onto an M -dimensional subspace
of RD, we obtain the orthogonal projection of x onto the M -dimensional
subspace with orthonormal basis vectors b1, . . . , bM as

x̃ = B(B>B︸ ︷︷ ︸
=I

)−1B>x = BB>x , (10.35)

where we defined B := [b1, . . . , bM ] ∈ RD×M . The coordinates of this5767

projection with respect to the ordered basis (b1, . . . , bM) are z := B>x5768

as discussed in Section 3.7.5769

We can think of the coordinates as a representation of the projected5770

vector in a new coordinate system defined by (b1, . . . , bM). Note that al-5771

though x̃ ∈ RD we only need M coordinates z1, . . . , zM to represent this5772

vector; the other D − M coordinates with respect to the basis vectors5773

(bM+1, . . . , bD) are always 0. ♦5774

So far, we showed that for a given ONB we can find the optimal coordi-5775

nates of x̃ by an orthogonal projection onto the principal subspace. In the5776

following, we will determine what the best basis is.5777
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10.3.3 Finding the Basis of the Principal Subspace5778

To determine the basis vectors b1, . . . , bM of the principal subspace, we
rephrase the loss function (10.30) using the results we have so far. This
will make it easier to find the basis vectors. To reformulate the loss func-
tion, we exploit our results from before and obtain

x̃n =
M∑
m=1

zmnbm
(10.33)

=
M∑
m=1

(x>n bm)bm . (10.36)

We now exploit the symmetry of the dot product, which yields

x̃n =

(
M∑
m=1

bmb
>
m

)
xn . (10.37)

Since we can generally write the original data point xn as a linear combi-
nation of all basis vectors, we can also write

xn =
D∑
d=1

zdnbd
(10.33)

=
D∑
d=1

(x>n bd)bd =

(
D∑
d=1

bdb
>
d

)
xn (10.38a)

=

(
M∑
m=1

bmb
>
m

)
xn +

(
D∑

j=M+1

bjb
>
j

)
xn , (10.38b)

where we split the sum with D terms into a sum over M and a sum
over D −M terms. With this result, we find that the displacement vector
xn− x̃n, i.e., the difference vector between the original data point and its
projection, is

xn − x̃n =

(
D∑

j=M+1

bjb
>
j

)
xn (10.39a)

=
D∑

j=M+1

(x>n bj)bj . (10.39b)

This means the difference is exactly the projection of the data point onto5779

the orthogonal complement of the principal subspace: We identify the ma-5780

trix
∑D

j=M+1 bjb
>
j in (10.39a) as the projection matrix that performs this5781

projection. This also means the displacement vector xn − x̃n lies in the5782

subspace that is orthogonal to the principal subspace as illustrated in Fig-5783

ure 10.8.5784 PCA finds the best
rank-M
approximation of
the identity matrix.

Remark (Low-Rank Approximation). In (10.39a), we saw that the projec-
tion matrix, which projects x onto x̃, is given by

M∑
m=1

bmb
>
m = BB> . (10.40)

By construction as a sum of rank-one matrices bmb
>
m we see that BB>
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Figure 10.8
Orthogonal
projection and
displacement
vectors. When
projecting data
points xn (blue)
onto subspace U1

we obtain x̃n
(orange). The
displacement vector
x̃n − xn lies
completely in the
orthogonal
complement U2 of
U1.
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2
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U⊥

is symmetric and has rank M . Therefore, the average squared reconstruc-
tion error can also be written as

1

N

N∑
n=1

‖xn − x̃n‖2 =
1

N

N∑
n=1

∥∥∥xn −BB>xn∥∥∥2

(10.41a)

=
1

N

N∑
n=1

∥∥∥(I −BB>)xn

∥∥∥2

. (10.41b)

Finding orthonormal basis vectors b1, . . . , bM so that the difference be-5785

tween the original data xn and their projections x̃n, n = 1, . . . , N , is5786

minimized is equivalent to finding the best rank-M approximation BB>5787

of the identity matrix I, see Section 4.6. ♦5788

Now, we have all the tools to reformulate the loss function (10.30).

JM =
1

N

N∑
n=1

‖xn − x̃n‖2 (10.39b)
=

1

N

N∑
n=1

∥∥∥∥∥
D∑

j=M+1

(b>j xn)bj

∥∥∥∥∥
2

. (10.42)

We now explicitly compute the squared norm and exploit the fact that the
bj form an ONB, which yields

JM =
1

N

N∑
n=1

D∑
j=M+1

(b>j xn)2 =
1

N

N∑
n=1

D∑
j=M+1

b>j xnb
>
j xn (10.43a)

=
1

N

N∑
n=1

D∑
j=M+1

b>j xnx
>
n bj , (10.43b)

where we exploited the symmetry of the dot product in the last step to
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write b>j xn = x>n bj . We can now swap the sums and obtain

JM =
D∑

j=M+1

b>j

(
1

N

N∑
n=1

xnx
>
n

)
︸ ︷︷ ︸

=:S

bj =
D∑

j=M+1

b>j Sbj (10.44a)

=
D∑

j=M+1

tr(b>j Sbj)
D∑

j=M+1

tr(Sbjb
>
j ) = tr

(( D∑
j=M+1

bjb
>
j

)
︸ ︷︷ ︸

projection matrix

S
)
,

(10.44b)

where we exploited the property that the trace operator tr(·), see (4.18),5789

is linear and invariant to cyclic permutations of its arguments. Since we5790

assumed that our dataset is centered, i.e., E[X ] = 0, we identify S as the5791

data covariance matrix. We see that the projection matrix in (10.44b) is5792

constructed as a sum of rank-one matrices bjb
>
j so that it itself is of rank5793

D −M . Minimizing the
average squared
reconstruction error
is equivalent to
minimizing the
projection of the
data covariance
matrix onto the
orthogonal
complement of the
principal subspace.

5794

Equation (10.44a) implies that we can formulate the average squared5795

reconstruction error equivalently as the covariance matrix of the data,5796

projected onto the orthogonal complement of the principal subspace. Min-5797

imizing the average squared reconstruction error is therefore equivalent to5798

minimizing the variance of the data when projected onto the subspace we5799

ignore, i.e., the orthogonal complement of the principal subspace. Equiva-5800

lently, we maximize the variance of the projection that we retain in the5801

principal subspace, which links the projection loss immediately to the5802

maximum-variance formulation of PCA discussed in Section 10.2. But this5803

then also means that we will obtain the same solution that we obtained5804

for the maximum-variance perspective. Therefore, we omit a derivation5805

that is identical to the one Section 10.2 and summarize the results from5806

earlier in the light of the projection perspective. Minimizing the
average squared
reconstruction error
is equivalent to
maximizing the
variance of the
projected data.

5807

The average squared reconstruction error, when projecting onto the M -
dimensional principal subspace, is

JM =
D∑

j=M+1

λj , (10.45)

where λj are the eigenvalues of the data covariance matrix. Therefore,5808

to minimize (10.45) we need to select the smallest D −M eigenvalues,5809

which then implies that their corresponding eigenvectors are the basis5810

of the orthogonal complement of the principal subspace. Consequently,5811

this means that the basis of the principal subspace are the eigenvectors5812

b1, . . . , bM that are associated with the largest M eigenvalues of the data5813

covariance matrix.5814
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Example 10.2 (MNIST Digits Embedding)

Figure 10.9
Embedding of
MNIST digits 0

(blue) and 1

(orange) in a
two-dimensional
principal subspace
using PCA. Four
examples
embeddings of the
digits ‘0’ and ‘1’ in
the principal
subspace are
highlighted in red
with their
corresponding
original digit.

Figure 10.9 visualizes the training data of the MMIST digits ‘0’ and
‘1’ embedded in the vector subspace spanned by the first two principal
components. We can see a relatively clear separation between ‘0’s (blue
dots) and ‘1’s (orange dots), and we can see the variation within each
individual cluster.

10.4 Eigenvector Computation and Low-Rank Approximations5815

obtained the basis of the principal subspace as the eigenvectors that are
associated with the largest eigenvalues of the data covariance matrix

S =
1

N

N∑
n=1

xnx
>
n =

1

N
XX> , (10.46)

X = [x1, . . . ,xN ] ∈ RD×N . (10.47)

To get the eigenvalues (and the corresponding eigenvectors) of S, we can5816

follow two approaches:Eigendecomposition
or SVD to compute
eigenvectors.

5817

• We perform an eigendecomposition (see Section 4.2) and compute the5818

eigenvalues and eigenvectors of S directly.5819

• We use a singular value decomposition (see Section 4.5). Since S is
symmetric and factorizes intoXX> (ignoring the factor 1

N
), the eigen-

values of S are the squared singular values of X. More specifically, if
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the SVD of X is given by

X︸︷︷︸
D×N

= U︸︷︷︸
D×D

Σ︸︷︷︸
D×N

V >︸︷︷︸
N×N

, (10.48)

where U ∈ RD×D and V > ∈ RN×N are orthogonal matrices and Σ ∈
RD×N is a matrix whose only non-zero entries are the singular values
σii > 0. Then it follows that

S =
1

N
XX> =

1

N
UΣV >V︸ ︷︷ ︸

=IN

Σ>U> =
1

N
UΣΣ>U> . (10.49)

With the results from Section 4.5 we get that the columns of U are the The columns of U
are the eigenvectors
of S.

eigenvectors ofXX> (and therefore S). Furthermore, the eigenvalues
λd of S are related to the singular values of X via

λd =
σ2
d

N
. (10.50)

10.4.1 PCA using Low-rank Matrix Approximations5820

To maximize the variance of the projected data (or minimize the average
squared reconstruction error), PCA chooses the columns of U in (10.49)
to be the eigenvectors that are associated with the M largest eigenvalues
of the data covariance matrixS so that we identifyU as the projection ma-
trixB in (10.3), which projects the original data onto a lower-dimensional
subspace of dimension M . The Eckart-Young Theorem (Section 4.6) offers Eckart-Young

Theorema direct way to estimate the low-dimensional representation. Consider the
best rank-M approximation

X̃M := argminrk(A)6M ‖X −A‖2 ∈ RD×N (10.51)

of X, where ‖·‖2 is the spectral norm defined in (4.110). The Eckart-
Young Theorem states that X̃M is given by truncating the SVD at the
top-M singular value. In other words, we obtain

X̃M = UM︸︷︷︸
D×M

ΣM︸︷︷︸
M×M

V >M︸︷︷︸
M×N

∈ RD×N (10.52)

with orthogonal matrices UM := [u1, . . . ,uM ] ∈ RD×M and V M :=5821

[v1, . . . ,vM ] ∈ RN×M and a diagonal matrix ΣM ∈ RM×M whose diago-5822

nal entries are the M largest singular values of X.5823

10.4.2 Practical Aspects5824

Finding eigenvalues and eigenvectors is also important in other funda-5825

mental machine learning methods that require matrix decompositions. In5826

theory, as we discussed in Section 4.2, we can solve for the eigenvalues as5827

roots of the characteristic polynomial. However, for matrices larger than5828
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4×4 this is not possible because we would need to find the roots of a poly-5829

nomial of degree 5 or higher. However, the Abel-Ruffini theorem (Ruffini,5830

1799; Abel, 1826) states that there exists no algebraic solution to this5831

problem for polynomials of degree 5 or more. Therefore, in practice, we
np.linalg.eigh
or
np.linalg.svd

5832

solve for eigenvalues or singular values using iterative methods, which are5833

implemented in all modern packages for linear algebra.5834

In many applications (such as PCA presented in this chapter), we only
require a few eigenvectors. It would be wasteful to compute the full de-
composition, and then discard all eigenvectors with eigenvalues that are
beyond the first few. It turns out that if we are interested in only the
first few eigenvectors (with the largest eigenvalues) iterative processes,
which directly optimize these eigenvectors, are computationally more ef-
ficient than a full eigendecomposition (or SVD). In the extreme case of
only needing the first eigenvector, a simple method called the power iter-power iteration

ation is very efficient. Power iteration chooses a random vector x0 that is
not in the null space of S and follows the iterationIf S is invertible, it

is sufficient to
ensure that x0 6= 0. xk+1 =

Sxk
‖Sxk‖

, k = 0, 1, . . . . (10.53)

This means the vector xk is multiplied by S in every iteration and then5835

normalized, i.e., we always have ‖xk‖ = 1. This sequence of vectors con-5836

verges to the eigenvector associated with the largest eigenvalue of S. The5837

original Google PageRank algorithm (Page et al., 1999) uses such an al-5838

gorithm for ranking web pages based on their hyperlinks.5839

10.5 PCA in High Dimensions5840

In order to do PCA, we need to compute the data covariance matrix. In D5841

dimensions, the data covariance matrix is a D×D matrix. Computing the5842

eigenvalues and eigenvectors of this matrix is computationally expensive5843

as it scales cubically in D. Therefore, PCA, as we discussed earlier, will be5844

infeasible in very high dimensions. For example, if our xn are images with5845

10, 000 pixels (e.g., 100 × 100 pixel images), we would need to compute5846

the eigendecomposition of a 10, 000 × 10, 000 covariance matrix. In the5847

following, we provide a solution to this problem for the case that we have5848

substantially fewer data points than dimensions, i.e., N � D.5849

Assume we have a data set x1, . . . ,xN , xn ∈ RD. Assuming the data is
centered, the data covariance matrix is given as

S =
1

N
XX> ∈ RD×D , (10.54)

where X = [x1, . . . ,xN ] is a D ×N matrix whose columns are the data5850

points.5851

We now assume that N � D, i.e., the number of data points is smaller5852

than the dimensionality of the data. If there are no duplicate data points5853
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the rank of the covariance matrix S is N , so it has D−N +1 many eigen-5854

values that are 0. Intuitively, this means that there are some redundancies.5855

In the following, we will exploit this and turn the D × D covariance5856

matrix into an N×N covariance matrix whose eigenvalues are all greater5857

than 0.5858

In PCA, we ended up with the eigenvector equation

Sbm = λmbm , m = 1, . . . ,M , (10.55)

where bm is a basis vector of the principal subspace. Let us re-write this
equation a bit: With S defined in (10.54), we obtain

Sbm =
1

N
XX>bm = λmbm . (10.56)

We now multiply X> ∈ RN×D from the left-hand side, which yields

1

N
X>X︸ ︷︷ ︸
N×N

X>bm︸ ︷︷ ︸
=:cm

= λmX
>bm ⇐⇒

1

N
X>Xcm = λmcm , (10.57)

and we get a new eigenvector/eigenvalue equation: λm remains eigen-5859

value, which confirms our results from Section 4.5.3 that the non-zero5860

eigenvalues of XX> equal the non-zero eigenvalues of X>X. We ob-5861

tain the eigenvector of the matrix 1
N
X>X ∈ RN×N associated with λm5862

as cm := X>bm. Assuming we have no duplicate data points, this matrix5863

has rank N and is invertible. This also implies that 1
N
X>X has the same5864

(non-zero) eigenvalues as the data covariance matrix S. But this is now5865

an N ×N matrix, so that we can compute the eigenvalues and eigenvec-5866

tors much more efficiently than for the original D × D data covariance5867

matrix.5868

Now, that we have the eigenvectors of 1
N
X>X, we are going to re-

cover the original eigenvectors, which we still need for PCA. Currently,
we know the eigenvectors of 1

N
X>X. If we left-multiply our eigenvalue/

eigenvector equation with X, we get

1

N
XX>︸ ︷︷ ︸
S

Xcm = λmXcm (10.58)

and we recover the data covariance matrix again. This now also means5869

that we recover Xcm as an eigenvector of S.5870

Remark. If we want to apply the PCA algorithm that we discussed in Sec-5871

tion 10.6 we need to normalize the eigenvectors Xcm of S so that they5872

have norm 1. ♦5873

10.6 Key Steps of PCA in Practice5874

In the following, we will go through the individual steps of PCA using a5875

running example, which is summarized in Figure 10.10. We are given a5876
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Figure 10.10 Steps
of PCA.
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(a) Original dataset.
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(b) Step 1: Centering by sub-
tracting the mean from each
data point.
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(c) Step 2: Dividing by the
standard deviation to make
the data unit free. Data has
variance 1 along each axis.
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(d) Step 3: Compute eigenval-
ues and eigenvectors (arrows)
of the data covariance matrix
(ellipse).
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(e) Step 4: Project data onto
the subspace spanned by the
eigenvectors associated with
the largest eigenvalues (prin-
cipal subspace).
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(f) Step 5: Undo the standard-
ization and move projected
data back into the original
data space from (a).

two-dimensional data set (Figure 10.10(a)), and we want to use PCA to5877

project it onto a one-dimensional subspace.5878

1. Mean subtraction We start by centering the data by computing the5879

mean µ of the dataset and subtracting it from every single data point.5880

This ensures that the data set has mean 0 (Figure 10.10(b)). Mean5881

subtraction is not strictly necessary but reduces the risk of numerical5882

problems.5883

2. Standardization Divide the data points by the standard deviation σd5884

of the dataset for every dimension d = 1, . . . , D. Now the data is unit5885

free, and it has variance 1 along each axis, which is indicated by the5886

two arrows in Figure 10.10(c). This step completes the standardizationstandardization 5887

of the data.5888

3. Eigendecomposition of the covariance matrix Compute the data5889

covariance matrix and its eigenvalues and corresponding eigenvectors.5890

Since the covariance matrix is symmetric, the eigenvectors form an5891

orthogonal basis. In Figure 10.10(d), the eigenvectors are scaled by the5892

magnitude of the corresponding eigenvalue. The longer vector spans5893

the principal subspace, which we denote by U . The data covariance5894

matrix is represented by the ellipse.5895
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4. Projection We can project any data point x∗ ∈ RD onto the principal
subspace: To get this right, we need to standardize x∗ using the mean
µd and standard deviation σd of the training data in the dth dimension,
respectively, so that

x(d)
∗ ←

x
(d)
∗ − µd
σd

, d = 1, . . . , D , (10.59)

where x(d)
∗ is the dth component of x∗. We obtain the projection as

x̃∗ = BB>x∗ (10.60)

with coordinates z∗ = B>x∗ with respect to the basis of the principal5896

subspace. Here,B is the matrix that contains the eigenvectors that are5897

associated with the largest eigenvalues of the data covariance matrix5898

as columns.5899

5. Moving back to data space To see our projection in the original data
format (i.e., before standardization), we need to undo the standardiza-
tion (10.59) and multiply by the standard deviation before adding the
mean so that we obtain

x̃(d)
∗ ← x̃(d)

∗ σd + µd , d = 1, . . . , D . (10.61)

Figure 10.10(f) illustrates the projection in the original data format.5900

Example 10.3 (MNIST Digits: Reconstruction)

In the following, we will apply PCA to the MNIST digits dataset, which http:

//yann.lecun.

com/exdb/mnist/
contains 60, 000 examples of handwritten digits 0–9. Each digit is an im-
age of size 28×28, i.e., it contains 784 pixels so that we can interpret every
image in this dataset as a vector x ∈ R784. Examples of these digits are
shown in Figure 10.3. For illustration purposes, we apply PCA to a subset
of the MNIST digits, and we focus on the digit ‘8’. We used 5,389 training
images of the digit ‘8’ and determined the principal subspace as detailed
in this chapter. We then used the learned projection matrix to reconstruct
a set of test images, which is illustrated in Figure 10.11. The first row
of Figure 10.11 shows a set of four original digits from the test set. The
following rows show reconstructions of exactly these digits when using
a principal subspace of dimensions 1, 10, 100, 500, respectively. We can
see that even with a single-dimensional principal subspace we get a half-
way decent reconstruction of the original digits, which, however, is blurry
and generic. With an increasing number of principal components (PCs)
the reconstructions become sharper and more details can be accounted
for. With 500 principal components, we effectively obtain a near-perfect
reconstruction. If we were to choose 784 PCs we would recover the exact
digit without any compression loss.
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Figure 10.11 Effect
of increasing
number of principal
components on
reconstruction.

Original
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Figure 10.12
Average squared
reconstruction error
as a function of the
number of principal
components.
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Figure 10.12 shows the average squared reconstruction error, which is

1

N

N∑
n=1

‖xn − x̃n‖2 =
D∑

i=M+1

λi , (10.62)

as a function of the number M of principal components. We can see that
the importance of the principal components drops off rapidly, and only
marginal gains can be achieved by adding more PCs. With about 550 PCs,
we can essentially fully reconstruct the training data that contains the
digit ‘8’ (some pixels around the boundaries show no variation across the
dataset as they are always black).
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10.7 Latent Variable Perspective5901

In the previous sections, we derived PCA without any notion of a prob-5902

abilistic model using the maximum-variance and the projection perspec-5903

tives. On the one hand this approach may be appealing as it allows us to5904

sidestep all the mathematical difficulties that come with probability the-5905

ory, on the other hand a probabilistic model would offer us more flexibility5906

and useful insights. More specifically, a probabilistic model would5907

• come with a likelihood function, and we can explicitly deal with noisy5908

observations (which we did not even discuss earlier),5909

• allow us to do Bayesian model comparison via the marginal likelihood5910

as discussed in Section 8.5,5911

• view PCA as a generative model, which allows us to simulate new data,5912

• allow us to make straightforward connections to related algorithms5913

• deal with data dimensions that are missing at random by applying5914

Bayes’ theorem,5915

• give us a notion of the novelty of a new data point,5916

• give us a principled way to extend the model, e.g., to a mixture of PCA5917

models,5918

• have the PCA we derived in earlier sections as a special case,5919

• allow for a fully Bayesian treatment by marginalizing out the model5920

parameters.5921

By introducing a continuous-valued latent variable z ∈ RM it is possible5922

to phrase PCA as a probabilistic latent-variable model. Tipping and Bishop5923

(1999) proposed this latent-variable model as Probabilistic PCA (PPCA). Probabilistic PCA5924

PPCA addresses most of the issues above, and the PCA solution that we5925

obtained by maximizing the variance in the projected space or by minimiz-5926

ing the reconstruction error is obtained as the special case of maximum5927

likelihood estimation in a noise-free setting.5928

10.7.1 Generative Process and Probabilistic Model5929

In PPCA, we explicitly write down the probabilistic model for linear di-
mensionality reduction. For this we assume a continuous latent variable
z ∈ RM with a standard-Normal prior p(z) = N

(
0, I

)
and a linear rela-

tionship between the latent variables and the observed x data where

x = Bz + µ+ ε ∈ RD , (10.63)

where ε ∼ N
(
0, σ2I

)
is Gaussian observation noise,B ∈ RD×M and µ ∈

RD describe the linear/affine mapping from latent to observed variables.
Therefore, PPCA links latent and observed variables via

p(x|z,B,µ, σ2) = N
(
x |Bz + µ, σ2I

)
. (10.64)
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Figure 10.13
Graphical model for
probabilistic PCA.
The observations xn
explicitly depend on
corresponding
latent variables
zn ∼ N

(
0, I

)
. The

model parameters
B,µ and the
likelihood
parameter σ are
shared across the
dataset.

xn

B

zn

σ

µ

n = 1, . . . , N

Overall, PPCA induces the following generative process:

zn ∼ N
(
z |0, I

)
(10.65)

xn | zn ∼ N
(
x |Bzn + µ, σ2I

)
(10.66)

To generate a data point that is typical given the model parameters, we5930

follow an ancestral sampling scheme: We first sample a latent variable znancestral sampling5931

from p(z). Then, we use zn in (10.64) to sample a data point conditioned5932

on the sampled zn, i.e., xn ∼ p(x | zn,B,µ, σ2).5933

This generative process allows us to write down the probabilistic model
(i.e., the joint distribution of all random variables) as

p(x, z|B,µ, σ2) = p(x|z,B,µ, σ2)p(z) , (10.67)

which immediately gives rise to the graphical model in Figure 10.13 using5934

the results from Section 8.4.5935

Remark. Note the direction of the arrow that connects the latent variables5936

z and the observed data x: The arrow points from z to x, which means5937

that the PPCA model assumes a lower-dimensional latent cause z for high-5938

dimensional observations x. In the end, we are obviously interested in5939

finding something out about z given some observations. To get there we5940

will apply Bayesian inference to “invert” the arrow implicitly and go from5941

observations to latent variables. ♦5942

Example 10.4 (Generating Data from Latent Variables)

Figure 10.14 shows the latent coordinates of the MNIST digits ‘8’ found
by PCA when using a two-dimensional principal subspace (blue dots). We
can query any vector z∗ in this latent space an generate an image x̃∗ =
Bz∗ that resembles the digit ‘8’. We show eight of such generated images
with their corresponding latent space representation. Depending on where
we query the latent space, the generated images look different (shape,
rotation, size, ...). If we query away from the training data, we see more an
more artefacts, e.g., the top-left and top-right digits. Note that the intrinsic
dimensionality of these generated images is only two.
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Figure 10.14
Generating new
MNIST digits. The
latent variables z
can be used to
generate new data
x̃ = Bz. The closer
we stay to the
training data the
more realistic the
generated data.

10.7.2 Likelihood and Joint Distribution5943

Using the results from Chapter 6, we obtain the marginal distribution of
the data x by integrating out the latent variable z so that

p(x |B,µ, σ2) =

∫
p(x | z,µ, σ2)p(z)dz

=

∫
N
(
x |Bz + µ, σ2I

)
N
(
z |0, I

)
dz .

(10.68)

From Section 6.5, we know that the solution to this integral is a Gaussian
distribution with mean

E[x] = Ez[Bz + µ] + Eε[ε] = µ (10.69)

and with covariance matrix

V[x] = Vz[Bz + µ] +Vε[ε] = Vz[Bz] + σ2I

= BVz[z]B> + σ2I = BB> + σ2I .
(10.70)

The marginal distribution in (10.68) is the PPCA likelihood, which we can PPCA likelihood5944

use for maximum likelihood or MAP estimation of the model parameters.5945

Remark. Although the conditional distribution in (10.64) is also a like-5946

lihood, we cannot use it for maximum likelihood estimation as it still5947

depends on the latent variables. The likelihood function we require for5948

maximum likelihood (or MAP) estimation should only be a function of5949

the data x and the model parameters, but not on the latent variables. ♦5950
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From Section 6.5 we also know that the joint distribution of a Gaus-
sian random variable z and a linear/affine transformation x = Bz of it
are jointly Gaussian distributed. We already know the marginals p(z) =
N
(
z |0, I

)
and p(x) = N

(
x |µ, BB>+σ2I

)
. The missing cross-covariance

is given as

Cov[x, z] = Covz[Bz + µ] = BCovz[z, z] = B . (10.71)

Therefore, the probabilistic model of PPCA, i.e., the joint distribution of
latent and observed random variables is explicitly given by

p(x, z |B,µ, σ2) = N
([
x
z

] ∣∣∣∣ [µ0
]
,

[
BB> + σ2I B

B> I

])
, (10.72)

with a mean vector of length D + M and a covariance matrix of size5951

(D +M)× (D +M).5952

10.7.3 Posterior Distribution5953

The joint Gaussian distribution p(x, z |B,µ, σ2) in (10.72) allows us to
determine the posterior distribution p(z |x) immediately by applying the
rules of Gaussian conditioning from Section 6.5.1. The posterior distribu-
tion of the latent variable given an observation x is then

p(z |x) = N
(
z |m, C

)
, (10.73a)

m = B>(BB> + σ2I)−1(x− µ) , (10.73b)

C = I −B>(BB> + σ2I)−1B . (10.73c)

Note that the posterior covariance does not depend on the observation x.5954

For a new observation x∗ in data space, we can use (10.73) to deter-5955

mine the posterior distribution of the corresponding latent variable z∗.5956

The covariance matrix C allows us to assess how confident the embed-5957

ding is. A covariance matrixC with a small determinant (which measures5958

volumes) tells us that the latent embedding z∗ is fairly certain. If we ob-5959

tain a posterior distribution p(z∗ |x∗) with much variance, we may be5960

faced with an outlier. However, we can explore this posterior distribution5961

to understand what other data points x are plausible under this posterior.5962

To do this, we can exploit PPCA’s generative process. The generative pro-5963

cess underlying PPCA allows us to explore the posterior distribution on5964

the latent variables by generating new data that are plausible under this5965

posterior. This can be achieved as follows:5966

1. Sample a latent variable z∗ ∼ p(z |x∗) from the posterior distribution5967

over the latent variables (10.73)5968

2. Sample a reconstructed vector x̃∗ ∼ p(x | z∗,B,µ, σ2) from (10.64)5969

If we repeat this process many times, we can explore the posterior dis-5970

tribution (10.73) on the latent variables z∗ and its implications on the5971
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Figure 10.15 PCA
can be viewed as a
linear auto-encoder.
It encodes the
high-dimensional
data x into a
lower-dimensional
representation
(code) z ∈ RM and
decode z using a
decoder. The
decoded vector x̃ is
the orthogonal
projection of the
original data x onto
the M -dimensional
principal subspace.

B>
x x̃z

B

Encoder Decoder

original

code
RD RD

RM

observed data. The sampling process effectively hypothesizes data, which5972

is plausible under the posterior distribution.5973

10.8 Further Reading5974

We derived PCA from two perspectives: a) maximizing the variance in the5975

projected space; b) minimizing the average reconstruction error. However,5976

PCA can also be interpreted from different perspectives. Let us re-cap what5977

we have done: We took high-dimensional data x ∈ RD and used a matrix5978

B> to find a lower-dimensional representation z ∈ RM . The columns of5979

B are the eigenvectors of the data covariance matrix S that are associated5980

with the largest eigenvalues. Once we have a low-dimensional represen-5981

tation z, we can get a high-dimensional version of it (in the original data5982

space) as x ≈ x̃ = Bz = BB>x ∈ RD, where BB> is a projection5983

matrix.5984

We can also think of PCA as a linear auto-encoder as illustrated in Fig- auto-encoder

ure 10.15. An auto-encoder encodes the data xn ∈ RD to a code zn ∈ RM code

and tries to decode it to a x̃n similar to xn. The mapping from the data to
the code is called the encoder, the mapping from the code back to the orig- encoder

inal data space is called the decoder. If we consider linear mappings where decoder

the code is given by zn = B>xn ∈ RM and we are interested in minimiz-
ing the average squared error between the data xn and its reconstruction
x̃n = Bzn, n = 1, . . . , N , we obtain

1

N

N∑
n=1

‖xn − x̃n‖2 =
1

N

N∑
n=1

∥∥∥xn −B>Bxn∥∥∥2

. (10.74)

This means we end up with the same objective function as in (10.30) that5985

we discussed in Section 10.3 so that we obtain the PCA solution when we5986

minimize the squared auto-encoding loss. If we replace the linear map-5987

ping of PCA with a nonlinear mapping, we get a nonlinear auto-encoder.5988

A prominent example of this is a deep auto-encoder where the linear func-5989

tions are replaced with deep neural networks. In this context, the encoder5990
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is also know as recognition network or inference network, whereas the de-recognition network

inference network

5991

coder is also called a generator.
generator

5992

The code is a
compressed version
of the original data.

Another interpretation of PCA is related to information theory. We can5993

think of the code as a smaller or compressed version of the original data5994

point. When we reconstruct our original data using the code, we do not5995

get the exact data point back, but a slightly distorted or noisy version5996

of it. This means that our compression is “lossy”. Intuitively we want5997

to maximize the correlation between the original data and the lower-5998

dimensional code. More formally, this is related to the mutual information.5999

We would then get the same solution to PCA we discussed in Section 10.36000

by maximizing the mutual information, a core concept in information the-6001

ory (MacKay, 2003a).6002

In our discussion on PPCA, we assumed that the parameters of the
model, i.e.,B,µ and the likelihood parameter σ2 are known. Tipping and
Bishop (1999) describe how to derive maximum likelihood estimates for
these parameter in the PPCA setting (note that we use a different notation
in this chapter). The maximum likelihood parameters, when projecting
D-dimensional data onto an M -dimensional subspace, are given byThe matrix Λ− σ2I

in (10.76) is
guaranteed to be
positive
semi-definite as the
smallest eigenvalue
of the data
covariance matrix is
bounded from
below by the noise
variance σ2.

µML =
1

N

N∑
n=1

xn , (10.75)

BML = T (Λ− σ2I)
1
2R , (10.76)

σ2
ML =

1

D −M
D∑

j=M+1

λj , (10.77)

where T ∈ RD×M contains M eigenvectors of the data covariance matrix,6003

Λ = diag(λ1, . . . , λM) ∈ RM×M is a diagonal matrix with the eigenvalues6004

associated with the principal axes on its diagonal, and R ∈ RM×M is6005

an arbitrary orthogonal matrix. The maximum likelihood solution BML is6006

unique up to a arbitrary orthogonal transformation, e.g., we can right-6007

multiply BML with any rotation matrix R so that (10.76) essentially is a6008

singular value decomposition (see Section 4.5). An outline of the proof is6009

given by Tipping and Bishop (1999).6010

The maximum likelihood estimate for µ given in (10.75) is the sample6011

mean of the data. The maximum likelihood estimator for the observation6012

noise variance σ2 given in (10.77) is the average variance in the orthog-6013

onal complement of the principal subspace, i.e., the average leftover vari-6014

ance that we cannot capture with the first M principal components are6015

treated as observation noise.6016

In the noise-free limit where σ → 0, PPCA and PCA provide identical
solutions: Since the data covariance matrix S is symmetric, it can be di-
agonalized (see Section 4.4), i.e., there exists a matrix T of eigenvectors
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of S so that

S = TΛT−1 . (10.78)

In the PPCA model, the data covariance matrix is the covariance matrix
of the likelihood p(X |B,µ, σ2), which is BB> + σ2I, see (10.70). For
σ → 0, we obtain BB> so that this data covariance must equal the PCA
data covariance (and its factorization given in (10.78)) so that

Cov[X] = TΛT−1 = BB> ⇐⇒ B = TΛ
1
2R , (10.79)

so that we obtain exactly the maximum likelihood estimate in (10.76) for6017

σ = 0.6018

From (10.76) and (10.78) it becomes clear that (P)PCA performs a de-6019

composition of the data covariance matrix.6020

In a streaming setting, where data arrives sequentially, it is recom-6021

mended to use the iterative Expectation Maximization (EM) algorithm for6022

maximum likelihood estimation (Roweis, 1998).6023

To determine the dimensionality of the latent variables (the length of6024

the code, the dimensionality of the lower-dimensional subspace onto which6025

we project the data) Gavish and Donoho (2014) suggest the heuristic that,6026

if we can estimate the noise variance σ2 of the data, we should discard all6027

singular values smaller than 4σ
√
D√

3
. Alternatively, we can use cross valida-6028

tion or the Bayesian model selection criteria (discussed in Section 8.5.2)6029

to determine the true dimensionality of the data (Minka, 2001).6030

Similar to our discussion on linear regression in Chapter 9, we can place6031

a prior distribution on the parameters of the model and integrate them6032

out, thereby avoiding a) point estimates of the parameters and the issues6033

that come with these point estimates (see Section 8.5) and b) allowing6034

for an automatic selection of the appropriate dimensionality M of the la-6035

tent space. In this Bayesian PCA, which was proposed by Bishop (1999), Bayesian PCA6036

places a (hierarchical) prior p(µ,B, σ2) on the model parameters. The6037

generative process allows us to integrate the model parameters out in-6038

stead of conditioning on them, which addresses overfitting issues. Since6039

this integration is analytically intractable, Bishop (1999) proposes to use6040

approximate inference methods, such as MCMC or variational inference.6041

We refer to the work by Gilks et al. (1996) and Blei et al. (2017) for more6042

details on these approximate inference techniques.6043

In PPCA, we considered the linear model xn = Bzn + ε with p(zn) =6044

N
(
0, I

)
and ε ∼ N

(
0, σ2I

)
, i.e., all observation dimensions are affected6045

by the same amount of noise. If we allow each observation dimension6046

d to have a different variance σ2
d we obtain factor analysis (FA) (Spear- factor analysis6047

man, 1904; Bartholomew et al., 2011). This means, FA gives the likeli-6048

hood some more flexibility than PPCA, but still forces the data to be ex-6049

plained by the model parameters B, µ. However, FA no longer allows for An overly flexible
likelihood would be
able to explain more
than just the noise.

6050

a closed-form solution to maximum likelihood so that we need to use an6051
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iterative scheme, such as the EM algorithm, to estimate the model param-6052

eters. While in PPCA all stationary points are global optima, this no longer6053

holds for FA. Compared to PPCA, FA does not change if we scale the data,6054

but it does return different solutions if we rotate the data.6055Independent
Component Analysis Independent Component Analysis (ICA) is also closely related to PCA.6056

Starting again with the model xn = Bzn + ε we now change the prior6057

on zn to non-Gaussian distributions. ICA can be used for blind-source sep-blind-source
separation

6058

aration. Imagine you are in a busy train station with many people talking.6059

Your ears play the role of microphones, and they linearly mix different6060

speech signals in the train station. The goal of blind-source separation is6061

to identify the constituent parts of the mixed signals. As discussed above6062

in the context of maximum likelihood estimation for PPCA, the original6063

PCA solution is invariant to any rotation. Therefore, PCA can identify the6064

best lower-dimensional subspace in which the signals live, but not the sig-6065

nals themselves (Murphy, 2012). ICA addresses this issue by modifying6066

the prior distribution p(z) on the latent sources to require non-Gaussian6067

priors p(z). We refer to the book by Murphy (2012) for more details on6068

ICA.6069

PCA, factor analysis and ICA are three examples for dimensionality re-6070

duction with linear models. Cunningham and Ghahramani (2015) provide6071

a broader survey of linear dimensionality reduction.6072

The (P)PCA model we discussed here allows for several important ex-6073

tensions. In Section 10.5, we explained how to do PCA when the in-6074

put dimensionality D is significantly greater than the number N of data6075

points. By exploiting the insight that PCA can be performed by computing6076

(many) inner products, this idea can be pushed to the extreme by consid-6077

ering infinite-dimensional features. The kernel trick is the basis of kernelkernel trick
kernel PCA

6078

PCA and allows us to implicitly compute inner products between infinite-6079

dimensional features (Schölkopf et al., 1998; Schölkopf and Smola, 2002).6080

There are nonlinear dimensionality reduction techniques that are de-6081

rived from PCA (Burges (2010) provide a good overview). The auto-encoder6082

perspective of PCA that we discussed above can be used to render PCA as a6083

special case of a deep auto-encoder. In the deep auto-encoder, both the en-deep auto-encoder6084

coder and the decoder are represented by multi-layer feedforward neural6085

networks, which themselves are nonlinear mappings. If we set the acti-6086

vation functions in these neural networks to be the identity, the model6087

becomes equivalent to PCA. A different approach to nonlinear dimension-6088

ality reduction is the Gaussian Process Latent Variable Model (GP-LVM) pro-Gaussian Process
Latent Variable
Model

6089

posed by Lawrence (2005). The GP-LVM starts off with the latent-variable6090

perspective that we used to derive PPCA and replaces the linear relation-6091

ship between the latent variables z and the observations x with a Gaus-6092

sian process (GP). Instead of estimating the parameters of the mapping (as6093

we do in PPCA), the GP-LVM marginalizes out the model parameters and6094

makes point estimates of the latent variables z. Similar to Bayesian PCA,6095

the Bayesian GP-LVM proposed by Titsias and Lawrence (2010) maintainsBayesian GP-LVM 6096
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a distribution on the latent variables z and uses approximate inference to6097

integrate them out as well.6098
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Density Estimation with Gaussian Mixture
Models

5942

In earlier chapters, we covered already two fundamental problems in5943

machine learning: regression (Chapter 9 and dimensionality reduction5944

(Chapter 10). In this chapter, we will have a look at a third pillar of ma-5945

chine learning: density estimation. On our journey, we introduce impor-5946

tant concepts, such as the EM algorithm and a latent variable perspective5947

of density estimation with mixture models.5948

When we apply machine learning to data we often aim to represent data5949

in some way. A straightforward way is to take the data points themselves5950

as the representation of the data, see Figure 11.1 for an example. How-5951

ever, this approach may be unhelpful if the dataset is huge or if we are in-5952

terested in representing characteristics of the data. In density estimation,5953

we represent the data compactly using a density, e.g., a Gaussian or Beta5954

distribution. For example, we may be looking for the mean and variance5955

of a data set in order to represent the data compactly using a Gaussian dis-5956

tribution. The mean and variance can be found using tools we discussed5957

in Section 8.2: maximum likelihood or maximum-a-posteriori estimation.5958

We can then use the mean and variance of this Gaussian to represent the5959

distribution underlying the data, i.e., we think of the dataset to be a typi-5960

cal realization from this distribution if we were to sample from it.5961

In practice, the Gaussian (or similarly all other distributions we encoun-5962

Figure 11.1
Two-dimensional
data set that cannot
be meaningfully
represented by a
Gaussian.
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tered so far) have limited modeling capabilities. For example, a Gaussian5963

approximation of the density that generated the data in Figure 11.1 would5964

be a poor approximation. In the following, we will look at a more ex-5965

pressive family of distributions, which we can use for density estimation:5966

mixture models.mixture models 5967

Mixture models can be used to describe a distribution p(x) by a convex
combination of K simple (base) distributions

p(x) =
K∑
k=1

πkpk(x) (11.1)

0 6 πk 6 1 ,
K∑
k=1

πk = 1 , (11.2)

where the components pk are members of a family of basic distributions,5968

e.g., Gaussians, Bernoullis or Gammas, and the πk are mixture weights.mixture weights 5969

Mixture models are more expressive than the corresponding base distri-5970

butions because they allow for multimodal data representations, i.e., they5971

can describe datasets with multiple “clusters”, such as the example in Fig-5972

ure 11.1.5973

In the following, we will focus on Gaussian mixture models (GMMs),5974

where the basic distributions are Gaussians. For a given dataset, we aim5975

to maximize the likelihood of the model parameters to train the GMM. For5976

this purpose we will use results from Chapter 5, Section 7.2 and Chapter 6.5977

However, unlike other application we discussed earlier (linear regression5978

or PCA), we will not find a closed-form maximum likelihood solution. In-5979

stead, we will arrive at a set of dependent simultaneous equations, which5980

we can only solve iteratively.5981

11.1 Gaussian Mixture Model5982

A Gaussian mixture model is a density model where we combine a finiteGaussian mixture
model number of K Gaussian distributions N

(
µk, Σk

)
so that

p(x) =
K∑
k=1

πkN
(
x |µk, Σk

)
(11.3)

0 6 πk 6 1 ,
K∑
k=1

πk = 1 . (11.4)

This convex combination of Gaussian distribution gives us significantly
more flexibility for modeling complex densities than a simple Gaussian
distribution (which we recover from (11.3) for K = 1). An illustration is
given in Figure 11.2. Here, the mixture density is given as

p(x) = 0.5N
(
x | − 2, 1

2

)
+ 0.2N

(
x | 1, 2

)
+ 0.3N

(
x | 4, 1

)
. (11.5)

Draft (2018-08-23) from Mathematics for Machine Learning. Errata and feedback to https://mml-book.com.

https://mml-book.com


11.2 Parameter Learning via Maximum Likelihood 329

Figure 11.2
Gaussian mixture
model. The
Gaussian mixture
distribution (black)
is composed of a
convex combination
of Gaussian
distributions and is
more expressive
than any individual
component. Dashed
lines represent the
weighted Gaussian
components.−4 −2 0 2 4 6 8
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11.2 Parameter Learning via Maximum Likelihood5983

Assume we are given a data set X = {x1, . . . ,xN} where xn, n =5984

1, . . . , N are drawn i.i.d. from an unknown distribution p(x). Our ob-5985

jective is to find a good approximation/representation of this unknown5986

distribution p(x) by means of a Gaussian mixture model (GMM) with K5987

mixture components. The parameters of the GMM are the K means µk,5988

the covariances Σk and mixture weights πk. We summarize all these free5989

parameters in θ := {πk,µk,Σk, k = 1, . . . ,K}.5990

Example 11.1 (Initial setting)

Figure 11.3 Initial
setting: GMM
(black) with
mixture three
mixture components
(dashed) and seven
data points (discs).
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Throughout this chapter, we will have a simple running example that
helps us illustrate and visualize important concepts.

We will look at a one-dimensional data setX = [−3,−2.5,−1, 0, 2, 4, 5]
consisting of seven data points. We wish to find a GMM with K = 3
components that models the data. We initialize the individual components
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as

p1(x) = N
(
x | − 4, 1

)
(11.6)

p2(x) = N
(
x | 0, 0.2

)
(11.7)

p3(x) = N
(
x | 8, 3

)
(11.8)

and assign them equal weights π1 = π2 = π3 = 1
3
. The corresponding

model (and the data points) are shown in Figure 11.3.

In the following, we detail how to obtain a maximum likelihood esti-
mate θML of the model parameters θ. We start by writing down the like-
lihood, i.e., the probability of the data given the parameters. We exploit
our i.i.d. assumption, which leads to the factorized likelihood

p(X |θ) =
N∏
n=1

p(xn |θ) , p(xn |θ) =
K∑
k=1

πkN
(
xn |µk, Σk

)
(11.9)

where every individual likelihood term p(xn |θ) is a Gaussian mixture
density. Then, we obtain the log-likelihood as

log p(X |θ) =
N∑
n=1

log p(xn |θ) =
N∑
n=1

log
K∑
k=1

πkN
(
xn |µk, Σk

)
︸ ︷︷ ︸

=:L

.

(11.10)

We aim to find parameters θ∗ML that maximize the log-likelihood L defined
in (11.10). Our “normal” procedure would be to compute the gradient
dL/dθ of the log-likelihood with respect to the model parameters θ, set
it to 0 and solve for θ. However, unlike our previous examples for maxi-
mum likelihood estimation (e.g., when we discussed linear regression in
Section 9.2), we cannot obtain a closed-form solution. If we were to con-
sider a single Gaussian as the desired density, the sum over k in (11.10)
vanishes, and the log can be applied directly to the Gaussian component,
such that we get

logN
(
x |µ, Σ

)
= −D

2
log(2π)− 1

2
log det(Σ)− 1

2
(x− µ)>Σ−1(x− µ) .

(11.11)

This simple form allows us find closed-form maximum likelihood esti-5991

mates of µ and Σ, as discussed in Chapter 8. However, in (11.10), we5992

cannot move the log into the sum over k so that we cannot obtain a sim-5993

ple closed-form maximum likelihood solution. However, we can exploit an5994

iterative scheme to find good model parameters θML: the EM algorithm.5995

Any local optimum of a function exhibits the property that its gradi-
ent with respect to the parameters must vanish (necessary condition), see
Chapter 7. In our case, we obtain the following necessary conditions when
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we optimize the log-likelihood in (11.10) with respect to the GMM param-
eters µk,Σk, πk:

∂L
∂µk

= 0 ⇐⇒
N∑
n=1

∂ log p(xn |θ)

∂µk
= 0 , (11.12)

∂L
∂Σk

= 0 ⇐⇒
N∑
n=1

∂ log p(xn |θ)

∂Σk

= 0 , (11.13)

∂L
∂πk

= 0 ⇐⇒
N∑
n=1

∂ log p(xn |θ)

∂πk
= 0 . (11.14)

For all three necessary conditions, by applying the chain rule (see Sec-
tion 5.2.2), we require partial derivatives of the form

∂ log p(xn |θ)

∂θ
=

1

p(xn |θ)

∂p(xn |θ)

∂θ
(11.15)

where θ = {µk,Σk, πk, k = 1, . . . ,K} comprises all model parameters
and

1

p(xn |θ)
=

1∑K
j=1 πjN

(
xn |µj, Σj

) . (11.16)

In the following, we will compute the partial derivatives (11.12)–(11.14).5996

Theorem 11.1 (Update of the GMM Means). The update of the mean pa-
rameters µk, k = 1, . . . ,K of the GMM is given by

µk =

∑N
n=1 rnkxn∑N
n=1 rnk

=
1

Nk

N∑
n=1

rnkxn , (11.17)

where we define

rnk :=
πkN

(
xn |µk, Σk

)∑K
j=1 πjN

(
xn |µj, Σj

) , (11.18)

Nk :=
N∑
n=1

rnk . (11.19)

Proof From (11.15), we see that the gradient of the log-likelihood with
respect to the mean parameters µk, k = 1, . . . ,K requires us to compute
the partial derivative

∂p(xn |θ)

∂µk
=

K∑
j=1

πj
∂N

(
xn |µj, Σj

)
∂µk

= πk
∂N

(
xn |µk, Σk

)
∂µk

(11.20)

= πk(xn − µk)>Σ−1
k N

(
xn |µk, Σk

)
(11.21)

where we exploited that only the kth mixture component depends on µk.5997
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We use our result from (11.21) in (11.15) and put everything together
so that the desired partial derivative of L with respect to µk is given as

∂L
∂µk

=
N∑
n=1

∂ log p(xn |θ)

∂µk
=

N∑
n=1

1

p(xn |θ)

∂p(xn |θ)

∂µk
(11.22)

=
N∑
n=1

(xn − µk)>Σ−1
k

πkN
(
xn |µk, Σk

)∑K
j=1 πjN

(
xn |µj, Σj

)
︸ ︷︷ ︸

=rnk

(11.23)

=
N∑
n=1

rnk(xn − µk)>Σ−1
k . (11.24)

Here, we used the identity from (11.16) and the result of the partial5998

derivative in (11.21) to get to the second row. The values rnk are often5999

called responsibilities.responsibilities 6000

The responsibilities
are closely related
to the likelihood.

Remark. The responsibility rnk of the kth mixture component for data
point xn is proportional to the likelihood

p(xn |πk,µk,Σk) = πkN
(
xn |µk, Σk

)
(11.25)

of the mixture component given the data point (the denominator in the6001

definition of rnk is constant for all mixture components and serves as a6002

normalizer). Therefore, mixture components have a high responsibility6003

for a data point when the data point could be a plausible sample from6004

that mixture component. ♦6005

From the definition of rnk in (11.18) it is clear that [rn1, . . . , rnK ]>6006

is a probability vector, i.e.,
∑

k rnk = 1 with rnk > 0. This probability6007

vector distributes probability mass among theK mixture component, and,6008

intuitively, every rnk expresses the probability that xn has been generated6009

by the kth mixture component.6010

We now solve for µk so that ∂L
∂µk

= 0> and obtain

N∑
n=1

rnkxn =
N∑
n=1

rnkµk ⇐⇒ µk =

∑N
n=1 rnkxn∑N
n=1 rnk

=
1

Nk

N∑
n=1

rnkxn ,

(11.26)

where we defined

Nk :=
N∑
n=1

rnk . (11.27)

as the total responsibility of the kth mixture component across the entire6011

dataset. This concludes the proof of Theorem 11.1.6012

Intuitively, (11.17) can be interpreted as a Monte-Carlo estimate of the
mean of weighted data points xn where every xn is weighted by the
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responsibility rnk of the kth cluster for xn. Therefore, the mean µk is Figure 11.4 Update
of the mean
parameter of
mixture component
in a GMM. The
mean µ is being
pulled toward
individual data
points with the
weights given by the
corresponding
responsibilities. The
mean update is then
a weighted average
of the data points.

r1

r2
r3

x1

x2 x3

µk

pulled toward a data point xn with strength given by rnk. Intuitively, the
means are pulled stronger toward data points for which the corresponding
mixture component has a high responsibility, i.e., a high likelihood. Fig-
ure 11.4 illustrates this. We can also interpret the mean update in (11.17)
as the expected value of all data points under the distribution given by

rk := [r1k, . . . , rNk]
>/Nk , (11.28)

which is a normalized probability vector, i.e.,

µk ← Erk [X] . (11.29)

Example 11.2 (Responsibilities)
For our example from Figure 11.3 we compute the responsibilities rnk

1.0 0.0 0.0
1.0 0.0 0.0

0.057 0.943 0.0
0.001 0.999 0.0
0.0 0.066 0.934
0.0 0.0 1.0
0.0 0.0 1.0


∈ RN×K . (11.30)

Here, the nth row tells us the responsibilities of all mixture components
for xn. The sum of all K responsibilities for a data point (sum of every
row) is 1. The kth column gives us an overview of the responsibility of
the kth mixture component. We can see that the third mixture component
(third column) is not responsible for any of the first four data points, but
takes much responsibility of the remaining data points. The sum of all
entries of a column gives us the values Nk, i.e., the total responsibility of
the kth mixture component. In our example, we get N1 = 2.058, N2 =
2.008, N3 = 2.934.

Example 11.3 (Mean Updates)

Figure 11.5 Effect
of updating the
mean values in a
GMM. (a) GMM
before updating the
mean values; (b)
GMM after updating
the mean values µk
while retaining the
variances and
mixture weights.
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(a) GMM density and individual components
prior to updating the mean values.
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(b) GMM density and individual components
after updating the mean values.
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In our example from Figure 11.3, the mean values are updated as fol-
lows:

µ1 : −4→ −2.7 (11.31)

µ2 : 0→ −0.4 (11.32)

µ3 : 8→ 3.7 (11.33)

Here, we see that the means of the first and third mixture component
move toward the regime of the data, whereas the mean of the second
component does not change so dramatically. Figure 11.5 illustrates this
change, where Figure 11.5(a) shows the GMM density prior to updating
the means and Figure 11.5(b) shows the GMM density after updating the
mean values µk.

The update of the mean parameters in (11.17) look fairly straight-6013

forward. However, note that the responsibilities rnk are a function of6014

πj,µj,Σj for all j = 1, . . . ,K, such that the updates in (11.17) depend6015

on all parameters of the GMM, and a closed-form solution, which we ob-6016

tained for linear regression in Section 9.2 or PCA in Chapter 10, cannot6017

be obtained.6018

Theorem 11.2 (Updates of the GMM Covariances). The update of the co-
variance parameters Σk, k = 1, . . . ,K of the GMM is given by

Σk =
1

Nk

N∑
n=1

rnk(xn − µk)(xn − µk)> , (11.34)

where rnk and Nk are defined in (11.18) and (11.19), respectively.6019

Proof To prove Theorem 11.2 our approach is to compute the partial
derivatives of the log-likelihood L with respect to the covariances Σk, set
them to 0 and solve for Σk. We start with our general approach

∂L
∂Σk

=
N∑
n=1

∂ log p(xn |θ)

∂Σk

=
N∑
n=1

1

p(xn |θ)

∂p(xn |θ)

∂Σk

. (11.35)

We already know 1/p(xn |θ) from (11.16). To obtain the remaining par-
tial derivative ∂p(xn |θ)/∂Σk, we write down the definition of the Gaus-
sian distribution p(xn |θ), see (11.9), and drop all terms but the kth. We
then obtain

∂p(xn |θ)

∂Σk

(11.36a)

=
∂

∂Σk

(
(2π)−

D
2 det(Σk)

− 1
2 exp

(
− 1

2
(xn − µk)>Σ−1

k (xn − µk)
))

(11.36b)
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= πk(2π)−
D
2

[
∂

∂Σk

det(Σk)
− 1

2 exp
(
− 1

2
(xn − µk)>Σ−1

k (xn − µk)
)

+ det(Σk)
− 1

2
∂

∂Σk

exp
(
− 1

2
(xn − µk)>Σ−1

k (xn − µk)
)]
. (11.36c)

We now use the identities
∂

∂Σk

det(Σk)
− 1

2 = −1

2
det(Σk)

− 1
2 Σ−1

k , (11.37)

∂

∂Σk

(xn − µk)>Σ−1
k (xn − µk) = −Σ−1

k (xn − µk)(xn − µk)>Σ−1
k

(11.38)

and obtain (after some re-arranging) the desired partial derivative re-
quired in (11.35) as

∂p(xn |θ)

∂Σk

= πkN
(
xn |µk, Σk

)
×
[
− 1

2
(Σ−1

k −Σ−1
k (xn − µk)(xn − µk)>Σ−1

k )
]
. (11.39)

Putting everything together, the partial derivative of the log-likelihood
with respect to Σk is given by

∂L
∂Σk

=
N∑
n=1

∂ log p(xn |θ)

∂Σk

=
N∑
n=1

1

p(xn |θ)

∂p(xn |θ)

∂Σk

(11.40a)

=
N∑
n=1

πkN
(
xn |µk, Σk

)∑K
j=1 πjN

(
xn |µj, Σj

)︸ ︷︷ ︸
=rnk

×
[
− 1

2
(Σ−1

k −Σ−1
k (xn − µk)(xn − µk)>Σ−1

k )
]

(11.40b)

= −1

2

N∑
n=1

rnk(Σ
−1
k −Σ−1

k (xn − µk)(xn − µk)>Σ−1
k ) (11.40c)

= −1

2
Σ−1
k

N∑
n=1

rnk︸ ︷︷ ︸
=Nk

+
1

2
Σ−1
k

(
N∑
n=1

rnk(xn − µk)(xn − µk)>
)

Σ−1
k .

(11.40d)

We see that the responsibilities rnk also appear in this partial derivative.
Setting this partial derivative to 0, we obtain the necessary optimality
condition

NkΣ
−1
k = Σ−1

k

(
N∑
n=1

rnk(xn − µk)(xn − µk)>
)

Σ−1
k (11.41a)

⇐⇒ NkI =

(
N∑
n=1

rnk(xn − µk)(xn − µk)>
)

Σ−1
k (11.41b)
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⇐⇒ Σk =
1

Nk

N∑
n=1

rnk(xn − µk)(xn − µk)> , (11.41c)

which gives us a simple update rule for Σk for k = 1, . . . ,K and proves6020

Theorem 11.2.6021

Similar to the update of µk in (11.17), we can interpret the update of
the covariance in (11.34) as an expected value

Erk [X̃
>
k X̃k] (11.42)

where X̃k := [x1 − µk, . . . ,xN − µk]> is the data matrix X centered at6022

µk, and rk is the probability vector defined in (11.28).6023

Example 11.4 (Variance Updates)

Figure 11.6 Effect
of updating the
variances in a GMM.
(a) GMM before
updating the
variances; (b) GMM
after updating the
variances while
retaining the means
and mixture
weights.
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(a) GMM density and individual components
prior to updating the variances.
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(b) GMM density and individual components
after updating the variances.

In our example from Figure 11.3, the variances are updated as follows:

σ2
1 : 1→ 0.14 (11.43)

σ2
2 : 0.2→ 0.44 (11.44)

σ2
3 : 3→ 1.53 (11.45)

Here, we see that the variances of the first and third component shrink
significantly, the variance of the second component increases slightly.

Figure 11.6 illustrates this setting. Figure 11.6(a) is identical (but
zoomed in) to Figure 11.5(b) and shows the GMM density and its indi-
vidual components prior to updating the variances. Figure 11.6(b) shows
the GMM density after updating the variances.

Similar to the update of the mean parameters, we can interpret (11.34)6024

as a Monte-Carlo estimate of the weighted covariance of data points xn6025

associated with the kth mixture component, where the weights are the6026

responsibilities rnk. As with the updates of the mean parameters, this up-6027

date depends on all πj,µj,Σj, j = 1, . . . ,K, through the responsibilities6028

rnk, which prohibits a closed-form solution.6029
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Theorem 11.3 (Update of the GMM Mixture Weights). The mixture weights
of the GMM are updated as

πk =
Nk

N
(11.46)

for k = 1, . . . ,K, where N is the number of data points and Nk is defined6030

in (11.19).6031

Proof To find the partial derivative of the log-likelihood with respect to
the weight parameters πk, k = 1, . . . ,K, we take the constraint

∑
k πk =

1 into account by using Lagrange multipliers (see Section 7.2). The La-
grangian is

L = L+ λ

(
K∑
k=1

πk − 1

)
(11.47a)

=
N∑
n=1

log
K∑
k=1

πkN
(
xn |µk, Σk

)
+ λ

(
K∑
k=1

πk − 1

)
(11.47b)

where L is the log-likelihood from (11.10) and the second term encodes
for the equality constraint that all the mixture weights need to sum up to
1. We obtain the partial derivatives with respect to πk and the Lagrange
multiplier λ

∂L

∂πk
=

N∑
n=1

N
(
xn |µk, Σk

)∑K
j=1 πjN

(
xn |µj, Σj

) + λ (11.48)

=
1

πk

N∑
n=1

πkN
(
xn |µk, Σk

)∑K
j=1 πjN

(
xn |µj, Σj

)︸ ︷︷ ︸
=Nk

+λ =
Nk

πk
+ λ , (11.49)

∂L

∂λ
=

K∑
k=1

πk − 1 . (11.50)

Setting both partial derivatives to 0 (necessary condition for optimum)
yields the system of equations

πk = −Nk

λ
, (11.51)

1 =
K∑
k=1

πk . (11.52)

Using (11.52) in (11.51) and solving for πk, we obtain

K∑
k=1

πk = 1 ⇐⇒ −
K∑
k=1

Nk

λ
= 1 ⇐⇒ −N

λ
= 1 ⇐⇒ λ = −N .

(11.53)
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This allows us to substitute −N for λ in (11.51) to obtain

πk =
Nk

N
, (11.54)

which gives us the update for the weight parameters πk and proves Theo-6032

rem 11.3.6033

We can identify the mixture weight in (11.46) as the ratio of the to-6034

tal responsibility of the kth cluster and the number of data points. Since6035

N =
∑

kNk the number of data points can also be interpreted as the to-6036

tal responsibility of all mixture components together, such that πk is the6037

relative importance of the kth mixture component for the dataset.6038

Remark. Since Nk =
∑N

i=1 rnk, the update equation (11.46) for the mix-6039

ture weights πk also depends on all πj,µj,Σj, j = 1, . . . ,K via the re-6040

sponsibilities rnk. ♦6041

Example 11.5 (Weight Parameter Updates)

Figure 11.7 Effect
of updating the
mixture weights in a
GMM. (a) GMM
before updating the
mixture weights; (b)
GMM after updating
the mixture weights
while retaining the
means and
variances. Note the
different scalings of
the vertical axes.
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(a) GMM density and individual components
prior to updating the mixture weights.
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(b) GMM density and individual components
after updating the mixture weights.

In our running example from Figure 11.3, the mixture weights are up-
dated as follows:

π1 : 1
3
→ 0.29 (11.55)

π2 : 1
3
→ 0.29 (11.56)

π3 : 1
3
→ 0.42 (11.57)

Here we see that the third component gets more weight/importance,
while the other components become slightly less important. Figure 11.7
illustrates the effect of updating the mixture weights. Figure 11.7(a) is
identical to Figure 11.6(b) and shows the GMM density and its individual
components prior to updating the mixture weights. Figure 11.7(b) shows
the GMM density after updating the mixture weights.

Overall, having updated the means, the variances and the weights once,
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we obtain the GMM shown in Figure 11.7(b). Compared with the ini-
tialization shown in Figure 11.3, we can see that the parameter updates
caused the GMM density to shift some of its mass toward the data points.

After updating the means, variances and weights once, the GMM fit
in Figure 11.7(b) is already remarkably better than its initialization from
Figure 11.3. This is also evidenced by the log-likelihood values, which
increased from 28.3 (initialization) to 14.4 (after one complete update
cycle).

11.3 EM Algorithm6042

Unfortunately, the updates in (11.17), (11.34), and (11.46) do not consti-6043

tute a closed-form solution for the updates of the parameters µk,Σk, πk6044

of the mixture model because the responsibilities rnk depend on those pa-6045

rameters in a complex way. However, the results suggest a simple iterative6046

scheme for finding a solution to the parameters estimation problem via6047

maximum likelihood. The Expectation Maximization algorithm (EM algo- EM algorithm6048

rithm) was proposed by Dempster et al. (1977) and is a general iterative6049

scheme for learning parameters (maximum likelihood or MAP) in mixture6050

models and, more generally, latent-variable models.6051

In our example of the Gaussian mixture model, we choose initial values6052

for µk,Σk, πk and alternate until convergence between6053

• E-step: Evaluate the responsibilities rnk (posterior probability of data6054

point i belonging to mixture component k).6055

• M-step: Use the updated responsibilities to re-estimate the parameters6056

µk,Σk, πk.6057

Every step in the EM algorithm increases the log-likelihood function (Neal6058

and Hinton, 1999). For convergence, we can check the log-likelihood or6059

the parameters directly. A concrete instantiation of the EM algorithm for6060

estimating the parameters of a GMM is as follows:6061

1. Initialize µk,Σk, πk6062

2. E-step: Evaluate responsibilities rnk for every data point xn using cur-
rent parameters πk,µk,Σk:

rnk =
πkN

(
xn |µk, Σk

)∑
j πjN

(
xn |µj, Σj

) . (11.58)

3. M-step: Re-estimate parameters πk,µk,Σk using the current responsi-
bilities rnk (from E-step):

µk =
1

Nk

N∑
n=1

rnkxn , (11.59)
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Figure 11.9 Data
set colored
according to the
responsibilities of
the mixture
components when
EM converges.
While a single
mixture component
is clearly
responsible for the
data on the left, the
overlap of the two
data clusters on the
right could have
been generated by
two mixture
components.
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Σk =
1

Nk

N∑
n=1

rnk(xn − µk)(xn − µk)> , (11.60)

πk =
Nk

N
. (11.61)

Example 11.6 (GMM Fit)

Figure 11.8 EM
algorithm applied to
the GMM from
Figure 11.2.
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(a) Final GMM fit. After five iterations, the EM
algorithm converges and returns this mixture
density.
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(b) Negative log-likelihood as a function of the
EM iterations.

When we run EM on our example from Figure 11.3, we obtain the final
result shown in Figure 11.8(a) after five iterations, and Figure 11.8(b)
shows how the negative log-likelihood evolves as a function of the EM
iterations. The final GMM is given as

p(x) = 0.29N
(
x | − 2.75, 0.06

)
+ 0.28N

(
x | − 0.50, 0.25

)
+ 0.43N

(
x | 3.64, 1.63

)
.

(11.62)

We applied the EM algorithm to the two-dimensional dataset shown in6063

Figure 11.1 with K = 3 mixture components. Figure 11.9 visualizes the6064

final responsibilities of the mixture components for the data points. It be-6065

comes clear that there are data points that cannot be uniquely assigned6066
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Figure 11.10
Illustration of the
EM algorithm for
fitting a Gaussian
mixture model with
three components to
a two-dimensional
data set. (a) Data
set; (b) Negative log
likelihood (lower is
better) as a function
of the EM iterations.
The red dots
indicate the
iterations for which
the corresponding
GMM fits are shown
in (c)–(f). The
yellow discs indicate
the mean of the
Gaussian
distribution.
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(b) Negative log-likelihood.
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(c) EM initialization.
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(d) EM after 1 iteration.
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(e) EM after 10 iterations
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(f) EM after 63 iterations

to a single (either blue or yellow) component, such that the responsibil-6067

ities of these two clusters for those points are around 0.5. Figure 11.106068

illustrates a few steps of the EM algorithm.6069

11.4 Latent Variable Perspective6070

We can look at the GMM from the perspective of a discrete latent vari-
able model, i.e., where the latent variable z can attain only a finite set of
values. This is in contrast to PCA where the latent variables were continu-
ous valued numbers in RM . Let us assume that we have a mixture model
with K components and that a data point x is generated by exactly one
component. We can then use a discrete indicator variable zk ∈ {0, 1} that
indicates whether the kth mixture component generated that data point
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so that

p(x | zk = 1) = N
(
x |µk, Σk

)
. (11.63)

We define z := [z1, . . . , zK ]> ∈ RK as a vector consisting of K − 1Figure 11.11
Graphical model for
a GMM with a single
data point.

π

z

xΣ

µ

many 0s and exactly one 1. Because of this, it also holds that
∑K

k=1 zk =
1. Therefore, z is a one-hot encoding (also: 1-of-K representation). This

one-hot encoding

1-of-K
representation

allows us to write the conditional distribution as

p(x | z) =
K∏
k=1

N
(
x |µk, Σk

)zk
, (11.64)

where zk ∈ {0, 1}. Thus far, we assumed that the indicator variables zk6071

are known. However, in practice, this is not the case, and we place a prior6072

distribution on z.6073

In the following, we will discuss the prior p(z), the marginal p(x, z)6074

and the posterior p(z |x) for the case of observing a single data point6075

x (the corresponding graphical model is shown in Figure 11.11) before6076

extending the concepts to the general case where the dataset consists of6077

N data points.6078

11.4.1 Prior6079

Given that we do not know which mixture component generated the data
point, we treat the indicators z as a latent variable and place a prior p(z)
on it. Then the prior p(zk = 1) = πk describes the probability that the kth
mixture component generated data point x. To ensure that our probability
distribution is normalized, we require that

∑K
k=1 πk = 1. We summarize

the prior p(z) = π in the probability vector π = [π1, . . . , πK ]>. Because
of the one-hot encoding of z, we can write the prior in a less obvious form

p(z) =
K∏
k=1

πzkk , zk ∈ {0, 1} , (11.65)

but this form will become handy later on.6080

Remark (Sampling from a GMM). The construction of this latent variable6081

model lends itself to a very simple sampling procedure to generate data:6082

1. Sample zi ∼ p(z |π)6083

2. Sample xi ∼ p(x | zi)6084

In the first step, we would select a mixture component at random accord-6085

ing to π; in the second step we would draw a sample from a single mixture6086

component. This kind of sampling, where samples of random variables6087

depend on samples from the variable’s parents in the graphical model,6088

is called ancestral sampling. This means, we can generate data from theancestral sampling6089

mixture model by generating a latent variable value k ∈ {1, . . . ,K} to6090

identify a singe mixture component, and then generate a data point xi6091
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by sampling from this mixture component. We can discard the samples of6092

the latent variable so that we are left with the xi, which are valid samples6093

from our mixture model. ♦6094

11.4.2 Marginal6095

If we marginalize out the latent variables z (by summing over all possible
one-hot encodings), we obtain the marginal distribution

p(x) =
∑
z

p(x, z |π) =
∑
z

K∏
k=1

(
πkN

(
x |µk, Σk

))zk (11.66a)

= π1N
(
x |µ1, Σ1

)
+ · · ·+ πKN

(
x |µK , ΣK

)
(11.66b)

=
K∑
k=1

πkN
(
x |µk, Σk

)
, (11.66c)

which is identical to the GMM we introduced in (11.3). Therefore, the The marginal
distribution p(x) is
a Gaussian mixture
model.

6096

latent variable model with latent indicators zk is an equivalent way of6097

thinking about a Gaussian mixture model.6098

11.4.3 Posterior6099

Let us have a brief look at the posterior distribution on the latent variable
z. According to Bayes’ theorem, the posterior is

p(z |x) =
p(x, z)

p(x)
, (11.67)

where p(x) is given in (11.66c). With (11.64) and (11.65) we get the joint
distribution as

p(x, z) = p(x | z)p(z) =
K∏
k=1

N
(
x |µk, Σk

)zk K∏
k=1

πzkk (11.68a)

=
K∏
k=1

(
πkN

(
x |µk, Σk

))zk
. (11.68b)

Here, we identify p(x | z) =
∏K
k=1N

(
x |µk, Σk

)zk as the likelihood. This
yields the posterior distribution for the kth indicator variable zk

p(zk = 1 |x) =
p(x | zk = 1)p(zk = 1)∑K
j=1 p(zj = 1)p(x | zj = 1)

=
πkN

(
x |µk, Σk

)∑K
j=1 πjN

(
x |µj, Σj

) ,
(11.69)

which we identify as the responsibility of the kth mixture component for6100

data point x. Note that we omitted the explicit conditioning on the GMM6101

parameters πk,µk,Σk where k = 1, . . . ,K.6102
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11.4.4 Extension to a Full Dataset6103

Thus far, we only discussed the case where the dataset consists only of a6104

single data point x. However, the concepts can be directly extended to the6105

case of N data points x1, . . . ,xN , which we collect in the data matrix X.6106

Every data point xn possesses its own latent variable

zn = [zn1, . . . , znK ]> ∈ RK . (11.70)

Previously (when we only considered a single data point x) we omitted6107

the index n, but now this becomes important. We collect all of these latent6108

variables in the matrixZ. We share the same prior distribution π across all6109

data points. The corresponding graphical model is shown in Figure 11.12,6110

where we use the plate notation.6111

The likelihood p(X |Z) factorizes over the data points, such that the
joint distribution (11.68b) is given asFigure 11.12

Graphical model for
a GMM with N data
points.

π

zn

xnΣ

µ

n = 1, . . . , N

p(X,Z) = p(X |Z)p(Z) =
N∏
n=1

K∏
k=1

(
πkN

(
xn |µk, Σk

))znk
. (11.71)

Generally, the posterior distribution p(zk = 1 |xn) is the probability that6112

the kth mixture component generated data point xn and corresponds to6113

the responsibility rnk we introduced in (11.18). Now, the responsibilities6114

also have not only an intuitive but also a mathematically justified inter-6115

pretation as posterior probabilities.6116

11.4.5 EM Algorithm Revisited6117

The EM algorithm that we introduced as an iterative scheme for maximum
likelihood estimation can be derived in a principled way from the latent
variable perspective. Given a current setting θ(t) of model parameters, the
E-step calculates the expected log-likelihood

Q(θ |θ(t)) = EZ |X,θ(t) [log p(X,Z |θ)] (11.72a)

=

∫
log p(X,Z |θ)p(Z |X,θ(t))dZ , (11.72b)

where the expectation of the log-joint distribution of latent variables Z6118

and observationsX is taken with respect to the posterior p(Z |X,θ(t)) of6119

the latent variables. The M-step selects an updated set of model parame-6120

ters θ(t+1) by maximizing (11.72b).6121

Although an EM iteration does increase the log-likelihood, there are6122

no guarantees that EM converges to the maximum likelihood solution.6123

It is possible that the EM algorithm converges to a local maximum of6124

the log-likelihood. Different initializations of the parameters θ could be6125

used in multiple EM runs to reduce the risk of ending up in a bad local6126

optimum. We do not go into further details here, but refer to the excellent6127

expositions by Rogers and Girolami (2016) and Bishop (2006).6128
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11.5 Further Reading6129

The GMM can be considered a generative model in the sense that it is6130

straightforward to generate new data using ancestral sampling (Bishop,6131

2006). For given GMM parameters πk,µk,Σk, k = 1, . . . ,K, we sample6132

an index k from the probability vector [π1, . . . , πK ]> and then sample a6133

data point x ∼ N
(
µk, Σk

)
. If we repeat thisN times, we obtain a dataset6134

that has been generated by a GMM. Figure 11.1 was generated using this6135

procedure.6136

Throughout this chapter, we assumed that the number of components6137

K is known. In practice, this is often not the case. However, we could use6138

cross-validation, as discussed in Section 8.5, to find good models.6139

Gaussian mixture models are closely related to the K-means cluster-6140

ing algorithm. K-means also uses the EM algorithm to assign data points6141

to clusters. If we treat the means in the GMM as cluster centers and ig-6142

nore the covariances, we arrive at K-means. As also nicely described by6143

MacKay (2003), K-means makes a “hard” assignments of data points to6144

cluster centers µk, whereas a GMM makes a “soft” assignment via the6145

responsibilities.6146

We only touched upon the latent variable perspective of GMMs and the6147

EM algorithm. Note that EM can be used for parameter learning in general6148

latent variable models, e.g., nonlinear state-space models (Ghahramani6149

and Roweis, 1999; Roweis and Ghahramani, 1999) and for reinforcement6150

learning as discussed by Barber (2012). Therefore, the latent variable per-6151

spective of a GMM is useful to derive the corresponding EM algorithm in6152

a principled way (Bishop, 2006; Barber, 2012; Murphy, 2012).6153

We only discussed maximum likelihood estimation (via the EM algo-6154

rithm) for finding GMM parameters. The standard criticisms of maximum6155

likelihood also apply here:6156

• As in linear regression, maximum likelihood can suffer from severe6157

overfitting. In the GMM case, this happens when the mean of a mix-6158

ture component is identical to a data point and the covariance tends to6159

0. Then, the likelihood approaches infinity. Bishop (2006) and Barber6160

(2012) discuss this issue in detail.6161

• We only obtain a point estimate of the parameters πk,µk,Σk for k =6162

1, . . . ,K, which does not give any indication of uncertainty in the pa-6163

rameter values. A Bayesian approach would place a prior on the param-6164

eters, which can be used to obtain a posterior distribution on the param-6165

eters. This posterior allows us to compute the model evidence (marginal6166

likelihood), which can be used for model comparison, which gives us a6167

principled way to determine the number of mixture components. Un-6168

fortunately, closed-form inference is not possible in this setting because6169

there is no conjugate prior for this model. However, approximations,6170

such as variational inference, can be used to obtain an approximate6171

posterior (Bishop, 2006).6172
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Figure 11.13
Histogram (orange
bars) and kernel
density estimation
(blue line). The
kernel density
estimator (with a
Gaussian kernel)
produces a smooth
estimate of the
underlying density,
whereas the
histogram is simply
an unsmoothed
count measure of
how many data
points (black) fall
into a single bin.
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In this chapter, we discussed mixture models for density estimation.6173

There is a plethora of density estimation techniques available. In practice6174

we often use histograms and kernel density estimation.6175Histograms

Histograms provide a non-parametric way to represent continuous den-6176

sities and have been proposed by Pearson (1895). A histogram is con-6177

structed by “binning” the data space and count how many data points fall6178

into each bin. Then a bar is drawn at the center of each bin, and the height6179

of the bar is proportional to the number of data points within that bin. The6180

bin size is a critical hyper-parameter, and a bad choice can lead to overfit-6181

ting and underfitting. Cross-validation, as discussed in Section 8.1.4, can6182

be used to determine a good bin size.6183Kernel density
estimation Kernel density estimation, independently proposed by Rosenblatt (1956)

and Parzen (1962), is a nonparametric way for density estimation. Given
N i.i.d. samples, the kernel density estimator represents the underlying
distribution as

p(x) =
1

Nh

N∑
n=1

k

(
x− xn
h

)
, (11.73)

where k is a kernel function, i.e., a non-negative function that integrates6184

to 1 and h > 0 is a smoothing/bandwidth parameter, which plays a simi-6185

lar role as the bin size in histograms. Note that we place a kernel on every6186

single data point xn in the dataset. Commonly used kernel functions are6187

the uniform distribution and the Gaussian distribution. Kernel density esti-6188

mates are closely related to histograms, but by choosing a suitable kernel,6189

we can guarantee smoothness of the density estimate. Figure 11.13 illus-6190

trates the difference between a histogram and a kernel density estimator6191

(with a Gaussian-shaped kernel) for a given data set of 250 data points.6192
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Classification with Support Vector Machines

6204

In many situations we want our machine learning algorithm to predict one
of a number of outcomes. For example an email client that sorts mail into
personal mail and junk mail, which has two outcomes. Another example
is a telescope that identifies whether an object in the night sky is a galaxy,
star or planet. There are usually a small number of outcomes, and more
importantly there is usually no additional structure on these outcomes.
In this chapter, we consider predictors that output binary values, that is, An example of

structure is if the
outcomes were
ordered, like in the
case of small,
medium and large
t-shirts.

there are only two possible outcomes. This is in contrast to Chapter 9
where we considered a prediction problem with continuous-valued out-
puts. This machine learning task is called binary classification. For binary

binary classification

classification the set of possible values that the label/output can attain is
binary, and for this chapter we denote them as {+1,�1}. In other words,
we consider predictors of the form

f : RD
! {+1,�1} . (12.1)

Recall from Chapter 8 that we represent each example xn as a feature6205

vector of D real numbers. The labels are often referred to as the positive Input example xn

may also be referred
to as inputs, data
points, features or
instances.

6206

and negative classes, respectively. One should be careful not to infer intu-

classes

6207

itive attributes of positiveness of the +1 class. For example, in a cancer6208

detection task, a patient with cancer is often labelled +1. In principle, any6209

two distinct values can be used, e.g., {True,False}, {0, 1} or {red, blue}.6210

The problem of binary classification is well studied, and we defer a survey For probabilisitic
models, it is
mathematically
convenient to use
{0, 1} as a binary
representation. See
remark after
Example 6.15.

6211

of other approaches to Section 12.4.6212

We present an approach known as the Support Vector Machine (SVM),6213

which solves the binary classification task. Similar to regression, we have6214

a supervised learning task, where we have a set of examples xn 2 RD
6215

along with their corresponding labels yn 2 {+1,�1}. Given the training6216

data consisting of example-label pairs (x1, y1), . . . , (xN , yN), we would6217

like to estimate parameters of the model that will give the best classifi-6218

cation error. Similar to Chapter 9 we consider a linear model, and hide6219

away the nonlinearity in a transformation � of the examples (9.12). We6220

will revisit � later in this chapter in Section 12.3.3.6221

The SVM provides state of the art results in many applications, with6222

sound theoretical guarantees (Steinwart and Christmann, 2008). In this6223

book, the first reason we choose to discuss the SVM is to illustrate a6224
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Figure 12.1
Example 2D data,
illustrating the
intuition of data
where we can find a
linear classifier that
separates red
crosses from blue
dots.

geometric way to think about supervised machine learning. Whereas in6225

Chapter 9 we considered the machine learning problem in terms of prob-6226

abilistic models and attacked it using maximum likelihood estimation and6227

Bayesian inference, here we will consider an alternative approach where6228

we reason geometrically about the machine learning task. It relies heavily6229

on concepts, such as inner products and projections, which we discussed6230

in Chapter 3. In contrast to Chapter 9, the optimization problem for SVM6231

does not admit an analytic solution. Hence, we resort to the optimization6232

tools introduced in Chapter 7. This is the second reason for introducing6233

the SVM – as an illustration of what to do when we cannot analytically6234

derive a solution.6235

The SVM view of machine learning is also subtly different from the6236

maximum likelihood view of Chapter 9. The maximum likelihood view6237

proposes a model based on a probabilistic view of the data distribution,6238

from which an optimization problem is derived. In contrast, the SVM view6239

starts by designing a particular function that is to be optimized during6240

training, based on geometric intuitions. In other words, we start by de-6241

signing an objective function that is to be minimized on training data,6242

following the principles of empirical risk minimization 8.1. This can also6243

be understood as designing a particular loss function.6244

Let us derive the optimization problem corresponding to training an6245

SVM on example-label pairs. Intuitively, we imagine binary classification6246

data which can be separated by a hyperplane as illustrated in Figure 12.1,6247

where the example (a vector of dimension 2) is used to indicate the lo-6248

cation and the label is represented as different symbols (and colours).6249

Hyperplane is a word that is commonly used in machine learning, and we6250

saw them in Section 2.8 introduced as an affine subspace, which is the6251

phrase used in linear algebra. The examples consists of two classes that6252
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have features (the components of the vector representing the example) ar-6253

ranged in such a way as to allow us to separate/classify them by drawing6254

a straight line.6255

In the following, we start by formalizing this idea of finding a linear6256

separator. We introduce the idea of the margin and then extend linear6257

separators to allow for examples to fall on the wrong side. We present6258

two equivalent ways of formalizing the SVM: the geometric view (Sec-6259

tion 12.2.4) and the loss function view (Section 12.2.5). We derive the6260

dual version of the SVM using Lagrange multipliers (Section 7.2). The6261

dual SVM allows us to observe a third way of formalizing the SVM: in6262

terms of the convex hulls of the examples of each class (Section 12.3.2).6263

We conclude by briefly describing kernels and how to numerically solve6264

the nonlinear kernel-SVM optimization problem.6265

12.1 Separating Hyperplanes6266

Given two examples represented as vectors xi and xj , one way to com-6267

pute the similarity between them is using a inner product hxi,xji. Recall6268

from Section 3.2 that inner products measure the angle between two vec-6269

tors. The value of the inner product also depends on the length (norm)6270

of each vector. Furthermore, inner products allow us to rigorously define6271

geometric concepts such as orthogonality and projections.6272

The main idea behind many classification algorithms is to represent
data in RD and then partition this space. In the case of binary classifica-
tion, the space would be split into two parts corresponding to the positive
and negative classes, respectively. We consider a particularly convenient
partition, which is to split the space into two halves using a hyperplane.
Let example x 2 RD be an element of the data space. Consider a function
f : RD

! R parametrized by w 2 RD and b 2 R as follows

f(x) = hw,xi + b . (12.2)

Recall from Section 2.8 that hyperplanes are affine subspaces. Therefore
we define the hyperplane that separates the two classes in our binary clas-
sification problem as

�
x 2 RD : f(x) = 0

 
. (12.3)

An illustration of the hyperplane is shown in Figure 12.2 where the vector
w is a vector normal to the hyperplane and b the intercept. We can derive
that w is a normal vector to the hyperplane in (12.3) by choosing any
two examples xa and xb on the hyperplane and showing that the vector
between them is orthogonal to w. In the form of an equation,

f(xa) � f(xb) = hw,xai + b � (hw,xbi + b) (12.4)
= hw,xa � xbi , (12.5)
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Figure 12.2
Equation of a
separating
hyperplane (12.3).
(left) The standard
way of representing
the equation in 3D.
(right) For ease of
drawing, we look at
the hyperplane edge
on.

w w

.
0

.positive
.

negative

b

where the second line is obtained by the linearity of the inner product6273

(Section 3.2). Since we have chosen xa and xb to be on the hyperplane,6274

this implies that f(xa) = 0 and f(xb) = 0 and hence hw,xa � xbi = 0.6275

Recall that two vectors are orthogonal when their inner product is zero,6276

therefore we obtain that w is orthogonal to any vector on the hyperplane.6277

Remark. Recall from Chapter 1 that we can think of vectors in different6278

ways. In this chapter, we think of the parameter vector w as an arrow6279

indicating a direction. That is we consider w to be a geometric vector. In6280

contrast, we think of the example vector x as a point (as indicated by its6281

coordinates). That is we consider x to be the coordinates of a vector with6282

respect to the standard basis. }6283

When presented with a test example, we classify the example as positive6284

or negative by deciding on which side of the hyperplane it occurs. Note6285

that (12.3) not only defines a hyperplane, it additionally defines a direc-6286

tion. In other words, it defines the positive and negative side of the hyper-6287

plane. Therefore, to classify a test example xtest, we calculate the value of6288

the function f(xtest) and classify the example as +1 if f(xtest) > 0 and6289

�1 otherwise. Thinking geometrically, the positive examples lie “above”6290

the hyperplane and the negative examples “below” the hyperplane.6291

When training the classifier, we want to ensure that the examples with
positive labels are on the positive side of the hyperplane, i.e.,

hw,xni + b > 0 when yn = +1 (12.6)

and the examples with negative labels are on the negative side,

hw,xni + b < 0 when yn = �1 . (12.7)

Refer to Figure 12.2 for a geometric intuition of positive and negative
examples. These two conditions are often presented in a single equation,

yn(hw,xni + b) > 0 . (12.8)

The equation (12.8) above is equivalent to (12.6) and (12.7) when we6292

multiply both sides of (12.6) and (12.7) with yn = 1 and yn = �1, re-6293

spectively.6294
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Figure 12.3
Possible separating
hyperplanes. There
are many linear
classifiers (green
lines) that separate
red crosses from
blue dots.

12.2 Primal Support Vector Machine6295

Based on the concept of distances from points to a hyperplane, we now6296

are in a position to discuss the support vector machine. For a dataset6297

(x1, y1), . . . , (xN , yN) that is linearly separable, we have many candidate6298

hyperplanes (refer to Figure 12.3) that solve our classification problem6299

without any (training) errors. In other words, for a given training set we6300

have many candidate classifiers. One idea is to choose the separating hy-6301

perplane that maximizes the margin between the positive and negative6302

examples. In the following, we use the concept of a hyperplane, see also A classifier with
large margin turns
out to generalize
well (Steinwart and
Christmann, 2008).

6303

Section 2.8, and derive the distance between an example and a hyper-6304

plane. Recall that the closest point on the hyperplane to a given point6305

(example xn) is obtained by the orthogonal projection (Section 3.7). We6306

will see in the next section how to use the orthogonal projection to derive6307

the margin.6308

12.2.1 Concept Of The Margin6309

The concept of the margin is intuitively simple: It is the distance of the margin6310

separating hyperplane to the closest examples in the dataset, assuming There could be two
or more closest
examples to a
hyperplane.

6311

that the dataset is linearly separable. However, when trying to formalize6312

this distance, there is a technical wrinkle that is confusing. The technical6313

wrinkle is that we need to define a scale at which to measure the dis-6314

tance. A potential scale is to consider the scale of the data, i.e., the raw6315

values of xn. There are problems with this, as we could change the units6316

of measurement of xn and change the values in xn, and, hence, change6317

the distance to the hyperplane. As we will see shortly, we define the scale6318

based on the equation of the hyperplane (12.3) itself.6319
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Figure 12.4 Vector
addition to express
distance to
hyperplane:
xa = x0

a + r w
kwk .

.
0

.xa

w.x
0

a

r

Consider a hyperplane hw,xi + b, and an example xa as illustrated in
Figure 12.4. Without loss of generality, we can consider the example xa

to be on the positive side of the hyperplane, i.e., hw,xai + b > 0. We
would like to derive the distance r > 0 of xa from the hyperplane. We
do so by considering the orthogonal projection (Section 3.7) of xa onto
the hyperplane, which we denote by x

0

a. Since w is orthogonal to the
hyperplane, we know that the distance r is just a scaling of this vector
w. However, we need to use a vector of unit length (its norm must be
1), and obtain this by dividing w by its norm, w

kwk
. Using vector addition

(Section 2.4) we obtain

xa = x
0

a + r
w

kwk
. (12.9)

Another way of thinking about r is that it is the coordinate of xa in the6320

subspace spanned by w. We have now expressed the distance of xa from6321

the hyperplane as r, and if we choose xa to be the point closest to the6322

hyperplane, this distance r is the margin.6323

Recall that we would like the positive examples to be further than r

from the hyperplane, and the negative examples to be further than dis-
tance r (in the negative direction) from the hyperplane. Analogously to
the combination of (12.6) and (12.7) into (12.8), we have

yn(hw, xni + b) > r . (12.10)

In other words we can combine the requirements that examples are fur-6324

ther than r from the hyperplane (in the positive and negative direction)6325

into one single inequality.6326

Since we are interested only in the direction, we add an assumption to
our model that the parameter vector w is of unit length, that is, kwk = 1
where we use the Euclidean norm kwk =

p

w>w (Section 3.1). CollectingA reader familiar
with other
presentations of the
margin would notice
that our definition
of kwk = 1 is
different from the
presentation in for
example Schölkopf
and Smola (2002).
We will show that
the two approaches
are equivalent in
Section 12.2.3.

the three requirements into one constrained optimization problem, we
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Figure 12.5
Derivation of the
margin: r = 1

kwk .

.xa

w

hw
,
x
i+

b
=

0
hw

,
x
i+

b
=

1

.x
0

a

r

obtain the following

max
w,b,r

r|{z}
margin

subject to yn(hw,xni + b) > r| {z }
data fitting

, kwk = 1| {z }
normalization

, r > 0,

(12.11)
which says that we want to maximize the margin r, while ensuring that6327

the data lies on the correct side of the hyperplane.6328

Remark. The idea of the margin turns out to be highly pervasive in ma-6329

chine learning. It was used by Vladimir Vapnik and Alexey Chervonenkis6330

to show that when the margin is large, the “complexity” of the func-6331

tion class is low, and, hence, learning is possible (Vapnik, 2000). It turns6332

out that the concept is useful for various different approaches for theo-6333

retically analyzing generalization error (Shalev-Shwartz and Ben-David,6334

2014; Steinwart and Christmann, 2008). }6335

12.2.2 Traditional Derivation Of The Margin6336

In the previous section, we derived (12.11) by making the observation that6337

we are only interested in the direction of w and not its length, leading to6338

the assumption that kwk = 1. In this section, we derive the margin max-6339

imization problem by making a different assumption. Instead of choosing6340

that the parameter vector is normalised, we choose a scale for the data.6341

We choose this scale such that the value of the predictor hw,xi + b is 16342

at the closest example. Let us also consider xa to be the example in the Recall that we
currently consider
linearly separable
data.

6343

dataset that is closest to the hyperplane.6344

Figure 12.5 is the same as Figure 12.4, except that now we have rescaled
the axes, such that we have the example xa exactly on the margin, i.e.,
hw,xai + b = 1. Since x

0

a is the orthogonal projection of xa onto the
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hyperplane, it must by definition lie on the hyperplane, i.e.,

hw,x
0

ai + b = 0 . (12.12)

By substituting (12.9) into (12.12) we obtain
⌧

w,xa � r
w

kwk

�
+ b = 0 . (12.13)

Multiplying out the inner product, we get

hw,xai + b � r
hw,wi

kwk
= 0 , (12.14)

where we exploited the linearity of the inner product (see Section 3.2).
Observe that the first term is unity by our assumption of scale, that is,
hw,xai+b = 1. From (3.18) in Section 3.1 we recall that hw,wi = kwk

2,
and hence the second term reduces to rkwk. Using these simplifications,
we obtain

r =
1

kwk
, (12.15)

where we have derived the distance r in terms of the normal vector w of6345

the hyperplane. At first glance this equation is counterintuitive as we seemWe can also think of
the distance as the
projection error that
incurs when
projecting xa onto
the hyperplane.

6346

to have derived the distance from the hyperplane in terms of the length of6347

the vector w, but we do not yet know this vector. One way to think about6348

it is to consider the distance r to be a temporary variable that we only use6349

for this derivation. In fact, for the rest of this section we will refer to the6350

distance to the hyperplane by 1
kwk

. In Section 12.2.3 we will see that the6351

choice that the margin equals 1 is equivalent to our previous assumption6352

of kwk = 1 in Section 12.2.1.6353

Similar to the argument to obtain (12.10), we want the positive exam-
ples to be further than 1 from the hyperplane, and the negative examples
to be further than distance 1 (in the negative direction) from the hyper-
plane

yn(hw, xni + b) > 1 . (12.16)

Combining the margin maximization with the fact that examples needs to
be on the correct side of the hyperplane (based on their labels) gives us

max
w,b

1

kwk
(12.17)

subject to yn(hw,xni + b) > 1 for all n = 1, . . . , N. (12.18)

Instead of maximizing the reciprocal of the norm as in (12.17), we of-
ten minimize the squared norm. We also often include a constant 1

2
thatThe squared norm

results in a convex
quadratic
programming
problem for the
SVM
(Section 12.3.4).

does not affect the optimal w, b but yields a tidier form when we take the
derivative. Then, our objective becomes

min
w,b

1

2
kwk

2 (12.19)
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subject to yn(hw,xni + b) > 1 for all n = 1, . . . , N . (12.20)

Equation (12.19) is known as the hard margin SVM. The reason for the hard margin SVM6354

expression “hard” is because the above formulation does not allow for any6355

violations of the margin condition. We will see in Section 12.2.4 that this6356

“hard” condition can be relaxed to accommodate violations.6357

12.2.3 Why We Can Set The Margin To 16358

In Section 12.2.1 we argue that we would like to maximize some value6359

r, which represents the distance of the closest example to the hyperplane.6360

In Section 12.2.2 we scaled the data such that the closest example is of6361

distance 1 to the hyperplane. Here we relate the two derivations, and6362

show that they are actually equivalent.6363

Theorem 12.1. Maximizing the margin r where we consider normalized
weights as in (12.11),

max
w,b,r

r|{z}
margin

subject to yn(hw,xni + b) > r| {z }
data fitting

, kwk = 1| {z }
normalization

, r > 0

(12.21)
is equivalent to scaling the data such that the margin is unity

min
w,b

1

2
kwk

2

| {z }
margin

subject to yn(hw,xni + b) > 1| {z }
data fitting

. (12.22)

Proof Consider (12.21), and note that because the square is a monotonic
transformation for non-negative arguments, the maximum stays the same
if we consider r

2 in the objective. Since kwk = 1 we can reparameter-
ize the equation with a new weight vector w

0 that is not normalized by
explicitly using w

0

kw0k
,

max
w0,b,r

r
2 subject to yn

✓⌧
w

0

kw0k
,xn

�
+ b

◆
> r, r > 0. (12.23)

In (12.23) we have explicitly written that distances are non-negative. We
can divide the first constraint by r, Note that r > 0

because we
assumed linear
separability, and
hence there is no
issue to divide by r.

max
w0,b,r

r
2 subject to yn

0

BBB@

*
w

0

kw0k r| {z }
w00

,xn

+

+
b

r|{z}
b00

1

CCCA > 1, r > 0

(12.24)
renaming the parameters to w

00 and b
00. Since w

00 = w
0

kw0kr
, rearranging for

r gives

kw
00
k =

����
w

0

kw0k r

���� =

����
1

r

���� ·
����

w
0

kw0k

���� =
1

r
. (12.25)
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Figure 12.6 (left)
linearly separable
data, with a large
margin. (right)
non-separable data.

Substituting into (12.24), we obtain

max
w00,b00

1

kw00k
2 subject to yn (hw

00
,xni + b

00) > 1. (12.26)

The final step is to observe that maximizing 1
kw00k2 yields the same solution6364

as minimizing 1
2
kw

00
k
2.6365

12.2.4 Soft Margin SVM: Geometric View6366

We may wish to allow some examples to fall within the margin region,6367

or even to be on the wrong side of the hyperplane (as illustrated in Fig-6368

ure 12.6). This also naturally provides us with an approach that works6369

when we do not have linearly separable data.6370

The resulting model is called the soft margin SVM. In this section, wesoft margin SVM 6371

derive the resulting optimization problem using geometric arguments. In6372

Section 12.2.5, we will derive the same optimization problem using the6373

idea of a loss function. Using Lagrange multipliers (Section 7.2), we will6374

derive the dual optimization problem of the SVM in Section 12.3. This6375

dual optimization problem allows us to observe a third interpretation of6376

the SVM, as a hyperplane that bisects the line between convex hulls cor-6377

responding to the positive and negative data examples (Section 12.3.2).6378

The key geometric idea is to introduce a slack variable ⇠n correspondingslack variable

to each example (xn, yn) that allows a particular example to be within the
margin or even on the wrong side of the hyperplane (refer to Figure 12.7).
We subtract the value of ⇠n from the margin, constraining ⇠n to be non-
negative. To encourage correct classification of the samples, we add ⇠n to
the objective

min
w,b,⇠

1

2
kwk

2 + C

NX

n=1

⇠n (12.27)
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Figure 12.7 Soft
Margin SVM allows
examples to be
within the margin or
on the wrong side of
the hyperplane. The
slack variable ⇠
measures the
distance of a
positive example
x+ to the positive
margin hyperplane
hw,xi+ b = 1
when x+ is on the
wrong side.

.x+

w

hw
,
x
i+

b
=

0
hw

,
x
i+

b
=

1

.

⇠

subject to yn(hw,xni + b) > 1 � ⇠n for all n = 1, . . . , N (12.28)
⇠n > 0 for all n = 1, . . . , N. (12.29)

In contrast to the optimization problem (12.19) from the previous section6379

(the hard margin SVM), this one is called the soft margin SVM. The pa- soft margin SVM6380

rameter C > 0 trades off the size of the margin and the total amount of6381

slack that we have. This parameter is called the regularization parameter regularization
parameter

6382

since, as we will see in the following section, the margin term in the ob-6383

jective function (12.27) is a regularization term. The margin term kwk
2 is6384

called the regularizer, and in many books on numerical optimization, the regularizer6385

regularization parameter multiplied with this term (Section 8.1.3). This6386

is in contrast to our formulation in this section. Some care needs to be6387

taken when interpreting the regularizer, as a large value of C implies low6388

regularization, as we give the slack variables larger weight. There are
alternative
parametrizations of
this regularization,
which is
why (12.27) is also
often referred to as
the C-SVM.

6389

Remark. One detail to note is that in the formulation of the SVM (12.27)6390

w is regularized but b is not regularized. We can see this by observing that6391

the regularization term does not contain b. The unregularized term b com-6392

plicates theoretical analysis (Steinwart and Christmann, 2008, Chapter 1)6393

and decreases computational efficiency (Fan et al., 2008). }6394

12.2.5 Soft Margin SVM: Loss Function View6395

Recall from Section 9.2.1 that when performing maximum likelihood esti-6396

mation we usually consider the negative log likelihood. Furthermore since6397

the likelihood term for linear regression with Gaussian noise is Gaussian,6398

the negative log likelihood for each example is a squared error function6399

(9.8). The squared error function is the term that is minimized when look-6400

ing for the maximum likelihood solution. Let us consider the error func-6401

tion point of view, which is also known as the loss function point of view. loss function6402

c�2018 Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong. To be published by Cambridge University Press.



356 Classification with Support Vector Machines

In contrast to Chapter 9 where we consider regression problems (the out-6403

put of the predictor is a real number), in this chapter we consider binary6404

classification problems (the output of the predictor is one of two labels6405

{+1,�1}). Therefore the error function or the loss function for each sin-6406

gle (example, label) pair needs to be appropriate for binary classification.6407

For example, the squared loss that is used for regression (9.9b) is not6408

suitable for binary classification.6409

Remark. The ideal loss function between binary labels is to count the num-6410

ber of mismatches between the prediction and the label. That is for a pre-6411

dictor f applied to an example xn, we compare the output f(xn) with the6412

label yn. We define the loss to be zero if they match, and one if they do not6413

match. This is denoted by 1(f(xn) 6= yn) and is called the zero-one loss.6414

Unfortunately the zero-one loss results in a difficult optimization problem6415

for finding the best parameters w, b. }6416

What is the loss function corresponding to the SVM? Consider the error
between the output of a predictor f(xn) and the label yn. The loss should
capture how much we care about the error that is made on the training
data. An equivalent way to derive (12.27) is to use the hinge losshinge loss

`(t) = max{0, 1 � t} where t = yf(x) = y(hw,xi + b) . (12.30)

If f(x) is on the correct side (based on y) of the hyperplane, and further
than distance 1, this means that t > 1 and the hinge loss returns a value
of zero. If f(x) is on the correct side but close to the hyperplane, that
is, 0 < t < 1, then the example x is within the margin and the hinge
loss returns a positive value. When the example is on the wrong side of
the hyperplane (t < 0) the hinge loss returns an even larger value, which
increases linearly. In other words, we pay a penalty once we are closer
than the margin, even if the prediction is correct, and the penalty increases
linearly. An alternative way to express the hinge loss is by considering it
as two linear pieces

`(t) =

(
0 if t > 1

1 � t if t < 1
, (12.31)

as illustrated in Figure 12.8. The loss corresponding to the hard margin
SVM 12.19 is defined as follows

`(t) =

(
0 if t > 1

1 if t < 1
. (12.32)

This loss can be interpreted as never allowing any examples inside the6417

margin.6418

For a given training set (x1, y1), . . . , (xN , yN) we would like to min-
imize the total loss, while regularizing the objective with `2 regulariza-
tion (see Section 8.1.3). Using the hinge loss (12.30) gives us the uncon-
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Figure 12.8 Hinge
Loss is a convex
envelope of
zero-one loss.
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strained optimization problem

min
w,b

1

2
kwk

2

| {z }
regularizer

+C

NX

n=1

max{0, 1 � yn(hw,xni + b)}

| {z }
error term

. (12.33)

The first term in (12.33) is called the regularization term or the regularizer regularizer6419

(see Section 9.2.3), and the second term is called the loss term or the loss term6420

error term. Recall from Section 12.2.4 that the term 1
2
kwk

2 is actually the error term6421

term arising from the margin. In other words, margin maximization can6422

be interpreted as a regularizer. Margin
maximization can
be interpreted as a
regularizer.

6423

In principle, the unconstrained optimization problem in (12.33) can
be directly solved with (sub-)gradient descent methods as described in
Section 7.1. To see that (12.33) and (12.27) are equivalent, observe that
the hinge loss (12.30) essentially consists of two linear parts, as expressed
in (12.31). Therefore, we can equivalently replace minimization of the
hinge loss with two constraints, i.e.,

min
t

max{0, 1 � t} (12.34)

is equivalent to

min
⇠,t

⇠ (12.35)

subject to ⇠ > 0

⇠ > 1 � t .

By substituting this into (12.33) and rearranging one of the constraints,6424

we obtain exactly the soft margin SVM (12.27).6425

12.3 Dual Support Vector Machine6426

The description of the SVM in the previous sections, in terms of the vari-6427

ables w and b, is known as the primal SVM. Recall that we are considering6428
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input vectors x, which have dimension D, i.e., we are looking at input ex-6429

amples with D features. Since w is of the same dimension as x, this means6430

that the number of parameters (the dimension of w) of the optimization6431

problem grows linearly with the number of features.6432

In the following, we consider an equivalent optimization problem (the6433

so-called dual view) which is independent of the number of features. We6434

see a similar idea appear in Chapter 10 where we express the learning6435

problem in a way that does not scale with the number of features. This6436

is useful for problems where we have more features than the number of6437

examples. Instead the number of parameters increases with the number6438

of examples in the training set. The dual SVM also has the additional ad-6439

vantage that it easily allows kernels to be applied, as we shall see at the6440

end of this chapter. The word “dual” appears often in mathematical liter-6441

ature, and in this particular case it refers to convex duality. The following6442

subsections are essentially an application of convex duality as discussed6443

in Section 7.2.6444

12.3.1 Convex Duality Via Lagrange Multipliers6445

Recall the primal soft margin SVM (12.27). We call the variables w, b and
⇠ corresponding to the primal SVM the primal variables. We use ↵n > 0In Chapter 7 we

used � as Lagrange
multipliers. In this
section we follow
the notation
commonly chosen in
SVM literature, and
use ↵ and �.

as the Lagrange multiplier corresponding to the constraint (12.28) that
the examples are classified correctly and �n > 0 as the Lagrange multi-
plier corresponding to the non-negativity constraint of the slack variable,
see (12.29). The Lagrangian is then given by

L(w, b, ⇠,↵, �) =
1

2
kwk

2 + C

NX

n=1

⇠n

�

NX

n=1

↵n(yn(hw,xni + b) � 1 + ⇠n)

| {z }
constraint (12.28)

�

NX

n=1

�n⇠n

| {z }
constraint (12.29)

.

(12.36)

Differentiating the Lagrangian (12.36) with respect to the three primal
variables w, b and ⇠ respectively, we obtain

@L

@w
= w �

NX

n=1

↵nynxn , (12.37)

@L

@b
=

NX

n=1

↵nyn , (12.38)

@L

@⇠n
= C � ↵n � �i . (12.39)
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We now find the maximum of the Lagrangian by setting each of these
partial derivatives to zero. By setting (12.37) to zero we find

w =
NX

n=1

↵nynxn , (12.40)

which is a particular instance of the representer theorem (Kimeldorf and representer theorem6446

Wahba, 1970). Equation (12.40) says that the optimal weight vector in the6447

primal is a linear combination of the examples. Recall from Section 2.6.16448

that this means that the solution of the optimization problem lies in the6449

span of training data. Additionally the constraint obtained by setting 12.386450

to zero implies that the optimal weight vector is an affine combination of6451

the examples. The representer theorem turns out to hold for very gen- The representer
theorem is actually
a collection of
theorems saying
that the solution of
minimizing
empirical risk lies in
the subspace
(Section 2.4.3)
defined by the
examples.

6452

eral settings of regularized empirical risk minimization (Hofmann et al.,6453

2008; Argyriou and Dinuzzo, 2014). The theorem has more general ver-6454

sions (Schölkopf et al., 2001), and necessary and sufficient conditions on6455

its existance can be found in Yu et al. (2013).6456

Remark. The representer theorem (12.40) also provides an explaination of6457

the name Support Vector Machine. The examples xn whose corresponding6458

parameters ↵n = 0 do not contribute to the solution w at all. The other6459

examples, where ↵n > 0, are called support vectors since they “support”
support vectors

6460

the hyperplane. }6461

By substituting the expression for w into the Lagrangian (12.36), we
obtain the dual

D(⇠,↵, �) =
1

2

NX

i=1

NX

j=1

yiyj↵i↵j hxi,xji �

NX

i=1

yi↵i

*
NX

j=1

yj↵jxj,xi

+

+ C

NX

i=1

⇠i � b

NX

i=1

yi↵i +
NX

i=1

↵i �

NX

i=1

↵i⇠i �

NX

i=1

�i⇠i .

(12.41)

Note that there are no longer any terms involving the primal variable w.
By setting (12.38) to zero, we obtain

PN
n=1 yn↵n = 0. Therefore, the term

involving b also vanishes. Recall that inner products are symmetric and
linear (see Section 3.2). Therefore, the first two terms in (12.41) are over
the same objects. These terms (coloured blue) can be simplified, and we
obtain the Lagrangian

D(⇠,↵, �) = �
1

2

NX

i=1

NX

j=1

yiyj↵i↵j hxi,xji +
NX

i=1

↵i +
NX

i=1

(C � ↵i � �i)⇠i .

(12.42)
The last term in this equation is a collection of all terms that contain slack
variables ⇠i. By setting (12.39) to zero, we see that the last term in (12.41)
is also zero. Furthermore, by using the same equation and recalling that
the Lagrange multiplers �i are non-negative, we conclude that ↵i 6 C.
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We now obtain the dual optimization problem of the SVM, which is ex-
pressed exclusively in terms of the Lagrange multipliers ↵i. Recall from
Lagrangian duality (Theorem 7.1) that we maximize the dual problem.
This is equivalent to minimizing the negative dual problem, such that we
end up with the dual SVMdual SVM

min
↵

1

2

NX

i=1

NX

j=1

yiyj↵i↵j hxi,xji �

NX

i=1

↵i

subject to
NX

i=1

yi↵i = 0

0 6 ↵i 6 C for all i = 1, . . . , N .

(12.43)

The equality constraint in (12.43) is obtained from setting (12.38) to6462

zero. The inequality constraint ↵i > 0 is the condition imposed on La-6463

grange multipliers of inequality constraints (Section 7.2). The inequality6464

constraint ↵i 6 C is discussed in the previous paragraph.6465

The set of inequality constraints in the SVM are called “box constraints”6466

because they limit the vector ↵ = [↵1, . . . ,↵N ]> 2 RN of Lagrange mul-6467

tipliers to be inside the box defined by 0 and C on each axis. These6468

axis-aligned boxes are particularly efficient to implement in numerical6469

solvers (Dostál, 2009, Chapter 5).6470

Once we obtain the dual parameters ↵ we can recover the primal pa-
rameters w by using the representer theorem (12.40). Let us call the op-
timal primal parameter w

⇤. However there remains the question on how
to obtain the parameter b⇤. Consider an example (xn) that lies exactly on
the margin’s boundary, that is, hw

⇤
,xni + b = yn. Recall that yn is eitherIt turns out

examples that lie
exactly on the
margin are
examples whose
dual parameters lie
strictly inside the
box constraints,
0 < ↵i < C. This is
derived using the
Karush Kuhn Tucker
conditions, for
example in
Schölkopf and
Smola (2002).

+1 or �1, and therefore the only unknown is b which can be computed
by

b
⇤ = yn � hw

⇤
,xni . (12.44)

Remark. In principle there may be no examples that lie exactly on the mar-6471

gin. In this case we should compute |yn�hw
⇤
,xni | for all support vectors6472

and take the median value of this absolute value difference to be the value6473

of b⇤. A derivation of this fact can be found in http://fouryears.eu/6474

2012/06/07/the-svm-bias-term-conspiracy/. }6475

12.3.2 Soft Margin SVM: Convex Hull View6476

Another approach to obtain the SVM is to consider an alternative geomet-6477

ric argument. Consider the set of examples xn with the same label. We6478

would like to build a convex boundary around this set of examples that6479

is the smallest possible. This is called the convex hull and is illustrated in6480

Figure 12.9.6481

Let us first build some intuition about a convex combination of points.6482

Draft (2018-09-03) from Mathematics for Machine Learning. Errata and feedback to https://mml-book.com.

http://fouryears.eu/2012/06/07/the-svm-bias-term-conspiracy/
http://fouryears.eu/2012/06/07/the-svm-bias-term-conspiracy/
http://fouryears.eu/2012/06/07/the-svm-bias-term-conspiracy/
https://mml-book.com


12.3 Dual Support Vector Machine 361

Figure 12.9 (left)
Convex hull of
points (right) A
convex hull around
positive and
negative examples.

c

d

Consider two points x1 and x2 and corresponding non-negative weights6483

↵1,↵2 > 0 such that ↵1 + ↵2 = 1. The equation ↵1x1 + ↵2x2 describes6484

each point on a line between x1 and x2. Consider what happens when we6485

add a third point x3 along with a weight ↵3 > 0 such that
P3

n=1 ↵n =6486

1. The convex combination of these three points x1,x2,x3 span a two6487

dimensional area. The convex hull of this area is the triangle formed by6488

the edges corresponding to each pair of of points. As we add more points,6489

and the number of points become greater than the number of dimensions,6490

some of the points will be inside the convex hull, as we can see in the left6491

of Figure 12.9.6492

In general, building a convex boundary of points (called the convex hull) convex hull

can be done by introducing non-negative weights ↵n > 0 corresponding
to each example xn. Then the convex hull can be described as the set

conv (X) =

(
NX

n=1

↵nxn

)

with
NX

n=1

↵n = 1 and ↵n > 0, (12.45)

for all n = 1, . . . , N . If the two clouds of points corresponding to the pos-
itive and negative classes are well separated, then the convex hulls do not
overlap. Given the training data (x1, y1), . . . , (xN , yN) we form two con-
vex hulls, corresponding to the positive and negative classes respectively.
We pick a point c, which is in the convex hull of the set of positive exam-
ples, and is closest to the negative class distribution. Similarly we pick a
point d in the convex hull of the set of negative examples, and is closest to
the positive class distribution. Refer to the right of Figure 12.9. We draw
a vector from d to c

w = c � d . (12.46)

Picking the points c and d as above, and requiring them to be closest to
each other is the same as saying that we want to minimize the length/
norm of w, such that we end up with the corresponding optimization
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problem

argmin
w

kwk = argmin
w

1

2
kwk

2
. (12.47)

Since c must be in the positive convex hull, it can be expressed as a convex
combination of the positive examples, i.e., for non-negative coefficients
↵

+
n

c =
X

yn=+1

↵
+
nxn . (12.48)

Similarly, for the examples with negative labels we obtain

d =
X

yn=�1

↵
�

n xn . (12.49)

By substituting (12.46), (12.48) and (12.49) into (12.47), we obtain the
following objective function

min
↵

1

2

�����
X

yn=+1

↵
+
nxn �

X

yn=�1

↵
�

n xn

�����

2

. (12.50)

Let ↵ be the set of all coefficients, i.e., the concatenation of ↵
+ and ↵

�.
Recall that we require that for each convex hull that their coefficients sum
to one, X

yn=+1

↵
+
n = 1 and

X

yn=�1

↵
�

n = 1 . (12.51)

This implies the constraint
NX

n=1

yn↵n = 0. (12.52)

This result can be seen by multiplying out the individual classes
NX

n=1

yn↵n =
X

yn=+1

(+1)↵+
n +

X

yn=�1

(�1)↵�

n (12.53)

=
X

yn=+1

↵
+
n �

X

yn=�1

↵
�

n = 1 � 1 = 0 .

The objective function (12.50) and the constraint (12.52), along with the6493

assumption that ↵ > 0, give us a constrained (convex) optimization prob-6494

lem. This optimization problem can be shown to be the same as that of6495

the dual hard margin SVM (Bennett and Bredensteiner, 2000a).6496

Remark. To obtain the soft margin dual, we consider the reduced hull. The6497

reduced hull is similar to the convex hull but has an upper bound to thereduced hull 6498

size of the coefficients ↵. The maximum possible value of the elements6499

of ↵ restricts the size that the convex hull can take. In other words, the6500

bound on ↵ shrinks the convex hull to a smaller volume (Bennett and6501

Bredensteiner, 2000b). }6502
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12.3.3 Kernels6503

Consider the formulation of the dual SVM (12.43). Notice that the inner6504

product in the objective occurs only between examples xi and xj . There6505

are no inner products between the examples and the parameters. There-6506

fore if we consider a set of features �(xi) to represent xi, the only change6507

in the dual SVM will be to replace the inner product. This modularity,6508

where the choice of the classification method (the SVM) and the choice6509

of the feature representation �(x) can be considered separately, provides6510

flexibility for us to explore the two problems independently.6511

Since �(x) could be a non-linear function, we can use the SVM (which
assumes a linear classifier) to construct nonlinear classifiers. This provides
a second avenue, in addition to the soft margin, for users to deal with a
dataset that is not linearly separable. It turns out that there are many algo-
rithms and statistical methods, which have this property that we observed
in the dual SVM: the only inner products are those that occur between
examples. Instead of explicitly defining a non-linear feature map �(·) and
computing the resulting inner product between examples xi and xj , we
define a similarity function k(xi,xj) between xi and xj . For a certain
class of similarity functions called kernels, the definition of the similarity kernels

function implicitly defines a non-linear feature map �(·). Kernels are by
definition functions k : X ⇥ X ! R for which there exists a Hilbert space
H and � : X ! H a feature map such that

k(xi,xj) = h�(xi),�(xj)iH . (12.54)

There is a unique reproducing kernel Hilbert space associated with every
kernel k (Aronszajn, 1950; Berlinet and Thomas-Agnan, 2004). In this
unique association �(x) = k(·,x) is called the canonical feature map.
This is known as the kernel trick (Schölkopf and Smola, 2002; Shawe- kernel trick

Taylor and Cristianini, 2004), as it hides away the explicit non-linear fea-
ture map. The matrix K 2 RN⇥N , resulting from the inner products or
the application of k(·, ·) to a dataset, is called the Gram matrix, and is Gram matrix

often just referred to as the kernel matrix. Kernels must be symmetric and kernel matrix

positive semi-definite, i.e., every kernel matrix K must be symmetric and
positive semi-definite (Section 3.2.3):

8z 2 RN
z
>
Kz > 0 . (12.55)

Some popular examples of kernels for multivariate real-valued data xi 26512

RD are the polynomial kernel, the Gaussian radial basis function kernel,6513

and the rational quadratic kernel. Figure 12.10 illustrates the effect of6514

different kernels on separating hyperplanes on an example dataset.6515

Remark. Unfortunately for the fledgling machine learner, there are multi-6516

ple meanings of the word kernel. In this chapter, the word kernel comes6517

from the idea of the Reproducing Kernel Hilbert Space (RKHS) (Aron-6518

szajn, 1950; Saitoh, 1988). We have discussed the idea of the kernel in6519
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Figure 12.10
Support Vector
Machine with
different kernels.
Note that while the
decision boundary is
nonlinear, the
underlying problem
being solved is for a
linear separating
hyperplane (albeit
with a nonlinear
kernel).

linear algebra (Section 2.7.3), where the kernel is another word for the6520

nullspace. The third common use of the word kernel in machine learning6521

is the smoothing kernel in kernel density estimation (Section 11.5). }6522

Since the explicit representation �(x) is mathematically equivalent to6523

the kernel representation k(xi,xj) a practitioner will often design the6524

kernel function, such that it can be computed more efficiently than the6525

inner product between explicit feature maps. For example, consider the6526

polynomial kernel, where the number of terms in the explicit expansion6527

grows very quickly (even for polynomials of low degree) when the input6528

dimension is large. The kernel function only requires one multiplication6529

per input dimension, which can provide significant computational savings.6530

Another useful aspect of the kernel trick is that there is no need for the6531

original data to be already represented as multivariate real-valued data.6532

Note that the inner product is defined on the output of the function �(·),6533

but does not restrict the input to real numbers. Hence, the function �(·)6534

and the kernel function k(·, ·) can be defined on any object, e.g., sets,6535
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sequences, strings and graphs (Ben-Hur et al., 2008; Gärtner, 2008; Shi6536

et al., 2009; Vishwanathan et al., 2010).6537

12.3.4 Numerical Solution6538

We conclude our discussion of SVMs by looking at how to express the6539

problems derived in this chapter in terms of the concepts presented in6540

Chapter 7. We consider two different approaches for finding the optimal6541

solution for the SVM. First we consider the loss view of SVM 8.1.2 and ex-6542

press this as an unconstrained optimization problem. Then we express the6543

constrained versions of the primal and dual SVMs as quadratic programs6544

in standard form 7.3.2.6545

Consider the loss function view of the SVM (12.33). This is a convex
unconstrained optimization problem, but the hinge loss (12.30) is not dif-
ferentiable. Therefore, we apply a subgradient approach for solving it.
However, the hinge loss is differentiable almost everywhere, except for
one single point at the hinge t = 1. At this point, the gradient is a set of
possible values that lie between 0 and �1. Therefore, the subgradient g of
the hinge loss is given by

g(t) =

8
><

>:

�1 t < 1

[�1, 0] t = 1

0 t > 1

. (12.56)

Using this subgradient above, we can apply the optimization methods pre-6546

sented in Section 7.1.6547

Both the primal and the dual SVM result in a convex quadratic pro-6548

gramming problem (constrained optimization). Note that the primal SVM6549

in (12.27) has optimization variables that have the size of the dimension6550

D of the input examples. The dual SVM in (12.43) has optimization vari-6551

ables that have the size of the number N of examples.6552

To express the primal SVM in the standard form (7.35) for quadratic
programming, let us assume that we use the dot product (3.6) as the inner
product. We rearrange the equation for the primal SVM (12.27), such that Recall from

Section 3.2 that in
this book, we use
the phrase dot
product to mean the
inner product on
Euclidean vector
space.

the optimization variables are all on the right and the inequality of the
constraint matches the standard form. This yields the optimization

min
w,b,⇠

1

2
kwk

2 + C

NX

n=1

⇠n (12.57)

subject to
�ynx

>

n w � ynb � ⇠n 6 �1
�⇠n 6 0

(12.58)

for all n = 1, . . . , N . By concatenating the variables w, b,xn into one
single vector, and carefully collecting the terms, we obtain the following
matrix form of the soft margin SVM. In the following optimization prob-
lem, the minimization is over [w>

, b, ⇠
>]> 2 RD+1+N , and we have used
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the notation: Im to represent the identity matrix of size m ⇥ m, 0m,n to
represent the matrix of zeros of size m ⇥ n, and 1m,n to represent the
matrix of ones of size m ⇥ n. The soft margin SVM can be written in the
following vector form:

min
w,b,⇠

1

2

2

4
w

b

⇠

3

5
> 

ID 0D,N+1

0N+1,D 0N+1,N+1

�2

4
w

b

⇠

3

5+
⇥
0D+1,1 C1N,1

⇤>
2

4
w

b

⇠

3

5

(12.59)

subject to


�Y X �y �IN

0N,D+1 �IN

�2

4
w

b

⇠

3

5 6

�1N,1

0N,1

�
, (12.60)

where y is the vector of labels [y1, . . . , yN ]>, Y = diag(y) is an N by N6553

matrix where the elements of the diagonal are from y, and X 2 RN⇥D is6554

the matrix obtained by concatenating all the examples.6555

We can similarly perform a collection of terms for the dual version of
the SVM (12.43). To express the dual SVM in standard form, we first have
to express the kernel matrix K such that each entry is Kij = k(xi,xj).
Or if we are using an explicit feature representation Kij = hxi,xji. For
convenience of notation we introduce a matrix with zeros everywhere ex-
cept on the diagonal, where we store the labels, that is, Y = diag(y). The
dual SVM can be written as

min
↵

1

2
↵

>
Y KY ↵ � 1>

N,1↵ (12.61)

subject to

2

664

y
>

�y
>

�IN

IN

3

775↵ 6

0N+2,1

C1N,1

�
. (12.62)

Remark. In Section 7.3.1 and 7.3.2 we introduced the standard forms of
the constraints to be inequality constraints. We will express the dual SVM’s
equality constraint as two inequality constraints, i.e.,

Ax = b is replaced by Ax 6 b and Ax > b (12.63)

Particular software implementations of convex optimization methods may6556

provide the ability to express equality constraints. }6557

Since there are many different possible views of the SVM, there are6558

many approaches for solving the resulting optimization problem. The ap-6559

proach presented here, expressing the SVM problem in standard convex6560

optimization form, is not often used in practice. The two main imple-6561

mentations of SVM solvers are (Chang and Lin, 2011) (which is open6562

source) and (Joachims, 1999). Since SVMs have a clear and well defined6563

optimization problem, many approaches based on numerical optimization6564
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techniques (Nocedal and Wright, 2006) can be applied (Shawe-Taylor and6565

Sun, 2011).6566

12.4 Further Reading6567

The SVM is one of many approaches for studying binary classification.6568

Other approaches include the perceptron, logistic regression, Fisher dis-6569

criminant, nearest neighbor, naive Bayes, and random forest (Bishop, 2006;6570

Murphy, 2012). A short tutorial on SVMs and kernels on discrete se-6571

quences can be found in Ben-Hur et al. (2008). The development of SVMs6572

is closely linked to empirical risk minimization 8.1, and hence the SVM has6573

strong theoretical properties (Vapnik, 2000; Steinwart and Christmann,6574

2008). The book about kernel methods (Schölkopf and Smola, 2002)6575

includes many details of support vector machines and how to optimize6576

them. A broader book about kernel methods (Shawe-Taylor and Cristian-6577

ini, 2004) also includes many linear algebra approaches for different ma-6578

chine learning problems.6579

An alternative derivation of the dual SVM can be obtained using the6580

idea of the Legendre-Fenchel transform (Section 7.3.3). The derivation6581

considers each term of the unconstrained formulation of the SVM (12.33)6582

separately and calculates their convex conjugates (Rifkin and Lippert,6583

2007). Readers interested in the functional analysis view (also the reg-6584

ularization methods view) of SVMs are referred to the work by Wahba6585

(1990). Theoretical exposition of kernels (Manton and Amblard, 2015;6586

Aronszajn, 1950; Schwartz, 1964; Saitoh, 1988) require a basic ground-6587

ing of linear operators (Akhiezer and Glazman, 1993). The idea of kernels6588

have been generalized to Banach spaces (Zhang et al., 2009) and Krĕın6589

spaces (Ong et al., 2004; Loosli et al., 2016).6590

Observe that the hinge loss has three equivalent representations, as6591

shown by (12.30) and (12.31), as well as the constrained optimization6592

problem in (12.35). The formulation (12.30) is often used when compar-6593

ing the SVM loss function with other loss functions (Steinwart, 2007).6594

The two piece formulation (12.31) is convenient for computing subgra-6595

dients, as each piece is linear. The third formulation (12.35), as seen in6596

Section 12.3.4, enables the use of convex quadratic programming (Sec-6597

tion 7.3.2) tools.6598

Since binary classification is a well studied task in machine learning,6599

other words are also sometimes used, such as discrimination, separation6600

or decision. To further add to the confusion, there are three quantities that6601

can be the output of a binary classifier. First is the output of the linear func-6602

tion itself. This output can be used for ranking the examples, and binary6603

classification can be thought of as picking a threshold on the ranked exam-6604

ples (Shawe-Taylor and Cristianini, 2004). The second quantity that is of-6605

ten considered the output of a binary classifier is after the output is passed6606

through a non-linear function to constrain its value to a bounded range.6607
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A common non-linear function is the sigmoid function (Bishop, 2006).6608

When the non-linearity results in well calibrated probabilities (Gneiting6609

and Raftery, 2007; Reid and Williamson, 2011), this is called class proba-6610

bility estimation. The third output of a binary classifier is the final binary6611

decision, which is the one most commonly assumed to be the output of6612

the classifier.6613
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1-of-K representation, 3447163

`1 norm, 697164

`2 norm, 707165

abduction, 2437166

Abelian group, 357167

activation function, 2957168

affine mapping, 607169

affine subspace, 597170

algebra, 177171

algebraic multiplicity, 1067172

analytic, 1407173

analytic geometry, 147174

ancestral sampling, 321, 3447175

angle, 747176

Associativity:, 357177

attributes, 2397178

augmented matrix, 287179

auto-encoder, 3247180

automatic differentiation, 1587181

Automorphism, 487182

backpropagation, 156, 1587183

basic variables, 307184

basis, 447185

basis vectors, 457186

Bayes factor, 2677187

Bayes’ theorem, 1807188

Bayesian GP-LVM, 3287189

Bayesian inference, 2567190

Bayesian linear regression, 2827191

Bayesian model selection, 2667192

Bayesian networks, 2597193

Bayesian PCA, 3267194

Bernoulli distribution, 2027195

bijective, 487196

bilinear mapping, 707197

binary classification, 3497198

Binomial distribution, 2037199

blind-source separation, 3277200

calculus, 147201

canonical link function, 2957202

canonical/standard basis, 447203

categorical variables, 1757204

Cauchy-Schwarz inequality, 707205

change of variable, 1927206

characteristic polynomial, 997207

Cholesky decomposition, 1087208

Cholesky factor, 1087209

Cholesky factorization, 1087210

classes, 3497211

classification, 15, 2947212

Closure, 357213

code, 3247214

codirected, 1007215

codomain, 567216

collinear, 1007217

column space, 577218

column vectors, 387219

columns, 227220

completing the squares, 2877221

concave function, 2237222

condition number, 2177223

conditional probability, 1747224

conditionally independent given z, 1857225

conjugate, 2057226

conjugate priors, 2057227

convex conjugate, 2297228

convex function, 2237229

convex functions, 214, 2227230

convex hull, 3657231

convex optimization problem, 222, 2257232

convex set, 2237233

convex sets, 2227234

coordinate representation, 497235

coordinate vector, 497236

coordinates, 497237

correlation, 1857238

covariance, 1827239

covariance matrix, 183, 1957240

covariates, 2397241

cross validation, 243, 2487242

cross-covariance, 1837243

cumulative distribution function, 173,7244

1767245

cyclic permutations, 997246

d-separation, 2627247

data, 117248

data covariance matrix, 2987249

data point, 2397250

decoder, 3247251
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deep auto-encoder, 3277252

defective matrix, 1117253

density estimation, 157254

derivative, 1397255

design matrix, 273, 2757256

determinant, 947257

diagonalizable, 1107258

Diagonalization, 1117259

difference quotient, 1387260

dimension, 457261

dimensionality reduction, 15, 2977262

directed graphical model, 2587263

Directed graphical models, 259, 2637264

direction, 597265

direction space, 597266

distance, 747267

domain, 567268

dot product, 707269

dual SVM, 3647270

Eckart-Young Theorem, 3147271

eigenspace, 1007272

eigenspectrum, 1017273

eigenvalue, 1007274

eigenvalue equation, 1007275

eigenvector, 1007276

elementary transformations, 287277

EM algorithm, 3417278

embarrassingly parallel, 2497279

empirical covariance, 1837280

empirical mean, 1837281

empirical risk, 2457282

empirical risk minimization, 242, 2457283

encoder, 3247284

Endomorphism, 487285

equivalent, 547286

error term, 3617287

Euclidean distance, 70, 747288

Euclidean norm, 707289

Euclidean vector space, 717290

events, 1717291

evidence, 180, 266, 2847292

example, 2397293

expected risk, 2467294

expected value, 1817295

exponential family, 202, 2077296

Extended Kalman Filter, 1677297

factor analysis, 3277298

Factor graphs, 2637299

feature, 2397300

feature map, 2407301

feature matrix, 2757302

feature vector, 2757303

features, 2397304

forward mode, 1587305

four pillars of machine learning, 147306

free variables, 307307

full rank, 467308

full SVD, 1257309

Gaussian elimination, 317310

Gaussian mixture model, 3307311

Gaussian Process Latent Variable Model,7312

3277313

Gaussian processes, 2957314

general linear group, 367315

general solution, 27, 297316

generalized linear models, 2947317

generating set, 447318

generative process, 2667319

generator, 3257320

geometric multiplicity, 1067321

Givens rotation, 897322

global minimum, 2127323

gradient, 1437324

Gram matrix, 3677325

graphical model, 2597326

group, 357327

hard margin SVM, 3577328

Hessian, 1617329

Hessian matrix, 1627330

hidden variables, 2577331

hinge loss, 3607332

hyperparameter, 2437333

hyperplane, 597334

hyperplanes, 607335

identity mapping, 487336

identity matrix, 237337

image, 567338

independent and identically distributed,7339

245, 2517340

Independent Component Analysis, 3277341

inference network, 3257342

injective, 477343

inner product, 717344

inner product space, 717345

intermediate variables, 1597346

inverse, 247347

Inverse element:, 357348

invertible, 247349

Isomorphism, 487350

Jacobian, 143, 1477351

Jacobian determinant, 1497352

Jeffreys-Lindley paradox, 2677353

Jensen’s inequality, 2257354

joint probability, 1737355

Jordan Normal Form, 1117356

Karhunen-Loève transform, 2977357

kernel, 32, 46, 56, 2407358

kernel matrix, 3677359

kernel PCA, 3277360

kernel trick, 295, 327, 3677361

kernels, 3677362

label, 157363

Lagrange multipliers, 2217364
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Lagrangian, 2217365

Lagrangian dual problem, 2217366

Laplace approximation, 1677367

LASSO, 280, 2967368

latent variables, 2577369

leading coefficient, 307370

learning, 127371

least squares solution, 857372

least-squares loss, 1517373

left-singular vectors, 1157374

Legendre transform, 2297375

Legendre-Fenchel transform, 2297376

length, 697377

likelihood, 180, 250, 252, 2717378

linear algebra, 137379

linear combination, 397380

linear manifold, 597381

linear mapping, 477382

linear subspace, 387383

linear transformation, 477384

linearly dependent, 407385

linearly independent, 407386

lines, 59, 797387

local minimum, 2127388

log partition function, 2087389

logistic regression, 2957390

logistic sigmoid, 2957391

loss function, 245, 3597392

loss term, 3617393

lower triangular matrix, 957394

Maclaurin series, 1407395

Manhattan norm, 697396

MAP, 2807397

MAP estimation, 2567398

margin, 3537399

marginal likelihood, 266, 2847400

marginal probability, 1747401

marginalization property, 1797402

matrix, 18, 217403

matrix decomposition, 147404

matrix factorization, 927405

maximum a posteriori estimation, 253,7406

2567407

maximum a-posteriori, 2807408

maximum likelihood, 2427409

maximum likelihood estimate, 2767410

maximum likelihood estimation, 250,7411

2727412

mean, 1817413

mean function, 2897414

mean vector, 1957415

median, 1817416

metric, 747417

minimal, 447418

mixture models, 3307419

mixture weights, 3307420

mode, 1817421

model, 12, 2377422

model evidence, 2667423

model selection, 2437424

Moore-Penrose pseudo-inverse, 347425

multiplication by scalars, 377426

multivariate Gaussian distribution, 1957427

multivariate Taylor series, 1627428

natural parameters, 2087429

negative log likelihood, 2507430

nested cross validation, 2647431

Neutral element:, 357432

non-invertible, 247433

non-singular, 247434

norm, 697435

normal distribution, 1947436

normal equation, 837437

null space, 32, 46, 567438

Occam’s Razor, 2657439

ONB, 767440

one-hot encoding, 3447441

optimization, 147442

ordered basis, 497443

orthogonal, 757444

orthogonal basis, 767445

orthogonal complement, 3097446

orthogonal matrix, 757447

orthonormal, 757448

orthonormal basis, 767449

overfitting, 247, 2797450

PageRank, 1087451

parameters, 59, 2577452

parametric equation, 597453

partial derivative of a vector-valued7454

function, 1477455

partial derivatives, 1437456

particular solution, 27, 297457

pivot, 307458

planes, 607459

plate, 2617460

population mean and covariance, 1837461

Positive definite, 697462

positive definite, 71, 72, 747463

posterior, 180, 2527464

posterior distribution over models, 2667465

posterior odds, 2677466

power iteration, 3157467

power series representations, 1427468

PPCA likelihood, 3237469

preconditioner, 2177470

predictor, 2407471

predictors, 117472

primal problem, 2217473

principal component, 3027474

principal component analysis, 2977475

principal subspace, 3067476

prior, 180, 2527477

Probabilistic PCA, 3207478
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probability, 1727479

probability density function, 1767480

probability distribution, 1697481

probability integral transform, 1917482

probability mass function, 173, 1747483

probability theory, 147484

product rule, 1797485

projection, 797486

projection error, 847487

projection matrices, 797488

pseudo-inverse, 837489

random variable, 169, 1727490

range, 567491

rank, 467492

rank deficient, 467493

rank-k approximation, 1277494

recognition network, 3257495

reconstruction error, 84, 3077496

reduced hull, 3667497

reduced row echelon form, 307498

reduced SVD, 1257499

regression, 15, 2697500

regular, 247501

regularization, 247, 2797502

regularization parameter, 3597503

regularizer, 280, 281, 359, 3617504

representer theorem, 3637505

responsibilities, 3347506

reverse mode, 1587507

right-singular vectors, 1157508

root mean squared error (RMSE), 2787509

rotation, 867510

rotation matrix, 877511

row echelon form, 307512

row vectors, 387513

row-echelon form (REF), 297514

row/column vectors, 227515

rows, 227516

sample mean, 1837517

scalar product, 707518

scalars, 377519

similar, 547520

singular, 247521

Singular Value Decomposition, 1157522

singular value equation, 1217523

singular value matrix, 1157524

singular values, 1157525

slack variable, 3587526

soft margin SVM, 358, 3597527

solution, 207528

span, 447529

special solution, 277530

square matrices, 257531

standard deviation, 1827532

standard normal distribution, 1957533

standardization, 3177534

state space, 1717535

statistical learning theory, 2497536

statistically independent, 1847537

Stochastic gradient descent, 2187538

strong duality, 2227539

sufficient statistics, 2067540

sum rule, 1797541

supervised learning, 157542

support point, 597543

support vectors, 3637544

supporting hyperplane, 2287545

surjective, 477546

SVD, 1157547

symmetric, 25, 71, 747548

symmetric, positive definite, 727549

symmetric, positive semi-definite, 727550

system of linear equations, 207551

Taylor polynomial, 140, 1637552

Taylor series, 1407553

test error, 2797554

test set, 247, 2657555

trace, 987556

training, 117557

training error, 2797558

training set, 245, 2727559

transfer function, 2957560

transformation matrix, 507561

translation vector, 607562

transpose, 24, 387563

Triangle inequality, 697564

Triangular inequality, 747565

truncated SVD, 1267566

Undirected graphical models, 2637567

uniform distribution, 1767568

unknowns, 207569

unscented transform, 1677570

unsupervised learning, 157571

upper triangular matrix, 957572

validation set, 248, 2657573

variable selection, 2967574

variance, 182, 1837575

vector addition, 377576

vector space, 367577
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