O'REILLY"

Reliabilit
bEngineernng

HOW GOOGLE RUNS PRODUCTION SYSTEMS

Edited by Betsy Beyer, Chris Jones,
Jennifer Petoff & Niall Richard Murphy

9

O'REILLY"

Site Reliability Engineering

The overwhelming majority of a software system's lifespan is spent in use,
not in design or implementation. So, why does conventional wisdom insist
that software engineers focus primarily on the design and development
phases of large-scale computing systems?

In this collection of essays and articles, key members of Google's Site
Reliability Engineering team explain how and why their commitment to
the entire lifecycle has enabled the company to successfully build, deploy,
monitor, and maintain some of the largest software systems in the world.
You'll learn principles and practices that enable Google engineers to make
systems more scalable, reliable, and efficient—lessons directly applicable

to your organization.

This book is divided into four sections:

m Introduction—Learn what Site Reliability Engineering is and
why it differs from conventional IT industry practices

m Principles—Examine the patterns, behaviors, and areas of con-
cern that influence the work of a Site Reliability Engineer (SRE)

m Practices—Understand the theory and practice of an SRE's
day-to-day work: building and operating large distributed

computing systems

m Management—Explore Google best practices for training,
communication, and meetings that your organization can use

Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy are
members of Google's Site Reliability Engineering organization, which is respon-
sible for the care and feeding of Google's production systems.

“In-depth technical and
managerial practices
that every company can
use, but only Google

could invent.”

—Thomas A. Limoncelli
ex-Google SRE and coauthor of
The Practice of Cloud System
Administration (Addison-Wesley)

“Essential reading for
anyone running highly
available web services at

scale.”

— Adrian Cockcroft
Battery Ventures,
former Netflix Cloud Architect

“You owe it to yourself
and your organization to
read this book and try out

these ideas for yourself.”

—JezHumble

coauthor of Continuous Delivery
(Addison-Wesley) and

Lean Enterprise (O'Reilly)

SYSTEM ADMINISTRATION

US $44.99 CAN $51.99
ISBN: 978-1-491-92912-4

81491

7

929124

i

Twitter: @oreillymedia
facebook.com/oreilly

Praise for Site Reliability Engineering

Google’s SREs have done our industry an enormous service by writing up the principles,
practices and patterns—architectural and cultural—that enable their teams to combine
continuous delivery with world-class reliability at ludicrous scale. You owe it to yourself
and your organization to read this book and try out these ideas for yourself.

—Jez Humble, coauthor of Continuous Delivery and
Lean Enterprise

I remember when Google first started speaking at systems administration conferences.
It was like hearing a talk at a reptile show by a Gila monster expert. Sure, it was
entertaining to hear about a very different world, but in the end the audience

would go back to their geckos.

Now we live in a changed universe where the operational practices of Google are
not so removed from those who work on a smaller scale. All of a sudden, the best
practices of SRE that have been honed over the years are now of keen interest to
the rest of us. For those of us facing challenges around scale, reliability and
operations, this book comes none too soon.

—David N. Blank-Edelman, Director, USENIX Board of
Directors, and founding co-organizer of SREcon

I have been waiting for this book ever since I left Google’s enchanted castle.
It is the gospel I am preaching to my peers at work.

—Bjorn Rabenstein, Team Lead of Production Engineering at
SoundCloud, Prometheus developer, and Google SRE until 2013

A thorough discussion of Site Reliability Engineering from the company that
invented the concept. Includes not only the technical details but also the
thought process, goals, principles, and lessons learned over time. If you want
to learn what SRE really means, start here.

—Russ Allbery, SRE and Security Engineer

With this book, Google employees have shared the processes they have taken,
including the missteps, that have allowed Google services to expand to both massive
scale and great reliability. I highly recommend that anyone who wants to create a

set of integrated services that they hope will scale to read this book. The book
provides an insider’s guide to building maintainable services.

—Rik Farrow, USENIX

Writing large-scale services like Gmail is hard. Running them with high reliability is
even harder, especially when you change them every day. This comprehensive
“recipe book” shows how Google does it, and you'll find it much cheaper to learn
from our mistakes than to make them yourself.

—Urs Holzle, SVP Technical Infrastructure, Google

Site Reliability Engineering

How Google Runs Production Systems

Edited by Betsy Beyer, Chris Jones, Jennifer Petoff,
and Niall Richard Murphy

Bejng - Boston « Farnham - Sebastopol - Tokyo [@YRIIIMNY

Site Reliability Engineering
Edited by Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy

Copyright © 2016 Google, Inc. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson Indexer: Judy McConville
Production Editor: Kristen Brown Interior Designer: David Futato
Copyeditor: Kim Cofer Cover Designer: Karen Montgomery
Proofreader: Rachel Monaghan lllustrator: Rebecca Demarest
April 2016: First Edition

Revision History for the First Edition
2016-03-21: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491929124 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Site Reliability Engineering, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-92912-4
[LSI]

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491929124

Table of Contents

310 =111} (o Xiii

o] [XV

Partl. Introduction

1o Introduction.oveieiiiiiii 3
The Sysadmin Approach to Service Management 3
Google’s Approach to Service Management: Site Reliability Engineering 5
Tenets of SRE 7
The End of the Beginning 12

2. The Production Environment at Google, from the Viewpoint ofan SRE............. 13
Hardware 13
System Software That “Organizes” the Hardware 15
Other System Software 18
Our Software Infrastructure 19
Our Development Environment 19
Shakespeare: A Sample Service 20

Partll. Principles

3. EmbracingRisk.........cooiiiiiiiii 25
Managing Risk 25
Measuring Service Risk 26
Risk Tolerance of Services 28

Motivation for Error Budgets

. Service Level Objectives.covveueriiiiiii it

Service Level Terminology
Indicators in Practice
Objectives in Practice
Agreements in Practice

. EliminatingToil.cooviiinii i i e

Toil Defined

Why Less Toil Is Better

What Qualifies as Engineering?
Is Toil Always Bad?

Conclusion

. Monitoring Distributed Systems.cooviiiiiiiiiiiiiiiiiiiinnn.

Definitions

Why Monitor?

Setting Reasonable Expectations for Monitoring
Symptoms Versus Causes

Black-Box Versus White-Box

The Four Golden Signals

Worrying About Your Tail (or, Instrumentation and Performance)
Choosing an Appropriate Resolution for Measurements
As Simple as Possible, No Simpler

Tying These Principles Together

Monitoring for the Long Term

Conclusion

. The Evolution of Automationat Google...............c.cccovvevnnrennnnn.

The Value of Automation

The Value for Google SRE

The Use Cases for Automation

Automate Yourself Out of a Job: Automate ALL the Things!
Soothing the Pain: Applying Automation to Cluster Turnups
Borg: Birth of the Warehouse-Scale Computer

Reliability Is the Fundamental Feature

Recommendations

. Release ENgineering.ovvuiiiniiiniiiiiiiiiniiinienneeneennns

The Role of a Release Engineer
Philosophy

33

37
37
40
43
47

49
49
51
52
52
54

55
55
56
57
58
59
60
61
62
62
63
64
66

67
67
70
70
73
75
81
83
84

87
87
88

vi

Table of Contents

Continuous Build and Deployment 90

Configuration Management 93
Conclusions 95
9. SIMPlCEY. ..oeee e s 97
System Stability Versus Agility 97
The Virtue of Boring 98
I Won't Give Up My Code! 98
The “Negative Lines of Code” Metric 99
Minimal APIs 99
Modularity 100
Release Simplicity 100
A Simple Conclusion 101

Partlll. Practices

10. Practical Alerting from Time-Series Data...........coovvviiiiiiiinneennnenn.. 107
The Rise of Borgmon 108
Instrumentation of Applications 109
Collection of Exported Data 110
Storage in the Time-Series Arena 111
Rule Evaluation 114
Alerting 118
Sharding the Monitoring Topology 119
Black-Box Monitoring 120
Maintaining the Configuration 121
Ten Years On... 122

11, BeingOn-Qall.....o.reniriit i i e it ie e e 125
Introduction 125
Life of an On-Call Engineer 126
Balanced On-Call 127
Feeling Safe 128
Avoiding Inappropriate Operational Load 130
Conclusions 132

12. Effective Troubleshooting...........covvviiiiiiiiiiiii it 133
Theory 134
In Practice 136
Negative Results Are Magic 144
Case Study 146

Table of Contents | vii

13.

14.

15.

16.

17.

18.

Making Troubleshooting Easier
Conclusion

Emergency Response.ovvviiiiniiiiiiiiiiiiiiiiiiiienneenes

What to Do When Systems Break
Test-Induced Emergency
Change-Induced Emergency
Process-Induced Emergency

All Problems Have Solutions

Learn from the Past. Don’t Repeat It.
Conclusion

Managing Incidents.oouiiiiiiiiiiiii i

Unmanaged Incidents

The Anatomy of an Unmanaged Incident
Elements of Incident Management Process
A Managed Incident

When to Declare an Incident

In Summary

Postmortem Culture: Learning from Failure...........................

Google’s Postmortem Philosophy
Collaborate and Share Knowledge
Introducing a Postmortem Culture
Conclusion and Ongoing Improvements

Tracking QuUtages.evvevveeenie e i e iieenieeeeneneaennans

Escalator
Outalator

Testing for Reliability.............cooiiiiiiiiiiiiiii i,

Types of Software Testing

Creating a Test and Build Environment
Testing at Scale

Conclusion

Software Engineeringin SRE.covviiiiiiiiiiiiiiiiiiiieinnns

Why Is Software Engineering Within SRE Important?
Auxon Case Study: Project Background and Problem Space
Intent-Based Capacity Planning

Fostering Software Engineering in SRE

Conclusions

150
150

151
151
152
153
155
158
158
159

161
161
162
163
165
166
166

169
169
171
172
175

177
178
178

183
185
190
192
204

205
205
207
209
218
222

viii

Table of Contents

. Load BalancingattheFrontend.............cooviviiiiiiiiiiiiiiiniinnnen, 223

Power Isn’t the Answer 223
Load Balancing Using DNS 224
Load Balancing at the Virtual IP Address 227
. Load Balancinginthe Datacenter.............covviiiiiiiiiiiiiiiinnnnnnnns 231
The Ideal Case 232
Identifying Bad Tasks: Flow Control and Lame Ducks 233
Limiting the Connections Pool with Subsetting 235
Load Balancing Policies 240
. HandlingOverload.ccovuiiiiiii i i 247
The Pitfalls of “Queries per Second” 248
Per-Customer Limits 248
Client-Side Throttling 249
Criticality 251
Utilization Signals 253
Handling Overload Errors 253
Load from Connections 257
Conclusions 258
. Addressing Cascading Failures.............ccoviiiiiiiiiiiiiiiiiiiiinnenns. 259
Causes of Cascading Failures and Designing to Avoid Them 260
Preventing Server Overload 265
Slow Startup and Cold Caching 274
Triggering Conditions for Cascading Failures 276
Testing for Cascading Failures 278
Immediate Steps to Address Cascading Failures 280
Closing Remarks 283
. Managing Critical State: Distributed Consensus for Reliability.................. 285
Motivating the Use of Consensus: Distributed Systems Coordination Failure 288
How Distributed Consensus Works 289
System Architecture Patterns for Distributed Consensus 291
Distributed Consensus Performance 296
Deploying Distributed Consensus-Based Systems 304
Monitoring Distributed Consensus Systems 312
Conclusion 313
. Distributed Periodic SchedulingwithCron................cooiiiiiiiiiiinna., 315
Cron 315
Cron Jobs and Idempotency 316

Table of Contents | ix

Cron at Large Scale 317
Building Cron at Google 319
Summary 326
25. Data Processing Pipelines..........covvirniiiiiiiiiiiiiiiieiineeennnnns 327
Origin of the Pipeline Design Pattern 327
Initial Effect of Big Data on the Simple Pipeline Pattern 328
Challenges with the Periodic Pipeline Pattern 328
Trouble Caused By Uneven Work Distribution 328
Drawbacks of Periodic Pipelines in Distributed Environments 329
Introduction to Google Workflow 333
Stages of Execution in Workflow 335
Ensuring Business Continuity 337
Summary and Concluding Remarks 338
26. Data Integrity: What You Read Is What YouWrote............coovvuniinnns 339
Data Integrity’s Strict Requirements 340
Google SRE Objectives in Maintaining Data Integrity and Availability 344
How Google SRE Faces the Challenges of Data Integrity 349
Case Studies 360
General Principles of SRE as Applied to Data Integrity 367
Conclusion 368
27. Reliable Product LaunchesatScale. ..., 369
Launch Coordination Engineering 370
Setting Up a Launch Process 372
Developing a Launch Checklist 375
Selected Techniques for Reliable Launches 380
Development of LCE 384
Conclusion 387
PartlV. Management
28. Accelerating SREsto On-CallandBeyond.............cccovvvvvniiinnnnnns 391
You’ve Hired Your Next SRE(s), Now What? 391
Initial Learning Experiences: The Case for Structure Over Chaos 394
Creating Stellar Reverse Engineers and Improvisational Thinkers 397
Five Practices for Aspiring On-Callers 400
On-Call and Beyond: Rites of Passage, and Practicing Continuing Education 406
Closing Thoughts 406

X

Table of Contents

29. DealingwithInterrupts.covviiriiiiiiiiiii i iiiiiiieenieennn, 407

Managing Operational Load 408
Factors in Determining How Interrupts Are Handled 408
Imperfect Machines 409
30. Embedding an SRE to Recover from Operational Overload....................... 417
Phase 1: Learn the Service and Get Context 418
Phase 2: Sharing Context 420
Phase 3: Driving Change 421
Conclusion 423
31. Communication and CollaborationinSRE....................coooiiiiin, 425
Communications: Production Meetings 426
Collaboration within SRE 430
Case Study of Collaboration in SRE: Viceroy 432
Collaboration Outside SRE 437
Case Study: Migrating DFP to F1 437
Conclusion 440
32. The Evolving SRE EngagementModel.............ccoovvviiiiiiiiiiinnen.. an
SRE Engagement: What, How, and Why 441
The PRR Model 442
The SRE Engagement Model 443
Production Readiness Reviews: Simple PRR Model 444
Evolving the Simple PRR Model: Early Engagement 448
Evolving Services Development: Frameworks and SRE Platform 451
Conclusion 456

PartV. Conclusions

33. Lessons Learned from Other Industries......................oooiitl, 459
Meet Our Industry Veterans 460
Preparedness and Disaster Testing 462
Postmortem Culture 465
Automating Away Repetitive Work and Operational Overhead 467
Structured and Rational Decision Making 469
Conclusions 470

34, Condlusion.........oooiiiiiiiii 473

Table of Contents | xi

A. Availability Table......oouoririii i i i i i e 477

B. A Collection of Best Practices for Production Services.cccoevviiiiiennn 479
(. Example Incident State Document.c.coiiiiiiiiiiiiiiiiiiii i, 485
D. Example Postmortem.ccuiiiiiiiiiieiiiiiiiiiiiiiiieiieiaeiaenaans 487
E. Launch Coordination Checklist.............ccoovvviiiiiiiiiiiiiiiiiiiiiin, 493
F. Example Production Meeting Minutes...........coovviniiiiiiiiiiiiinnennnnns 497
Bibliography.cvvuiiiii i e e 501
INEX. oo e 5N

xii | Tableof Contents

Foreword

Google’s story is a story of scaling up. It is one of the great success stories of the com-
puting industry, marking a shift towards IT-centric business. Google was one of the
first companies to define what business-IT alignment meant in practice, and went on
to inform the concept of DevOps for a wider IT community. This book has been writ-
ten by a broad cross-section of the very people who made that transition a reality.

Google grew at a time when the traditional role of the system administrator was being
transformed. It questioned system administration, as if to say: we can’t afford to hold
tradition as an authority, we have to think anew, and we don’t have time to wait for
everyone else to catch up. In the introduction to Principles of Network and System
Administration [Bur99], I claimed that system administration was a form of human-
computer engineering. This was strongly rejected by some reviewers, who said “we
are not yet at the stage where we can call it engineering” At the time, I felt that the
field had become lost, trapped in its own wizard culture, and could not see a way for-
ward. Then, Google drew a line in the silicon, forcing that fate into being. The revised
role was called SRE, or Site Reliability Engineer. Some of my friends were among the
first of this new generation of engineer; they formalized it using software and auto-
mation. Initially, they were fiercely secretive, and what happened inside and outside
of Google was very different: Google’s experience was unique. Over time, information
and methods have flowed in both directions. This book shows a willingness to let SRE
thinking come out of the shadows.

Here, we see not only how Google built its legendary infrastructure, but also how it
studied, learned, and changed its mind about the tools and the technologies along the
way. We, too, can face up to daunting challenges with an open spirit. The tribal nature
of IT culture often entrenches practitioners in dogmatic positions that hold the
industry back. If Google overcame this inertia, so can we.

This book is a collection of essays by one company, with a single common vision. The
fact that the contributions are aligned around a single company’s goal is what makes
it special. There are common themes, and common characters (software systems)

xXiii

that reappear in several chapters. We see choices from different perspectives, and
know that they correlate to resolve competing interests. The articles are not rigorous,
academic pieces; they are personal accounts, written with pride, in a variety of per-
sonal styles, and from the perspective of individual skill sets. They are written bravely,
and with an intellectual honesty that is refreshing and uncommon in industry litera-
ture. Some claim “never do this, always do that,” others are more philosophical and
tentative, reflecting the variety of personalities within an IT culture, and how that too
plays a role in the story. We, in turn, read them with the humility of observers who
were not part of the journey, and do not have all the information about the myriad
conflicting challenges. Our many questions are the real legacy of the volume: Why
didn’t they do X? What if theyd done Y? How will we look back on this in years to
come? It is by comparing our own ideas to the reasoning here that we can measure
our own thoughts and experiences.

The most impressive thing of all about this book is its very existence. Today, we hear a
brazen culture of “just show me the code” A culture of “ask no questions” has grown
up around open source, where community rather than expertise is championed. Goo-
gle is a company that dared to think about the problems from first principles, and to
employ top talent with a high proportion of PhDs. Tools were only components in
processes, working alongside chains of software, people, and data. Nothing here tells
us how to solve problems universally, but that is the point. Stories like these are far
more valuable than the code or designs they resulted in. Implementations are ephem-
eral, but the documented reasoning is priceless. Rarely do we have access to this kind
of insight.

This, then, is the story of how one company did it. The fact that it is many overlap-
ping stories shows us that scaling is far more than just a photographic enlargement of
a textbook computer architecture. It is about scaling a business process, rather than
just the machinery. This lesson alone is worth its weight in electronic paper.

We do not engage much in self-critical review in the IT world; as such, there is much
reinvention and repetition. For many years, there was only the USENIX LISA confer-
ence community discussing IT infrastructure, plus a few conferences about operating
systems. It is very different today, yet this book still feels like a rare offering: a detailed
documentation of Google’s step through a watershed epoch. The tale is not for copy-
ing—though perhaps for emulating—but it can inspire the next step for all of us.
There is a unique intellectual honesty in these pages, expressing both leadership and
humility. These are stories of hopes, fears, successes, and failures. I salute the courage
of authors and editors in allowing such candor, so that we, who are not party to the
hands-on experiences, can also benefit from the lessons learned inside the cocoon.

— Mark Burgess
author of In Search of Certainty
Oslo, March 2016

xiv | Foreword

Preface

Software engineering has this in common with having children: the labor before the
birth is painful and difficult, but the labor after the birth is where you actually spend
most of your effort. Yet software engineering as a discipline spends much more time
talking about the first period as opposed to the second, despite estimates that 40-90%
of the total costs of a system are incurred after birth.! The popular industry model
that conceives of deployed, operational software as being “stabilized” in production,
and therefore needing much less attention from software engineers, is wrong.
Through this lens, then, we see that if software engineering tends to focus on design-
ing and building software systems, there must be another discipline that focuses on
the whole lifecycle of software objects, from inception, through deployment and oper-
ation, refinement, and eventual peaceful decommissioning. This discipline uses—and
needs to use—a wide range of skills, but has separate concerns from other kinds of
engineers. Today, our answer is the discipline Google calls Site Reliability Engineer-
ing.

So what exactly is Site Reliability Engineering (SRE)? We admit that it’s not a particu-
larly clear name for what we do—pretty much every site reliability engineer at Google
gets asked what exactly that is, and what they actually do, on a regular basis.

Unpacking the term a little, first and foremost, SREs are engineers. We apply the prin-
ciples of computer science and engineering to the design and development of com-
puting systems: generally, large distributed ones. Sometimes, our task is writing the
software for those systems alongside our product development counterparts; some-
times, our task is building all the additional pieces those systems need, like backups
or load balancing, ideally so they can be reused across systems; and sometimes, our
task is figuring out how to apply existing solutions to new problems.

1 The very fact that there is such large variance in these estimates tells you something about software engineer-
ing as a discipline, but see, e.g., [Gla02] for more details.

XV

Next, we focus on system reliability. Ben Treynor Sloss, Google’s VP for 24/7 Opera-
tions, originator of the term SRE, claims that reliability is the most fundamental fea-
ture of any product: a system isn’t very useful if nobody can use it! Because reliability”
is so critical, SREs are focused on finding ways to improve the design and operation
of systems to make them more scalable, more reliable, and more efficient. However,
we expend effort in this direction only up to a point: when systems are “reliable
enough,” we instead invest our efforts in adding features or building new products.?

Finally, SREs are focused on operating services built atop our distributed computing
systems, whether those services are planet-scale storage, email for hundreds of mil-
lions of users, or where Google began, web search. The “site” in our name originally
referred to SRE’s role in keeping the google.com website running, though we now run
many more services, many of which aren’t themselves websites—from internal infra-
structure such as Bigtable to products for external developers such as the Google
Cloud Platform.

Although we have represented SRE as a broad discipline, it is no surprise that it arose
in the fast-moving world of web services, and perhaps in origin owes something to
the peculiarities of our infrastructure. It is equally no surprise that of all the post-
deployment characteristics of software that we could choose to devote special atten-
tion to, reliability is the one we regard as primary.* The domain of web services, both
because the process of improving and changing server-side software is comparatively
contained, and because managing change itself is so tightly coupled with failures of all
kinds, is a natural platform from which our approach might emerge.

Despite arising at Google, and in the web community more generally, we think that
this discipline has lessons applicable to other communities and other organizations.
This book is an attempt to explain how we do things: both so that other organizations
might make use of what we've learned, and so that we can better define the role and
what the term means. To that end, we have organized the book so that general princi-
ples and more specific practices are separated where possible, and where it’s appropri-
ate to discuss a particular topic with Google-specific information, we trust that the
reader will indulge us in this and will not be afraid to draw useful conclusions about
their own environment.

S}

For our purposes, reliability is “The probability that [a system] will perform a required function without fail-
ure under stated conditions for a stated period of time,” following the definition in [Oco12].

w

The software systems were concerned with are largely websites and similar services; we do not discuss the
reliability concerns that face software intended for nuclear power plants, aircraft, medical equipment, or other
safety-critical systems. We do, however, compare our approaches with those used in other industries in Chap-
ter 33.

4 In this, we are distinct from the industry term DevOps, because although we definitely regard infrastructure
as code, we have reliability as our main focus. Additionally, we are strongly oriented toward removing the
necessity for operations—see Chapter 7 for more details.

xvi | Preface

We have also provided some orienting material—a description of Google’s production
environment and a mapping between some of our internal software and publicly
available software—which should help to contextualize what we are saying and make
it more directly usable.

Ultimately, of course, more reliability-oriented software and systems engineering is
inherently good. However, we acknowledge that smaller organizations may be won-
dering how they can best use the experience represented here: much like security, the
earlier you care about reliability, the better. This implies that even though a small
organization has many pressing concerns and the software choices you make may dif-
fer from those Google made, it’s still worth putting lightweight reliability support in
place early on, because it’s less costly to expand a structure later on than it is to intro-
duce one that is not present. Part IV contains a number of best practices for training,
communication, and meetings that we've found to work well for us, many of which
should be immediately usable by your organization.

But for sizes between a startup and a multinational, there probably already is some-
one in your organization who is doing SRE work, without it necessarily being called
that name, or recognized as such. Another way to get started on the path to improv-
ing reliability for your organization is to formally recognize that work, or to find
these people and foster what they do—reward it. They are people who stand on the
cusp between one way of looking at the world and another one: like Newton, who is
sometimes called not the world’s first physicist, but the world’s last alchemist.

And taking the historical view, who, then, looking back, might be the first SRE?

We like to think that Margaret Hamilton, working on the Apollo program on loan
from MIT, had all of the significant traits of the first SRE.” In her own words, “part of
the culture was to learn from everyone and everything, including from that which
one would least expect”

A case in point was when her young daughter Lauren came to work with her one day,
while some of the team were running mission scenarios on the hybrid simulation
computer. As young children do, Lauren went exploring, and she caused a “mission”
to crash by selecting the DSKY keys in an unexpected way, alerting the team as to
what would happen if the prelaunch program, P01, were inadvertently selected by a
real astronaut during a real mission, during real midcourse. (Launching P01 inadver-
tently on a real mission would be a major problem, because it wipes out navigation
data, and the computer was not equipped to pilot the craft with no navigation data.)

5 In addition to this great story, she also has a substantial claim to popularizing the term “software engineering.”

Preface | xvii

With an SRE’s instincts, Margaret submitted a program change request to add special
error checking code in the onboard flight software in case an astronaut should, by
accident, happen to select P01 during flight. But this move was considered unneces-
sary by the “higher-ups” at NASA: of course, that could never happen! So instead of
adding error checking code, Margaret updated the mission specifications documenta-
tion to say the equivalent of “Do not select PO1 during flight” (Apparently the update
was amusing to many on the project, who had been told many times that astronauts
would not make any mistakes—after all, they were trained to be perfect.)

Well, Margaret’s suggested safeguard was only considered unnecessary until the very
next mission, on Apollo 8, just days after the specifications update. During midcourse
on the fourth day of flight with the astronauts Jim Lovell, William Anders, and Frank
Borman on board, Jim Lovell selected PO1 by mistake—as it happens, on Christmas
Day—creating much havoc for all involved. This was a critical problem, because in
the absence of a workaround, no navigation data meant the astronauts were never
coming home. Thankfully, the documentation update had explicitly called this possi-
bility out, and was invaluable in figuring out how to upload usable data and recover
the mission, with not much time to spare.

As Margaret says, “a thorough understanding of how to operate the systems was not
enough to prevent human errors,” and the change request to add error detection and
recovery software to the prelaunch program P01 was approved shortly afterwards.

Although the Apollo 8 incident occurred decades ago, there is much in the preceding
paragraphs directly relevant to engineers’ lives today, and much that will continue to
be directly relevant in the future. Accordingly, for the systems you look after, for the
groups you work in, or for the organizations you're building, please bear the SRE Way
in mind: thoroughness and dedication, belief in the value of preparation and docu-
mentation, and an awareness of what could go wrong, coupled with a strong desire to
prevent it. Welcome to our emerging profession!

xviii | Preface

How to Read This Book

This book is a series of essays written by members and alumni of Google’s Site Relia-
bility Engineering organization. It's much more like conference proceedings than it is
like a standard book by an author or a small number of authors. Each chapter is
intended to be read as a part of a coherent whole, but a good deal can be gained by
reading on whatever subject particularly interests you. (If there are other articles that
support or inform the text, we reference them so you can follow up accordingly.)

You don't need to read in any particular order, though wed suggest at least starting
with Chapters 2 and 3, which describe Google’s production environment and outline
how SRE approaches risk, respectively. (Risk is, in many ways, the key quality of our
profession.) Reading cover-to-cover is, of course, also useful and possible; our chap-
ters are grouped thematically, into Principles (Part II), Practices (Part III), and Man-
agement (Part IV). Each has a small introduction that highlights what the individual
pieces are about, and references other articles published by Google SREs, covering
specific topics in more detail. Additionally, the companion website to this book,
https://g.co/SREBook, has a number of helpful resources.

We hope this will be at least as useful and interesting to you as putting it together was
for us.

— The Editors

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Preface | xix

https://g.co/SREBook

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Using Code Examples

Supplemental material is available at https://g.co/SREBook.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Site Reliability Engineering, edited by
Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy (O’Reilly). Copy-
right 2016 Google, Inc., 978-1-491-92912-4”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv-
1 7 ers expert content in both book and video form from the
world’s leading authors in technology and business.

xx | Preface

https://g.co/SREBook
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/site-reliability-engineering.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This book would not have been possible without the tireless efforts of our authors
and technical writers. Wed also like thank the following internal reviewers for provid-
ing especially valuable feedback: Alex Matey, Dermot Dufty, JC van Winkel, John T.

Preface | xxi

https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/site-reliability-engineering
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Reese, Michael O’Reilly, Steve Carstensen, and Todd Underwood. Ben Lutch and Ben
Treynor Sloss were this book’s sponsors within Google; their belief in this project and
sharing what we've learned about running large-scale services was essential to making
this book happen.

Wed like to send special thanks to Rik Farrow, the editor of ;login:, for partnering
with us on a number of contributions for pre-publication via USENIX.

While the authors are specifically acknowledged in each chapter, wed like to take time
to recognize those that contributed to each chapter by providing thoughtful input,
discussion, and review.

Chapter 3: Abe Rahey, Ben Treynor Sloss, Brian Stoler, Dave O’Connor, David Besb-
ris, Jill Alvidrez, Mike Curtis, Nancy Chang, Tammy Capistrant, Tom Limoncelli

Chapter 5: Cody Smith, George Sadlier, Laurence Berland, Marc Alvidrez, Patrick
Stahlberg, Peter Duff, Pim van Pelt, Ryan Anderson, Sabrina Farmer, Seth Hettich

Chapter 6: Mike Curtis, Jamie Wilkinson, Seth Hettich

Chapter 8: David Schnur, JT Goldstone, Marc Alvidrez, Marcus Lara-Reinhold, Noah
Maxwell, Peter Dinges, Sumitran Raghunathan, Yutong Cho

Chapter 9: Ryan Anderson
Chapter 10: Jules Anderson, Max Luebbe, Mikel Mcdaniel, Raul Vera, Seth Hettich
Chapter 11: Andrew Stribblehill, Richard Woodbury

Chapter 12: Charles Stephen Gunn, John Hedditch, Peter Nuttall, Rob Ewaschuk,
Sam Greenfield

Chapter 13: Jelena Oertel, Kripa Krishnan, Sergio Salvi, Tim Craig

Chapter 14: Amy Zhou, Carla Geisser, Grainne Sheerin, Hildo Biersma, Jelena Oertel,
Perry Lorier, Rune Kristian Viken

Chapter 15: Dan Wu, Heather Sherman, Jared Brick, Mike Louer, Stépan Davidovig,
Tim Craig

Chapter 16: Andrew Stribblehill, Richard Woodbury
Chapter 17: Isaac Clerencia, Marc Alvidrez

Chapter 18: Ulric Longyear

Chapter 19: Debashish Chatterjee, Perry Lorier

Chapters 20 and 21: Adam Fletcher, Christoph Pfisterer, Lukas Jezek, Manjot Pahwa,
Micha Riser, Noah Fiedel, Pavel Herrmann, Pawel Zuzelski, Perry Lorier, Ralf Wild-
enhues, Tudor-Ioan Salomie, Witold Baryluk

xxii | Preface

Chapter 22: Mike Curtis, Ryan Anderson
Chapter 23: Ananth Shrinivas, Mike Burrows
Chapter 24: Ben Fried, Derek Jackson, Gabe Krabbe, Laura Nolan, Seth Hettich

Chapter 25: Abdulrahman Salem, Alex Perry, Arnar Mar Hrafnkelsson, Dieter Pear-
cey, Dylan Curley, Eivind Eklund, Eric Veach, Graham Poulter, Ingvar Mattsson, John
Looney, Ken Grant, Michelle Duffy, Mike Hochberg, Will Robinson

Chapter 26: Corey Vickrey, Dan Ardelean, Disney Luangsisongkham, Gordon Priore-
schi, Kristina Bennett, Liang Lin, Michael Kelly, Sergey Ivanyuk

Chapter 27: Vivek Rau

Chapter 28: Melissa Binde, Perry Lorier, Preston Yoshioka

Chapter 29: Ben Lutch, Carla Geisser, Dzevad Trumic, John Turek, Matt Brown
Chapter 30: Charles Stephen Gunn, Chris Heiser, Max Luebbe, Sam Greenfield

Chapter 31: Alex Kehlenbeck, Jeromy Carriere, Joel Becker, Sowmya Vijayaraghavan,
Trevor Mattson-Hamilton

Chapter 32: Seth Hettich

Chapter 33: Adrian Hilton, Brad Kratochvil, Charles Ballowe, Dan Sheridan, Eddie
Kennedy, Erik Gross, Gus Hartmann, Jackson Stone, Jeft Stevenson, John Li, Kevin
Greer, Matt Toia, Michael Haynie, Mike Doherty, Peter Dahl, Ron Heiby

We are also grateful to the following contributors, who either provided significant
material, did an excellent job of reviewing, agreed to be interviewed, supplied signifi-
cant expertise or resources, or had some otherwise excellent effect on this work:

Abe Hassan, Adam Rogoyski, Alex Hidalgo, Amaya Booker, Andrew Fikes, Andrew
Hurst, Ariel Goh, Ashleigh Rentz, Ayman Hourieh, Barclay Osborn, Ben Appleton,
Ben Love, Ben Winslow, Bernhard Beck, Bill Duane, Bill Patry, Blair Zajac, Bob
Gruber, Brian Gustafson, Bruce Murphy, Buck Clay, Cedric Cellier, Chiho Saito, Chris
Carlon, Christopher Hahn, Chris Kennelly, Chris Taylor, Ciara Kamahele-Sanfratello,
Colin Phipps, Colm Buckley, Craig Paterson, Daniel Eisenbud, Daniel V. Klein, Dan-
iel Spoonhower, Dan Watson, Dave Phillips, David Hixson, Dina Betser, Doron
Meyer, Dmitry Fedoruk, Eric Grosse, Eric Schrock, Filip Zyzniewski, Francis Tang,
Gary Arneson, Georgina Wilcox, Gretta Bartels, Gustavo Franco, Harald Wagener,
Healfdene Goguen, Hugo Santos, Hyrum Wright, Ian Gulliver, Jakub Turski, James
Chivers, James O’Kane, James Youngman, Jan Monsch, Jason Parker-Burlingham,
Jason Petsod, Jeffry McNeil, Jeff Dean, Jeft Peck, Jennifer Mace, Jerry Cen, Jess Frame,
John Brady, John Gunderman, John Kochmar, John Tobin, Jordyn Buchanan, Joseph
Bironas, Julio Merino, Julius Plenz, Kate Ward, Kathy Polizzi, Katrina Sostek, Kenn
Hamm, Kirk Russell, Kripa Krishnan, Larry Greenfield, Lea Oliveira, Luca Cittadini,

Preface | xxiii

Lucas Pereira, Magnus Ringman, Mahesh Palekar, Marco Paganini, Mario Bonilla,
Mathew Mills, Mathew Monroe, Matt D. Brown, Matt Proud, Max Saltonstall, Michal
Jaszczyk, Mihai Bivol, Misha Brukman, Olivier Oansaldi, Patrick Bernier, Pierre Pala-
tin, Rob Shanley, Robert van Gent, Rory Ward, Rui Zhang-Shen, Salim Virji, Sanjay
Ghemawat, Sarah Coty, Sean Dorward, Sean Quinlan, Sean Sechrest, Shari Trumbo-
McHenry, Shawn Morrissey, Shun-Tak Leung, Stan Jedrus, Stefano Lattarini, Steven
Schirripa, Tanya Reilly, Terry Bolt, Tim Chaplin, Toby Weingartner, Tom Black, Udi
Meiri, Victor Terron, Vlad Grama, Wes Hertlein, and Zoltan Egyed.

We very much appreciate the thoughtful and in-depth feedback that we received from
external reviewers: Andrew Fong, Bjorn Rabenstein, Charles Border, David Blank-
Edelman, Frossie Economou, James Meickle, Josh Ryder, Mark Burgess, and Russ
Allbery.

We would like to extend special thanks to Cian Synnott, original book team member
and co-conspirator, who left Google before this project was completed but was deeply
influential to it, and Margaret Hamilton, who so graciously allowed us to reference
her story in our preface. Additionally, we would like to extend special thanks to Shy-
laja Nukala, who generously gave of the time of her technical writers and supported
their necessary and valued efforts wholeheartedly.

The editors would also like to personally thank the following people:

Betsy Beyer: To Grandmother (my personal hero), for supplying endless amounts of
phone pep talks and popcorn, and to Riba, for supplying me with the sweatpants nec-
essary to fuel several late nights. These, of course, in addition to the cast of SRE all-
stars who were indeed delightful collaborators.

Chris Jones: To Michelle, for saving me from a life of crime on the high seas and for
her uncanny ability to find manzanas in unexpected places, and to those who've
taught me about engineering over the years.

Jennifer Petoff: To my husband Scott for being incredibly supportive during the two
year process of writing this book and for keeping the editors supplied with plenty of
sugar on our “Dessert Island”

Niall Murphy: To Léan, Oisin, and Fiachra, who were considerably more patient than
I had any right to expect with a substantially rantier father and husband than usual,
for years. To Dermot, for the transfer offer.

xxiv | Preface

PART |
Introduction

This section provides some high-level guidance on what SRE is and why it is different
from more conventional IT industry practices.

Ben Treynor Sloss, the senior VP overseeing technical operations at Google—and the
originator of the term “Site Reliability Engineering”—provides his view on what SRE
means, how it works, and how it compares to other ways of doing things in the indus-
try, in Chapter 1.

We provide a guide to the production environment at Google in Chapter 2 as a way to
help acquaint you with the wealth of new terms and systems you are about to meet in
the rest of the book.

CHAPTER1
Introduction

Written by Benjamin Treynor Sloss'
Edited by Betsy Beyer

Hope is not a strategy.
—Traditional SRE saying

It is a truth universally acknowledged that systems do not run themselves. How, then,
should a system—particularly a complex computing system that operates at a large
scale—be run?

The Sysadmin Approach to Service Management

Historically, companies have employed systems administrators to run complex com-
puting systems.

This systems administrator, or sysadmin, approach involves assembling existing soft-
ware components and deploying them to work together to produce a service.
Sysadmins are then tasked with running the service and responding to events and
updates as they occur. As the system grows in complexity and traffic volume, generat-
ing a corresponding increase in events and updates, the sysadmin team grows to
absorb the additional work. Because the sysadmin role requires a markedly different
skill set than that required of a product’s developers, developers and sysadmins are
divided into discrete teams: “development” and “operations” or “ops.”

The sysadmin model of service management has several advantages. For companies
deciding how to run and staff a service, this approach is relatively easy to implement:
as a familiar industry paradigm, there are many examples from which to learn and

1 Vice President, Google Engineering, founder of Google SRE

emulate. A relevant talent pool is already widely available. An array of existing tools,
software components (off the shelf or otherwise), and integration companies are
available to help run those assembled systems, so a novice sysadmin team doesn’t
have to reinvent the wheel and design a system from scratch.

The sysadmin approach and the accompanying development/ops split has a number
of disadvantages and pitfalls. These fall broadly into two categories: direct costs and
indirect costs.

Direct costs are neither subtle nor ambiguous. Running a service with a team that
relies on manual intervention for both change management and event handling
becomes expensive as the service and/or traffic to the service grows, because the size
of the team necessarily scales with the load generated by the system.

The indirect costs of the development/ops split can be subtle, but are often more
expensive to the organization than the direct costs. These costs arise from the fact
that the two teams are quite different in background, skill set, and incentives. They
use different vocabulary to describe situations; they carry different assumptions about
both risk and possibilities for technical solutions; they have different assumptions
about the target level of product stability. The split between the groups can easily
become one of not just incentives, but also communication, goals, and eventually,
trust and respect. This outcome is a pathology.

Traditional operations teams and their counterparts in product development thus
often end up in conflict, most visibly over how quickly software can be released to
production. At their core, the development teams want to launch new features and
see them adopted by users. At their core, the ops teams want to make sure the service
doesn't break while they are holding the pager. Because most outages are caused by
some kind of change—a new configuration, a new feature launch, or a new type of
user traffic—the two teams’ goals are fundamentally in tension.

Both groups understand that it is unacceptable to state their interests in the baldest
possible terms (“We want to launch anything, any time, without hindrance” versus
“We won't want to ever change anything in the system once it works”). And because
their vocabulary and risk assumptions differ, both groups often resort to a familiar
form of trench warfare to advance their interests. The ops team attempts to safeguard
the running system against the risk of change by introducing launch and change
gates. For example, launch reviews may contain an explicit check for every problem
that has ever caused an outage in the past—that could be an arbitrarily long list, with
not all elements providing equal value. The dev team quickly learns how to respond.
They have fewer “launches” and more “flag flips,” “incremental updates,” or “cherry-
picks” They adopt tactics such as sharding the product so that fewer features are sub-
ject to the launch review.

4 | Chapter 1: Introduction

Google’s Approach to Service Management:
Site Reliability Engineering

Conflict isn't an inevitable part of offering a software service. Google has chosen to
run our systems with a different approach: our Site Reliability Engineering teams
focus on hiring software engineers to run our products and to create systems to
accomplish the work that would otherwise be performed, often manually, by
sysadmins.

What exactly is Site Reliability Engineering, as it has come to be defined at Google?
My explanation is simple: SRE is what happens when you ask a software engineer to
design an operations team. When I joined Google in 2003 and was tasked with run-
ning a “Production Team” of seven engineers, my entire life up to that point had been
software engineering. So I designed and managed the group the way I would want it
to work if I worked as an SRE myself. That group has since matured to become Goo-
gle’s present-day SRE team, which remains true to its origins as envisioned by a life-
long software engineer.

A primary building block of Google’s approach to service management is the compo-
sition of each SRE team. As a whole, SRE can be broken down two main categories.

50-60% are Google Software Engineers, or more precisely, people who have been
hired via the standard procedure for Google Software Engineers. The other 40-50%
are candidates who were very close to the Google Software Engineering qualifications
(i.e., 85-99% of the skill set required), and who in addition had a set of technical skills
that is useful to SRE but is rare for most software engineers. By far, UNIX system
internals and networking (Layer 1 to Layer 3) expertise are the two most common
types of alternate technical skills we seek.

Common to all SREs is the belief in and aptitude for developing software systems to
solve complex problems. Within SRE, we track the career progress of both groups
closely, and have to date found no practical difference in performance between engi-
neers from the two tracks. In fact, the somewhat diverse background of the SRE team
frequently results in clever, high-quality systems that are clearly the product of the
synthesis of several skill sets.

The result of our approach to hiring for SRE is that we end up with a team of people
who (a) will quickly become bored by performing tasks by hand, and (b) have the
skill set necessary to write software to replace their previously manual work, even
when the solution is complicated. SREs also end up sharing academic and intellectual
background with the rest of the development organization. Therefore, SRE is funda-
mentally doing work that has historically been done by an operations team, but using
engineers with software expertise, and banking on the fact that these engineers are

Google’s Approach to Service Management: | 5

inherently both predisposed to, and have the ability to, design and implement auto-
mation with software to replace human labor.

By design, it is crucial that SRE teams are focused on engineering. Without constant
engineering, operations load increases and teams will need more people just to keep
pace with the workload. Eventually, a traditional ops-focused group scales linearly
with service size: if the products supported by the service succeed, the operational
load will grow with traffic. That means hiring more people to do the same tasks over
and over again.

To avoid this fate, the team tasked with managing a service needs to code or it will
drown. Therefore, Google places a 50% cap on the aggregate “ops” work for all SREs—
tickets, on-call, manual tasks, etc. This cap ensures that the SRE team has enough
time in their schedule to make the service stable and operable. This cap is an upper
bound; over time, left to their own devices, the SRE team should end up with very
little operational load and almost entirely engage in development tasks, because the
service basically runs and repairs itself: we want systems that are automatic, not just
automated. In practice, scale and new features keep SREs on their toes.

Google’s rule of thumb is that an SRE team must spend the remaining 50% of its time
actually doing development. So how do we enforce that threshold? In the first place,
we have to measure how SRE time is spent. With that measurement in hand, we
ensure that the teams consistently spending less than 50% of their time on develop-
ment work change their practices. Often this means shifting some of the operations
burden back to the development team, or adding staff to the team without assigning
that team additional operational responsibilities. Consciously maintaining this bal-
ance between ops and development work allows us to ensure that SREs have the
bandwidth to engage in creative, autonomous engineering, while still retaining the
wisdom gleaned from the operations side of running a service.

We've found that Google SRE’s approach to running large-scale systems has many
advantages. Because SREs are directly modifying code in their pursuit of making
Google’s systems run themselves, SRE teams are characterized by both rapid innova-
tion and a large acceptance of change. Such teams are relatively inexpensive—sup-
porting the same service with an ops-oriented team would require a significantly
larger number of people. Instead, the number of SREs needed to run, maintain, and
improve a system scales sublinearly with the size of the system. Finally, not only does
SRE circumvent the dysfunctionality of the dev/ops split, but this structure also
improves our product development teams: easy transfers between product develop-
ment and SRE teams cross-train the entire group, and improve skills of developers
who otherwise may have difficulty learning how to build a million-core distributed
system.

Despite these net gains, the SRE model is characterized by its own distinct set of chal-
lenges. One continual challenge Google faces is hiring SREs: not only does SRE

6 | Chapter1:Introduction

compete for the same candidates as the product development hiring pipeline, but the
fact that we set the hiring bar so high in terms of both coding and system engineering
skills means that our hiring pool is necessarily small. As our discipline is relatively
new and unique, not much industry information exists on how to build and manage
an SRE team (although hopefully this book will make strides in that direction!). And
once an SRE team is in place, their potentially unorthodox approaches to service
management require strong management support. For example, the decision to stop
releases for the remainder of the quarter once an error budget is depleted might not
be embraced by a product development team unless mandated by their management.

DevOps or SRE?

The term “DevOps” emerged in industry in late 2008 and as of this writing (early
2016) is still in a state of flux. Its core principles—involvement of the IT function in
each phase of a system’s design and development, heavy reliance on automation ver-
sus human effort, the application of engineering practices and tools to operations
tasks—are consistent with many of SRE’s principles and practices. One could view
DevOps as a generalization of several core SRE principles to a wider range of organi-
zations, management structures, and personnel. One could equivalently view SRE as a
specific implementation of DevOps with some idiosyncratic extensions.

Tenets of SRE

While the nuances of workflows, priorities, and day-to-day operations vary from SRE
team to SRE team, all share a set of basic responsibilities for the service(s) they sup-
port, and adhere to the same core tenets. In general, an SRE team is responsible for
the availability, latency, performance, efficiency, change management, monitoring,
emergency response, and capacity planning of their service(s). We have codified rules
of engagement and principles for how SRE teams interact with their environment—
not only the production environment, but also the product development teams, the
testing teams, the users, and so on. Those rules and work practices help us to main-
tain our focus on engineering work, as opposed to operations work.

The following section discusses each of the core tenets of Google SRE.

Ensuring a Durable Focus on Engineering

As already discussed, Google caps operational work for SREs at 50% of their time.
Their remaining time should be spent using their coding skills on project work. In
practice, this is accomplished by monitoring the amount of operational work being
done by SREs, and redirecting excess operational work to the product development
teams: reassigning bugs and tickets to development managers, [re]integrating devel-
opers into on-call pager rotations, and so on. The redirection ends when the opera-

Tenetsof SRE | 7

tional load drops back to 50% or lower. This also provides an effective feedback
mechanism, guiding developers to build systems that don't need manual intervention.
This approach works well when the entire organization—SRE and development alike
—understands why the safety valve mechanism exists, and supports the goal of hav-
ing no overflow events because the product doesn’t generate enough operational load
to require it.

When they are focused on operations work, on average, SREs should receive a maxi-
mum of two events per 8—12-hour on-call shift. This target volume gives the on-call
engineer enough time to handle the event accurately and quickly, clean up and
restore normal service, and then conduct a postmortem. If more than two events
occur regularly per on-call shift, problems can't be investigated thoroughly and engi-
neers are sufficiently overwhelmed to prevent them from learning from these events.
A scenario of pager fatigue also won’t improve with scale. Conversely, if on-call SREs
consistently receive fewer than one event per shift, keeping them on point is a waste
of their time.

Postmortems should be written for all significant incidents, regardless of whether or
not they paged; postmortems that did not trigger a page are even more valuable, as
they likely point to clear monitoring gaps. This investigation should establish what
happened in detail, find all root causes of the event, and assign actions to correct the
problem or improve how it is addressed next time. Google operates under a blame-
free postmortem culture, with the goal of exposing faults and applying engineering to
fix these faults, rather than avoiding or minimizing them.

Pursuing Maximum Change Velocity Without Violating a Service’s SLO

Product development and SRE teams can enjoy a productive working relationship by
eliminating the structural conflict in their respective goals. The structural conflict is
between pace of innovation and product stability, and as described earlier, this con-
flict often is expressed indirectly. In SRE we bring this conflict to the fore, and then
resolve it with the introduction of an error budget.

The error budget stems from the observation that 100% is the wrong reliability target
for basically everything (pacemakers and anti-lock brakes being notable exceptions).
In general, for any software service or system, 100% is not the right reliability target
because no user can tell the difference between a system being 100% available and
99.999% available. There are many other systems in the path between user and ser-
vice (their laptop, their home WiFi, their ISP, the power grid...) and those systems
collectively are far less than 99.999% available. Thus, the marginal difference between
99.999% and 100% gets lost in the noise of other unavailability, and the user receives
no benefit from the enormous effort required to add that last 0.001% of availability.

8 | Chapter1:Introduction

If 100% is the wrong reliability target for a system, what, then, is the right reliability
target for the system? This actually isn’t a technical question at all—it's a product
question, which should take the following considerations into account:

o What level of availability will the users be happy with, given how they use the
product?

o What alternatives are available to users who are dissatisfied with the product’s
availability?

« What happens to users’ usage of the product at different availability levels?

The business or the product must establish the system’s availability target. Once that
target is established, the error budget is one minus the availability target. A service
that’s 99.99% available is 0.01% unavailable. That permitted 0.01% unavailability is
the service’s error budget. We can spend the budget on anything we want, as long as
we don’t overspend it.

So how do we want to spend the error budget? The development team wants to
launch features and attract new users. Ideally, we would spend all of our error budget
taking risks with things we launch in order to launch them quickly. This basic prem-
ise describes the whole model of error budgets. As soon as SRE activities are concep-
tualized in this framework, freeing up the error budget through tactics such as phased
rollouts and 1% experiments can optimize for quicker launches.

The use of an error budget resolves the structural conflict of incentives between
development and SRE. SRE’s goal is no longer “zero outages”; rather, SREs and prod-
uct developers aim to spend the error budget getting maximum feature velocity. This
change makes all the difference. An outage is no longer a “bad” thing—it is an
expected part of the process of innovation, and an occurrence that both development
and SRE teams manage rather than fear.

Monitoring

Monitoring is one of the primary means by which service owners keep track of a sys-
tem’s health and availability. As such, monitoring strategy should be constructed
thoughtfully. A classic and common approach to monitoring is to watch for a specific
value or condition, and then to trigger an email alert when that value is exceeded or
that condition occurs. However, this type of email alerting is not an effective solution:
a system that requires a human to read an email and decide whether or not some type
of action needs to be taken in response is fundamentally flawed. Monitoring should
never require a human to interpret any part of the alerting domain. Instead, software
should do the interpreting, and humans should be notified only when they need to
take action.

Tenetsof SRE | 9

There are three kinds of valid monitoring output:

Alerts
Signify that a human needs to take action immediately in response to something
that is either happening or about to happen, in order to improve the situation.

Tickets
Signify that a human needs to take action, but not immediately. The system can-
not automatically handle the situation, but if a human takes action in a few days,
no damage will result.

Logging
No one needs to look at this information, but it is recorded for diagnostic or for-
ensic purposes. The expectation is that no one reads logs unless something else
prompts them to do so.

Emergency Response

Reliability is a function of mean time to failure (MTTF) and mean time to repair
(MTTR) [Sch15]. The most relevant metric in evaluating the effectiveness of emer-
gency response is how quickly the response team can bring the system back to health
—that is, the MTTR.

Humans add latency. Even if a given system experiences more actual failures, a sys-
tem that can avoid emergencies that require human intervention will have higher
availability than a system that requires hands-on intervention. When humans are
necessary, we have found that thinking through and recording the best practices
ahead of time in a “playbook” produces roughly a 3x improvement in MTTR as com-
pared to the strategy of “winging it” The hero jack-of-all-trades on-call engineer does
work, but the practiced on-call engineer armed with a playbook works much better.
While no playbook, no matter how comprehensive it may be, is a substitute for smart
engineers able to think on the fly, clear and thorough troubleshooting steps and tips
are valuable when responding to a high-stakes or time-sensitive page. Thus, Google
SRE relies on on-call playbooks, in addition to exercises such as the “Wheel of Mis-
fortune,” to prepare engineers to react to on-call events.

Change Management

SRE has found that roughly 70% of outages are due to changes in a live system. Best
practices in this domain use automation to accomplish the following:

2 See “Disaster Role Playing” on page 401.

10 | Chapter 1: Introduction

 Implementing progressive rollouts
o Quickly and accurately detecting problems

« Rolling back changes safely when problems arise

This trio of practices effectively minimizes the aggregate number of users and opera-
tions exposed to bad changes. By removing humans from the loop, these practices
avoid the normal problems of fatigue, familiarity/contempt, and inattention to highly
repetitive tasks. As a result, both release velocity and safety increase.

Demand Forecasting and Capacity Planning

Demand forecasting and capacity planning can be viewed as ensuring that there is
sufficient capacity and redundancy to serve projected future demand with the
required availability. There’s nothing particularly special about these concepts, except
that a surprising number of services and teams don't take the steps necessary to
ensure that the required capacity is in place by the time it is needed. Capacity plan-
ning should take both organic growth (which stems from natural product adoption
and usage by customers) and inorganic growth (which results from events like feature
launches, marketing campaigns, or other business-driven changes) into account.

Several steps are mandatory in capacity planning:

o An accurate organic demand forecast, which extends beyond the lead time
required for acquiring capacity

o An accurate incorporation of inorganic demand sources into the demand
forecast

« Regular load testing of the system to correlate raw capacity (servers, disks, and so
on) to service capacity

Because capacity is critical to availability, it naturally follows that the SRE team must
be in charge of capacity planning, which means they also must be in charge of provi-
sioning.

Provisioning

Provisioning combines both change management and capacity planning. In our
experience, provisioning must be conducted quickly and only when necessary, as
capacity is expensive. This exercise must also be done correctly or capacity doesn’t
work when needed. Adding new capacity often involves spinning up a new instance
or location, making significant modification to existing systems (configuration files,
load balancers, networking), and validating that the new capacity performs and deliv-
ers correct results. Thus, it is a riskier operation than load shifting, which is often

Tenetsof SRE | 11

done multiple times per hour, and must be treated with a corresponding degree of
extra caution.

Efficiency and Performance

Efficient use of resources is important any time a service cares about money. Because
SRE ultimately controls provisioning, it must also be involved in any work on utiliza-
tion, as utilization is a function of how a given service works and how it is provi-
sioned. It follows that paying close attention to the provisioning strategy for a service,
and therefore its utilization, provides a very, very big lever on the service’s total costs.

Resource use is a function of demand (load), capacity, and software efficiency. SREs
predict demand, provision capacity, and can modify the software. These three factors
are a large part (though not the entirety) of a service’s efficiency.

Software systems become slower as load is added to them. A slowdown in a service
equates to a loss of capacity. At some point, a slowing system stops serving, which
corresponds to infinite slowness. SREs provision to meet a capacity target at a specific
response speed, and thus are keenly interested in a service’s performance. SREs and
product developers will (and should) monitor and modify a service to improve its
performance, thus adding capacity and improving efficiency.?

The End of the Beginning

Site Reliability Engineering represents a significant break from existing industry best
practices for managing large, complicated services. Motivated originally by familiarity
—“as a software engineer, this is how I would want to invest my time to accomplish a
set of repetitive tasks”—it has become much more: a set of principles, a set of practi-
ces, a set of incentives, and a field of endeavor within the larger software engineering
discipline. The rest of the book explores the SRE Way in detail.

3 For further discussion of how this collaboration can work in practice, see “Communications: Production
Meetings” on page 426.

12 | Chapter 1: Introduction

CHAPTER 2

The Production Environment at Google,
from the Viewpoint of an SRE

Written by JC van Winkel
Edited by Betsy Beyer

Google datacenters are very different from most conventional datacenters and small-
scale server farms. These differences present both extra problems and opportunities.
This chapter discusses the challenges and opportunities that characterize Google
datacenters and introduces terminology that is used throughout the book.

Hardware

Most of Google’s compute resources are in Google-designed datacenters with propri-
etary power distribution, cooling, networking, and compute hardware (see [Bar13]).
Unlike “standard” colocation datacenters, the compute hardware in a Google-
designed datacenter is the same across the board.! To eliminate the confusion
between server hardware and server software, we use the following terminology
throughout the book:

Machine
A piece of hardware (or perhaps a VM)

Server
A piece of software that implements a service

1 Well, roughly the same. Mostly. Except for the stuff that is different. Some datacenters end up with multiple
generations of compute hardware, and sometimes we augment datacenters after they are built. But for the
most part, our datacenter hardware is homogeneous.

13

Machines can run any server, so we don’t dedicate specific machines to specific server
programs. There’s no specific machine that runs our mail server, for example. Instead,
resource allocation is handled by our cluster operating system, Borg.

We realize this use of the word server is unusual. The common use of the word con-
flates “binary that accepts network connection” with machine, but differentiating
between the two is important when talking about computing at Google. Once you get
used to our usage of server, it becomes more apparent why it makes sense to use this
specialized terminology, not just within Google but also in the rest of this book.

Figure 2-1 illustrates the topology of a Google datacenter:

o Tens of machines are placed in a rack.

 Racks stand in a row.

« One or more rows form a cluster.

o Usually a datacenter building houses multiple clusters.

+ Multiple datacenter buildings that are located close together form a campus.

Mount Hood

Datacenter

Cluster [Cluster

Datacenter

w
@
=
5
T
£

Figure 2-1. Example Google datacenter campus topology

Machines within a given datacenter need to be able to talk with each other, so we cre-
ated a very fast virtual switch with tens of thousands of ports. We accomplished this
by connecting hundreds of Google-built switches in a Clos network fabric [Clos53]
named Jupiter [Sin15]. In its largest configuration, Jupiter supports 1.3 Pbps bisection
bandwidth among servers.

14 | Chapter2: The Production Environment at Google, from the Viewpoint of an SRE

Datacenters are connected to each other with our globe-spanning backbone network
B4 [Jail3]. B4 is a software-defined networking architecture (and uses the OpenFlow
open-standard communications protocol). It supplies massive bandwidth to a modest
number of sites, and uses elastic bandwidth allocation to maximize average band-
width [Kum15].

System Software That “Organizes” the Hardware

Our hardware must be controlled and administered by software that can handle mas-
sive scale. Hardware failures are one notable problem that we manage with software.
Given the large number of hardware components in a cluster, hardware failures occur
quite frequently. In a single cluster in a typical year, thousands of machines fail and
thousands of hard disks break; when multiplied by the number of clusters we operate
globally, these numbers become somewhat breathtaking. Therefore, we want to
abstract such problems away from users, and the teams running our services similarly
don’t want to be bothered by hardware failures. Each datacenter campus has teams
dedicated to maintaining the hardware and datacenter infrastructure.

Managing Machines

Boryg, illustrated in Figure 2-2, is a distributed cluster operating system [Ver15], simi-
lar to Apache Mesos.? Borg manages its jobs at the cluster level.

1 Cluster = |

) I)

" BorgMaster :

| 4 : Config
! Scheduler Persistent | Tools files
1 Store (Paxos) H

: :

) |

) |

) |

i P c :

| Z pd)

: ' ' :

! Borglet Borglet !

! = — :

] — — I

i — — '

|]

Figure 2-2. High-level Borg cluster architecture

2 Some readers may be more familiar with Borg’s descendant, Kubernetes—an open source Container Cluster
orchestration framework started by Google in 2014; see http://kubernetes.io and [Bur16]. For more details on
the similarities between Borg and Apache Mesos, see [Ver15].

System Software That “Organizes” the Hardware | 15

http://kubernetes.io

Borg is responsible for running users’ jobs, which can either be indefinitely running
servers or batch processes like a MapReduce [Dea04]. Jobs can consist of more than
one (and sometimes thousands) of identical tasks, both for reasons of reliability and
because a single process can't usually handle all cluster traffic. When Borg starts a job,
it finds machines for the tasks and tells the machines to start the server program.
Borg then continually monitors these tasks. If a task malfunctions, it is killed and
restarted, possibly on a different machine.

Because tasks are fluidly allocated over machines, we can’t simply rely on IP addresses
and port numbers to refer to the tasks. We solve this problem with an extra level of
indirection: when starting a job, Borg allocates a name and index number to each task
using the Borg Naming Service (BNS). Rather than using the IP address and port
number, other processes connect to Borg tasks via the BNS name, which is translated
to an IP address and port number by BNS. For example, the BNS path might be a
string such as /bns/<cluster>/<user>/<job name>/<task number>, which would
resolve to <IP address>:<port>.

Borg is also responsible for the allocation of resources to jobs. Every job needs to
specify its required resources (e.g., 3 CPU cores, 2 GiB of RAM). Using the list of
requirements for all jobs, Borg can binpack the tasks over the machines in an optimal
way that also accounts for failure domains (for example: Borg won't run all of a job’s
tasks on the same rack, as doing so means that the top of rack switch is a single point
of failure for that job).

If a task tries to use more resources than it requested, Borg kills the task and restarts
it (as a slowly crashlooping task is usually preferable to a task that hasn’t been restar-
ted at all).

Storage

Tasks can use the local disk on machines as a scratch pad, but we have several cluster
storage options for permanent storage (and even scratch space will eventually move
to the cluster storage model). These are comparable to Lustre and the Hadoop Dis-
tributed File System (HDFS), which are both open source cluster filesystems.

The storage layer is responsible for offering users easy and reliable access to the stor-
age available for a cluster. As shown in Figure 2-3, storage has many layers:

1. The lowest layer is called D (for disk, although D uses both spinning disks and
flash storage). D is a fileserver running on almost all machines in a cluster. How-
ever, users who want to access their data don't want to have to remember which
machine is storing their data, which is where the next layer comes into play.

2. A layer on top of D called Colossus creates a cluster-wide filesystem that offers
usual filesystem semantics, as well as replication and encryption. Colossus is the
successor to GFS, the Google File System [Ghe03].

16 | Chapter2: The Production Environment at Google, from the Viewpoint of an SRE

3. There are several database-like services built on top of Colossus:

a. Bigtable [Cha06] is a NoSQL database system that can handle databases that
are petabytes in size. A Bigtable is a sparse, distributed, persistent multidi-
mensional sorted map that is indexed by row key, column key, and timestamp;
each value in the map is an uninterpreted array of bytes. Bigtable supports
eventually consistent, cross-datacenter replication.

b. Spanner [Corl2] offers an SQL-like interface for users that require real con-
sistency across the world.

c. Several other database systems, such as Blobstore, are available. Each of these
options comes with its own set of trade-offs (see Chapter 26).

Blobstore
(small)]

Spanner (big) Bigtable

LP Colossus <—J

Local HDD
or Flash

Figure 2-3. Portions of the Google storage stack

Networking

Google’s network hardware is controlled in several ways. As discussed earlier, we use
an OpenFlow-based software-defined network. Instead of using “smart” routing
hardware, we rely on less expensive “dumb” switching components in combination
with a central (duplicated) controller that precomputes best paths across the network.
Therefore, were able to move compute-expensive routing decisions away from the
routers and use simple switching hardware.

Network bandwidth needs to be allocated wisely. Just as Borg limits the compute
resources that a task can use, the Bandwidth Enforcer (BwE) manages the available
bandwidth to maximize the average available bandwidth. Optimizing bandwidth isn’t

System Software That “Organizes” the Hardware | 17

just about cost: centralized traffic engineering has been shown to solve a number of
problems that are traditionally extremely difficult to solve through a combination of
distributed routing and traffic engineering [Kum15].

Some services have jobs running in multiple clusters, which are distributed across the
world. In order to minimize latency for globally distributed services, we want to
direct users to the closest datacenter with available capacity. Our Global Software
Load Balancer (GSLB) performs load balancing on three levels:

« Geographic load balancing for DNS requests (for example, to www.google.com),
described in Chapter 19

« Load balancing at a user service level (for example, YouTube or Google Maps)

+ Load balancing at the Remote Procedure Call (RPC) level, described in Chap-
ter 20

Service owners specify a symbolic name for a service, a list of BNS addresses of
servers, and the capacity available at each of the locations (typically measured in
queries per second). GSLB then directs traffic to the BNS addresses.

Other System Software

Several other components in a datacenter are also important.

Lock Service

The Chubby [Bur06] lock service provides a filesystem-like API for maintaining
locks. Chubby handles these locks across datacenter locations. It uses the Paxos pro-
tocol for asynchronous Consensus (see Chapter 23).

Chubby also plays an important role in master election. When a service has five repli-
cas of a job running for reliability purposes but only one replica may perform actual
work, Chubby is used to select which replica may proceed.

Data that must be consistent is well suited to storage in Chubby. For this reason, BNS
uses Chubby to store mapping between BNS paths and IP address:port pairs.

Monitoring and Alerting

We want to make sure that all services are running as required. Therefore, we run
many instances of our Borgmon monitoring program (see Chapter 10). Borgmon reg-
ularly “scrapes” metrics from monitored servers. These metrics can be used instanta-
neously for alerting and also stored for use in historic overviews (e.g., graphs). We
can use monitoring in several ways:

18 | Chapter2: The Production Environment at Google, from the Viewpoint of an SRE

o Set up alerting for acute problems.
o Compare behavior: did a software update make the server faster?

» Examine how resource consumption behavior evolves over time, which is essen-
tial for capacity planning.

Our Software Infrastructure

Our software architecture is designed to make the most efficient use of our hardware
infrastructure. Our code is heavily multithreaded, so one task can easily use many
cores. To facilitate dashboards, monitoring, and debugging, every server has an
HTTP server that provides diagnostics and statistics for a given task.

All of Google’s services communicate using a Remote Procedure Call (RPC) infra-
structure named Stubby; an open source version, gRPC, is available.> Often, an RPC
call is made even when a call to a subroutine in the local program needs to be per-
formed. This makes it easier to refactor the call into a different server if more modu-
larity is needed, or when a server’s codebase grows. GSLB can load balance RPCs in
the same way it load balances externally visible services.

A server receives RPC requests from its frontend and sends RPCs to its backend. In
traditional terms, the frontend is called the client and the backend is called the server.

Data is transferred to and from an RPC using protocol buffers,* often abbreviated to
“protobufs,” which are similar to Apache’s Thrift. Protocol buffers have many advan-
tages over XML for serializing structured data: they are simpler to use, 3 to 10 times
smaller, 20 to 100 times faster, and less ambiguous.

Our Development Environment

Development velocity is very important to Google, so we've built a complete develop-
ment environment to make use of our infrastructure [Mor12b].

Apart from a few groups that have their own open source repositories (e.g., Android
and Chrome), Google Software Engineers work from a single shared repository
[Pot16]. This has a few important practical implications for our workflows:

3 See http://grpc.io.

4 Protocol buffers are a language-neutral, platform-neutral extensible mechanism for serializing structured
data. For more details, see https://developers.google.com/protocol-buffers/.

Our Software Infrastructure | 19

http://grpc.io
https://developers.google.com/protocol-buffers/

o If engineers encounter a problem in a component outside of their project, they
can fix the problem, send the proposed changes (“changelist,” or CL) to the
owner for review, and submit the CL to the mainline.

« Changes to source code in an engineer’s own project require a review. All soft-
ware is reviewed before being submitted.

When software is built, the build request is sent to build servers in a datacenter. Even
large builds are executed quickly, as many build servers can compile in parallel. This
infrastructure is also used for continuous testing. Each time a CL is submitted, tests
run on all software that may depend on that CL, either directly or indirectly. If the
framework determines that the change likely broke other parts in the system, it noti-
fies the owner of the submitted change. Some projects use a push-on-green system,
where a new version is automatically pushed to production after passing tests.

Shakespeare: A Sample Service

To provide a model of how a service would hypothetically be deployed in the Google
production environment, let’s look at an example service that interacts with multiple
Google technologies. Suppose we want to offer a service that lets you determine
where a given word is used throughout all of Shakespeare’s works.

We can divide this system into two parts:

o A batch component that reads all of Shakespeare’s texts, creates an index, and
writes the index into a Bigtable. This job need only run once, or perhaps very
infrequently (as you never know if a new text might be discovered!).

« An application frontend that handles end-user requests. This job is always up, as
users in all time zones will want to search in Shakespeare’s books.

The batch component is a MapReduce comprising three phases.

The mapping phase reads Shakespeare’s texts and splits them into individual words.
This is faster if performed in parallel by multiple workers.

The shuffle phase sorts the tuples by word.
In the reduce phase, a tuple of (word, list of locations) is created.

Each tuple is written to a row in a Bigtable, using the word as the key.

20 | Chapter2: The Production Environment at Google, from the Viewpoint of an SRE

Life of a Request

Figure 2-4 shows how a user’s request is serviced: first, the user points their browser
to shakespeare.google.com. To obtain the corresponding IP address, the user’s device
resolves the address with its DNS server (1). This request ultimately ends up at Goo-
gles DNS server, which talks to GSLB. As GSLB keeps track of traffic load among
frontend servers across regions, it picks which server IP address to send to this user.

Users Q y| GFE O >
(Reverse Proxy)
l

Application
Frontend

y
Google Load o
DNS 5| Balancer Application
Server GSLB Backend

Figure 2-4. The life of a request

The browser connects to the HTTP server on this IP. This server (named the Google
Frontend, or GFE) is a reverse proxy that terminates the TCP connection (2). The
GFE looks up which service is required (web search, maps, or—in this case—Shake-
speare). Again using GSLB, the server finds an available Shakespeare frontend server,
and sends that server an RPC containing the HTML request (3).

The Shakespeare server analyzes the HTML request and constructs a protobuf con-
taining the word to look up. The Shakespeare frontend server now needs to contact
the Shakespeare backend server: the frontend server contacts GSLB to obtain the BNS
address of a suitable and unloaded backend server (4). That Shakespeare backend
server now contacts a Bigtable server to obtain the requested data (5).

The answer is written to the reply protobuf and returned to the Shakespeare backend
server. The backend hands a protobuf containing the results to the Shakespeare
frontend server, which assembles the HTML and returns the answer to the user.

This entire chain of events is executed in the blink of an eye—just a few hundred mil-
liseconds! Because many moving parts are involved, there are many potential points
of failure; in particular, a failing GSLB would wreak havoc. However, Google’s policies
of rigorous testing and careful rollout, in addition to our proactive error recovery

Shakespeare: A Sample Service | 21

methods such as graceful degradation, allow us to deliver the reliable service that our
users have come to expect. After all, people regularly use www.google.com to check if
their Internet connection is set up correctly.

Job and Data Organization

Load testing determined that our backend server can handle about 100 queries per
second (QPS). Trials performed with a limited set of users lead us to expect a peak
load of about 3,470 QPS, so we need at least 35 tasks. However, the following consid-
erations mean that we need at least 37 tasks in the job, or N + 2:

 During updates, one task at a time will be unavailable, leaving 36 tasks.

+ A machine fajlure might occur during a task update, leaving only 35 tasks, just
enough to serve peak load.

A closer examination of user traffic shows our peak usage is distributed globally:
1,430 QPS from North America, 290 from South America, 1,400 from Europe and
Africa, and 350 from Asia and Australia. Instead of locating all backends at one site,
we distribute them across the USA, South America, Europe, and Asia. Allowing for
N + 2 redundancy per region means that we end up with 17 tasks in the USA, 16 in
Europe, and 6 in Asia. However, we decide to use 4 tasks (instead of 5) in South
America, to lower the overhead of N + 2 to N + 1. In this case, we're willing to toler-
ate a small risk of higher latency in exchange for lower hardware costs: if GSLB redi-
rects traffic from one continent to another when our South American datacenter is
over capacity, we can save 20% of the resources wed spend on hardware. In the larger
regions, we'll spread tasks across two or three clusters for extra resiliency.

Because the backends need to contact the Bigtable holding the data, we need to also
design this storage element strategically. A backend in Asia contacting a Bigtable in
the USA adds a significant amount of latency, so we replicate the Bigtable in each
region. Bigtable replication helps us in two ways: it provides resilience should a
Bigtable server fail, and it lowers data-access latency. While Bigtable only offers even-
tual consistency, it isn’t a major problem because we don’t need to update the contents
often.

We've introduced a lot of terminology here; while you don’t need to remember it all,
it’s useful for framing many of the other systems we’ll refer to later.

5 We assume the probability of two simultaneous task failures in our environment is low enough to be negligi-
ble. Single points of failure, such as top-of-rack switches or power distribution, may make this assumption
invalid in other environments.

22 | Chapter2: The Production Environment at Google, from the Viewpoint of an SRE

PART II
Principles

This section examines the principles underlying how SRE teams typically work—the
patterns, behaviors, and areas of concern that influence the general domain of SRE
operations.

The first chapter in this section, and the most important piece to read if you want to
attain the widest-angle picture of what exactly SRE does, and how we reason about it,
is Chapter 3, Embracing Risk. It looks at SRE through the lens of risk—its assessment,
management, and the use of error budgets to provide usefully neutral approaches to
service management.

Service level objectives are another foundational conceptual unit for SRE. The indus-
try commonly lumps disparate concepts under the general banner of service level
agreements, a tendency that makes it harder to think about these concepts clearly.
Chapter 4, Service Level Objectives, attempts to disentangle indicators from objectives
from agreements, examines how SRE uses each of these terms, and provides some
recommendations on how to find useful metrics for your own applications.

Eliminating toil is one of SRE’s most important tasks, and is the subject of Chapter 5,
Eliminating Toil. We define toil as mundane, repetitive operational work providing no
enduring value, which scales linearly with service growth.

Whether it is at Google or elsewhere, monitoring is an absolutely essential compo-
nent of doing the right thing in production. If you can’t monitor a service, you don’t
know what’s happening, and if you're blind to whats happening, you can’t be reliable.
Read Chapter 6, Monitoring Distributed Systems, for some recommendations for what
and how to monitor, and some implementation-agnostic best practices.

In Chapter 7, The Evolution of Automation at Google, we examine SRE’s approach to
automation, and walk through some case studies of how SRE has implemented auto-
mation, both successfully and unsuccessfully.

Most companies treat release engineering as an afterthought. However, as you'll learn
in Chapter 8, Release Engineering, release engineering is not just critical to overall sys-
tem stability—as most outages result from pushing a change of some kind. It is also
the best way to ensure that releases are consistent.

A key principle of any effective software engineering, not only reliability-oriented
engineering, simplicity is a quality that, once lost, can be extraordinarily difficult to
recapture. Nevertheless, as the old adage goes, a complex system that works necessar-
ily evolved from a simple system that works. Chapter 9, Simplicity, goes into this topic
in detail.

Further Reading from Google SRE

Increasing product velocity safely is a core principle for any organization. In “Making
Push On Green a Reality” [Klel4], published in October 2014, we show that taking
humans out of the release process can paradoxically reduce SREs’ toil while increasing
system reliability.

CHAPTER 3
Embracing Risk

Written by Marc Alvidrez
Edited by Kavita Guliani

You might expect Google to try to build 100% reliable services—ones that never fail.
It turns out that past a certain point, however, increasing reliability is worse for a ser-
vice (and its users) rather than better! Extreme reliability comes at a cost: maximizing
stability limits how fast new features can be developed and how quickly products can
be delivered to users, and dramatically increases their cost, which in turn reduces the
numbers of features a team can afford to offer. Further, users typically don’t notice the
difference between high reliability and extreme reliability in a service, because the
user experience is dominated by less reliable components like the cellular network or
the device they are working with. Put simply, a user on a 99% reliable smartphone
cannot tell the difference between 99.99% and 99.999% service reliability! With this
in mind, rather than simply maximizing uptime, Site Reliability Engineering seeks to
balance the risk of unavailability with the goals of rapid innovation and efficient ser-
vice operations, so that users’ overall happiness—with features, service, and perfor-
mance—is optimized.

Managing Risk

Unreliable systems can quickly erode users’ confidence, so we want to reduce the
chance of system failure. However, experience shows that as we build systems, cost
does not increase linearly as reliability increments—an incremental improvement in
reliability may cost 100x more than the previous increment. The costliness has two
dimensions:

25

The cost of redundant machine/compute resources
The cost associated with redundant equipment that, for example, allows us to
take systems offline for routine or unforeseen maintenance, or provides space for
us to store parity code blocks that provide a minimum data durability guarantee.

The opportunity cost
The cost borne by an organization when it allocates engineering resources to
build systems or features that diminish risk instead of features that are directly
visible to or usable by end users. These engineers no longer work on new features
and products for end users.

In SRE, we manage service reliability largely by managing risk. We conceptualize risk
as a continuum. We give equal importance to figuring out how to engineer greater
reliability into Google systems and identifying the appropriate level of tolerance for
the services we run. Doing so allows us to perform a cost/benefit analysis to deter-
mine, for example, where on the (nonlinear) risk continuum we should place Search,
Ads, Gmail, or Photos. Our goal is to explicitly align the risk taken by a given service
with the risk the business is willing to bear. We strive to make a service reliable
enough, but no more reliable than it needs to be. That is, when we set an availability
target of 99.99%,we want to exceed it, but not by much: that would waste opportuni-
ties to add features to the system, clean up technical debt, or reduce its operational
costs. In a sense, we view the availability target as both a minimum and a maximum.
The key advantage of this framing is that it unlocks explicit, thoughtful risktaking.

Measuring Service Risk

As standard practice at Google, we are often best served by identifying an objective
metric to represent the property of a system we want to optimize. By setting a target,
we can assess our current performance and track improvements or degradations over
time. For service risk, it is not immediately clear how to reduce all of the potential
factors into a single metric. Service failures can have many potential effects, including
user dissatisfaction, harm, or loss of trust; direct or indirect revenue loss; brand or
reputational impact; and undesirable press coverage. Clearly, some of these factors
are very hard to measure. To make this problem tractable and consistent across many
types of systems we run, we focus on unplanned downtime.

For most services, the most straightforward way of representing risk tolerance is in
terms of the acceptable level of unplanned downtime. Unplanned downtime is cap-
tured by the desired level of service availability, usually expressed in terms of the
number of “nines” we would like to provide: 99.9%, 99.99%, or 99.999% availability.
Each additional nine corresponds to an order of magnitude improvement toward
100% availability. For serving systems, this metric is traditionally calculated based on
the proportion of system uptime (see Equation 3-1).

26 | Chapter3: Embracing Risk

Equation 3-1. Time-based availability

uptime
(uptime + downtime)

availability =
Using this formula over the period of a year, we can calculate the acceptable number
of minutes of downtime to reach a given number of nines of availability. For example,
a system with an availability target of 99.99% can be down for up to 52.56 minutes in
a year and stay within its availability target; see Appendix A for a table.

At Google, however, a time-based metric for availability is usually not meaningful
because we are looking across globally distributed services. Our approach to fault iso-
lation makes it very likely that we are serving at least a subset of traffic for a given
service somewhere in the world at any given time (i.e., we are at least partially “up” at
all times). Therefore, instead of using metrics around uptime, we define availability in
terms of the request success rate. Equation 3-2 shows how this yield-based metric is
calculated over a rolling window (i.e., proportion of successful requests over a one-
day window).

Equation 3-2. Aggregate availability

successful requests
total requests

availability =
For example, a system that serves 2.5M requests in a day with a daily availability tar-
get of 99.99% can serve up to 250 errors and still hit its target for that given day.

In a typical application, not all requests are equal: failing a new user sign-up request is
different from failing a request polling for new email in the background. In many
cases, however, availability calculated as the request success rate over all requests is a
reasonable approximation of unplanned downtime, as viewed from the end-user per-
spective.

Quantifying unplanned downtime as a request success rate also makes this availabil-
ity metric more amenable for use in systems that do not typically serve end users
directly. Most nonserving systems (e.g., batch, pipeline, storage, and transactional
systems) have a well-defined notion of successful and unsuccessful units of work.
Indeed, while the systems discussed in this chapter are primarily consumer and infra-
structure serving systems, many of the same principles also apply to nonserving sys-
tems with minimal modification.

For example, a batch process that extracts, transforms, and inserts the contents of one
of our customer databases into a data warehouse to enable further analysis may be set
to run periodically. Using a request success rate defined in terms of records success-
fully and unsuccessfully processed, we can calculate a useful availability metric
despite the fact that the batch system does not run constantly.

Measuring Service Risk | 27

Most often, we set quarterly availability targets for a service and track our perfor-
mance against those targets on a weekly, or even daily, basis. This strategy lets us
manage the service to a high-level availability objective by looking for, tracking down,
and fixing meaningful deviations as they inevitably arise. See Chapter 4 for more
details.

Risk Tolerance of Services

What does it mean to identify the risk tolerance of a service? In a formal environment
or in the case of safety-critical systems, the risk tolerance of services is typically built
directly into the basic product or service definition. At Google, services’ risk tolerance
tends to be less clearly defined.

To identify the risk tolerance of a service, SREs must work with the product owners
to turn a set of business goals into explicit objectives to which we can engineer. In this
case, the business goals were concerned about have a direct impact on the perfor-
mance and reliability of the service offered. In practice, this translation is easier said
than done. While consumer services often have clear product owners, it is unusual
for infrastructure services (e.g., storage systems or a general-purpose HT'TP caching
layer) to have a similar structure of product ownership. We'll discuss the consumer
and infrastructure cases in turn.

Identifying the Risk Tolerance of Consumer Services

Our consumer services often have a product team that acts as the business owner for
an application. For example, Search, Google Maps, and Google Docs each have their
own product managers. These product managers are charged with understanding the
users and the business, and for shaping the product for success in the marketplace.
When a product team exists, that team is usually the best resource to discuss the reli-
ability requirements for a service. In the absence of a dedicated product team, the
engineers building the system often play this role either knowingly or unknowingly.

There are many factors to consider when assessing the risk tolerance of services, such
as the following:

o What level of availability is required?
« Do different types of failures have different effects on the service?
« How can we use the service cost to help locate a service on the risk continuum?

o What other service metrics are important to take into account?

28 | Chapter3: Embracing Risk

Target level of availability

The target level of availability for a given Google service usually depends on the func-
tion it provides and how the service is positioned in the marketplace. The following
list includes issues to consider:

o What level of service will the users expect?

 Does this service tie directly to revenue (either our revenue, or our customers’
revenue)?

o Is this a paid service, or is it free?

o If there are competitors in the marketplace, what level of service do those com-
petitors provide?

« Is this service targeted at consumers, or at enterprises?

Consider the requirements of Google Apps for Work. The majority of its users are
enterprise users, some large and some small. These enterprises depend on Google
Apps for Work services (e.g., Gmail, Calendar, Drive, Docs) to provide tools that
enable their employees to perform their daily work. Stated another way, an outage for
a Google Apps for Work service is an outage not only for Google, but also for all the
enterprises that critically depend on us. For a typical Google Apps for Work service,
we might set an external quarterly availability target of 99.9%, and back this target
with a stronger internal availability target and a contract that stipulates penalties if we
fail to deliver to the external target.

YouTube provides a contrasting set of considerations. When Google acquired You-
Tube, we had to decide on the appropriate availability target for the website. In 2006,
YouTube was focused on consumers and was in a very different phase of its business
lifecycle than Google was at the time. While YouTube already had a great product, it
was still changing and growing rapidly. We set a lower availability target for YouTube
than for our enterprise products because rapid feature development was correspond-
ingly more important.

Types of failures

The expected shape of failures for a given service is another important consideration.
How resilient is our business to service downtime? Which is worse for the service: a
constant low rate of failures, or an occasional full-site outage? Both types of failure
may result in the same absolute number of errors, but may have vastly different
impacts on the business.

An illustrative example of the difference between full and partial outages naturally
arises in systems that serve private information. Consider a contact management
application, and the difference between intermittent failures that cause profile pic-
tures to fail to render, versus a failure case that results in a user’s private contacts

Risk Tolerance of Services | 29

being shown to another user. The first case is clearly a poor user experience, and
SREs would work to remediate the problem quickly. In the second case, however, the
risk of exposing private data could easily undermine basic user trust in a significant
way. As a result, taking down the service entirely would be appropriate during the
debugging and potential clean-up phase for the second case.

At the other end of services offered by Google, it is sometimes acceptable to have reg-
ular outages during maintenance windows. A number of years ago, the Ads Frontend
used to be one such service. It is used by advertisers and website publishers to set up,
configure, run, and monitor their advertising campaigns. Because most of this work
takes place during normal business hours, we determined that occasional, regular,
scheduled outages in the form of maintenance windows would be acceptable, and we
counted these scheduled outages as planned downtime, not unplanned downtime.

Cost

Cost is often the key factor in determining the appropriate availability target for a ser-
vice. Ads is in a particularly good position to make this trade-off because request suc-
cesses and failures can be directly translated into revenue gained or lost. In
determining the availability target for each service, we ask questions such as:

o If we were to build and operate these systems at one more nine of availability,
what would our incremental increase in revenue be?

« Does this additional revenue offset the cost of reaching that level of reliability?

To make this trade-off equation more concrete, consider the following cost/benefit
for an example service where each request has equal value:

Proposed improvement in availability target: 99.9% — 99.99%
Proposed increase in availability: 0.09%

Service revenue: $1M

Value of improved availability: $1M * 0.0009 = $900

In this case, if the cost of improving availability by one nine is less than $900, it is
worth the investment. If the cost is greater than $900, the costs will exceed the projec-
ted increase in revenue.

It may be harder to set these targets when we do not have a simple translation func-
tion between reliability and revenue. One useful strategy may be to consider the back-
ground error rate of ISPs on the Internet. If failures are being measured from the
end-user perspective and it is possible to drive the error rate for the service below the
background error rate, those errors will fall within the noise for a given user’s Internet
connection. While there are significant differences between ISPs and protocols (e.g.,

30 | Chapter3: Embracing Risk

TCP versus UDP, IPv4 versus IPv6), we've measured the typical background error
rate for ISPs as falling between 0.01% and 1%.

Other service metrics

Examining the risk tolerance of services in relation to metrics besides availability is
often fruitful. Understanding which metrics are important and which metrics aren’t
important provides us with degrees of freedom when attempting to take thoughtful
risks.

Service latency for our Ads systems provides an illustrative example. When Google
first launched Web Search, one of the service’s key distinguishing features was speed.
When we introduced AdWords, which displays advertisements next to search results,
a key requirement of the system was that the ads should not slow down the search
experience. This requirement has driven the engineering goals in each generation of
AdWords systems and is treated as an invariant.

AdSense, Google’s ads system that serves contextual ads in response to requests from
JavaScript code that publishers insert into their websites, has a very different latency
goal. The latency goal for AdSense is to avoid slowing down the rendering of the
third-party page when inserting contextual ads. The specific latency target, then, is
dependent on the speed at which a given publisher’s page renders. This means that

AdSense ads can generally be served hundreds of milliseconds slower than AdWords
ads.

This looser serving latency requirement has allowed us to make many smart trade-
offs in provisioning (i.e., determining the quantity and locations of serving resources
we use), which save us substantial cost over naive provisioning. In other words, given
the relative insensitivity of the AdSense service to moderate changes in latency per-
formance, we are able to consolidate serving into fewer geographical locations, reduc-
ing our operational overhead.

Identifying the Risk Tolerance of Infrastructure Services

The requirements for building and running infrastructure components differ from
the requirements for consumer products in a number of ways. A fundamental differ-
ence is that, by definition, infrastructure components have multiple clients, often with
varying needs.

Target level of availability

Consider Bigtable [Cha06], a massive-scale distributed storage system for structured
data. Some consumer services serve data directly from Bigtable in the path of a user
request. Such services need low latency and high reliability. Other teams use Bigtable
as a repository for data that they use to perform offline analysis (e.g., MapReduce) on

Risk Tolerance of Services | 31

a regular basis. These teams tend to be more concerned about throughput than relia-
bility. Risk tolerance for these two use cases is quite distinct.

One approach to meeting the needs of both use cases is to engineer all infrastructure
services to be ultra-reliable. Given the fact that these infrastructure services also tend
to aggregate huge amounts of resources, such an approach is usually far too expensive
in practice. To understand the different needs of the different types of users, you can
look at the desired state of the request queue for each type of Bigtable user.

Types of failures

The low-latency user wants Bigtable’s request queues to be (almost always) empty so
that the system can process each outstanding request immediately upon arrival.
(Indeed, inefficient queuing is often a cause of high tail latency.) The user concerned
with offline analysis is more interested in system throughput, so that user wants
request queues to never be empty. To optimize for throughput, the Bigtable system
should never need to idle while waiting for its next request.

As you can see, success and failure are antithetical for these sets of users. Success for
the low-latency user is failure for the user concerned with offline analysis.

Cost

One way to satisfy these competing constraints in a cost-effective manner is to parti-
tion the infrastructure and offer it at multiple independent levels of service. In the
Bigtable example, we can build two types of clusters: low-latency clusters and
throughput clusters. The low-latency clusters are designed to be operated and used by
services that need low latency and high reliability. To ensure short queue lengths and
satisfy more stringent client isolation requirements, the Bigtable system can be provi-
sioned with a substantial amount of slack capacity for reduced contention and
increased redundancy. The throughput clusters, on the other hand, can be provi-
sioned to run very hot and with less redundancy, optimizing throughput over latency.
In practice, we are able to satisfy these relaxed needs at a much lower cost, perhaps as
little as 10-50% of the cost of a low-latency cluster. Given Bigtable’s massive scale, this
cost savings becomes significant very quickly.

The key strategy with regards to infrastructure is to deliver services with explicitly
delineated levels of service, thus enabling the clients to make the right risk and cost
trade-offs when building their systems. With explicitly delineated levels of service, the
infrastructure providers can effectively externalize the difference in the cost it takes to
provide service at a given level to clients. Exposing cost in this way motivates the cli-
ents to choose the level of service with the lowest cost that still meets their needs. For
example, Google+ can decide to put data critical to enforcing user privacy in a high-
availability, globally consistent datastore (e.g., a globally replicated SQL-like system
like Spanner [Corl2]), while putting optional data (data that isn’t critical, but that

32 | Chapter3: Embracing Risk

enhances the user experience) in a cheaper, less reliable, less fresh, and eventually
consistent datastore (e.g., a NoSQL store with best-effort replication like Bigtable).

Note that we can run multiple classes of services using identical hardware and soft-
ware. We can provide vastly different service guarantees by adjusting a variety of ser-
vice characteristics, such as the quantities of resources, the degree of redundancy, the
geographical provisioning constraints, and, critically, the infrastructure software
configuration.

Example: Frontend infrastructure

To demonstrate that these risk-tolerance assessment principles do not just apply to
storage infrastructure, let’s look at another large class of service: Google’s frontend
infrastructure. The frontend infrastructure consists of reverse proxy and load balanc-
ing systems running close to the edge of our network. These are the systems that,
among other things, serve as one endpoint of the connections from end users (e.g.,
terminate TCP from the user’s browser). Given their critical role, we engineer these
systems to deliver an extremely high level of reliability. While consumer services can
often limit the visibility of unreliability in backends, these infrastructure systems are
not so lucky. If a request never makes it to the application service frontend server, it is
lost.

We've explored the ways to identify the risk tolerance of both consumer and infra-
structure services. Now, we'll discuss using that tolerance level to manage unreliabil-
ity via error budgets.

Motivation for Error Budgets'

Written by Mark Roth
Edited by Carmela Quinito

Other chapters in this book discuss how tensions can arise between product develop-
ment teams and SRE teams, given that they are generally evaluated on different met-
rics. Product development performance is largely evaluated on product velocity,
which creates an incentive to push new code as quickly as possible. Meanwhile, SRE
performance is (unsurprisingly) evaluated based upon reliability of a service, which
implies an incentive to push back against a high rate of change. Information asymme-
try between the two teams further amplifies this inherent tension. The product devel-
opers have more visibility into the time and effort involved in writing and releasing
their code, while the SREs have more visibility into the service’s reliability (and the
state of production in general).

1 An early version of this section appeared as an article in ;login: (August 2015, vol. 40, no. 4).

Motivation for Error Budgets | 33

These tensions often reflect themselves in different opinions about the level of effort
that should be put into engineering practices. The following list presents some typical
tensions:

Software fault tolerance
How hardened do we make the software to unexpected events? Too little, and we
have a brittle, unusable product. Too much, and we have a product no one wants
to use (but that runs very stably).

Testing
Again, not enough testing and you have embarrassing outages, privacy data leaks,
or a number of other press-worthy events. Too much testing, and you might lose
your market.

Push frequency
Every push is risky. How much should we work on reducing that risk, versus
doing other work?

Canary duration and size
It’s a best practice to test a new release on some small subset of a typical work-
load, a practice often called canarying. How long do we wait, and how big is the
canary?

Usually, preexisting teams have worked out some kind of informal balance between
them as to where the risk/effort boundary lies. Unfortunately, one can rarely prove
that this balance is optimal, rather than just a function of the negotiating skills of the
engineers involved. Nor should such decisions be driven by politics, fear, or hope.
(Indeed, Google SRE’s unofficial motto is “Hope is not a strategy.”) Instead, our goal
is to define an objective metric, agreed upon by both sides, that can be used to guide
the negotiations in a reproducible way. The more data-based the decision can be, the
better.

Forming Your Error Budget

In order to base these decisions on objective data, the two teams jointly define a quar-
terly error budget based on the service’s service level objective, or SLO (see Chap-
ter 4). The error budget provides a clear, objective metric that determines how
unreliable the service is allowed to be within a single quarter. This metric removes the
politics from negotiations between the SREs and the product developers when decid-
ing how much risk to allow.

Our practice is then as follows:

o Product Management defines an SLO, which sets an expectation of how much
uptime the service should have per quarter.

34 | Chapter3: Embracing Risk

o The actual uptime is measured by a neutral third party: our monitoring system.

« The difference between these two numbers is the “budget” of how much “unreli-
ability” is remaining for the quarter.

+ As long as the uptime measured is above the SLO—in other words, as long as
there is error budget remaining—new releases can be pushed.

For example, imagine that a service’s SLO is to successfully serve 99.999% of all quer-
ies per quarter. This means that the service’s error budget is a failure rate of 0.001%
for a given quarter. If a problem causes us to fail 0.0002% of the expected queries for
the quarter, the problem spends 20% of the service’s quarterly error budget.

Benefits

The main benefit of an error budget is that it provides a common incentive that
allows both product development and SRE to focus on finding the right balance
between innovation and reliability.

Many products use this control loop to manage release velocity: as long as the sys-
tem’s SLOs are met, releases can continue. If SLO violations occur frequently enough
to expend the error budget, releases are temporarily halted while additional resources
are invested in system testing and development to make the system more resilient,
improve its performance, and so on. More subtle and effective approaches are avail-
able than this simple on/off technique:* for instance, slowing down releases or rolling
them back when the SLO-violation error budget is close to being used up.

For example, if product development wants to skimp on testing or increase push
velocity and SRE is resistant, the error budget guides the decision. When the budget
is large, the product developers can take more risks. When the budget is nearly
drained, the product developers themselves will push for more testing or slower push
velocity, as they don’t want to risk using up the budget and stall their launch. In effect,
the product development team becomes self-policing. They know the budget and can
manage their own risk. (Of course, this outcome relies on an SRE team having the
authority to actually stop launches if the SLO is broken.)

What happens if a network outage or datacenter failure reduces the measured SLO?
Such events also eat into the error budget. As a result, the number of new pushes may
be reduced for the remainder of the quarter. The entire team supports this reduction
because everyone shares the responsibility for uptime.

The budget also helps to highlight some of the costs of overly high reliability targets,
in terms of both inflexibility and slow innovation. If the team is having trouble

2 Known as “bang/bang” control—see https://en.wikipedia.org/wiki/Bang-bang_control.

Motivation for Error Budgets | 35

launching new features, they may elect to loosen the SLO (thus increasing the error
budget) in order to increase innovation.

Key Insights

» Managing service reliability is largely about managing risk, and managing risk
can be costly.

o 100% is probably never the right reliability target: not only is it impossible to
achieve, it’s typically more reliability than a service’s users want or notice. Match
the profile of the service to the risk the business is willing to take.

o An error budget aligns incentives and emphasizes joint ownership between SRE
and product development. Error budgets make it easier to decide the rate of
releases and to effectively defuse discussions about outages with stakeholders,
and allows multiple teams to reach the same conclusion about production risk
without rancor.

36 | Chapter3: Embracing Risk

CHAPTER 4
Service Level Objectives

Written by Chris Jones, John Wilkes, and Niall Murphy
with Cody Smith
Edited by Betsy Beyer

It's impossible to manage a service correctly, let alone well, without understanding
which behaviors really matter for that service and how to measure and evaluate those
behaviors. To this end, we would like to define and deliver a given level of service to
our users, whether they use an internal API or a public product.

We use intuition, experience, and an understanding of what users want to define ser-
vice level indicators (SLIs), objectives (SLOs), and agreements (SLAs). These measure-
ments describe basic properties of metrics that matter, what values we want those
metrics to have, and how we'll react if we can’t provide the expected service. Ulti-
mately, choosing appropriate metrics helps to drive the right action if something goes
wrong, and also gives an SRE team confidence that a service is healthy.

This chapter describes the framework we use to wrestle with the problems of metric
modeling, metric selection, and metric analysis. Much of this explanation would be
quite abstract without an example, so we'll use the Shakespeare service outlined in
“Shakespeare: A Sample Service” on page 20 to illustrate our main points.

Service Level Terminology

Many readers are likely familiar with the concept of an SLA, but the terms SLI and
SLO are also worth careful definition, because in common use, the term SLA is over-
loaded and has taken on a number of meanings depending on context. We prefer to
separate those meanings for clarity.

37

Indicators

An SLI is a service level indicator—a carefully defined quantitative measure of some
aspect of the level of service that is provided.

Most services consider request latency—how long it takes to return a response to a
request—as a key SLI. Other common SLIs include the error rate, often expressed as a
fraction of all requests received, and system throughput, typically measured in
requests per second. The measurements are often aggregated: i.e., raw data is collec-
ted over a measurement window and then turned into a rate, average, or percentile.

Ideally, the SLI directly measures a service level of interest, but sometimes only a
proxy is available because the desired measure may be hard to obtain or interpret. For
example, client-side latency is often the more user-relevant metric, but it might only
be possible to measure latency at the server.

Another kind of SLI important to SREs is availability, or the fraction of the time that
a service is usable. It is often defined in terms of the fraction of well-formed requests
that succeed, sometimes called yield. (Durability—the likelihood that data will be
retained over a long period of time—is equally important for data storage systems.)
Although 100% availability is impossible, near-100% availability is often readily ach-
ievable, and the industry commonly expresses high-availability values in terms of the
number of “nines” in the availability percentage. For example, availabilities of 99%
and 99.999% can be referred to as “2 nines” and “5 nines” availability, respectively,
and the current published target for Google Compute Engine availability is “three and
a half nines”—99.95% availability.

Objectives

An SLO is a service level objective: a target value or range of values for a service level
that is measured by an SLI. A natural structure for SLOs is thus SLI < target or lower
bound < SLI < upper bound. For example, we might decide that we will return Shake-
speare search results “quickly;” adopting an SLO that our average search request
latency should be less than 100 milliseconds.

Choosing an appropriate SLO is complex. To begin with, you don’t always get to
choose its value! For incoming HTTP requests from the outside world to your ser-
vice, the queries per second (QPS) metric is essentially determined by the desires of
your users, and you can't really set an SLO for that.

On the other hand, you can say that you want the average latency per request to be
under 100 milliseconds, and setting such a goal could in turn motivate you to write
your frontend with low-latency behaviors of various kinds or to buy certain kinds of
low-latency equipment. (100 milliseconds is obviously an arbitrary value, but in gen-
eral lower latency numbers are good. There are excellent reasons to believe that fast is

38 | (Chapter4: Service Level Objectives

better than slow, and that user-experienced latency above certain values actually
drives people away— see “Speed Matters” [Bru09] for more details.)

Again, this is more subtle than it might at first appear, in that those two SLIs—QPS
and latency—might be connected behind the scenes: higher QPS often leads to larger
latencies, and it's common for services to have a performance cliff beyond some load
threshold.

Choosing and publishing SLOs to users sets expectations about how a service will
perform. This strategy can reduce unfounded complaints to service owners about, for
example, the service being slow. Without an explicit SLO, users often develop their
own beliefs about desired performance, which may be unrelated to the beliefs held by
the people designing and operating the service. This dynamic can lead to both over-
reliance on the service, when users incorrectly believe that a service will be more
available than it actually is (as happened with Chubby: see “The Global Chubby Plan-
ned Outage”), and under-reliance, when prospective users believe a system is flakier
and less reliable than it actually is.

The Global Chubby Planned Outage
Written by Marc Alvidrez

Chubby [Bur06] is Google’s lock service for loosely coupled distributed systems. In
the global case, we distribute Chubby instances such that each replica is in a different
geographical region. Over time, we found that the failures of the global instance of
Chubby consistently generated service outages, many of which were visible to end
users. As it turns out, true global Chubby outages are so infrequent that service own-
ers began to add dependencies to Chubby assuming that it would never go down. Its
high reliability provided a false sense of security because the services could not func-
tion appropriately when Chubby was unavailable, however rarely that occurred.

The solution to this Chubby scenario is interesting: SRE makes sure that global
Chubby meets, but does not significantly exceed, its service level objective. In any
given quarter, if a true failure has not dropped availability below the target, a con-
trolled outage will be synthesized by intentionally taking down the system. In this
way, we are able to flush out unreasonable dependencies on Chubby shortly after they
are added. Doing so forces service owners to reckon with the reality of distributed
systems sooner rather than later.

Agreements

Finally, SLAs are service level agreements: an explicit or implicit contract with your
users that includes consequences of meeting (or missing) the SLOs they contain. The
consequences are most easily recognized when they are financial—a rebate or a pen-

Service Level Terminology | 39

alty—but they can take other forms. An easy way to tell the difference between an
SLO and an SLA is to ask “what happens if the SLOs aren’t met?”: if there is no
explicit consequence, then you are almost certainly looking at an SLO.!

SRE doesn't typically get involved in constructing SLAs, because SLAs are closely tied
to business and product decisions. SRE does, however, get involved in helping to
avoid triggering the consequences of missed SLOs. They can also help to define the
SLIs: there obviously needs to be an objective way to measure the SLOs in the agree-
ment, or disagreements will arise.

Google Search is an example of an important service that doesn’t have an SLA for the
public: we want everyone to use Search as fluidly and efficiently as possible, but we
haven’t signed a contract with the whole world. Even so, there are still consequences if
Search isn’t available—unavailability results in a hit to our reputation, as well as a
drop in advertising revenue. Many other Google services, such as Google for Work,
do have explicit SLAs with their users. Whether or not a particular service has an
SLA, it’s valuable to define SLIs and SLOs and use them to manage the service.

So much for the theory—now for the experience.

Indicators in Practice

Given that we've made the case for why choosing appropriate metrics to measure
your service is important, how do you go about identifying what metrics are mean-
ingful to your service or system?

What Do You and Your Users Care About?

You shouldn’t use every metric you can track in your monitoring system as an SLI; an
understanding of what your users want from the system will inform the judicious
selection of a few indicators. Choosing too many indicators makes it hard to pay the
right level of attention to the indicators that matter, while choosing too few may leave
significant behaviors of your system unexamined. We typically find that a handful of
representative indicators are enough to evaluate and reason about a system’s health.

1 Most people really mean SLO when they say “SLA” One giveaway: if somebody talks about an “SLA viola-
tion,” they are almost always talking about a missed SLO. A real SLA violation might trigger a court case for
breach of contract.

40 | Chapter4:Service Level Objectives

Services tend to fall into a few broad categories in terms of the SLIs they find relevant:

o User-facing serving systems, such as the Shakespeare search frontends, generally
care about availability, latency, and throughput. In other words: Could we
respond to the request? How long did it take to respond? How many requests
could be handled?

o Storage systems often emphasize latency, availability, and durability. In other
words: How long does it take to read or write data? Can we access the data on
demand? Is the data still there when we need it? See Chapter 26 for an extended
discussion of these issues.

* Big data systems, such as data processing pipelines, tend to care about throughput
and end-to-end latency. In other words: How much data is being processed? How
long does it take the data to progress from ingestion to completion? (Some pipe-
lines may also have targets for latency on individual processing stages.)

« All systems should care about correctness: was the right answer returned, the
right data retrieved, the right analysis done? Correctness is important to track as
an indicator of system health, even though it’s often a property of the data in the
system rather than the infrastructure per se, and so usually not an SRE responsi-
bility to meet.

Collecting Indicators

Many indicator metrics are most naturally gathered on the server side, using a moni-
toring system such as Borgmon (see Chapter 10) or Prometheus, or with periodic log
analysis—for instance, HTTP 500 responses as a fraction of all requests. However,
some systems should be instrumented with client-side collection, because not meas-
uring behavior at the client can miss a range of problems that affect users but don’t
affect server-side metrics. For example, concentrating on the response latency of the
Shakespeare search backend might miss poor user latency due to problems with the
page’s JavaScript: in this case, measuring how long it takes for a page to become usa-
ble in the browser is a better proxy for what the user actually experiences.

Aggregation

For simplicity and usability, we often aggregate raw measurements. This needs to be
done carefully.

Some metrics are seemingly straightforward, like the number of requests per second
served, but even this apparently straightforward measurement implicitly aggregates
data over the measurement window. Is the measurement obtained once a second, or
by averaging requests over a minute? The latter may hide much higher instantaneous
request rates in bursts that last for only a few seconds. Consider a system that serves

Indicators in Practice | 41

200 requests/s in even-numbered seconds, and 0 in the others. It has the same average
load as one that serves a constant 100 requests/s, but has an instantaneous load that is
twice as large as the average one. Similarly, averaging request latencies may seem
attractive, but obscures an important detail: it's entirely possible for most of the
requests to be fast, but for a long tail of requests to be much, much slower.

Most metrics are better thought of as distributions rather than averages. For example,
for a latency SLI, some requests will be serviced quickly, while others will invariably
take longer—sometimes much longer. A simple average can obscure these tail laten-
cies, as well as changes in them. Figure 4-1 provides an example: although a typical
request is served in about 50 ms, 5% of requests are 20 times slower! Monitoring and
alerting based only on the average latency would show no change in behavior over
the course of the day, when there are in fact significant changes in the tail latency (the
topmost line).

milliseconds

08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

Figure 4-1. 50th, 85th, 95th, and 99th percentile latencies for a system. Note that the Y-
axis has a logarithmic scale.

Using percentiles for indicators allows you to consider the shape of the distribution
and its differing attributes: a high-order percentile, such as the 99th or 99.9th, shows
you a plausible worst-case value, while using the 50th percentile (also known as the
median) emphasizes the typical case. The higher the variance in response times, the
more the typical user experience is affected by long-tail behavior, an effect exacerba-
ted at high load by queuing effects. User studies have shown that people typically pre-
fer a slightly slower system to one with high variance in response time, so some SRE
teams focus only on high percentile values, on the grounds that if the 99.9th percen-
tile behavior is good, then the typical experience is certainly going to be.

42 | Chapter4:Service Level Objectives

A Note on Statistical Fallacies

We generally prefer to work with percentiles rather than the mean (arithmetic aver-
age) of a set of values. Doing so makes it possible to consider the long tail of data
points, which often have significantly different (and more interesting) characteristics
than the average. Because of the artificial nature of computing systems, data points
are often skewed—for instance, no request can have a response in less than 0 ms, and
a timeout at 1,000 ms means that there can be no successful responses with values
greater than the timeout. As a result, we cannot assume that the mean and the median
are the same—or even close to each other!

We try not to assume that our data is normally distributed without verifying it first, in
case some standard intuitions and approximations don’t hold. For example, if the dis-
tribution is not what’s expected, a process that takes action when it sees outliers (e.g.,
restarting a server with high request latencies) may do this too often, or not often
enough.

Standardize Indicators

We recommend that you standardize on common definitions for SLIs so that you
don’t have to reason about them from first principles each time. Any feature that con-
forms to the standard definition templates can be omitted from the specification of
an individual SLI, e.g.:

« Aggregation intervals: “Averaged over 1 minute”

o Aggregation regions: “All the tasks in a cluster”

« How frequently measurements are made: “Every 10 seconds”

o Which requests are included: “HTTP GETs from black-box monitoring jobs”
» How the data is acquired: “Through our monitoring, measured at the server”

o Data-access latency: “Time to last byte”

To save effort, build a set of reusable SLI templates for each common metric; these
also make it simpler for everyone to understand what a specific SLI means.

Objectives in Practice

Start by thinking about (or finding out!) what your users care about, not what you
can measure. Often, what your users care about is difficult or impossible to measure,
so you'll end up approximating users’ needs in some way. However, if you simply start
with what’s easy to measure, you'll end up with less useful SLOs. As a result, we've

Objectivesin Practice | 43

sometimes found that working from desired objectives backward to specific indica-
tors works better than choosing indicators and then coming up with targets.

Defining Objectives

For maximum clarity, SLOs should specify how they’re measured and the conditions
under which they’re valid. For instance, we might say the following (the second line is
the same as the first, but relies on the SLI defaults of the previous section to remove
redundancy):

» 99% (averaged over 1 minute) of Get RPC calls will complete in less than 100 ms
(measured across all the backend servers).

» 99% of Get RPC calls will complete in less than 100 ms.

If the shape of the performance curves are important, then you can specify multiple
SLO targets:

* 90% of Get RPC calls will complete in less than 1 ms.
* 99% of Get RPC calls will complete in less than 10 ms.
e 99.9% of Get RPC calls will complete in less than 100 ms.

If you have users with heterogeneous workloads such as a bulk processing pipeline
that cares about throughput and an interactive client that cares about latency, it may
be appropriate to define separate objectives for each class of workload:

o 95% of throughput clients’ Set RPC calls will complete in < 1 s.

e 99% of latency clients’ Set RPC calls with payloads < 1 kB will complete in < 10
ms.

It’s both unrealistic and undesirable to insist that SLOs will be met 100% of the time:
doing so can reduce the rate of innovation and deployment, require expensive, overly
conservative solutions, or both. Instead, it is better to allow an error budget—a rate at
which the SLOs can be missed—and track that on a daily or weekly basis. Upper
management will probably want a monthly or quarterly assessment, too. (An error
budget is just an SLO for meeting other SLOs!)

The rate at which SLOs are missed is a useful indicator for the user-perceived health
of the service. It is helpful to track SLOs (and SLO violations) on a daily or weekly
basis to see trends and get early warning of potential problems before they happen.
Upper management will probably want a monthly or quarterly assessment, too.

44 | Chapter 4:Service Level Objectives

The SLO violation rate can be compared against the error budget (see “Motivation for
Error Budgets” on page 33), with the gap used as an input to the process that decides
when to roll out new releases.

Choosing Targets

Choosing targets (SLOs) is not a purely technical activity because of the product and
business implications, which should be reflected in both the SLIs and SLOs (and
maybe SLAs) that are selected. Similarly, it may be necessary to trade off certain prod-
uct attributes against others within the constraints posed by staffing, time to market,
hardware availability, and funding. While SRE should be part of this conversation,
and advise on the risks and viability of different options, we've learned a few lessons
that can help make this a more productive discussion:

Don't pick a target based on current performance
While understanding the merits and limits of a system is essential, adopting val-
ues without reflection may lock you into supporting a system that requires heroic
efforts to meet its targets, and that cannot be improved without significant
redesign.

Keep it simple
Complicated aggregations in SLIs can obscure changes to system performance,
and are also harder to reason about.

Avoid absolutes
While it’s tempting to ask for a system that can scale its load “infinitely” without
any latency increase and that is “always” available, this requirement is unrealistic.
Even a system that approaches such ideals will probably take a long time to
design and build, and will be expensive to operate—and probably turn out to be
unnecessarily better than what users would be happy (or even delighted) to have.

Have as few SLOs as possible
Choose just enough SLOs to provide good coverage of your system’s attributes.
Defend the SLOs you pick: if you can’t ever win a conversation about priorities by
quoting a particular SLO, it’s probably not worth having that SLO.? However, not
all product attributes are amenable to SLOs: it's hard to specify “user delight”
with an SLO.

Perfection can wait
You can always refine SLO definitions and targets over time as you learn about a
system’s behavior. It’s better to start with a loose target that you tighten than to

2 If you can’t ever win a conversation about SLOs, it’s probably not worth having an SRE team for the product.

Objectivesin Practice | 45

choose an overly strict target that has to be relaxed when you discover it’s unat-
tainable.

SLOs can—and should—be a major driver in prioritizing work for SREs and product
developers, because they reflect what users care about. A good SLO is a helpful, legiti-
mate forcing function for a development team. But a poorly thought-out SLO can
result in wasted work if a team uses heroic efforts to meet an overly aggressive SLO,
or a bad product if the SLO is too lax. SLOs are a massive lever: use them wisely.

Control Measures

SLIs and SLOs are crucial elements in the control loops used to manage systems:

1. Monitor and measure the system’s SLIs.
2. Compare the SLIs to the SLOs, and decide whether or not action is needed.
3. If action is needed, figure out what needs to happen in order to meet the target.

4. Take that action.

For example, if step 2 shows that request latency is increasing, and will miss the SLO
in a few hours unless something is done, step 3 might include testing the hypothesis
that the servers are CPU-bound, and deciding to add more of them to spread the
load. Without the SLO, you wouldn’t know whether (or when) to take action.

SLOs Set Expectations

Publishing SLOs sets expectations for system behavior. Users (and potential users)
often want to know what they can expect from a service in order to understand
whether it's appropriate for their use case. For instance, a team wanting to build a
photo-sharing website might want to avoid using a service that promises very strong
durability and low cost in exchange for slightly lower availability, though the same
service might be a perfect fit for an archival records management system.

In order to set realistic expectations for your users, you might consider using one or
both of the following tactics:

Keep a safety margin
Using a tighter internal SLO than the SLO advertised to users gives you room to
respond to chronic problems before they become visible externally. An SLO
buffer also makes it possible to accommodate reimplementations that trade per-
formance for other attributes, such as cost or ease of maintenance, without hav-
ing to disappoint users.

46 | Chapter4:Service Level Objectives

Don’t overachieve

Users build on the reality of what you offer, rather than what you say you’ll sup-
ply, particularly for infrastructure services. If your service’s actual performance is
much better than its stated SLO, users will come to rely on its current perfor-
mance. You can avoid over-dependence by deliberately taking the system offline
occasionally (Google’s Chubby service introduced planned outages in response to
being overly available),’ throttling some requests, or designing the system so that
it isn't faster under light loads.

Understanding how well a system is meeting its expectations helps decide whether to
invest in making the system faster, more available, and more resilient. Alternatively, if
the service is doing fine, perhaps staff time should be spent on other priorities, such
as paying off technical debt, adding new features, or introducing other products.

Agreements in Practice

Crafting an SLA requires business and legal teams to pick appropriate consequences
and penalties for a breach. SRE’s role is to help them understand the likelihood and
difficulty of meeting the SLOs contained in the SLA. Much of the advice on SLO con-
struction is also applicable for SLAs. It is wise to be conservative in what you adver-
tise to users, as the broader the constituency, the harder it is to change or delete SLAs
that prove to be unwise or difficult to work with.

3 Failure injection [Ben12] serves a different purpose, but can also help set expectations.

Agreementsin Practice | 47

CHAPTER 5
Eliminating Toil

Written by Vivek Rau
Edited by Betsy Beyer

If a human operator needs to touch your system during normal operations, you have a bug.
The definition of normal changes as your systems grow.

—Carla Geisser, Google SRE

In SRE, we want to spend time on long-term engineering project work instead of
operational work. Because the term operational work may be misinterpreted, we use a
specific word: toil.

Toil Defined

Toil is not just “work I don’t like to do.” It’s also not simply equivalent to administra-
tive chores or grungy work. Preferences as to what types of work are satisfying and
enjoyable vary from person to person, and some people even enjoy manual, repetitive
work. There are also administrative chores that have to get done, but should not be
categorized as toil: this is overhead. Overhead is often work not directly tied to run-
ning a production service, and includes tasks like team meetings, setting and grading
goals,' snippets,> and HR paperwork. Grungy work can sometimes have long-term
value, and in that case, it’s not toil, either. Cleaning up the entire alerting configura-
tion for your service and removing clutter may be grungy, but it’s not toil.

So what is toil? Toil is the kind of work tied to running a production service that
tends to be manual, repetitive, automatable, tactical, devoid of enduring value, and

1 We use the Objectives and Key Results system, pioneered by Andy Grove at Intel; see [Klal2].

2 Googlers record short free-form summaries, or “snippets,” of what we've worked on each week.

49

that scales linearly as a service grows. Not every task deemed toil has all these
attributes, but the more closely work matches one or more of the following descrip-
tions, the more likely it is to be toil:

Manual
This includes work such as manually running a script that automates some task.
Running a script may be quicker than manually executing each step in the script,
but the hands-on time a human spends running that script (not the elapsed time)
is still toil time.

Repetitive
If youre performing a task for the first time ever, or even the second time, this
work is not toil. Toil is work you do over and over. If you're solving a novel prob-
lem or inventing a new solution, this work is not toil.

Automatable
If a machine could accomplish the task just as well as a human, or the need for
the task could be designed away, that task is toil. If human judgment is essential
for the task, there’s a good chance it’s not toil.?

Tactical
Toil is interrupt-driven and reactive, rather than strategy-driven and proactive.
Handling pager alerts is toil. We may never be able to eliminate this type of work
completely, but we have to continually work toward minimizing it.

No enduring value
If your service remains in the same state after you have finished a task, the task
was probably toil. If the task produced a permanent improvement in your ser-
vice, it probably wasn’t toil, even if some amount of grunt work—such as digging
into legacy code and configurations and straightening them out—was involved.

O(n) with service growth
If the work involved in a task scales up linearly with service size, traffic volume,
or user count, that task is probably toil. An ideally managed and designed service
can grow by at least one order of magnitude with zero additional work, other
than some one-time efforts to add resources.

3 We have to be careful about saying a task is “not toil because it needs human judgment” We need to think
carefully about whether the nature of the task intrinsically requires human judgment and cannot be addressed
by better design. For example, one could build (and some have built) a service that alerts its SREs several
times a day, where each alert requires a complex response involving plenty of human judgment. Such a service
is poorly designed, with unnecessary complexity. The system needs to be simplified and rebuilt to either elim-
inate the underlying failure conditions or deal with these conditions automatically. Until the redesign and
reimplementation are finished, and the improved service is rolled out, the work of applying human judgment
to respond to each alert is definitely toil.

50 | Chapter5:Eliminating Toil

Why Less Toil Is Better

Our SRE organization has an advertised goal of keeping operational work (i.e., toil)
below 50% of each SRE’s time. At least 50% of each SRE’s time should be spent on
engineering project work that will either reduce future toil or add service features.
Feature development typically focuses on improving reliability, performance, or uti-
lization, which often reduces toil as a second-order effect.

We share this 50% goal because toil tends to expand if left unchecked and can quickly
fill 100% of everyone’s time. The work of reducing toil and scaling up services is the
“Engineering” in Site Reliability Engineering. Engineering work is what enables the
SRE organization to scale up sublinearly with service size and to manage services
more efficiently than either a pure Dev team or a pure Ops team.

Furthermore, when we hire new SREs, we promise them that SRE is not a typical Ops
organization, quoting the 50% rule just mentioned. We need to keep that promise by
not allowing the SRE organization or any subteam within it to devolve into an Ops
team.

Calculating Toil

If we seek to cap the time an SRE spends on toil to 50%, how is that time spent?

There’s a floor on the amount of toil any SRE has to handle if they are on-call. A typi-
cal SRE has one week of primary on-call and one week of secondary on-call in each
cycle (for discussion of primary versus secondary on-call shifts, see Chapter 11). It
follows that in a 6-person rotation, at least 2 of every 6 weeks are dedicated to on-call
shifts and interrupt handling, which means the lower bound on potential toil is 2/6 =
33% of an SRE’s time. In an 8-person rotation, the lower bound is 2/8 = 25%.

Consistent with this data, SREs report that their top source of toil is interrupts (that
is, non-urgent service-related messages and emails). The next leading source is on-
call (urgent) response, followed by releases and pushes. Even though our release and
push processes are usually handled with a fair amount of automation, there’s still
plenty of room for improvement in this area.

Quarterly surveys of Google’s SREs show that the average time spent toiling is about
33%, so we do much better than our overall target of 50%. However, the average
doesn’t capture outliers: some SREs claim 0% toil (pure development projects with no
on-call work) and others claim 80% toil. When individual SREs report excessive toil,
it often indicates a need for managers to spread the toil load more evenly across the
team and to encourage those SREs to find satisfying engineering projects.

Why Less Toil Is Better | 51

What Qualifies as Engineering?

Engineering work is novel and intrinsically requires human judgment. It produces a
permanent improvement in your service, and is guided by a strategy. It is frequently
creative and innovative, taking a design-driven approach to solving a problem—the
more generalized, the better. Engineering work helps your team or the SRE organiza-
tion handle a larger service, or more services, with the same level of staffing.

Typical SRE activities fall into the following approximate categories:

Software engineering
Involves writing or modifying code, in addition to any associated design and
documentation work. Examples include writing automation scripts, creating
tools or frameworks, adding service features for scalability and reliability, or
modifying infrastructure code to make it more robust.

Systems engineering
Involves configuring production systems, modifying configurations, or docu-
menting systems in a way that produces lasting improvements from a one-time
effort. Examples include monitoring setup and updates, load balancing configu-
ration, server configuration, tuning of OS parameters, and load balancer setup.
Systems engineering also includes consulting on architecture, design, and pro-
ductionization for developer teams.

Toil
Work directly tied to running a service that is repetitive, manual, etc.

Overhead
Administrative work not tied directly to running a service. Examples include hir-
ing, HR paperwork, team/company meetings, bug queue hygiene, snippets, peer
reviews and self-assessments, and training courses.

Every SRE needs to spend at least 50% of their time on engineering work, when aver-
aged over a few quarters or a year. Toil tends to be spiky, so a steady 50% of time
spent on engineering may not be realistic for some SRE teams, and they may dip
below that target in some quarters. But if the fraction of time spent on projects aver-
ages significantly below 50% over the long haul, the affected team needs to step back
and figure out what’s wrong.

Is Toil Always Bad?

Toil doesn’t make everyone unhappy all the time, especially in small amounts. Pre-
dictable and repetitive tasks can be quite calming. They produce a sense of accom-
plishment and quick wins. They can be low-risk and low-stress activities. Some
people gravitate toward tasks involving toil and may even enjoy that type of work.

52 | Chapter5: Eliminating Toil

Toil isn’t always and invariably bad, and everyone needs to be absolutely clear that
some amount of toil is unavoidable in the SRE role, and indeed in almost any engi-
neering role. It’s fine in small doses, and if youre happy with those small doses, toil is
not a problem. Toil becomes toxic when experienced in large quantities. If youre bur-
dened with too much toil, you should be very concerned and complain loudly.
Among the many reasons why too much toil is bad, consider the following:

Career stagnation
Your career progress will slow down or grind to a halt if you spend too little time
on projects. Google rewards grungy work when it’s inevitable and has a big posi-
tive impact, but you can’t make a career out of grunge.

Low morale
People have different limits for how much toil they can tolerate, but everyone has
a limit. Too much toil leads to burnout, boredom, and discontent.

Additionally, spending too much time on toil at the expense of time spent engineer-
ing hurts an SRE organization in the following ways:

Creates confusion
We work hard to ensure that everyone who works in or with the SRE organiza-
tion understands that we are an engineering organization. Individuals or teams
within SRE that engage in too much toil undermine the clarity of that communi-
cation and confuse people about our role.

Slows progress
Excessive toil makes a team less productive. A product’s feature velocity will slow
if the SRE team is too busy with manual work and firefighting to roll out new
features promptly.

Sets precedent
If youre too willing to take on toil, your Dev counterparts will have incentives to
load you down with even more toil, sometimes shifting operational tasks that
should rightfully be performed by Devs to SRE. Other teams may also start
expecting SREs to take on such work, which is bad for obvious reasons.

Promotes attrition
Even if youre not personally unhappy with toil, your current or future team-
mates might like it much less. If you build too much toil into your team’s proce-
dures, you motivate the team’s best engineers to start looking elsewhere for a
more rewarding job.

Causes breach of faith
New hires or transfers who joined SRE with the promise of project work will feel
cheated, which is bad for morale.

Is Toil Always Bad? | 53

Conclusion

If we all commit to eliminate a bit of toil each week with some good engineering, we'll
steadily clean up our services, and we can shift our collective efforts to engineering
for scale, architecting the next generation of services, and building cross-SRE tool-
chains. Let’s invent more, and toil less.

54 | Chapter5: Eliminating Toil

CHAPTER 6
Monitoring Distributed Systems

Written by Rob Ewaschuk
Edited by Betsy Beyer

Google’s SRE teams have some basic principles and best practices for building suc-
cessful monitoring and alerting systems. This chapter offers guidelines for what issues
should interrupt a human via a page, and how to deal with issues that aren’t serious
enough to trigger a page.

Definitions

There’s no uniformly shared vocabulary for discussing all topics related to monitor-
ing. Even within Google, usage of the following terms varies, but the most common
interpretations are listed here.

Monitoring
Collecting, processing, aggregating, and displaying real-time quantitative data
about a system, such as query counts and types, error counts and types, process-
ing times, and server lifetimes.

White-box monitoring
Monitoring based on metrics exposed by the internals of the system, including
logs, interfaces like the Java Virtual Machine Profiling Interface, or an HTTP
handler that emits internal statistics.

Black-box monitoring
Testing externally visible behavior as a user would see it.

Dashboard
An application (usually web-based) that provides a summary view of a service’s
core metrics. A dashboard may have filters, selectors, and so on, but is prebuilt to

55

expose the metrics most important to its users. The dashboard might also display
team information such as ticket queue length, a list of high-priority bugs, the
current on-call engineer for a given area of responsibility, or recent pushes.

Alert
A notification intended to be read by a human and that is pushed to a system
such as a bug or ticket queue, an email alias, or a pager. Respectively, these alerts
are classified as tickets, email alerts,' and pages.

Root cause
A defect in a software or human system that, if repaired, instills confidence that
this event won’t happen again in the same way. A given incident might have mul-
tiple root causes: for example, perhaps it was caused by a combination of insuffi-
cient process automation, software that crashed on bogus input, and insufficient
testing of the script used to generate the configuration. Each of these factors
might stand alone as a root cause, and each should be repaired.

Node and machine
Used interchangeably to indicate a single instance of a running kernel in either a
physical server, virtual machine, or container. There might be multiple services
worth monitoring on a single machine. The services may either be:

« Related to each other: for example, a caching server and a web server
o Unrelated services sharing hardware: for example, a code repository and a
master for a configuration system like Puppet or Chef

Push
Any change to a service’s running software or its configuration.

Why Monitor?

There are many reasons to monitor a system, including:

Analyzing long-term trends
How big is my database and how fast is it growing? How quickly is my daily-
active user count growing?

Comparing over time or experiment groups
Are queries faster with Acme Bucket of Bytes 2.72 versus Ajax DB 3.14? How
much better is my memcache hit rate with an extra node? Is my site slower than
it was last week?

1 Sometimes known as “alert spam,” as they are rarely read or acted on.

56 | Chapter6: Monitoring Distributed Systems

https://puppetlabs.com/puppet/puppet-open-source
https://www.chef.io/chef/

Alerting
Something is broken, and somebody needs to fix it right now! Or, something
might break soon, so somebody should look soon.

Building dashboards
Dashboards should answer basic questions about your service, and normally
include some form of the four golden signals (discussed in “The Four Golden
Signals” on page 60).

Conducting ad hoc retrospective analysis (i.e., debugging)
Our latency just shot up; what else happened around the same time?

System monitoring is also helpful in supplying raw input into business analytics and
in facilitating analysis of security breaches. Because this book focuses on the engi-
neering domains in which SRE has particular expertise, we won't discuss these appli-
cations of monitoring here.

Monitoring and alerting enables a system to tell us when it’s broken, or perhaps to tell
us whats about to break. When the system isn't able to automatically fix itself, we
want a human to investigate the alert, determine if there’s a real problem at hand, mit-
igate the problem, and determine the root cause of the problem. Unless youre per-
forming security auditing on very narrowly scoped components of a system, you
should never trigger an alert simply because “something seems a bit weird.”

Paging a human is a quite expensive use of an employee’s time. If an employee is at
work, a page interrupts their workflow. If the employee is at home, a page interrupts
their personal time, and perhaps even their sleep. When pages occur too frequently,
employees second-guess, skim, or even ignore incoming alerts, sometimes even
ignoring a “real” page that’s masked by the noise. Outages can be prolonged because
other noise interferes with a rapid diagnosis and fix. Effective alerting systems have
good signal and very low noise.

Setting Reasonable Expectations for Monitoring

Monitoring a complex application is a significant engineering endeavor in and of
itself. Even with substantial existing infrastructure for instrumentation, collection,
display, and alerting in place, a Google SRE team with 10-12 members typically has
one or sometimes two members whose primary assignment is to build and maintain
monitoring systems for their service. This number has decreased over time as we
generalize and centralize common monitoring infrastructure, but every SRE team
typically has at least one “monitoring person.” (That being said, while it can be fun to
have access to traffic graph dashboards and the like, SRE teams carefully avoid any
situation that requires someone to “stare at a screen to watch for problems.”)

Setting Reasonable Expectations for Monitoring | 57

In general, Google has trended toward simpler and faster monitoring systems, with
better tools for post hoc analysis. We avoid “magic” systems that try to learn thresh-
olds or automatically detect causality. Rules that detect unexpected changes in end-
user request rates are one counterexample; while these rules are still kept as simple as
possible, they give a very quick detection of a very simple, specific, severe anomaly.
Other uses of monitoring data such as capacity planning and traffic prediction can
tolerate more fragility, and thus, more complexity. Observational experiments con-
ducted over a very long time horizon (months or years) with a low sampling rate
(hours or days) can also often tolerate more fragility because occasional missed sam-
ples won't hide a long-running trend.

Google SRE has experienced only limited success with complex dependency hierar-
chies. We seldom use rules such as, “If I know the database is slow, alert for a slow
database; otherwise, alert for the website being generally slow” Dependency-reliant
rules usually pertain to very stable parts of our system, such as our system for drain-
ing user traffic away from a datacenter. For example, “If a datacenter is drained, then
don’t alert me on its latency” is one common datacenter alerting rule. Few teams at
Google maintain complex dependency hierarchies because our infrastructure has a
steady rate of continuous refactoring.

Some of the ideas described in this chapter are still aspirational: there is always room
to move more rapidly from symptom to root cause(s), especially in ever-changing
systems. So while this chapter sets out some goals for monitoring systems, and some
ways to achieve these goals, it's important that monitoring systems—especially the
critical path from the onset of a production problem, through a page to a human,
through basic triage and deep debugging—be kept simple and comprehensible by
everyone on the team.

Similarly, to keep noise low and signal high, the elements of your monitoring system
that direct to a pager need to be very simple and robust. Rules that generate alerts for
humans should be simple to understand and represent a clear failure.

Symptoms Versus Causes

Your monitoring system should address two questions: what’s broken, and why?

The “what’s broken” indicates the symptom; the “why” indicates a (possibly inter-
mediate) cause. Table 6-1 lists some hypothetical symptoms and corresponding
causes.

58 | Chapter 6: Monitoring Distributed Systems

Table 6-1. Example symptoms and causes

Symptom Cause

I'm serving HTTP 500s or 404s Database servers are refusing connections

My responses are slow (PUs are overloaded by a bogosort, or an Ethernet cable is crimped under a rack,
visible as partial packet loss

Users in Antarctica aren’t receiving Your Content Distribution Network hates scientists and felines, and thus
animated cat GIFs blacklisted some client IPs

Private content is world-readable A new software push caused ACLs to be forgotten and allowed all requests

“What” versus “why” is one of the most important distinctions in writing good moni-
toring with maximum signal and minimum noise.

Black-Box Versus White-Box

We combine heavy use of white-box monitoring with modest but critical uses of
black-box monitoring. The simplest way to think about black-box monitoring versus
white-box monitoring is that black-box monitoring is symptom-oriented and repre-
sents active—not predicted—problems: “The system isn't working correctly, right
now.” White-box monitoring depends on the ability to inspect the innards of the sys-
tem, such as logs or HTTP endpoints, with instrumentation. White-box monitoring
therefore allows detection of imminent problems, failures masked by retries, and so
forth.

Note that in a multilayered system, one person’s symptom is another person’s cause.
For example, suppose that a database’s performance is slow. Slow database reads are a
symptom for the database SRE who detects them. However, for the frontend SRE
observing a slow website, the same slow database reads are a cause. Therefore, white-
box monitoring is sometimes symptom-oriented, and sometimes cause-oriented,
depending on just how informative your white-box is.

When collecting telemetry for debugging, white-box monitoring is essential. If web
servers seem slow on database-heavy requests, you need to know both how fast the
web server perceives the database to be, and how fast the database believes itself to be.
Otherwise, you can’t distinguish an actually slow database server from a network
problem between your web server and your database.

For paging, black-box monitoring has the key benefit of forcing discipline to only nag
a human when a problem is both already ongoing and contributing to real symptoms.
On the other hand, for not-yet-occurring but imminent problems, black-box moni-
toring is fairly useless.

Black-Box Versus White-Box | 59

The Four Golden Signals

The four golden signals of monitoring are latency, traffic, errors, and saturation. If
you can only measure four metrics of your user-facing system, focus on these four.

Latency

The time it takes to service a request. It's important to distinguish between the
latency of successful requests and the latency of failed requests. For example, an
HTTP 500 error triggered due to loss of connection to a database or other critical
backend might be served very quickly; however, as an HTTP 500 error indicates
a failed request, factoring 500s into your overall latency might result in mislead-
ing calculations. On the other hand, a slow error is even worse than a fast error!
Therefore, it’s important to track error latency, as opposed to just filtering out
errors.

Traffic

A measure of how much demand is being placed on your system, measured in a
high-level system-specific metric. For a web service, this measurement is usually
HTTP requests per second, perhaps broken out by the nature of the requests
(e.g., static versus dynamic content). For an audio streaming system, this meas-
urement might focus on network I/O rate or concurrent sessions. For a key-value
storage system, this measurement might be transactions and retrievals per
second.

Errors

The rate of requests that fail, either explicitly (e.g., HTTP 500s), implicitly (for
example, an HTTP 200 success response, but coupled with the wrong content),
or by policy (for example, “If you committed to one-second response times, any
request over one second is an error”). Where protocol response codes are insuffi-
cient to express all failure conditions, secondary (internal) protocols may be nec-
essary to track partial failure modes. Monitoring these cases can be drastically
different: catching HT'TP 500s at your load balancer can do a decent job of catch-
ing all completely failed requests, while only end-to-end system tests can detect
that you're serving the wrong content.

Saturation

How “full” your service is. A measure of your system fraction, emphasizing the
resources that are most constrained (e.g., in a memory-constrained system, show
memory; in an I/O-constrained system, show I/O). Note that many systems
degrade in performance before they achieve 100% utilization, so having a utiliza-
tion target is essential.

In complex systems, saturation can be supplemented with higher-level load
measurement: can your service properly handle double the traffic, handle only
10% more traffic, or handle even less traffic than it currently receives? For very

60

| Chapter 6: Monitoring Distributed Systems

simple services that have no parameters that alter the complexity of the request
(e.g., “Give me a nonce” or “I need a globally unique monotonic integer”) that
rarely change configuration, a static value from a load test might be adequate. As
discussed in the previous paragraph, however, most services need to use indirect
signals like CPU utilization or network bandwidth that have a known upper
bound. Latency increases are often a leading indicator of saturation. Measuring
your 99th percentile response time over some small window (e.g., one minute)
can give a very early signal of saturation.

Finally, saturation is also concerned with predictions of impending saturation,
such as “It looks like your database will fill its hard drive in 4 hours.”

If you measure all four golden signals and page a human when one signal is problem-
atic (or, in the case of saturation, nearly problematic), your service will be at least
decently covered by monitoring.

Worrying About Your Tail (or, Instrumentation and
Performance)

When building a monitoring system from scratch, it’s tempting to design a system
based upon the mean of some quantity: the mean latency, the mean CPU usage of
your nodes, or the mean fullness of your databases. The danger presented by the lat-
ter two cases is obvious: CPUs and databases can easily be utilized in a very imbal-
anced way. The same holds for latency. If you run a web service with an average
latency of 100 ms at 1,000 requests per second, 1% of requests might easily take 5 sec-
onds.? If your users depend on several such web services to render their page, the
99th percentile of one backend can easily become the median response of your
frontend.

The simplest way to differentiate between a slow average and a very slow “tail” of
requests is to collect request counts bucketed by latencies (suitable for rendering a
histogram), rather than actual latencies: how many requests did I serve that took
between 0 ms and 10 ms, between 10 ms and 30 ms, between 30 ms and 100 ms,
between 100 ms and 300 ms, and so on? Distributing the histogram boundaries
approximately exponentially (in this case by factors of roughly 3) is often an easy way
to visualize the distribution of your requests.

2 If 1% of your requests are 10x the average, it means that the rest of your requests are about twice as fast as the
average. But if you're not measuring your distribution, the idea that most of your requests are near the mean
is just hopeful thinking.

Worrying About Your Tail (or, Instrumentation and Performance) | 61

Choosing an Appropriate Resolution for Measurements

Different aspects of a system should be measured with different levels of granularity.
For example:

+ Observing CPU load over the time span of a minute won't reveal even quite long-
lived spikes that drive high tail latencies.

 On the other hand, for a web service targeting no more than 9 hours aggregate
downtime per year (99.9% annual uptime), probing for a 200 (success) status
more than once or twice a minute is probably unnecessarily frequent.

« Similarly, checking hard drive fullness for a service targeting 99.9% availability
more than once every 1-2 minutes is probably unnecessary.

Take care in how you structure the granularity of your measurements. Collecting per-
second measurements of CPU load might yield interesting data, but such frequent
measurements may be very expensive to collect, store, and analyze. If your monitor-
ing goal calls for high resolution but doesn’t require extremely low latency, you can
reduce these costs by performing internal sampling on the server, then configuring an
external system to collect and aggregate that distribution over time or across servers.
You might:

1. Record the current CPU utilization each second.

2. Using buckets of 5% granularity, increment the appropriate CPU utilization
bucket each second.

3. Aggregate those values every minute.

This strategy allows you to observe brief CPU hotspots without incurring very high
cost due to collection and retention.

As Simple as Possible, No Simpler

Piling all these requirements on top of each other can add up to a very complex mon-
itoring system—your system might end up with the following levels of complexity:

o Alerts on different latency thresholds, at different percentiles, on all kinds of dif-
ferent metrics

« Extra code to detect and expose possible causes

o Associated dashboards for each of these possible causes

The sources of potential complexity are never-ending. Like all software systems,
monitoring can become so complex that it’s fragile, complicated to change, and a
maintenance burden.

62 | Chapter 6: Monitoring Distributed Systems

Therefore, design your monitoring system with an eye toward simplicity. In choosing
what to monitor, keep the following guidelines in mind:

o The rules that catch real incidents most often should be as simple, predictable,
and reliable as possible.

o Data collection, aggregation, and alerting configuration that is rarely exercised
(e.g., less than once a quarter for some SRE teams) should be up for removal.

o Signals that are collected, but not exposed in any prebaked dashboard nor used
by any alert, are candidates for removal.

In Google’s experience, basic collection and aggregation of metrics, paired with alert-
ing and dashboards, has worked well as a relatively standalone system. (In fact Goo-
gle’s monitoring system is broken up into several binaries, but typically people learn
about all aspects of these binaries.) It can be tempting to combine monitoring with
other aspects of inspecting complex systems, such as detailed system profiling, single-
process debugging, tracking details about exceptions or crashes, load testing, log col-
lection and analysis, or traffic inspection. While most of these subjects share
commonalities with basic monitoring, blending together too many results in overly
complex and fragile systems. As in many other aspects of software engineering, main-
taining distinct systems with clear, simple, loosely coupled points of integration is a
better strategy (for example, using web APIs for pulling summary data in a format
that can remain constant over an extended period of time).

Tying These Principles Together

The principles discussed in this chapter can be tied together into a philosophy on
monitoring and alerting thats widely endorsed and followed within Google SRE
teams. While this monitoring philosophy is a bit aspirational, it’s a good starting
point for writing or reviewing a new alert, and it can help your organization ask the
right questions, regardless of the size of your organization or the complexity of your
service or system.

When creating rules for monitoring and alerting, asking the following questions can
help you avoid false positives and pager burnout:*

o Does this rule detect an otherwise undetected condition that is urgent, actionable,
and actively or imminently user-visible?*

3 See Applying Cardiac Alarm Management Techniques to Your On-Call [Hol14] for an example of alert fatigue
in another context.

4 Zero-redundancy (N + 0) situations count as imminent, as do “nearly full” parts of your service! For more
details about the concept of redundancy, see https://en.wikipedia.org/wiki/N%2BI1_redundancy.

Tying These Principles Together | 63

https://en.wikipedia.org/wiki/N%2B1_redundancy

« Will I ever be able to ignore this alert, knowing it’s benign? When and why will I
be able to ignore this alert, and how can I avoid this scenario?

o Does this alert definitely indicate that users are being negatively affected? Are
there detectable cases in which users aren’t being negatively impacted, such as
drained traffic or test deployments, that should be filtered out?

+ Can I take action in response to this alert? Is that action urgent, or could it wait
until morning? Could the action be safely automated? Will that action be a long-
term fix, or just a short-term workaround?

o Are other people getting paged for this issue, therefore rendering at least one of
the pages unnecessary?

These questions reflect a fundamental philosophy on pages and pagers:

« Every time the pager goes off, I should be able to react with a sense of urgency. I
can only react with a sense of urgency a few times a day before I become fatigued.

o Every page should be actionable.

o Every page response should require intelligence. If a page merely merits a robotic
response, it shouldn't be a page.

o Pages should be about a novel problem or an event that hasn't been seen before.

Such a perspective dissipates certain distinctions: if a page satisfies the preceding four
bullets, it’s irrelevant whether the page is triggered by white-box or black-box moni-
toring. This perspective also amplifies certain distinctions: it’s better to spend much
more effort on catching symptoms than causes; when it comes to causes, only worry
about very definite, very imminent causes.

Monitoring for the Long Term

In modern production systems, monitoring systems track an ever-evolving system
with changing software architecture, load characteristics, and performance targets.
An alert that’s currently exceptionally rare and hard to automate might become fre-
quent, perhaps even meriting a hacked-together script to resolve it. At this point,
someone should find and eliminate the root causes of the problem,; if such resolution
isn't possible, the alert response deserves to be fully automated.

It’s important that decisions about monitoring be made with long-term goals in mind.
Every page that happens today distracts a human from improving the system for
tomorrow, so there is often a case for taking a short-term hit to availability or perfor-
mance in order to improve the long-term outlook for the system. Let’s take a look at
two case studies that illustrate this trade-off.

64 | Chapter6: Monitoring Distributed Systems

Bigtable SRE: A Tale of Over-Alerting

Google’s internal infrastructure is typically offered and measured against a service
level objective (SLO; see Chapter 4). Many years ago, the Bigtable service’s SLO was
based on a synthetic well-behaved client’s mean performance. Because of problems in
Bigtable and lower layers of the storage stack, the mean performance was driven by a
“large” tail: the worst 5% of requests were often significantly slower than the rest.

Email alerts were triggered as the SLO approached, and paging alerts were triggered
when the SLO was exceeded. Both types of alerts were firing voluminously, consum-
ing unacceptable amounts of engineering time: the team spent significant amounts of
time triaging the alerts to find the few that were really actionable, and we often
missed the problems that actually affected users, because so few of them did. Many of
the pages were non-urgent, due to well-understood problems in the infrastructure,
and had either rote responses or received no response.

To remedy the situation, the team used a three-pronged approach: while making
great efforts to improve the performance of Bigtable, we also temporarily dialed back
our SLO target, using the 75th percentile request latency. We also disabled email
alerts, as there were so many that spending time diagnosing them was infeasible.

This strategy gave us enough breathing room to actually fix the longer-term problems
in Bigtable and the lower layers of the storage stack, rather than constantly fixing tac-
tical problems. On-call engineers could actually accomplish work when they weren't
being kept up by pages at all hours. Ultimately, temporarily backing off on our alerts
allowed us to make faster progress toward a better service.

Gmail: Predictable, Scriptable Responses from Humans

In the very early days of Gmail, the service was built on a retrofitted distributed pro-
cess management system called Workqueue, which was originally created for batch
processing of pieces of the search index. Workqueue was “adapted” to long-lived pro-
cesses and subsequently applied to Gmail, but certain bugs in the relatively opaque
codebase in the scheduler proved hard to beat.

At that time, the Gmail monitoring was structured such that alerts fired when indi-
vidual tasks were “de-scheduled” by Workqueue. This setup was less than ideal
because even at that time, Gmail had many, many thousands of tasks, each task repre-
senting a fraction of a percent of our users. We cared deeply about providing a good
user experience for Gmail users, but such an alerting setup was unmaintainable.

To address this problem, Gmail SRE built a tool that helped “poke” the scheduler in
just the right way to minimize impact to users. The team had several discussions
about whether or not we should simply automate the entire loop from detecting the
problem to nudging the rescheduler, until a better long-term solution was achieved,
but some worried this kind of workaround would delay a real fix.

Monitoring for the LongTerm | 65

This kind of tension is common within a team, and often reflects an underlying mis-
trust of the team’s self-discipline: while some team members want to implement a
“hack” to allow time for a proper fix, others worry that a hack will be forgotten or
that the proper fix will be deprioritized indefinitely. This concern is credible, as it’s
easy to build layers of unmaintainable technical debt by patching over problems
instead of making real fixes. Managers and technical leaders play a key role in imple-
menting true, long-term fixes by supporting and prioritizing potentially time-
consuming long-term fixes even when the initial “pain” of paging subsides.

Pages with rote, algorithmic responses should be a red flag. Unwillingness on the part
of your team to automate such pages implies that the team lacks confidence that they
can clean up their technical debt. This is a major problem worth escalating.

The Long Run

A common theme connects the previous examples of Bigtable and Gmail: a tension
between short-term and long-term availability. Often, sheer force of effort can help a
rickety system achieve high availability, but this path is usually short-lived and
fraught with burnout and dependence on a small number of heroic team members.
Taking a controlled, short-term decrease in availability is often a painful, but strategic
trade for the long-run stability of the system. It's important not to think of every page
as an event in isolation, but to consider whether the overall level of paging leads
toward a healthy, appropriately available system with a healthy, viable team and long-
term outlook. We review statistics about page frequency (usually expressed as inci-
dents per shift, where an incident might be composed of a few related pages) in
quarterly reports with management, ensuring that decision makers are kept up to
date on the pager load and overall health of their teams.

Conclusion

A healthy monitoring and alerting pipeline is simple and easy to reason about. It
focuses primarily on symptoms for paging, reserving cause-oriented heuristics to
serve as aids to debugging problems. Monitoring symptoms is easier the further “up”
your stack you monitor, though monitoring saturation and performance of subsys-
tems such as databases often must be performed directly on the subsystem itself.
Email alerts are of very limited value and tend to easily become overrun with noise;
instead, you should favor a dashboard that monitors all ongoing subcritical problems
for the sort of information that typically ends up in email alerts. A dashboard might
also be paired with a log, in order to analyze historical correlations.

Over the long haul, achieving a successful on-call rotation and product includes
choosing to alert on symptoms or imminent real problems, adapting your targets to
goals that are actually achievable, and making sure that your monitoring supports
rapid diagnosis.

66 | Chapter 6: Monitoring Distributed Systems

CHAPTER 7
The Evolution of Automation at Google

Written by Niall Murphy with John Looney and Michael Kacirek
Edited by Betsy Beyer

Besides black art, there is only automation and mechanization.
—Federico Garcia Lorca (1898-1936), Spanish poet and playwright

For SRE, automation is a force multiplier, not a panacea. Of course, just multiplying
force does not naturally change the accuracy of where that force is applied: doing
automation thoughtlessly can create as many problems as it solves. Therefore, while
we believe that software-based automation is superior to manual operation in most
circumstances, better than either option is a higher-level system design requiring nei-
ther of them—an autonomous system. Or to put it another way, the value of automa-
tion comes from both what it does and its judicious application. We'll discuss both
the value of automation and how our attitude has evolved over time.

The Value of Automation

What exactly is the value of automation?"

Consistency

Although scale is an obvious motivation for automation, there are many other rea-
sons to use it. Take the example of university computing systems, where many sys-
tems engineering folks started their careers. Systems administrators of that
background were generally charged with running a collection of machines or some

1 For readers who already feel they precisely understand the value of automation, skip ahead to “The Value for
Google SRE” on page 70. However, note that our description contains some nuances that might be useful to
keep in mind while reading the rest of the chapter.

67

software, and were accustomed to manually performing various actions in the dis-
charge of that duty. One common example is creating user accounts; others include
purely operational duties like making sure backups happen, managing server failover,
and small data manipulations like changing the upstream DNS servers’ resolv.conf,
DNS server zone data, and similar activities. Ultimately, however, this prevalence of
manual tasks is unsatisfactory for both the organizations and indeed the people
maintaining systems in this way. For a start, any action performed by a human or
humans hundreds of times won’t be performed the same way each time: even with the
best will in the world, very few of us will ever be as consistent as a machine. This
inevitable lack of consistency leads to mistakes, oversights, issues with data quality,
and, yes, reliability problems. In this domain—the execution of well-scoped, known
procedures—the value of consistency is in many ways the primary value of automa-
tion.

A Platform

Automation doesn’t just provide consistency. Designed and done properly, automatic
systems also provide a platform that can be extended, applied to more systems, or
perhaps even spun out for profit.> (The alternative, no automation, is neither cost
effective nor extensible: it is instead a tax levied on the operation of a system.)

A platform also centralizes mistakes. In other words, a bug fixed in the code will be
fixed there once and forever, unlike a sufficiently large set of humans performing the
same procedure, as discussed previously. A platform can be extended to perform
additional tasks more easily than humans can be instructed to perform them (or
sometimes even realize that they have to be done). Depending on the nature of the
task, it can run either continuously or much more frequently than humans could
appropriately accomplish the task, or at times that are inconvenient for humans. Fur-
thermore, a platform can export metrics about its performance, or otherwise allow
you to discover details about your process you didn't know previously, because these
details are more easily measurable within the context of a platform.

Faster Repairs

There’s an additional benefit for systems where automation is used to resolve com-
mon faults in a system (a frequent situation for SRE-created automation). If automa-
tion runs regularly and successfully enough, the result is a reduced mean time to
repair (MTTR) for those common faults. You can then spend your time on other
tasks instead, thereby achieving increased developer velocity because you don't have
to spend time either preventing a problem or (more commonly) cleaning up after it.

2 The expertise acquired in building such automation is also valuable in itself; engineers both deeply under-
stand the existing processes they have automated and can later automate novel processes more quickly.

68 | Chapter7: The Evolution of Automation at Google

As is well understood in the industry, the later in the product lifecycle a problem is
discovered, the more expensive it is to fix; see Chapter 17. Generally, problems that
occur in actual production are most expensive to fix, both in terms of time and
money, which means that an automated system looking for problems as soon as they
arise has a good chance of lowering the total cost of the system, given that the system
is sufficiently large.

Faster Action

In the infrastructural situations where SRE automation tends to be deployed, humans
don’t usually react as fast as machines. In most common cases, where, for example,
failover or traffic switching can be well defined for a particular application, it makes
no sense to effectively require a human to intermittently press a button called “Allow
system to continue to run.” (Yes, it is true that sometimes automatic procedures can
end up making a bad situation worse, but that is why such procedures should be
scoped over well-defined domains.) Google has a large amount of automation; in
many cases, the services we support could not long survive without this automation
because they crossed the threshold of manageable manual operation long ago.

Time Saving

Finally, time saving is an oft-quoted rationale for automation. Although people cite
this rationale for automation more than the others, in many ways the benefit is often
less immediately calculable. Engineers often waver over whether a particular piece of
automation or code is worth writing, in terms of effort saved in not requiring a task
to be performed manually versus the effort required to write it.> It’s easy to overlook
the fact that once you have encapsulated some task in automation, anyone can exe-
cute the task. Therefore, the time savings apply across anyone who would plausibly
use the automation. Decoupling operator from operation is very powerful.

Joseph Bironas, an SRE who led Google’s datacenter turnup efforts
for a time, forcefully argued:

“If we are engineering processes and solutions that are not auto-

' matable, we continue having to staff humans to maintain the sys-
tem. If we have to staff humans to do the work, we are feeding the
machines with the blood, sweat, and tears of human beings. Think
The Matrix with less special effects and more pissed off System
Administrators”

3 See the following XKCD cartoon: http://xkcd.com/1205/.

The Value of Automation | 69

http://xkcd.com/1205/

The Value for Google SRE

All of these benefits and trade-offs apply to us just as much as anyone else, and Goo-
gle does have a strong bias toward automation. Part of our preference for automation
springs from our particular business challenges: the products and services we look
after are planet-spanning in scale, and we don't typically have time to engage in the
same kind of machine or service hand-holding common in other organizations.* For
truly large services, the factors of consistency, quickness, and reliability dominate
most conversations about the trade-offs of performing automation.

Another argument in favor of automation, particularly in the case of Google, is our
complicated yet surprisingly uniform production environment, described in Chap-
ter 2. While other organizations might have an important piece of equipment without
a readily accessible API, software for which no source code is available, or another
impediment to complete control over production operations, Google generally avoids
such scenarios. We have built APIs for systems when no API was available from the
vendor. Even though purchasing software for a particular task would have been much
cheaper in the short term, we chose to write our own solutions, because doing so pro-
duced APIs with the potential for much greater long-term benefits. We spent a lot of
time overcoming obstacles to automatic system management, and then resolutely
developed that automatic system management itself. Given how Google manages its
source code [Pot16], the availability of that code for more or less any system that SRE
touches also means that our mission to “own the product in production” is much eas-
ier because we control the entirety of the stack.

Of course, although Google is ideologically bent upon using machines to manage
machines where possible, reality requires some modification of our approach. It isn't
appropriate to automate every component of every system, and not everyone has the
ability or inclination to develop automation at a particular time. Some essential sys-
tems started out as quick prototypes, not designed to last or to interface with automa-
tion. The previous paragraphs state a maximalist view of our position, but one that
we have been broadly successful at putting into action within the Google context. In
general, we have chosen to create platforms where we could, or to position ourselves
so that we could create platforms over time. We view this platform-based approach as
necessary for manageability and scalability.

The Use Cases for Automation

In the industry, automation is the term generally used for writing code to solve a wide
variety of problems, although the motivations for writing this code, and the solutions

4 See, for example, http://blog.engineyard.com/2014/pets-vs-cattle.

70 | Chapter7: The Evolution of Automation at Google

http://blog.engineyard.com/2014/pets-vs-cattle

themselves, are often quite different. More broadly, in this view, automation is “meta-
software”—software to act on software.

As we implied earlier, there are a number of use cases for automation. Here is a non-
exhaustive list of examples:

« User account creation

o Cluster turnup and turndown for services

« Software or hardware installation preparation and decommissioning
« Rollouts of new software versions

« Runtime configuration changes

o A special case of runtime config changes: changes to your dependencies

This list could continue essentially ad infinitum.

Google SRE’s Use Cases for Automation
In Google, we have all of the use cases just listed, and more.

However, within Google SRE, our primary affinity has typically been for running
infrastructure, as opposed to managing the quality of the data that passes over that
infrastructure. This line isn’t totally clear—for example, we care deeply if half of a
dataset vanishes after a push, and therefore we alert on coarse-grain differences like
this, but it’s rare for us to write the equivalent of changing the properties of some
arbitrary subset of accounts on a system. Therefore, the context for our automation is
often automation to manage the lifecycle of systems, not their data: for example,
deployments of a service in a new cluster.

To this extent, SRE’s automation efforts are not far off what many other people and
organizations do, except that we use different tools to manage it and have a different
focus (as we'll discuss).

Widely available tools like Puppet, Chef, cfengine, and even Perl, which all provide
ways to automate particular tasks, differ mostly in terms of the level of abstraction of
the components provided to help the act of automating. A full language like Perl pro-
vides POSIX-level affordances, which in theory provide an essentially unlimited
scope of automation across the APIs accessible to the system,” whereas Chef and Pup-
pet provide out-of-the-box abstractions with which services or other higher-level
entities can be manipulated. The trade-off here is classic: higher-level abstractions are
easier to manage and reason about, but when you encounter a “leaky abstraction,”

5 Of course, not every system that needs to be managed actually provides callable APIs for management—forc-
ing some tooling to use, e.g., CLI invocations or automated website clicks.

The Use Cases for Automation | 71

you fail systemically, repeatedly, and potentially inconsistently. For example, we often
assume that pushing a new binary to a cluster is atomic; the cluster will either end up
with the old version, or the new version. However, real-world behavior is more com-
plicated: that cluster’s network can fail halfway through; machines can fail; communi-
cation to the cluster management layer can fail, leaving the system in an inconsistent
state; depending on the situation, new binaries could be staged but not pushed, or
pushed but not restarted, or restarted but not verifiable. Very few abstractions model
these kinds of outcomes successfully, and most generally end up halting themselves
and calling for intervention. Truly bad automation systems don’t even do that.

SRE has a number of philosophies and products in the domain of automation, some
of which look more like generic rollout tools without particularly detailed modeling
of higher-level entities, and some of which look more like languages for describing
service deployment (and so on) at a very abstract level. Work done in the latter tends
to be more reusable and be more of a common platform than the former, but the
complexity of our production environment sometimes means that the former
approach is the most immediately tractable option.

A Hierarchy of Automation Classes

Although all of these automation steps are valuable, and indeed an automation plat-
form is valuable in and of itself, in an ideal world, we wouldn't need externalized
automation. In fact, instead of having a system that has to have external glue logic, it
would be even better to have a system that needs no glue logic at all, not just because
internalization is more efficient (although such efficiency is useful), but because it has
been designed to not need glue logic in the first place. Accomplishing that involves
taking the use cases for glue logic—generally “first order” manipulations of a system,
such as adding accounts or performing system turnup—and finding a way to handle
those use cases directly within the application.

As a more detailed example, most turnup automation at Google is problematic
because it ends up being maintained separately from the core system and therefore
suffers from “bit rot,” i.e., not changing when the underlying systems change. Despite
the best of intentions, attempting to more tightly couple the two (turnup automation
and the core system) often fails due to unaligned priorities, as product developers
will, not unreasonably, resist a test deployment requirement for every change. Sec-
ondly, automation that is crucial but only executed at infrequent intervals and there-
fore difficult to test is often particularly fragile because of the extended feedback
cycle. Cluster failover is one classic example of infrequently executed automation:
failovers might only occur every few months, or infrequently enough that inconsis-
tencies between instances are introduced. The evolution of automation follows a
path:

72 | Chapter7: The Evolution of Automation at Google

1) No automation
Database master is failed over manually between locations.

2) Externally maintained system-specific automation
An SRE has a failover script in his or her home directory.

3) Externally maintained generic automation
The SRE adds database support to a “generic failover” script that everyone uses.

4) Internally maintained system-specific automation
The database ships with its own failover script.

5) Systems that don’t need any automation
The database notices problems, and automatically fails over without human
intervention.

SRE hates manual operations, so we obviously try to create systems that don't require
them. However, sometimes manual operations are unavoidable.

There is additionally a subvariety of automation that applies changes not across the
domain of specific system-related configuration, but across the domain of production
as a whole. In a highly centralized proprietary production environment like Google’s,
there are a large number of changes that have a non-service-specific scope—e.g.,
changing upstream Chubby servers, a flag change to the Bigtable client library to
make access more reliable, and so on—which nonetheless need to be safely managed
and rolled back if necessary. Beyond a certain volume of changes, it is infeasible for
production-wide changes to be accomplished manually, and at some time before that
point, it’s a waste to have manual oversight for a process where a large proportion of
the changes are either trivial or accomplished successfully by basic relaunch-and-
check strategies.

Let’s use internal case studies to illustrate some of the preceding points in detail. The
first case study is about how, due to some diligent, far-sighted work, we managed to
achieve the self-professed nirvana of SRE: to automate ourselves out of a job.

Automate Yourself Out of a Job: Automate ALL the Things!

For a long while, the Ads products at Google stored their data in a MySQL database.
Because Ads data obviously has high reliability requirements, an SRE team was
charged with looking after that infrastructure. From 2005 to 2008, the Ads Database
mostly ran in what we considered to be a mature and managed state. For example, we
had automated away the worst, but not all, of the routine work for standard replica
replacements. We believed the Ads Database was well managed and that we had har-
vested most of the low-hanging fruit in terms of optimization and scale. However, as
daily operations became comfortable, team members began to look at the next level

Automate Yourself Out of a Job: Automate ALL the Things! | 73

of system development: migrating MySQL onto Google’s cluster scheduling system,
Borg.

We hoped this migration would provide two main benefits:

o Completely eliminate machine/replica maintenance: Borg would automatically
handle the setup/restart of new and broken tasks.

« Enable bin-packing of multiple MySQL instances on the same physical machine:
Borg would enable more efficient use of machine resources via Containers.

In late 2008, we successfully deployed a proof of concept MySQL instance on Borg.
Unfortunately, this was accompanied by a significant new difficulty. A core operating
characteristic of Borg is that its tasks move around automatically. Tasks commonly
move within Borg as frequently as once or twice per week. This frequency was tolera-
ble for our database replicas, but unacceptable for our masters.

At that time, the process for master failover took 30-90 minutes per instance. Simply
because we ran on shared machines and were subject to reboots for kernel upgrades,
in addition to the normal rate of machine failure, we had to expect a number of
otherwise unrelated failovers every week. This factor, in combination with the num-
ber of shards on which our system was hosted, meant that:

o Manual failovers would consume a substantial amount of human hours and
would give us best-case availability of 99% uptime, which fell short of the actual
business requirements of the product.

« In order to meet our error budgets, each failover would have to take less than 30
seconds of downtime. There was no way to optimize a human-dependent proce-
dure to make downtime shorter than 30 seconds.

Therefore, our only choice was to automate failover. Actually, we needed to automate
more than just failover.

In 2009 Ads SRE completed our automated failover daemon, which we dubbed
“Decider” Decider could complete MySQL failovers for both planned and unplanned
failovers in less than 30 seconds 95% of the time. With the creation of Decider,
MySQL on Borg (MoB) finally became a reality. We graduated from optimizing our
infrastructure for a lack of failover to embracing the idea that failure is inevitable, and
therefore optimizing to recover quickly through automation.

While automation let us achieve highly available MySQL in a world that forced up to
two restarts per week, it did come with its own set of costs. All of our applications had
to be changed to include significantly more failure-handling logic than before. Given
that the norm in the MySQL development world is to assume that the MySQL
instance will be the most stable component in the stack, this switch meant customiz-
ing software like JDBC to be more tolerant of our failure-prone environment. How-

74 | Chapter7: The Evolution of Automation at Google

ever, the benefits of migrating to MoB with Decider were well worth these costs. Once
on MoB, the time our team spent on mundane operational tasks dropped by 95%.
Our failovers were automated, so an outage of a single da