
81

A Survey of AIOps Methods for Failure Management

PAOLONOTARO, Chair of Computer Architecture and Parallel Systems, Technical University of Munich,

Germany and Huawei Munich Research Center, Germany

JORGE CARDOSO, Department of Informatics Engineering/CISUC, University of Coimbra, Portugal

and Huawei Munich Research Center, Germany

MICHAEL GERNDT, Chair of Computer Architecture and Parallel Systems, Technical University

of Munich, Germany

Modern society is increasingly moving toward complex and distributed computing systems. The increase
in scale and complexity of these systems challenges O&M teams that perform daily monitoring and repair
operations, in contrast with the increasing demand for reliability and scalability of modern applications. For
this reason, the study of automated and intelligent monitoring systems has recently sparked much interest
across applied IT industry and academia. Artificial Intelligence for IT Operations (AIOps) has been proposed
to tackle modern IT administration challenges thanks toMachine Learning, AI, and Big Data. However, AIOps
as a research topic is still largely unstructured and unexplored, due to missing conventions in categorizing
contributions for their data requirements, target goals, and components. In this work, we focus on AIOps
for Failure Management (FM), characterizing and describing 5 different categories and 14 subcategories of
contributions, based on their time intervention window and the target problem being solved. We review
100 FM solutions, focusing on applicability requirements and the quantitative results achieved, to facilitate
an effective application of AIOps solutions. Finally, we discuss current development problems in the areas
covered by AIOps and delineate possible future trends for AI-based failure management.

CCS Concepts: • Computing methodologies → Artificial intelligence; • Applied computing → Service-

oriented architectures; Data centers; • Computer systems organization → Dependable and fault-tolerant

systems and networks;

Additional Key Words and Phrases: AIOps, IT operations and maintenance, failure management, artificial

intelligence

ACM Reference format:

Paolo Notaro, Jorge Cardoso, and Michael Gerndt. 2021. A Survey of AIOps Methods for Failure Management.
ACM Trans. Intell. Syst. Technol. 12, 6, Article 81 (November 2021), 45 pages.
https://doi.org/10.1145/3483424

Authors’ addresses: P. Notaro, Chair of Computer Architecture and Parallel Systems, Technical University of Munich,
Boltzmannstr. 3, Garching b. München, Bavaria, Germany, 85748 and Huawei Munich Research Center, Riessstr. 25, Mu-
nich, Bavaria, Germany, 80992; email: paolo.notaro@tum.de; J. Cardoso, Department of Informatics Engineering/CISUC,
University of Coimbra, Portugal and Huawei Munich Research Center, Riessstr. 25, Munich, Bavaria, Germany, 80992;
email: jorge.cardoso@huawei.com; M. Gerndt, Chair of Computer Architecture and Parallel Systems, Technical University
of Munich, Boltzmannstr. 3, Garching b. München, Bavaria, Germany, 85748; email: gerndt@in.tum.de.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2157-6904/2021/11-ART81 $15.00
https://doi.org/10.1145/3483424

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

https://doi.org/10.1145/3483424
mailto:permissions@acm.org
https://doi.org/10.1145/3483424

81:2 P. Notaro et al.

1 INTRODUCTION

Society is nowadays highly reliant on critical Information Technology (IT) infrastructures. To
satisfy the technological needs required by organizations to conduct their business, IT systems
have grown larger and more complex. Aims for higher scalability and efficient resource utilization
have also moved attention toward decentralized systems, introducing additional layers of abstrac-
tion and complexity. Moreover, due to their criticality in day-to-day operations, IT infrastructures
of today are required to have higher standards of availability and reliability to confront modern
challenges such as the Internet of Things, 5G, Autonomous Driving, and Smart Cities. System fail-
ures can cause a significant amount of disruption during the normal operation of an IT service,
which can rapidly turn into customer dissatisfaction. Because of the very nature of these new
distributed systems, their administration has become more difficult and prone to the appearance
of failures and performance issues. Operations and Maintenance (O&M) teams are particularly
strained by the scale and complexity of modern systems, where the large quantity and multimodal-
ity of monitoring data to oversee in real-time can easily be overwhelming even to specialized IT
operators. Unexpected faults also cause IT operators to stop their monitoring operations and de-
vote their time to solve the encountered issues. At the same time, the new dimension of modern
systems raises the question of how to allocate and efficiently distribute all kinds of resources (com-
putational, physical, and energetic) in large-scale shared computing environments.
Current O&M solutions have strong limitations in providing reliable and scalable IT services.

They heavily rely on the manual intervention of human operators, who can no longer cope with
appearing issues rapidly and efficiently due to the large scale of modern systems. Typical human
interventionwindows span several hours, compared to theminute-scale intervention of automated
systems. Current automated approaches, however, often exhibit other limitations, especially in
terms of applicability (as they cannot adapt to new problems and situations) and scalability (as
they cannot handle large data volumes in real-time). For this reason, in recent years much research
interest has been directed toward developing intelligent software systems to tackle O&M problems
effectively, grouped under the term Artificial Intelligence for IT Operations (AIOps). AIOps
investigates the use of Artificial Intelligence (AI) for the automated management of IT services
[17, 36, 74, 75, 79, 96, 107, 116, 129, 133]. AIOps helps SRE, DevOps, and O&M teams enhance the
quality and reliability of IT service offerings, by using intelligent algorithms and the large quantity
of data available thanks to monitoring infrastructures. AIOps relies on data-driven technologies
(Machine Learning, Big Data, DataMining, Analytics, and Visualization) to observe the operational
status of the infrastructure, minimize the impact of failures during day-to-day operations, and
manage the allocation of computer resources proactively. Compared to traditional approaches,
AIOps is:

• fast, because it reacts independently and automatically to real-time problems, without re-
quiring long manual debugging and analysis sessions;
• efficient, because it takes advantage of the monitoring infrastructure holistically, removing
data silos and improving issue visibility. By forecasting workload requirements and
modeling request patterns, AIOps improves resource utilization, identifies performance
bottlenecks, and reduces wastages. By relieving IT operators from investigation and repair
burdens, AIOps enables in-house personnel to concentrate more effort on other tasks;
• effective, because it allocates computer resources proactively and can offer a large set of
actionable insights for root-cause diagnosis, failure prevention, fault localization, recovery,
and other O&M activities.

Several companies have started to deliver AIOps tools as products over the past few years
[17, 96, 116, 129, 133], while several tech leaders have adopted AIOps algorithms to maintain

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:3

Fig. 1. Total number of publications related to AIOps analyzed in this survey by year of publication.

their on-premise computing facilities efficiently [36, 75, 79, 82]. In the academic context, several
research groups are taking advantage of the recent advances in Machine Learning (ML) and
AI to explore open problems related to AIOps, such as online failure prediction [27, 79, 148], or
anomaly detection [22, 107, 150]. Despite these recent advances, the concept of using AI for im-
proving IT offerings is not new. Starting in the mid-1970s, different computer scientists have pro-
posed to locate software faults in source code using statistical models and code complexity metrics
[16, 19, 28, 53, 66, 90]. Since the early 1990s, several online software [34, 56, 65, 134] and hardware
[58, 100, 101] failure prediction models have been proposed. Other failure prevention methods also
date back to the same period [5, 48, 49, 55, 57, 135, 136]. Other areas of AIOps, like anomaly detec-
tion, event correlation, or problem identification, have attested contributions for at least 20 years
[2, 15, 20, 24, 40, 68, 144]. Therefore, the reliability and efficiency of computer systems have always
been a research focus since the birth of Internet-based services. Rather than a steady flow of re-
search contributions, what we observe is an increasing trend reaching a highpoint in recent years
[113] (see Figure 1), motivated also by the rise in interest toward AI and Big Data technologies
during the last decade.
Because AIOps is a modern concept bridging research and industry, there is no widely adopted

definition yet [36]. The termAIOpswas originally coined byGartner in 2017 [74], for which “AIOps
platforms utilize big data, modern Machine Learning and other advanced analytics technolo-
gies to directly and indirectly enhance IT operations.” Some sources have adopted this definition
[75, 129, 133], while others have complemented it or have proposed a different vision on the topic
[17, 36, 79, 96, 107, 116]. Table 1 provides an overview of the available sources defining AIOps.
All these definitions share two common objectives: (1) enhance IT services for customers and
(2) provide full visibility and understanding into the operational state of IT systems. Some defi-
nitions also highlight the importance of data collection [74, 75], real-time automated operation
[36, 96], and scalability [17, 116].

The most cited AIOps problems are anomaly detection [36, 75, 107, 129], root-cause analysis
[17, 75, 96, 116], resource provisioning [36, 107, 116, 129], failure remediation [17, 96, 116], and
failure prediction and prevention [17, 75, 79]. We can observe how a significant fraction of these
classes treats the occurrence of failures. We can then divide AIOps into two macro-areas: failure
management and resource provisioning. Failuremanagement deals with the appearance of failures,

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:4 P. Notaro et al.

Table 1. Available AIOps Definitions with Corresponding Mentions of Related Technologies and Focuses

Source(s) Definition Technologies Focus

Gartner [74]
Levin et al.
[75]
BMC [129]
Resolve [133]

“collect logs, traces and telemetry data, and analyze the collected
data to [. . .] directly and indirectly enhance IT operations [. . .]
identify patterns in monitoring, capacity, service desk, and
automation data [. . .] the application of machine learning (ML)
and data science to IT operations problems”

Big Data, ML,
Data Analytics

Data collection,
Real-time
understanding

Broadcom
[17]

“establish proactive, automated remediation capabilities that help
IT teams deliver superior customer experiences”

ML, Data Science
Issue visibility,
Automation, CI/CD

Dang et al.
[36]
OpsRamp
[116]
Li et al. [79]

“efficiently and effectively build and operate services that are easy
to support and maintain [. . .] solving everyday IT operational
problems at scale [. . .] including intelligent alerting, alert
correlation, alert escalation, auto-remediation, root-cause analysis
and capacity optimization [. . .] assist DevOps engineers to
improve the quality of computing platforms in a cost-effective
manner”

AI, ML,
Network Science,
Combinatorial
Optimization

Real-time
understanding,
CI/CD, Scale and
efficiency

Moogsoft [96]
Nedelkoski et
al. [107]

“provide full visibility into the state and performance of the IT
systems [. . .] give IT operations teams a real-time understanding
of any issues affecting the availability or performance [. . .]
replace a broad range of IT Operations tasks including availability,
performance, and monitoring of service [. . .] enable detection of
faults and issues of services”

AI, ML,
Big Data

Real-time
understanding,
Issue visibility

in all available means and possible windows of interventions, both in dynamic aspects (such as the
runtime behavior of the system or the network responsiveness) and static aspects (like the source
code or the datacenter configuration). Rather than a homogeneous and well-defined research area,
it is a wide and heterogeneous space of contributions coming from different specialized areas.
Resource provisioning optimizes the allocation of the diverse set of resources necessary to provide
IT services, such as power, computation time, network bandwidth and virtual memory.
Being a recent and cross-disciplinary field, AIOps is still a largely unstructured area of study.

The existing contributions are scattered across different conferences, apply different terms for the
same concepts, or use the same terms for different concepts. Moreover, the high number of appli-
cation areas renders the search and collection of relevant papers difficult. The additional scarcity
of previous comparison studies and surveys motivates the need for a comprehensive study, able
to collect, categorize and summarize past contributions, to facilitate the comparison and sharing
of all available approaches for each O&M task.
In our previous work [113], we conducted a systematic mapping study to analyze and catego-

rize the whole spectrum of past AIOps contributions, to delineate a taxonomy of topics and open
problems, and to draw quantitative results about publications by topic and time. In this article,
we concentrate on one of the two identified macro-areas, i.e., failure management, to analyze and
organize contributions according to target problems and applicability. This enables our readers to:

• gather a comprehensive overview of failure management in AIOps, by the definition of a
taxonomy of approaches and the description of the current landscape of problems;
• obtain a reference index for solutions of problems against requirements. Requirements ex-
pressed in the form of available data sources and target high-level components (source code,
software, hardware, network, and datacenter) can be mapped to a list of available solutions
thanks to the indexing made available in our analysis;
• understand the current state of failure management, which problems have been long inves-
tigated and which require new research. To this end, we also present an outline of possible
future directions for the fields of AIOps and failure management.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:5

The remainder of this article is organized as follows. Section 2 describes previous related re-
view studies in AIOps and failure management. Section 3 presents the methodology of this work,
summarizing the planning choices of systematic mapping study used to identify the papers later
presented, as well as the terminology and metric conventions. Section 4 delineates the structure
of failure management in AIOps and presents a selection of papers divided in thematic sections,
describing their line of work, contribution, approach, input source, target component, and appli-
cation field. Section 5 summarizes the results and outcomes drawn from our discussion.

2 RELATEDWORK

As the AIOps areas mentioned above are large both in number and range of applications, it is
reasonable to expect numerous works focusing on filtering and categorizing best approaches and
practices. Several other surveys and mapping studies have been in fact conducted in the areas
covered by AIOps [22, 24, 39, 46, 47, 60, 63, 70, 71, 91, 99, 106, 109, 111, 112, 122, 125, 130, 139,
146, 152]. However, no previous work has provided an updated, comprehensive review of AIOps
approaches for failure management.
Table 2 summarizes the most relevant survey and systematic review contributions regarding IT

Operations and Artificial Intelligence, organized bymain topic and other focuses. Most works treat
single tasks [22, 24, 39, 60, 63, 91, 106, 111, 112, 122, 139, 152] or general goals [46, 47, 125, 130, 146]
inside AIOps, which are specific to particular intervention methods.
A second category of works [70, 71, 99, 109] treat failure management integrally, but some of

the works inside this group are outdated and do not reflect the current progress of the field, while
the most recent works do not focus on AI-based approaches or do not offer a comprehensive list
of contributions. The closest match to our analysis is represented by the work of Mukwevho and
Celik [99], who present a survey on fault management in cloud systems. Differently from them, we
do not focus on any particular computing system, and we focus on the manifestation of faults (i.e.,
errors and failures) rather than root causes (see Section 3.3 for terminology). We also choose to
integrate AI and Machine learning approaches in the conventional scheme of failure management
approaches, rather than treating them in a separate category. All these considerations, including
the observations about the missing structure and terminology conventions presented in Section 1,
motivate the need for an in-depth study in this area, like the one here presented.

3 METHODOLOGY

3.1 Systematic Mapping Study

A systematic mapping study (SMS) was conducted to obtain relevant and representative liter-
ature in the field of AIOps. Different from a systematic literature review (SLR), the ultimate
goal of a systematic mapping study is to provide an overview of a specific research area, to obtain
a set of related papers, and to delineate trends present inside such area [67]. Relevant papers are
collected via well-defined search and selection criteria, while research trends are identified using
categorization schemes covering different aspects, e.g., such main topic, origin, or type of contri-
bution. We choose this instrument because we are interested in gathering contributions for the
survey and obtaining insights into the field, such as the distribution of works in different AIOps
subareas and the temporal evolution of the interest toward specific topics. An in-depth discus-
sion of the mapping study methodology, the categorization scheme, and the selection strategy of
contribution is available in a work separately published [113], accessible online.1

1https://arxiv.org/abs/2012.09108.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

https://arxiv.org/abs/2012.09108

81:6 P. Notaro et al.

Table 2. Related AI Surveys and Systematic Mapping Studies (SMS) Conducted in

Areas Covered by this Work

Ref. Year Type Main Topic Focuses

IT Operations

[71] 2007 Survey IT Operations AI, Operational Research
[70] 2011 Survey IT Operations AI, Operational Research
[109] 2013 SMS Failure Management Temporal & Geographical Trends, Service Level, Others
[99] 2018 Survey Failure Management Cloud Computing
Failure Prevention

[112] 2011 Survey Failure Prevention Combinatorial Testing
[39] 2015 Survey Failure Prevention/Detection Software
[106] 2016 Survey Fault Injection Software
[91] 2017 Survey Software Defect Prediction Machine Learning, PROMISE dataset
Failure Prediction

[125] 2007 Survey Failure Prediction AI, Integrated Systems
[152] 2007 Survey Failure Prediction Clusters
[122] 2010 Survey Failure Prediction Online Methods
[63] 2019 Survey Failure Prediction High Performance Computing
Failure Detection

[60] 2015 Survey Anomaly Detection Bottleneck Identification
[24] 2009 Survey Anomaly Detection -
[22] 2019 Survey Anomaly Detection Deep Learning
[139] 2013 Survey Anomaly Detection Network
[111] 2008 Survey Internet Traffic Classification Machine Learning, IP Networks
Root-cause Analysis (RCA)

[130] 2017 Survey Root-cause Analysis -
[146] 2016 Survey Fault Localization Software
[46] 2015 Survey Fault Diagnosis Model- and signal-based approaches in Industrial Systems
[47] 2015 Survey Fault Diagnosis Knowledge-based and hybrid approaches in Industrial Systems

Thanks to our mapping study, we collected 1,086 AIOps contributions and inferred an AIOps
taxonomy based on thematic areas and commonly treated tasks (see Figure 2). Our taxonomy
groups contributions in the two main macro-areas: failure management and resource provisioning.
Each macro-area divides contributions into different categories, based on end-goals and target
problems. We also classify the relevant papers according to the following categorization aspects:
target components, input data sources, AI methods (see Tables 4 and 8).

For the failure management macro-area, the focus of our survey, we also divide approach cat-
egories into proactive and reactive, based on the window of intervention (red box in Figure 2).
Moreover, we introduce a second level of categorization for failure management, which divides
each category into several subcategories based on the specific target problem solved. Examples of
subcategories are software defect prediction for failure prevention (Section 4.1.1) and log enhance-
ment for failure detection (Section 4.3.3). For our survey discussion, we select 100 most prominent
contributions in failure management from the total result set of 1,086, covering all categories and
subcategories defined for this field of study. For the exhaustive list of papers covered, divided into
categories and subcategories, see Table 4 in the next section.

3.2 Evaluation Metrics

In our analysis, we provide quantitative results for the papers under investigation. This section
provides an overview of the evaluation metrics employed for comparison throughout the survey
discussion.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:7

Fig. 2. Taxonomy of AIOps as observed in the identified contributions. In the red box, the focus of this survey.

Table 3. Contingency Table for Prediction Tasks

Predicted Class

Positive Class Negative Class

R
ea
l
C
la
ss Positive Class True Positives (TP) False Negatives (FN)

Negative Class False Positives (FP) True Negatives (TN)

For scalar prediction (or regression) tasks, a widely adopted metric is theMean-squared Error

(MSE), defined as the average squared difference between target and predicted values:

MSE =
1

N

N∑

i

(
y
pred
i − yi

)2
. (1)

A measure adopted across all classification problems (software defect prediction, root-cause
diagnosis, recovery, etc.) is accuracy, i.e., the ratio of classified samples assigned to the correct
class. In some contexts, however, accuracy may appear as a misleading metric to evaluate the
quality of prediction. This is the case, for example, for problems with a high predominance of one
class, where trivial models can be constructed to reach high accuracy just exploiting data skewness.
A similar consideration applies to detection problems (analyzed, e.g., in Sections 4.2 and 4.3), where
the positive class, i.e., the detected failure, may appear less frequently than the negative class, even
though it constitutes the most critical aspect from an evaluation point of view. In such cases, it
is common to adopt more representative measures, derived from the notion of contingency table
[122]:
Using this convention, accuracy can be written as

ACC =
TP +TN

TP +TN + FP + FN
. (2)

To quantify the ability of a predictor to identify positive samples correctly, the precisionmeasure
is usually employed, while to measure the ability of a detector to report true positive samples, the
recall measure (also known as true positive rate or sensitivity) is used. They are defined as follows:

P =
TP

TP + FP
, R =

TP

TP + FN
. (3)

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:8 P. Notaro et al.

Moreover, the false-positive rate (FPR, also called false alarm date), which identifies the pro-
portion of wrongly reported failures, is defined as follows:

FPR =
FP

FP +TN
. (4)

Since precision and recall do not take into account the number of true negatives, some papers
compare results in terms of true-negative rate (TNR, or specificity) and recall. The true-negative
rate is defined as follows:

TNR =
TN

TN + FP
. (5)

Precision and recall can often be traded off with each other by adjusting sensitivity thresholds
inside algorithms, so that an increase in precision can be obtained by reducing recall and vice
versa. One possibility to evaluate both measures at the same time is to use the F1-score (or F-
score/F-measure), computed as the harmonic mean of precision and recall:

F1 = 2 · P · R
P + R

. (6)

A final possibility is to use receiver operating characteristic (ROC) curves, parametric line
plots which describe the variation of two metrics in relation to changes in the sensitivity threshold.
Precision-recall curves are possible, but it is common to plot the recall against the false-positive
rate. From this type of curves the Area under the ROC curve (AUCROC) measure can be com-
puted. A higher AUCROC score then indicates a better classifier.

3.3 Terminology

In our discussion, we also adopt a variety of error-related terms such as fault, failure and root
cause. From a terminology point of view, we adopt the convention of Salfner et al. [122] for the
characterization of faulty behavior. According this convention:

• errors are deviations from the correct system state;
• failures are manifestations of undesired deviations in the delivery of a service;
• faults (or root causes) are the primary causes of undesired behavior (i.e., the errors).

Moreover, we often encounter different terms related to data sources that may have an ambigu-
ous meaning depending on the context, such as logs or traces. To be consistent in our discussion,
we group the observed data sources according to this convention:

• source code represents any unit of software source code used as input to a prediction system,
independently of the form and extension (e.g., function, file, module, class, etc.);
• testing resources comprise tools used to perform in- and post-release software debugging, in
particular unit test suites, execution profiles or run description reports;
• system metrics measure various numerical quantities at the hardware, OS, software and en-
vironment level, describing resource utilization and the overall process state of the system;
• key performance indicators (KPI) provide information about the status of services and the
associated requirements that need to be met during runtime operations. They quantitatively
measure the quality of served requests with parameters such as latency, uptime, failure rate,
availability, and so on;
• network traffic is the collection of network packets exchanged over Internet by different hosts.
It includes the payload and control information such as ports, addresses, protocol standards
and other parameters;
• topology is any information describing the spatial relations inside a working system, when
used as a input;

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:9

• incident reports are collected with the help of service desk and internal problemmanagement
systems to identify common problems and facilitate resolution. Usually, they describe the
problem with text and categorical attributes and they may be associated to a resolution team
or routing sequence;
• event logs (or simply logs) are collections of human-interpretable printing statements describ-
ing software events occurring in runtime operations. They are typically stored as indepen-
dent files and log entries (i.e., lines) are associated to a predefined format (or log key);
• execution (distributed) traces are hierarchical descriptions of the modules and services in-
voked to satisfy a user request. They are usually annotated with the service name or category
and the time duration of each module (called span).

4 AI APPROACHES IN FAILURE MANAGEMENT

Failure Management (FM) is the study of techniques deployed to minimize the appearance and
impact of failures. In large-scale systems failures are inevitable, so adequate protection mecha-
nisms need to be put up to minimize their and satisfy Service-level Objectives (SLO) [26]. Fol-
lowing an established convention [10, 21, 99, 119, 160], we differentiate between proactive (failure
avoidance) and reactive (failure tolerance) approaches (differently from Reference [99], we do not
endorse the “resilient approaches” category for AI approaches). In our hierarchical scheme, failure
avoidance comprises any approach aiming to address failures in anticipation of their occurrence,
either by predicting the appearance of errors based on the system state, or by taking preventive
actions to minimize their future incidence. Failure avoidance is divided into failure prevention
(Section 4.1) and online failure prediction (Section 4.2). Failure tolerance techniques, however,
deal with errors after their appearance to assist humans and improve mean-time-to-recovery

(MTTR). Failure tolerance includes failure detection (Section 4.3), root-cause analysis (Section 4.4),
and remediation (Section 4.5).
The five categories above mentioned divide FM based on the temporal window of intervention.

In our previous work [113], we quantified the frequency of FM publications in our five categories.
The FM area with the highest number of contributions is failure detection (226, 33.7%), followed
by root-cause analysis (179, 26.7%) and online failure prediction (177, 26.4%). However, failure
prevention and remediation are the areas with the smallest number of attested contributions (71
and 17, respectively). These trends are confirmed and even more accentuated when we look at the
most recent publication period (2018 onwards): only 11 (5) publications have been found for failure
prevention (remediation) in this time frame.
Within each of these five categories, we can group current contributions based on targets prob-

lems (or tasks) that a contribution aims to solve (e.g., failure prevention includes software defect
prediction, fault injection, software rejuvenation, and checkpointing). Table 4 categorizes the FM
contributions analyzed in this work by category, task and AI methods used.
While we consider our five-category scheme for FM comprehensive and stable over time (al-

though the relative proportion of works in each category may change), we envision that landscape
of tasks and target problems within each category may evolve more quickly, by expanding some
of the current minority tasks and by presenting new problems and challenges in the years to come
(see discussion in Section 5.1). Table 8 (at the end of the section) present the same list of works
grouped by task, AI method, employed data sources, and high-level target components.

4.1 Failure Prevention

An important (and yet no so common) possibility to deal with failures proactively is failure pre-
vention, treated in this section. Failure prevention mechanisms, tend to minimize the occurrence
and impact of failures, by analyzing the configuration of the system, both in static aspects (like the

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:10 P. Notaro et al.

Table 4. Papers Analyzed in this Survey by Category, Task, and AI Method

Category Task AI Method

Failure Prevention

Software Defect

Prediction (SDP)

Linear Models: [35, 52, 102, 117, 153] Naive Bayes: [38, 94, 98, 141]
Tree-based: [38, 50, 94, 98, 141] SVM: [42, 50]
Bayesian Networks: [38, 50, 115, 141] Others: [76, 102, 153]
Logistic Regression: [35, 98, 103, 141]

Fault Injection
Clustering: [105, 128] Linear Models: [128]
Tree-based: [105]

Software Aging and

Rejuvenation

Markov Models: [21, 136, 137] Tree-based: [4]
Linear Models: [4, 21, 49]

Checkpointing Markov Models: [62, 95, 114]

Online Failure

Prediction

Hardware Failure

Prediction

Tree-based: [77, 78, 89, 104, 138, 148] Naive Bayes: [54, 88]
Neural Networks: [37, 78, 89, 149, 165, 167] Clustering: [54, 101]
SVM: [89, 164, 167] Logistic Regression: [89]
Markov Models: [161, 164] Others: [33, 143]

System Failure

Prediction

SVM: [44, 81, 160] Autoregressive Models: [23, 119]
Bayesian Networks: [31, 119] Neural Networks: [61, 160]
Markov Models: [123] Others: [81, 160]

Failure Detection

Anomaly Detection

Clustering: [11, 45, 72, 127] PCFG: [11, 26]
Autoencoders: [7, 131, 150, 159] FSM: [12, 45]
Markov Models: [110, 127] Tree-based: [86, 151]
PCA: [72, 73, 151] Others: [29, 31, 86, 87, 127]
Other Neural Networks: [18, 41, 45, 92, 162]

Internet Traffic

Classification

Neural Networks: [8, 142] SVM: [43]
Naive Bayes: [97]

Log Enhancement Tree-based: [168] Others: [163]

Root-cause

Analysis

Fault Localization
Graph Mining: [9, 30, 156] Search: [30, 80, 132]
Others: [1, 72, 83, 85, 110, 121, 145]

Root-cause

Diagnosis

Pattern Matching: [6, 127] Others: [25, 26, 64, 124, 154]
Bayesian Networks: [31, 64]

RCA - Others
Clustering: [32, 84, 120] Others: [3, 14, 32]
Logistic Regression: [14, 120]

Remediation

Incident Triage Markov Models: [126] Bayesian Decision Theory: [158]
Solution

Recommendation

Text Analysis: [82, 140, 166] Similarity-based: [140]

Recovery Markov Models: [124]

source code) and dynamic aspects (e.g., the availability of computing resources in physical hosts).
The common goal is to take or suggest preventive actions; however, the strategies to achieve this
end goal vary extensively in targets and mode of application. Moreover, we can distinguish pre-
ventive operations in a offline setting and an online setting. For the former, we observe a large pre-
dominance of software debugging techniques, usually categorized under the name of software

defect prediction (SDP), determined to evaluate failure risks from source code analysis; fault
injection techniques are also sporadically present, with the objective of stress-testing the system
to gain additional insights and prevent future failures. In an online setting, we observed methods
dealing with the problem of software aging, categorized under the name of software rejuvenation;
and checkpointing techniques, to deliver efficient restart strategies in the presence of irreversible
errors.

4.1.1 Software Defect Prediction. SDP determines the probability of running into a software
bug (or defect) within a functional unit of code (i.e., a function, a class, a file, or a module). The
fundamental assumption, which connects SDP to the occurrence of faults, is the observation that
defect-prone code generates failures when executed. Therefore, estimating the remaining density
of bugs in a functional unit of code allows software maintainers to prioritize their efforts, concen-
trating on the most vulnerable modules, files, and methods.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:11

A traditional method to identify fault-prone software consists in constructing defect predic-
tors from code metrics. Code metrics are handcrafted features obtained directly from source code,
which potentially have the power to predict fault proneness in software. Over the last decades,
different groups of code metrics have been proposed: the original module-level metrics, designed
during the 1970s for procedural languages, describing graph complexity (McCabe metrics [90])
and reading complexity (Halstead metrics [53]); Chidamber and Kemerer [28] later defined a suite
of metrics for object-oriented software on a class level, usually referred to as “CK metrics” (from
the authors’ initials); Briand et al. [16] have introduced coupling metrics as a measure of intercon-
nection between software modules; finally, the Lines-of-Code (LOC) metric is widely adopted
across the research community.
Nagappan et al. [102] investigate an SDP approach employing code complexity metrics. They

however argue that multicollinearity (or inter-correlation) between some of these metrics ren-
der the problem more complex. They apply Principal Component Analysis (PCA) to obtain
a smaller set of uncorrelated features. Then, they construct linear regression models to predict
post-release defects in five different datasets. They also attempt to apply models learned on one
project onto other projects to test cross-project applicability, obtainingmixed results, and therefore
arguing for the similarity of projects as a requirement for transfer learning.
In Reference [94], Menzies et al. discuss the use of static code metrics (like McCabe and Hal-

stead’s), arguing in their favor and rejecting common claims, such as the one of being uninforma-
tive (because of cross-correlation of values within the code feature set) or suboptimal compared to
other features. In particular, they argue for their practicality, popularity, and usefulness. Attention
is moved from the choice of metrics to the choice of learners: by applying decision trees and Naïve
Bayes models, software modules are classified as defect-prone or defect-free. The authors argue
in favor of Naïve Bayes with the use of logarithmic features, which obtains the best detection
performance (71% recall and 25% false alarm rate).
Elish et al. [42] use Support Vector Machines (SVM) for software defect prediction. Failure-

proneness is predicted at the function level, from a composite set ofMcCabe, Halstead, and LOC fea-
tures. The approach applies Gaussian kernels to enable non-linear modeling and is tested on four
software projects from the NASA MDP dataset [93]. A comparison with other Machine Learning
methods (logistic regression, multilayer perceptron, k-NN, k-means, Bayesian Networks (BN),
Naïve Bayes, Random Forest, and Decision Tree) is carried out, where the SVM approach outper-
forms all the models in terms of recall (≥ 0.994), at the expense of a lower precision (≥ 0.8495).
SVMs exhibit accuracies (≥0.8459) and F-scores (≥0.916) comparable to the other methods.
Another common class of methods for SDP is constituted by BN, due to their positive qualities

such as accuracy, interpretability, and modifiability. Dejaeger et al. [38] consider 15 different BN
classifiers, including Naïve Bayes as a special case. The approach is validated on two datasets (the
already mentioned NASA MDP [93] and the Eclipse project repository [157]) and it is compared
to other Machine Learning algorithms using AUC and H-measure. The results show how more
interpretable models tend to be less effective than complex, discriminative structures. Okutan et
al. [115] integrate established code metrics with two newly introduced measures, the Number of
Developers and the Lack of Coding Quality (LOCQ), and use Bayesian Networks to model the
causal relationships among metrics, as well as between metrics and defect proneness. Experiments
conducted on the PROMISE data repository [93] highlight the prediction effectiveness of three
metrics: LOC, LOCQ, and Response for Class, a CK metric.
A potential indication of the presence of software faults may also come from the change his-

tory of source code. In particular, the code age and the number of previous defects can be indica-
tive to estimate the presence of new bugs [52]. This type of analysis better reflects a software
model where changes are continuously applied to a code repository and where new defects are

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:12 P. Notaro et al.

potentially introduced with each new release. While the majority of early SDP contributions have
approached the problem from a single-release perspective, a second category of works (the so-
called changelog approaches) have concentrated their efforts around software history, considered
a more determining factor than code metrics to estimate defect density. Graves et al. [52] divide
software quality predictors into product measures (like code metrics) and process measures, which
quantitatively describe the change history of a software project, advocating for the latter category
(product measures are considered inconclusive from a correlation analysis). Generalized linear
models are constructed from process measures to predict the defect count in the software reposi-
tory of a telephone switching system. Aweighted-time dampmodel is also introduced, where code
changes are down-weighted based on age, showing the best performances overall.
Ostrand et al. [117] examine changes in large software systems and their relation to past faults

to predict the number of defects in the next release. As in Reference [52], they adopt a Poisson
generalized linear model from which the maximum likelihood estimates of the model parameters
are used to interpret the relevance of the different metrics. The model is tested on the release
cycle of an in-house inventory system with a wide range of new metrics at the file level, including
programming language, edit flags, and age. According to the results, the top 20% files with the
highest predicted fault count contained on average 83% of the later identified faults. A comparative
analysis of the two sets of SDP metrics (code and change metrics) was conducted by Moser et al.
[98] on the Eclipse project repository. The comparison is performed using three different Machine
Learning approaches: Naïve Bayes, logistic regression, and decision trees. Change metrics used
individually are shown to be more efficient than code metrics alone for detecting defective source
files. Moreover, a combined approach slightly improves or has comparable results to a change
metric approach. Giger et al. [50] also utilize a combination of source code and change metrics
to tackle defect prediction at the method level by applying four different ML algorithms. Using
an investigation methodology similar to Reference [98], results are again presented by the set of
input metrics used with similar conclusions: change-metric approaches outperform code-metric
approaches, while the advantage of a hybrid set of metrics is observable but limited.
In addition to introducing the benchmark SDP dataset AEEEM, D’Ambros et al. [35] compute

several change-related metrics, such as the number of revisions, refactorings, and bug fixes per
file, which are correlated with the number of future defects. Mostly based on the concepts of code
entropy and churn, these metrics are then applied with generalized regression models to classify
and rank files by probability defect. The proposed ranking approach can consider the necessary
review effort of files as well. Learning-to-Rank (LTR) is also the focus of the work of Yang et al.
[153], where a linear model is trained via composite differential evolution (CoDE) and input
metrics are selected using the information gain criterion. According to the authors, maximizing
the ranking performance directly, rather than relying on the predicted number of faults, provides
benefits such as robustness for SDP models focusing on ranking. This claim is verified by com-
paring LTR approaches with traditional least-squares regression approaches based on bug count
prediction, where LTR approaches are in fact predominantly more accurate for the ranking task,
especially in projects with a high number of metrics and releases.
Cross-project transferability, i.e., the ability to learn a software defect model on source projects

different from the target domain, represents the major application obstacle to some authors. Nam
et al. [103] study the problem of transfer learning for software defects by applying an extended ver-
sion of Transfer Component Analysis (TCA) to learn common latent factors between source
and target projects. The extension (TCA+) improves cross-project prediction by selecting an appro-
priate normalization option for source and target. TCA+ features are then used as input of a logistic
regression classifier to predict faulty module files. The approach is validated on two datasets (Re-
link [147] and the already mentioned AEEEM [35]): documents are represented by the different

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:13

Table 5. Summary of Described Methods for SDP, Categorized by Data Sources, SDP Task,

and Target Code Unit

Paper(s)
Data Sources SDP Typology Target Code Unit

Code Metrics

A
S
T
d
a
ta

S
a
m
e
-p
ro
je
ct

C
ro
ss
-p
ro
je
ct

F
u
n
ct
io
n

C
la
ss

F
il
e

M
o
d
u
le

S
ta
ti
c

C
h
a
n
g
e
-

re
la
te
d

[102] • • • •
[38] • • • •
[94] • • •
[115] • • •
[42] • • •
[117] • • •
[50] • • • •

[35, 98] • • • •
[153] • • • •
[52] • • •
[76] • • • • •
[103] • • • • •
[141] • • • •

software metrics available for each dataset, and results are compared to other prediction methods
using the F-measure (for cross-project prediction, 0.61 on Relink and 0.41 on AEEEM).
A critique of traditional code metrics is that they are too handcrafted and simplistic. An alter-

native is to directly parse the source code using Abstract Syntax Trees (AST). Wang et al. [141]
debate the ability of code metrics to model semantics and thus discriminate between code regions
with the same structure and different semantics, arguing in favor of latent semantic representa-
tions. In their work, after parsing the code with ASTs, a Deep Belief Network (DBN) is trained
to learn semantic features in an unsupervised fashion via stochastic first-order optimization. Then,
Naïve Bayes, Decision Trees, and Logistic Regression models are used to predict faults from the
latent representations in both within- and cross-project settings. Results obtained on Java projects
of the PROMISE repository dataset are compared with TCA+ [103] and show a significant improve-
ment in terms of F-score in the cross-project setting (0.568, +9.1% over [103]).
Li et al. [76] explore Convolutional Neural Networks (CNN) for SDP. During the parsing

step, a subset of AST nodes corresponding to different types of semantic operations is extracted.
These tokens are mapped to numerical features using embeddings and fed into a 1D convolutional
architecture, which is used to learn intermediate representations of the input code, and later inte-
grated with handcrafted features for the final prediction. Results obtained on a smaller subset of
projects of the same PROMISE dataset are compared with a traditional logistic regression model
and the DBN approach of Reference [141], exhibiting again a substantial F-score improvement
(0.608, +0.084 over traditional methods and +0.065 over Reference [141] for within-project SDP).

4.1.2 Fault Injection. Fault injection is the deliberate introduction of faults into a target work-
ing system [5] to evaluate the level of fault tolerance reached. In traditional computer systems,
this evaluation represents a validation of the reactive capabilities of a system off-the-shelf. In the
specific case of AIOps and failure management, fault injection also allows one to evaluate the effi-
cacy of externally deployed reactive mechanisms. Several works presented in later sections have

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:14 P. Notaro et al.

applied fault injection techniques for this purpose [25, 87, 110, 119, 124, 127]. Important definitions
in fault injection are the set of injected faults or faultload (F); the set of activations of faults in the
system (A); the set (R) of readouts from the system and the set (M) of measured values. F and A
model the injection procedure from the input, R and M from the output [5].
As the concept of fault injection is disconnected from the specific type of system under test, its

use is not restricted to a single applicability scenario. Fault injection can be applied at the hardware
level, to emulate the appearance of faults in physical components, such as hard drives and CPUs, as
it is infeasible and costly to induce real faults in this domain. At the software level, fault injections
are used to understand the effect of bugs in the behavior of computer software or to model the
causal dynamics of one or more software components in a shared-resource environment, such as
an operating system and the executing processes. Software Fault Injection (SFI) is the automated
and planned insertion of software faults (which in this case constitute the faultload) [105]. Software
faults can be inserted directly or can be simulated to model the consequences of their injection.
For instance, the injection of erroneous data in a program introduces a failure, representing an
undesired behavior, but not a root-cause problem (i.e., a fault), therefore modeling the problem
indirectly. Another common target for data corruption is function interfaces, such as APIs.
A concept connected to SFI isMutation Testing (MT), i.e., the introduction of small modifica-

tions in the source code to evaluate the quality of code coverage achieved by test cases. MT comes
closer to mimicking faults compared to error injection, because it introduces software faults di-
rectly rather than their consequences (the errors). However, introducing random code changes,
targeting variable assignments and function calls, can become inefficient if the procedure is not
guided, due to the expensive cost of running the test case suite for each of the exponentially nu-
merous mutated versions of the program. It is therefore fundamental to reduce the number of
mutations to the minimum essential, without losing the discernment ability of mutation opera-
tions. Nowadays, many available tools try to identify code changes that can be representative of
real software faults. While, on the one hand, MT operates to improve the quality and coverage of
test cases, SFI, on the other hand, attempts to identify and emulate faults that cannot be discovered
by test suites, because testing is performed in sandboxed scenarios, diverging considerably from
real operation workloads. SFI covers this gap by stressing the operating conditions of a production
environment while examining the consequences.
In a distributed computing environment, fault injection can also be applied at the cluster or

datacenter scale, for example, to randomly terminate operations at the instance level and stress-
test the resiliency of the distributed service under investigation. This is the case with software
tools such as Chaos Monkey and Kong by Netflix [13] or Facebook’s Project Storm [69]. Finally,
fault injection techniques can be applied at the network level based on principles that are similar
to the hardware and software level previously cited.
Nowadays, approaches performing fault injection aremostly out of the realm of AI, as fault injec-

tion predominantly consists of switching off mechanisms and fault insertion procedures, where
the problem is purely algorithmic and the necessity of intelligent agents is unjustified. The few
available contributions of AI to the field are concentrated around the implementation selection
policies for the faultload, where the number of applied faults needs to be reduced for computation
reasons.
In the context of MT, Siami Namin et al. [128] use a regression-based model to estimate the

efficacy of a subset of mutation operators in predicting the mutation adequacy ratio (AM), a
measure of test coverage in MT. In particular, for each mutation operator, they compute the indi-
vidual AM and use it as a regression feature to estimate the overall AM of the test suite. They argue
that a minimal subset of mutators able to predict the AM measure will also represent the ideal, re-
duced subset of operators to apply for mutation testing. They also apply other statistical analysis

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:15

techniques, such as clustering and correlation, to identify groups of similar variables and eliminate
the one with the highest computation cost from the selection domain. Using this technique, the
set of code mutants is reduced to 8% of the initial size, drastically reducing the estimation time for
the AM measure, which is in turn necessary to estimate code failure coverage.
Motivated by the strong presence of unrepresentative faults that are obtained with state-of-

the-art SFI approaches, Natella et al. [105] use two Machine Learning approaches to improve the
faultload set. They apply decision trees for classifying components into higher and lower fault risk
(MR and LR, Most and Least Representative, respectively) for consequent fault selection. Moreover,
starting from the observation that low fan-in and fan-out components have faults that are more
difficult to detect, the authors apply an unsupervised learning approach using the code metrics of
software components (see also Section 4.1.1). Specifically, k-means clustering is used to separate
target components into two clusters based on their interaction. Faults are injected into components
of the cluster with the lowest fan-in and fan-out. The approach is tested on different software
components (MySQL, RTEMS, PostgreSQL) at different granularities and can reduce faultload size
(−22% to −69%) while increasing fault representativeness (+4% to +26%).

4.1.3 Software Aging and Rejuvenation. Software aging describes the process of accumulation of
errors during the execution of a program that eventually results in terminal failures, such as hangs,
crashes, or heavy performance degradations [49]. Known causes of software aging includememory
leaks and bloats, unreleased file locks, data fragmentation, and numerical error accumulation [21].

Several Machine Learning techniques have been applied to predict the exhaustion of resources
preemptively. Garg et al. [49] estimate time-to-exhaustion of system resources, such as free mem-
ory, file and process table sizes, and used swap space, using instrumentation tools available under
the UNIX operating system. Resource measurements are collected on several operating worksta-
tions to construct time series, which are annotated with the failure cause in case of outage. Trends
are detected and exhaustion time is quantified using regression techniques and seasonal testing.
In addition to the time-based measurement of resources, Vaidyanathan et al. [136] investigate

the effect of software aging due to the current system workload. A semi-Markov reward model is
fitted from the available workload and resource data under UNIX, where the model states repre-
sent different workload scenarios, and the association to a specific state is identified employing
Hartigan’s k-means clustering. Time-to-exhaustion of memory and swap space is estimated with
a non-parametric regression technique for each workload state separately. Alonso et al. [4] con-
sider the case of non-linear and piecewise linear resource consumption adopting an ensemble of
linear regression models, selected using a decision tree on the same input features of the regres-
sion model (a combined set of hardware and software host metrics). Decision trees are chosen
because they offer a trade-off between accuracy and interpretability. The authors propose to use
their interpretability for root-cause diagnosis as well (Section 4.4.2).

Software aging can be contrasted with software rejuvenation [57], a corrective measure where
the execution of a piece of software is temporarily suspended to clean its internal state. Software
rejuvenation can be performed at the software and OS level. Common cleaning operations include
garbage collection, flushing kernel tables, re-initializing internal data structures [136]. According
to Castelli et al. [21], software rejuvenation fits naturally inside a cluster environment (but sim-
ilar considerations are true for any distributed computation system, e.g., cloud), because of the
already present node failover mechanisms and the possibility to schedule rejuvenation and ag-
ing prediction routines. To this end, authors distinguish between periodic (or synchronous) and
prediction-based (or asynchronous) rejuvenation policies, where the latter requires a prediction
model for future software failures. The failure prediction model can belong to (but is not limited
to) the category of resource exhaustion predictors described above.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:16 P. Notaro et al.

AI has been used in the past to suggest efficient rejuvenation scheduling policies. The same
Castelli et al. [21] apply stochastic reward nets to model service downtimes and draw conclusions
on the efficiency of rejuvenation policies. Their analysis considers both time-based and prediction-
based policies. For the latter, they resort to resource exhaustion prediction algorithms to estimate
future failure periods, ideal for refreshing the internal state and examine the expected downtime as
a function of the prediction model accuracy (or prediction coverage). Both periodic and prediction-
based policies are shown to be able to reduce downtime significantly, with prediction-based meth-
ods having a larger improvement overall (−60% downtime at 90% coverage versus −25% with opti-
mal time-based), while high-frequency periodic policies can better tolerate simultaneous failures
(−95% versus −85% of prediction-based methods).

In Reference [137], Vaidyanathan et al. build upon their workload-inclusive Markov prediction
approach [136] to derive optimal periodic rejuvenation policies. To capture the manifestation of
rejuvenation and failure behavior, they develop a comprehensive transition-based model between
three states (working, failure, and rejuvenation). The model parameters (such as the period of
rejuvenation) are optimized to reach different objectives (e.g., maximum steady-state availability
or minimum downtime cost). A similar strategy allows one to improve the preventive strategies
of a distributed system during its design stage.

4.1.4 Checkpointing. A concept linked to software rejuvenation is checkpointing, i.e., the
continuous and preemptive process of saving the system state before the occurrence of a failure.
Similar to software rejuvenation, checkpointing tolerates failures by occasionally interrupting
the execution of a program to take precautionary actions. Different from software rejuvenation,
during checkpointing the interruption period is used to save the internal state of the system
to persistent storage. In case a fatal failure occurs, the created checkpoint file can be used to
resume the program and reduce failure overhead. Checkpointing techniques are common in
distributed computing, Checkpointing is also frequently used in large-scale computing systems,
although with the increase of scale the higher error rates make it less practical [62, 95]. To this
end, the concept of multi-level checkpointing was introduced: checkpoints are created at different
component levels, and based on the component resiliency and the permissible time overhead, a
different checkpointing strategy is selected for each level.
As in the case of software rejuvenation, AI is used to model a faulty execution workload under

different checkpointing strategies and select themost suitable strategy according to different objec-
tives. Again, checkpointing can be static or dynamic depending on the scheduling of checkpoints.
All the papers investigated operate within the framework of Markov processes [62, 95, 114]. Oka-
mura et al. [114] develop a dynamic checkpointing scheme for single-process applications based
on reinforcement learning. In particular, Q-learning is used to obtain the optimal checkpointing by
studying the asymptotic behavior of policies. The approach is especially useful in scenarios with
unknown failure characteristics.
Moody et al. [95] describe a multi-level checkpointing system for large HPC systems. To esti-

mate execution times under different configurations, the multi-level system is expressed as a joint
Stochastic Markov Model with the definition of computation and recovery states and the introduc-
tion of assumptions such as the cost of checkpointing and the failure rate of the system. The final
checkpointing schemes are claimed to offer high recovery efficiencies (85%) at a 50× increased
failure rate.
Jangjaimon et al. [62] present an incremental checkpointing strategy for multi-threaded appli-

cations in a cloud environment. Their system makes use of an Adjusted Markov Model to predict
turnaround time in the execution of programs, incorporating both the effect of hardware failures
and potential resource revocation events. The model also takes into account monetary aspects

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:17

starting from cost and unavailability assumptions. According to their experimental results, an adap-
tive multi-level checkpointing scheme is beneficial for cloud paradigms with resource revocation,
allowing reduced checkpoint sizes, shorter execution times (up to −25%), and lower down costs
(up to −20%).

4.2 Online Failure Prediction

The fundamental idea behind failure avoidance is the anticipation of errors. The prediction of
failures is therefore an essential action for proactive management of failures. The previous section
has illustrated how estimating the distribution of future failures is valuable to operate preemptively
against them. In all previous instances of prediction, however, forecasting was strictly connected
to the specific prevention task undertaken and also largely dependent on the available preventive
actions (e.g., software rejuvenation).Moreover, except resource exhaustion prediction and dynamic
checkpointing, all previous instances of prediction operate using assumptions derived in an offline
setting, estimating the probability of failures occurring in absolute rather than estimating the time
to the next failure. A prediction of failures on-the-fly allows one to be aware of future failures
but also to know in advance the remaining useful to recovery, vital to timely deploy recovery and
failover mechanisms.
This section discusses this second category of proactive approaches, which are specialized in

prediction of computer system failures in this online fashion. Online failure prediction identifies
future runtime errors by assessing the current state of the system [122]. How far in time these er-
rors can be foreseen depends on the lead time of the predictor, i.e., the time between the prediction
and the instant when the failure occurs; the validity of the prediction information also depends
on the prediction time, which is the length of the time window where the failure may occur. To
these prediction quality measures, we also add the warning time, a metric describing the time re-
quired to perform inference and signal a future failure. Naturally, a prediction is useful only if it
can warn operators with sufficient advance before the failure occurs (i.e., twarn < tlead). From
a functional perspective, an online failure predictor is comparable to a detector and is, as such,
evaluated in terms of accuracy, precision, recall and the other associated measures. We discuss on-
line failure prediction approaches into two subcategories: hardware failure prediction and system
failure prediction.

4.2.1 Hardware Failure Prediction. In large-scale computing infrastructures, hardware reliabil-
ity represents one of the most relevant practices to achieve service availability goals in distributed
services. Due to the magnifying effect of the large numbers involved and the commercial necessity
to deploy commodity components in datacenters, hardware represents the most vulnerable aspect
from a failure perspective. According to Vishawanath et al. [138], 8 servers of 100 are expected to
encounter at least one hardware error per year of operation. Moreover, the machines affected by
errors are likely to require more than one repair per year (with an average of two repairs), showing
a successive correlation pattern between failures. According to the same work, hardware repairs
for a 100k-scale datacenter can amount to millions of dollars. It is therefore crucial from the indus-
trial perspective to investigate which factors influence the appearance of hardware faults for the
end goal of improving design choices and deploying failure predictors.
Hard drives are the most replaced components inside large cloud computing systems (78%) and

one of the dominant reasons for server failure [138]. Machines with a higher number of disks are
also more prone to experience additional faults in a fixed time period. This fact has led hard-drive
manufacturers to adopt common self-monitoring technologies (such as Self-monitoring Analy-

sis and Reporting Technology (SMART)) in their storage products since 1994 [100]. Therefore,

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:18 P. Notaro et al.

it should not be surprising that hard drive failure prediction represents themost investigated target
for failure prediction.
Several studies have investigated the failure characteristics of hard drives to identify common

patterns. For instance, Pinheiro et al. [118] conducted a large-scale study on over a hundred thou-
sand disk drives used in production byGoogle and varying in storage size, speed, andmanufacturer.
The results of this study could not identify any consistent correlation between failure rate and high
temperature or high utilization levels. However, some SMART features were shown to correlate
well with a higher failure rate. However, SMART metrics were also shown to be likely insufficient
for single-disk predictions, as the majority of failed drives did not manifest any SMART error sig-
nal before faults. A predictor based solely on SMART attributes is therefore likely to have good
specificity but low sensitivity unless additional features are introduced. SMART data is still con-
sidered useful to evaluate reliability and risk trends inside a disk drive population. In the work of
Vishwanath et al. [138], different other attributes are investigated from a population of disks in
Microsoft servers. By constructing decision trees for failure prediction two discrimination factors
are identified, datacenter and manufacturer, while the type of workload, the position in rack, the
server age, and the configuration are all found to be of no significance for predicting future drive
faults.
Hamerly et al. [54] present two different Bayesian learning approaches for disk failure prediction

from SMART attributes collected on a real-world dataset of 1936 drives. The first method works as
an unsupervised anomaly detector, where a mixture of Naïve Bayes discrete submodels is trained
to estimate the posterior probability of observation, and a hard-set threshold is used to separate
anomalous events from normal behavior. The second method consists of a supervised Naïve Bayes
classifier with binned continuous variables. The approach achieves a recall of 0.33 with a false-
positive rate of 0.0067. Both methods operate by predicting a failure at the snapshot level, so the
temporal evolution is not taken under consideration.
Different from previous works [54, 101], Zhao et al. [164] treat SMART data as a time series,

arguing for the importance of temporal information. Their approach employs Hidden Markov

and Semi-Markov Models (HMM/HSMM) to estimate the sequence of likely events from the
disk metric observations, which are obtained from a dataset of approximately 300 disks (where
approximately two-thirds were healthy). One model is trained from healthy disk sequences, one
from faulty disk sequences. At test time, the two models are used the estimate the sequence log-
likelihood and the corresponding class is selected based on the highest score. By combining the
HMM approach with an SVM, they claim to obtain a recall of 0.52 at 0 false alarm rate.
Murray et al. [101] test the applicability of several Machine Learning methods using a sliding

window approach, where the last n samples constitute the observation for predicting an immi-
nent failure. Naïve Bayes, kernel SVMs, and Naïve Bayes Expectation-Maximization as already
proposed by Reference [54] are implemented and compared. Features are selected from SMART
data using statistical relevance tests. SVMs achieve their highest performance with a 50.6% recall
and 100% precision. The approach was tested on a dataset composed of 369 drives (with an ap-
proximate 50/50 split), which is then also used in a work by Wang et al. [143] where an online,
similarity-based detection algorithm is presented. Relevant SMART features are selected viaMin-

imum Redundancy Maximum Relevance (mRMR), then the input data is projected into a
Mahalanobis space constructed from the healthy disk population so that faulty disks deviate more
from the distribution. Faulty disks are again recognized with a sliding window approach so that
when the mean deviation inside a window appears anomalous an alarm is raised. An anomaly
is identified with four different statistical tests. This approach improves, at 0 false-positive rate,
the detection rate up to 67%, on the same dataset with less computational effort. Moreover, it is
shown how for 56% of the faulty cases it was possible to intervene with an advance of at least

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:19

20 h before the failure. Comparable results are obtained by Zhu et al. [167], where multilayer per-
ceptron and SVM models are constructed and trained on an in-house (Baidu) dataset of SMART
data comprising 23,395 drives (433 faulty). Assuming a 12-h recovery window, their SVM model
obtains a failure detection rate of 68.5% with a 0.03% false alarm rate. The neural network method
achieves far higher detection rates (94.62–100%), at the expense of a higher false alarm rate as well
(0.48–2.26%) and it is therefore indicated for monitoring with the highest reliability requirements.
The same SMART dataset is used by Xu et al. in a paper [149] that introduces Recurrent Neural
Networks (RNN) to hard drive failure prediction. Similar to Reference [164], the method can ana-
lyze sequences directly and to model the long-term relationships takes advantage of the temporal
dimension of the problem. Differently from previous approaches that apply binary classification,
the model is trained to predict the health status of the disk, providing additional information on
the remaining useful life of disks. On the failure prediction task, however, the approach still out-
performs the other evaluated models in terms of detection rate (96.08–97.78%) and false alarm rate
(0.004–0.03%).

In a work [78] related to Reference [167], two new evaluation metrics (migration and mismigra-
tion rate) are introduced to measure the efficiency of data migration concerning forecasted faults.
RNNs and Gradient-boosted Decision Trees (GBRT) are implemented (regression trees origi-
nally proposed in Reference [77]) to accomplish three tasks: predict faulty disks, as in the usual
setting; measure the rate of wrongful and missed migrations performed using the information of
the classifier; estimate the residual life of the disks, by predicting the risk level of each disk (1 to
5 for faulty disks, 6 for healthy ones). For residual life prediction, results are compared using the
newly defined metrics at variable migration rate. The RNN approach shows a higher faulty-level
prediction accuracy (27.02–39.90%) and the GBRT model better protection from data loss with a
higher successful migration rate (84.91–87.54%).
Mahdisoltani et al. [89] tackle failure prediction in storage media at the sector level. Their

method employs a few SMART features as target prediction variables rather than explanatory
variables. They experiment both with HDD and SSD data, with five different Machine Learning
approaches. For HDD data the analysis illustrates detection rates of sector errors similar to the
ones of traditional disk failure prediction (70–90% at 2% false-positive rate). In SSDs, where Ran-
dom forests obtain the best comparative results, the prediction is not as promising (50–60% detec-
tion rate at 2%). SSD failure characterization is also the focus of Narayanan et al.’s work [104], a
large-scale study conducted on 2.5 years of production data and covering over 500,000 solid-state
disks from different Microsoft datacenters. SSD failures are correlated to datacenter, workload, and
device-level features via statistical learning. The best and only reported prediction model (random
forest) obtains a precision of 87% and a recall of 71%. Features directly representing underlying
problems (such as count of data errors and reallocation sectors), number of NAND writes and
workload factors are reported as the most important discriminators of failures. According to the
same authors, the classification rules obtained by the analysis enable the identification of likely-
to-fail devices with sufficient advance to take preventive actions, especially in the case of issues
heavily dependent on the workload.
All previous approaches are used in an online setting after an initial setup or training step is

performed offline. This poses the problem of how to integrate additional data, especially in those
cases where the scarcity of positive training examples imposes an online learning approach, able
to update the characteristics of faulty disks as soon as new failures appear. To this end, Xiao et
al. [148] propose the use of Online Random Forests, a model able to evolve and behave adap-
tively to the change in the data distribution via online labeling. The approach is tested on a
dataset covering over 10,000 disks, where the results show how the algorithm can increase perfor-
mance over 20 months, reaching detection rates of 93% and more with reasonably low alarm rates

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:20 P. Notaro et al.

(0.73–0.76% in the offline setting). The prediction performances are comparable to a Random Forest
and outperform the other approaches tested (SVMs and decision trees).
Although most of the scientific interest is concentrated around disk failures, a minor group of

contributions, focusing on failure prediction for other components, is present. Ma et al. [88] elevate
the discussion on storage reliability to the level of RAID groups. They model the failure probability
of a vulnerable RAID group using a Naïve Bayes assumption, where the failure of whole disks
inside the group is independent of the others and is estimated from metrics such as reallocated
sector counts. A statistical model is built from data collected on 5,000 RAID groups. Results show
how the present in-place mechanisms were able to prevent a vast majority of consecutive failures
(98% for triple failures).

Costa et al. [33] investigate the occurrence of main-memory errors for HPC applications. They
propose and evaluate methods for temporal and spatial correlation among memory failures. Tem-
poral correlation analyses logs to estimate the prior rate of errors that, integrated with timing
information, allows one to estimate the remaining number of errors at the job level. Spatial corre-
lation measures the probability to experience a failure after observing errors in adjacent bits. In
the same paper, a memory migration approach, based on the available information at runtime, is
presented and evaluated. The results show how 63% of memory-induced failures could be avoided
thanks to the prediction and migration mechanisms deployed.
Davis et al. [37] present FailureSim, a Cloudsim-based [51] simulator for status assessment of

hardware in cloud datacenters using deep learning. Multilayer Perceptrons and RNNs are used to
assess 13 different host failing states, each associated with a specific component (CPU, memory,
I/O, etc.). The system, tested by assigning a variable workload to a scalable number of VMs, can
identify 50% of failing hosts accurately, and predict 89% of future fails before their occurrence.
Zhang et al. [161] deal with the problems of failure prediction and diagnosis in network switches.

Their method, based on system log history, proposes to extract templates from logs and correlate
them with faulty behavior. Their extraction method and similar approaches are compared on the
extraction tasks, and the templates there obtained are used to train a Hidden semi-Markov Model.
The proposed model, which shows the best performance figures, achieves 32% precision and 95%
recall, demonstrating high sensitivity to clear fault-signalingmessages, but low precision (and thus
high false alarm rate) overall.
Zheng et al. [165] propose a method based on RNN to estimate the Remaining Useful Life of

system components. They argue that the temporal nature of sensor data justifies the use of long
short-termmemory (LSTM)-based RNNs, due to their ability to model long term-dependencies.
They experiment with three RUL public datasets and compare their method with other Machine
Learning approaches in terms of Root Mean-squared Error (RMSE), showing how their ap-
proach obtains the best RUL prediction performance (RMSE = 2.80, 54.47% improvement over
CNNs).

4.2.2 System Failure Prediction. Instead of investigating the occurrence of physical component
failures, future system availability can also be estimated through symptomatic evidence and depen-
dency modeling assumptions at the software level. Past approaches for system failure prediction
are mostly based on the observation of logs, which constitute the most frequent data source, KPIs
and hardware metrics, which are typically used in shorter prediction windows and are more fre-
quently associated with the failure detection problem as well. System failure prediction are applied
on different abstraction levels depending on the target software component under investigation
(job, task, container, VM, or node).

Some early contributions are associated with failure prediction in the IBM supercomputer Blue-
Gene project. Liang et al. [81], for instance, apply different classification algorithms for BlueGene,

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:21

using real event logs to predict fatal failures inside fixed time windows of observation. Input fea-
tures are parsed from structured logs based on the severity, total count, and distribution of log
events inside an observation window. Features obtained from the previous window are used to
predict failure in the next one. In the evaluation phase, four classification algorithms (SVM, RIP-
PER, BMNN, k-NN) are compared using precision, recall, and F-score. The size of the prediction
window appears to have a large impact on the final detection performance. From the experiments,
the ideal window size is estimated between 6 and 12 h to balance utility effectiveness and accuracy.
The Bi-modal nearest neighbor approach proposed in the paper provides the best results overall,
leading to an F-measure of 70% (and 50%) with 12-h (and 6-h) prediction windows, respectively.
Cohen et al. [31] investigate an approach based on Tree-augmented Bayesian Networks

(TANs) to associate observed variables with abstract service states, forecast and detect SLO vio-
lations and failures in three-tiered Web services. The system is based on the observation of sys-
tem metrics, such CPU time, disk reads, swap space, and KPI-related measures, like the number of
served requests, all interdependently modeled (in addition to the dependent variable, the predicted
state). The optimal graph structure, including the ideal subset of input metrics, is selected utilizing
a greedy strategy. The approach, originally developed for detection, can also be used to diagnose
failures thanks to the interpretability properties of TANs (see Section 4.4.2). Two separate experi-
ments are used for validation, a multi-tiered Java server application, and an Apache server testbed,
both injected with synthetic workloads varying in connections, request rate, and type. The results
for forecasting, applied 1 or 5 min in advance of failures, show high detection rates (83–93%) and
false-alarm rates varying between 9.1% and 24% depending on the experiments.
Salfner et al. [123] train HSMM for online prediction of failures in event sequences collected

from error logs. One HSMM is trained on failing sequences, a second one on non-failing sequences.
Then, the sequence likelihood of themodels determineswhich of the two scenarios ismore likely to
occur. The approach is evaluated on logs of a commercial telecommunication system and compared
with other prediction techniques, achieving an F-measure of 0.7419 (precision 0.852, recall 0.657).
The observed false-positive rate is 0.0145.

Chalermarrewong et al. [23] propose a system availability prediction framework for datacenters,
based on autoregressive models and fault-tree analysis. Their autoregressive integrated moving av-
erage (ARIMA) model works on time series of workload and hardware metrics, where thresholds
are fixed to detect component-level symptoms (such as high CPU temperature, bad disk sectors,
memory exhaustion), which also constitute the leaves of the fault tree. Using these symptoms and
the tree structure, a model of dependencies in combinational logic determines the availability state
deterministically. An advantage of these approaches that it implicitly provides granular informa-
tion for diagnosis. The experimental results show high prediction accuracy (97%) but a high rate
of false alarms as well (precision is 53%).
TheHORA prediction system [119] adopts a holistic approach, where architectural knowledge is

used with online time-series data to predict QoS violations and service failures in distributed soft-
ware systems. Component dependency and failure propagation models, in the form of Bayesian
Networks, are used to associate component failures, predicted from system metrics with autore-
gressive predictors, to system-wide problems. Tested on a microservice-based application, the new
approach is compared to a monolithic approach (not using architectural knowledge) by inject-
ing memory leaks, node crashes, and system overloads during execution. The HORA approach
achieves a higher recall (83.3% versus 69.2%) and AUCROC (0.920 versus 0.837, +9.9%) compared
to the monolithic approach. The proposed approach is also more viable when a high false alarm
rate (≥10%) is acceptable, while the monolithic approach is more adequate for predictions in the
0–10% false alarm range.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:22 P. Notaro et al.

Fronza et al. [44] describe a failure prediction approach based on text-analysis of system logs and
SVMs. First, log files are parsed and encoded using a technique called Random Indexing, where for
each operation inside a log line, index vectors are assigned to obtain a latent representation of the
text. Then, by scanning through the log corpus, context vectors for each operation are computed,
so that co-occurrence of operations can be taken into account. Finally, sequences of operations
are represented as the weighted sum of context vectors corresponding to the operations encoded
inside. These representations of sequences constitute the input of aweighted SVM, trainedwith the
objective of minimizing false negatives. Results show how a weighted approach can compensate
for a decrease in specificity (always greater than 80%) to improve recall (50%).
Similarly, in Reference [160] RNNs are applied for failure prediction from logs. The approach is

composed of a clustering algorithm used to group similar logs, a pattern matcher used to identify
common templates inside similar logs, a log feature extractor based on natural language process-
ing, and a sequential neural network architecture based on LSTM cells, used to predict the failure
status within the predictive period. The use of LSTMs is also motivated by their sequential mod-
eling abilities and the rarity of failures. The approach is compared, using real data collected from
two enterprise server clusters, with other Machine Learning methods (SVM, logistic regression,
random forest) in terms of precision-recall AUC. At 70% precision, the LSTM method shows the
highest failure sensitivity with a recall value of 0.909. LSTMs are able to detect signs of failures
earlier than other methods (73 min on average).
LSTM networks are also used by Islam et al. in Reference [61], a large characterization study

of job failures conducted on a workload trace dataset by Google. Failures are predicted at the job
and task level, where a job is a collection of tasks and each task is a single-machine command or
program. Failures are predicted from resource usage measures, performance data, and task infor-
mation (completion status, user/node/job attributes). For task failure prediction, the final F1-score
of the system is 0.87 (precision = 0.89, recall = 0.85, FPR = 0.11). For job failure prediction, the ap-
proach achieves a F1-score of 0.81 (precision = 0.80, recall = 0.83, FPR = 0.20). The prediction algo-
rithm can be used to reduce resource waste (down by 12–20% in the experiments) by re-submission
of likely-to-fail jobs and tasks.

4.3 Failure Detection

In this section, we start discussing reactive failure management methods, which operate to limit
the consequences of failures after they have occurred. They are motivated by the fact that, even
with the most advanced prevention and prediction techniques, the occurrence rate of failures can
never be fully reduced to 0. Some reactive approaches, for example in root-cause analysis or anom-
aly detection, can also be used to get a better understanding of how failures are causally related
and propagate over time, or to comprehend with which temporal characteristics (variance, burst
frequency, periodicity, seasonality) failures are associated.
The detection of failures via monitoring operations can be a complex and tedious task for hu-

man operators. Chen et al. [26] report how in the administration of a commercial website, 75% of
the recovery time was spent on average for detection. The automatic discovery of performance
problems and errors allows operators to dedicate less time identifying service-related problems
while providing insights on which failures must be prioritized in the diagnosis step based on the
frequency observed in the detection phase. Automated failure detection is based on a variety of
monitoring tools, ranging from simple print statements (which constitute the fundamental unit
of system logs) to more complex instrumentation techniques or entire frameworks. We divide our
discussion of failure detection in anomaly detection, Internet traffic classification, and log enhance-
ment techniques.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:23

4.3.1 Anomaly Detection. According to our quantitative results [113], failure detection is
treated as an anomaly detection problem in the large majority of contributions related to IT system
management. Anomaly detection is a multidisciplinary task that deals with finding patterns in data
that do not conform to the expected behavior [24]. The interest in anomaly detection is motivated
by the possibility to obtain actionable information to deal with diseases, frauds, cyber-attacks, sys-
tem outages, and faults, depending on the target domain. Anomaly detection operates by deriving
a model of normal behavior, and by testing new observations against this model. Anomaly Detec-
tion is applied in the AIOps context under the assumption that failures generate irregular behavior
in IT systems (errors) across a set of measurable entities (or symptoms), such as KPIs, metrics, logs,
or execution traces. Anomaly detection is also used to detect cyber-attacks, congestion, and sub-
optimal resource utilization, which can all be causes of future failures. Because obtaining labeled
examples is time-consuming, anomaly detection systems typically rely on unsupervised learning.
Three are the most prominent techniques used in such context: clustering [11, 127], dimensionality
reduction [72, 151] and neural network autoencoders [7, 131, 150, 159]. One of the earliest exam-
ples of unsupervised learning for system workload characterization is Magpie [11], a behavioral
modeling toolchain for distributed systems. Magpie’s instrumentation is based on fine-grained, in-
kernel event logging tools available under Windows, able to measure resource consumption and
execution times accurately. The events registered with this tool are used to reconstruct requests
and apply behavioral clustering to obtain a small set of unique request types, each associated with
a specific workload model. In the paper, behavioral clustering allows one to model realistic work-
loads more precisely than by grouping requests by URL. A realistic workload model is beneficial to
identify anomalous resource consumption, besides enhancing capacity planning and performance
testing.
At the network level, Lakhina et al. [72] monitor network links via SNMP data to detect and

diagnose anomalies in network traffic. The apply PCA on link flow measurements collected over
time to separate traffic in normal and anomalous subspaces. They classify principal components
in normal and abnormal (setting a threshold on the explained variance), then identify anomalies
by reconstructing the new observations using abnormal components. If the reconstruction error
exceeds a predefined threshold, then the new data point is considered anomalous. Their approach
is validated using synthetic and real volume anomalies, the latter detected with traditional class
forecasting algorithms. In a follow-up work [73], a similar approach based on traffic feature distri-
bution entropy is proposed. The paper shows how the same subspace method can exploit packet
information, such as source and target destination address or port, to detect security threats and
service outages, as well as to provide preliminary diagnostic information.
Several approaches apply unsupervised learning on univariate time series constructed from KPI

and metric observations [127, 150]. Sharma et al. [127] propose CloudPD, an end-to-end failure
tolerance system performing failure detection, diagnosis, and classification in virtualized cloud
environments (see also Section 4.4.2). The paper proposes to collect a variety of measures at the
VM and physical machine level, including resource utilization, operating system variables, and
application performance metrics. The paper then proposes three different unsupervised Machine
Learning approaches for anomaly detection: k-nearest neighbors (k-NN), HMMs, and k-means
clustering. The k-NN detection approach is evaluated on three different benchmarks, where it
beats four proposed baselines with an average higher recall (83–87%) and a lower false alarm rate
(12–17%). Donut [150] performs anomaly detection on seasonal KPI time series using deep Varia-

tional Autoencoders (VAE) and window sampling. The approach is compared on three different
datasets of 18 KPIs to Opprentice [86] and a baseline VAE performance in terms of F-score (ranging
from 0.75 to 0.9), AUC (0.7–0.9) and average alert delay (4 to 12 min). One of the conclusions of the

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:24 P. Notaro et al.

authors is that autoencoder approaches require abnormal samples in addition to normal behavior
samples.
The most recent time-series approaches focus on multivariate anomaly detection using autoen-

coders [7, 131, 159]. Two advantages of a multi-dimensional analysis are the ability to model the
inter-correlations between different metrics/components, and to provide interpretable results for
root-cause analysis, by attributing the detected anomaly to a specific metric or component. MS-
CRED [159] uses a convolutional-recurrent (ConvLSTM) autoencoder architecture to capture tem-
poral patterns at different scales and thus identify abnormal time steps. In the evaluation study,
MSCRED outperforms the baselines (SVM, ARMA, GMM, CNN) with an F1-score of 0.82–0.89,
while being able to identify anomalies on scalesw = 10, 30, 60 s. By computing the reconstruction
errors on individual time sequences, MSCRED can also identify root causes more effectively (top-3
recall = 0.75–0.80). OmnyAnomaly [131] proposes a recurrent VAEmodel using stochastic variable
connection and planar normalizing flow. As for MSCRED, the reconstruction error can be used to
interpret anomalies and connect back to individual time series. OmniAnomaly achieves a detec-
tion F1-score of 0.8599 on three real datasets, including server metric data (SMD [108]) collected
from a large-scale Internet company. SMD is also used for evaluation in USAD [7], which applies
adversarial-based techniques to the autoencoder architecture for faster and more stable training.
In USAD, the anomaly score is parametrized so that the sensitivity can be adjusted rapidly and
on multiple levels for real industrial applications. On five real datasets, USAD achieves results
comparable to OmniAnomaly (F1 = 0.791 for both), while reducing training time by 547 times on
average.
Although in the majority of cases real labeled samples are not available, it may be possible to

obtain behavioral set of rules or an execution model for the system. The model information be-
comes also very relevant when failures need to be diagnosed (see Section 4.4.2). With the use of
a behavioral model, different pattern-matching approaches can be developed. For example, hav-
ing access to a probabilistic context-free grammar (PCFG), which defines the likelihood of
event chains to occur in sequential input, allows an anomaly detection algorithm to single out
unlikely structures and detect anomalies. Magpie [11] already proposes the use of PCFGs to model
event sequences and detect anomalous requests. A similar approach is used in Reference [26] to
detect failures by searching for anomalies in execution paths (i.e., traces). This path information
is especially valuable to localize and diagnose failures (see also discussion of Reference [26] in
Section 4.4.2).
More often, a behavioral model of the system is inferred from the past execution history, of-

ten expressed in the form of logs. An example of such a model is constituted by Finite State

Machines (FSM) [12, 45]. In a work by Fu et al. [45], log entries are first mapped to their corre-
sponding template version, called log key. Similar log entries, used to identify line templates, are
grouped via clustering. Then, FSMs are learned to model program workflows from log evidence.
The model so obtained can be later used to verify the correct execution of programs and detect
software problems. The entire approach pipeline is tested on log files from two distributed com-
puting frameworks, achieving 95% accuracy on log key extraction during the detection of different
types of failures manually inserted. Beschastnikh et al. adopt a similar approach with their system
CSight [12]. As the main goal of failure detection is to enable root-cause analysis, the authors also
performed a user study on the usefulness of FSM diagrams compared to other graphical debugging
tools for identifying execution errors. FSM diagrams enabled study subjects to identify problems
more often (+11%) compared to subjects who were shown 6/8 time-space diagrams, considered less
understandable by them. In Reference [29], a causal model of request executions is constructed
from the available component-level trace logs. The model, called The Mystery Machine, identifies
different types of predefined causal relationships between components via iterative refinement,

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:25

Table 6. Summary of Described Anomaly Detection Methods, Categorized by Data Sources and Algorithm,

with Corresponding Advantages and Disadvantages

Paper(s)
Data Sources

Algorithm Advantages/DisadvantagesKPIs & Metrics

L
o
g
s

T
ra
ce
s

O
th
e
rs

U
n
iv
a
ri
a
te

M
u
lt
iv
a
ri
a
te

[31] • TAN
interpretability, applicability to
other tasks/requires supervision

[86] • Random
Forest

high accuracy, online re-training/
requires supervised data

[110] • Markov
Chain

unsupervised, online learning/
black-box monitoring

[127, 150] • Unsupervised
Learning

general purpose, no labels required/
univariate analysis only

[7, 131, 159] • Autoencoder
multi-dimensional analysis, no
labels required/training step

[12, 45] • FSM
enables RCA/requires template

discovery step

[18, 41, 92, 162] • RNN
robust, accurate, unsupervised/
requires parsing, training step

[151] • • PCA
simple, unsupervised method for
free-text data/requires parsing, low

interpretability

[11, 26] • Clustering/
PCFG

enables multiple AIOps tasks/
requires end-to-end tracing

[29] • Causal
Inference

interpretability, enables RCA/
applicable in sequential systems

only

[87] • SVM
high-level, large applicability/

requires supervised data, tracing

[72, 73] • PCA/Feature
Distribution

specific/exclusive for
network-traffic anomaly detection

supported by the past trace history. According to the authors, The Mystery Machine can be used
to conduct an anomaly analysis of service requests based on segment features. In particular, it
can used to aggregate similar requests by structure and latency via comparison of the segment
structure of anomalous requests. Thanks to this inspection, it was possible to identify unneces-
sary debugging components returned occasionally in user requests. In a work by Xu et al. [151],
text analysis and information retrieval techniques are applied on console logs and source code to
find abnormal patterns during the operation of large-scale datacenters. In particular, state variables
and object identifiers are extracted automatically from parsed logs, and their frequency in differ-
ent documents (expressed in term inverse-document frequency, TF-IDF) is analyzed with PCA to
detect anomalies with a threshold-based rule on the reconstruction error, similar to Reference [72].
Anomalies detected with the PCA approach are also used to train supervised decision trees, useful
for operators to interpret anomalies and accelerate the identification of problems.
In recent years, RNN have been applied for log-based anomaly detection [18, 41, 92, 162]. Du

et al.’s DeepLog [41] uses RNNs based on LSTM layers to learn patterns from logs and detect
anomalies. As in Fu et al. [45], log entries are initially mapped to corresponding log keys. Then,
DeepLog predicts the probability distribution of the next log key from the observation of previous

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:26 P. Notaro et al.

log keys, similar to a natural language model that predicts the next token from the observation
of the rest of the sentence. A log key is considered abnormal if it does not appear in the top k
keys ranked by probability. The paper also proposes an online learning strategy based on user
feedback. The approach is validated on self-generated datasets from HDFS and OpenStack, where
it is compared to other methods for the same task. At 100% recall, DeepLog dramatically reduces
the false-alarm rate (from 38.2–40.1% to 1.1–1.7%) using only a small fraction of data for training
(1–10%). Brown et al. [18] also work on log-based anomaly detection, presenting an word-token
RNN language model for raw logs based on five attention mechanisms (reaching AUCROC ≥
0.963). The paper also proposes to analyze attention weights to provide statistical insights, un-
derstand global behavior and improve decision making. Although their work is tested for intru-
sion detection tasks, it can be used for other detection tasks, e.g., detect failures at the request
and server level. The same authors also recognize its potential to predict hardware failures online.
LogAnomaly [92], while adopting the language model approach, proposes the use of template
embeddings (template2vec) to better extract semantic information, by which similar log keys can
be matched and merged automatically, without requiring human feedback. Thanks to template
vectors, OmniAnomaly can also learn quantitative patterns in addition to sequential patterns. All
these improvements enable to further reduce false alarm rate compared to DeepLog (F1 = 0.8632).
LogRobust [162] deals with the problem of log instability, caused by the changing log statements
over time and noise in log processing. To address this, LogRobust also employs LSTM layers, se-
mantic vectors and attention, but differently from language model approaches, it directly predicts
anomalies by computing an anomaly score. The approach is validated on industrial and synthetic
HDFS data, with an average F1-score of 0.81 (+0.29) on unstable log data.
While unsupervised learning approaches are generally more applicable, supervised learning ap-

proaches for anomaly detection are viable in scenarios where labels are available for both normal
and anomalous samples. Moreover, all types of anomalies need to be known beforehand and suffi-
cient samples for each type must are necessary. Lo et al. [87] investigate the detection of failures
in software as a classification problem. Their approach mines sets of discriminative features from
execution traces and use them to train a SVM for classifying software behavior into normal and
abnormal. The approach is validated by performing several controlled experiments with real trace
data, obtained from programs of the Siemens test suite [59] and MySQL database server. In both
scenarios, faults are injected artificially with different techniques. The approach shows very high
levels of detection, with AUCROC ranging from 0.82 to 1.00.
Another supervised classification approach is proposed with Opprentice [86]. Opprentice ana-

lyzes KPI time series with Machine Learning to automatically detect anomalies online. Random
Forests are applied to classify KPI point observations (composed of three variables) in normal and
abnormal behavior classes, with the possibility to set up a sensitivity threshold online. The ap-
proach also includes an offline algorithm to select the optimal threshold satisfying custom linear
constraints on the Precision-Recall plane. Finally, to overcome the labeling effort required by a
supervised approach, a labeling tool for KPI time series like the ones observed in the paper.
Another instance of supervised anomaly detection is the TAN approach of Cohen et al. [31] (the

algorithm and experimental setup are discussed in Section 4.4.2). SLO compliancy inWeb servers is
used as supervision data to learn a system behavioral model from combinations of metrics, applica-
ble to perform forecasting, detection, and diagnosis. When used for online detection on synthetic
workloads, the TAN approach was able to detect 91.9%–93% of failures with a false alarm rate of
6.4–16.9%.
In conclusion, we report the work of Nguyen et al. [110], later described in Section 4.4.1. While

designed for black-box fault localization, the proposed system is deeply integrated with an abnor-
mal change point detection algorithm for subsequent root-cause analysis. This detection approach

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:27

is based on Markov chains with dynamic thresholding and operates at the component level to
pinpoint irregular system metric values. The Markov model is also an instance of online learning
and so it is indicated for application scenarios with variable time characteristics.

4.3.2 Internet Traffic Classification (ITC). A task connected to network failure detection is In-
ternet Traffic Classification (ITC). ITC allows categorizing packets exchanged by a network
system to identify network problems, to optimize resource provisioning and improve Quality-of-
Service [43, 97]. It can be applied to analyze the local network flow, the incoming server requests
from the outside, or the outgoing response. ITC is also widely used for cybersecurity purposes,
such as intrusion detection [97, 142]. All these supported areas are connected to the appearance
of failures and this fact motivates the discussion of ITC as part of failure management. ITC can be
seen as a particular instance of network anomaly detection. However, in practice, the differences
in methodology (emblematic of a classification problem rather than a detection problem) and data
sources (network traffic rather than KPIs and metrics) justify a separate discussion.
Moore et al. [97] propose to use Supervised Machine Learning to classify the observed Inter-

net traffic. Their work selects relevant features from a set of 248 discriminative variables (such
as payload size, TCP port, etc.) to train a Naïve Bayes classifier and separate traffic according to
different category sets (e.g., application-wise, maliciousness vs. legitimacy, etc.). The approach is
later augmented with kernel estimation to overcome the limitations of the Gaussian assumption
introduced. In a following work [8], the Bayesian framework is extended to Bayesian Neural Net-
works, in the architectural form of Multilayer Perceptrons, reaching 95–99% accuracy, depending
on the specific test case.
Este et al. [43] develop a framework based on SVM models for TCP traffic classification. TCP

communication is analyzed at the flow level rather than at the individual packet level: single-
direction traffic flows between nodes are classified with multi-class kernel SVMs, depending on
the application-level protocol they utilize. Single-class (one versus all) models are also trained to
obtain decision boundaries and set apart outlier packets. The model surpasses correct prediction
rates of 90% on three datasets under test.
Wang et al. [142] propose an end-to-end classification method for encrypted traffic based on

1D CNN. The input of the CNN is represented by raw packet data grouped according to different
conventions, such as flow and session. The approach is evaluated on a public dataset (ISCX) con-
taining both VPN and non-VPN data, where it is used to assign the observed traffic in one of the 14
categories, defined based on the application (e.g., E-mail, streaming, chat, etc.). The 1D CNNmodel
improves the state of the art on the described dataset by approximately 10% in terms of precision
and 8% in terms of recall.

4.3.3 Log Enhancement. Another task connected to failure detection is log enhancement. Its
goal is to improve the quality and expressiveness of system logs, which are frequently used for
detection and diagnosis tasks by IT operators and AIOps algorithms.
Zhu et al. [168] propose a logging suggestion tool, called LogAdvisor, to learn practical logging

suggestions from existing log instances. In code snippets, several structural, syntactical, and textual
features are extracted and filtered based on information gain, from which a decision tree is later
trained to suggest logging of snippets as a binary classification problem. The approach is compared
to several other baselines, including a random 50% predictor, a previous algorithmic approach
called ErrLog [155], and other Machine Learning models. LogAdvisor is shown to reduce logging
overhead compared to ErrLog when logging is not required, even though it is less precise and it
may occasionally not place some informative print statements compared to the more conservative
ErrLog.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:28 P. Notaro et al.

In Reference [163], an approach for automated placement of log printing statements (Log20)
based on information theory is proposed. First, entropy is shown to be an informative measure for
the placement of printing statements. Then, a greedy dynamic programming algorithm for placing
printing statements is implemented. The overall approach is tested on four popular distributed sys-
tems, where Log20 can be as informative as different log-level policies, while significantly reducing
the print overhead (from 1.58 entries per request down to 0.08 for the INFO log level).

4.4 Root-cause Analysis (RCA)

Failure detection is the process of collection of symptoms, i.e., observations that are indicative of
failures. Root-cause analysis is, instead, the process of inferring the set of faults that generated a
given set of symptoms [130]. In a complex and distributed system, it is first required to isolate to
restrict the analysis to the responsible component or functional subsystem, a task that we call fault
localization. Only then an analysis of the possible error sources can be performed with root-cause
diagnosis. As in the case of anomaly detection, we treat some associated tasks, useful to support
root-cause analysis in the localization and diagnosis procedures.

4.4.1 Fault Localization. Fault localization is about identifying the set of components (devices,
network links, hosts, software modules, etc.) interested by a fault that caused a specific failure.
When treating this problem, it is important to clarify the scope of localization, as scale and targets
may be ambiguous in this context several reasons. First, because fault localization can operate at
various physical, hierarchical scales, from the entirety of a datacenter down to single chips. In
large-scale services, in the presence of hundreds of thousands of machines, it is important to re-
strict the origin of a manifested error to the individual server level. It is also possible to perform
problem determination at the physical device level, such as hard drives and processor chips. Finally,
the highest level of granularity is reached by root-cause diagnosis, where the individual failure rea-
sons are investigated (see next section). Second, from a functional perspective, fault localization
may imply investigating which module in abstract, functional components (e.g., the network, or
the source code) is affected by a fault. In this second perspective, the localization scale is discon-
nected from the physical scale. Software fault localization is applied to analyze the source code,
regardless of whether the interested piece of software is deployed on thousands or tens of ma-
chines. In the network case, it may be sufficient to understand if faults are present in the network
so that specialized network operators can identify the root causes independently.
Some works describe general-purpose fault localization techniques. For instance, Nguyen

et al. [110] present FChain, a black-box fault localization system to pinpoint faulty components
in an online cloud setting. FChain relies on low-level system metrics to detect performance anom-
alies, then observes how such anomaly patterns propagate to identify faulty components. Perfor-
mance anomalies are identified via online metric forecasting using a discrete Markov model with
an adjustable detection threshold. Then, all components displaying an anomaly are sorted by man-
ifestation time ad examined in sequence to filter out spurious correlations according to different
techniques, such as looking at interdependency between components or examining the overall
propagation trend. The approach is tested on different commercial frameworks for distributed
computing. In this setting, the localization performance of the approach is compared with existing
black-box localization schemes, where an improvement both in terms of precision (+90%) and re-
call (+20%) is observed. According to the authors, FChain imposes an overhead of 1% on the cloud
system performance.
Several approaches [80, 83, 132] address fault localization by correlating abnormal changes in

KPI values to particular combinations of attributes (representing, e.g., geographical regions, ISPs,
hosts, buckets, etc.). This combinations of values are then symptomatic of a fault for that particular

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:29

corner case. Hotspot [132] applies Monte Carlo Tree Search and hierarchical pruning to efficiently
examine attribute combinations and measure how they relate to sudden changes in the Page View
metric. This approach allows one to reduce hours-long manual efforts down to 20 s on average
(300× speedup). Squeeze [80] proposes a similar approach based on a combined top-down, bottom-
up search strategy and a newly defined correlationmetric (generalized potential score, GPS). These
improvements enable Squeeze to localize root causes in cases of lower statistical significance, when
tested on synthetically-injected real-world datasets (F1 = 0.86–0.90). Lin et al. [83] apply pattern
mining techniques on structured logs to discover association rulesX → Y , whereY is a predefined
attribute combination describing a failure. They apply efficient processing techniques as row pre-
aggregation, in-memory databases and the FP-growth mining algorithm to render the runtime
complexity of association rule mining feasible. Their work also proposes five different use cases
applicable in large-scale service infrastructures.
Other works apply fault localization techniques specifically to the network infrastructure of

computer systems. The work of Lakhina et al. [72], already presented in Section 4.3.1 for network
anomaly detection, applies the same PCA-based technique previously described to identify faulty
links as well. For the diagnosis task, instead of considering the subspace distance of reconstructed
data points (which was there used as a measure of anomaly), the direction of divergence is under
examination. The routing matrix defines the direction of divergence from normal behavior for
each link, while the most likely faulty link is selected as the one with the lowest reconstruction
error after removing the estimated divergence effect caused by that link.
With Sherlock [9], Bahl et al. localize sources of performance problems in enterprise networks

by constructing probabilistic inference graphs from the observation of packets exchanged in the
network infrastructure. Nodes of the inference graph are divided into root-cause nodes (corre-
sponding to internal IP entities), observation nodes (corresponding to clients), and meta-nodes,
which model the dependencies between the first two types of nodes. Each node is also associ-
ated with a categorical random variable modeling the current state (up, troubled, down), which is
influenced by other nodes via the dependency probabilities. Learning the inference graph corre-
sponds to learn the dependency probabilities for each edge in the graph by observing the packets
exchanged between nodes during normal operation. Once the graph is available, measurements
from the observation node can be used to retrieve a set of state-node assignment vectors, corre-
sponding to the estimated operational state of the network. According to the results of the paper,
Sherlock was able to narrow down more than 87% of the failures from 350 to 16 possible root
causes, while identifying 32% more faults than their previous work Shrink [64]. The same Shrink
(see Section 4.4.2), although technically a root-cause diagnosis tool, can also be applied to localize
physical-layer faults in networks.
Software Fault Localization (SFL) is fault localization in software components through source

code analysis. An SFL system typically returns a report containing a list of suspicious statements
or components. It can be considered similar to software defect prediction (Section 4.1.1), because of
the similarity of investigation targets and analysis tools; however, differently from SDP, SFL relies
on observed failure patterns obtained from production runs and test cases, rather than predictions
of future faulty behavior based on code metrics.
Renieris et al. [121] implement a method for SFL based on similarity between program execution

profiles (or spectra), which are obtained from execution traces to represent successful and faulty
runs of programs. In the described approach, successful runs are stored as spectra in a nearest-
neighbor query database. A faulty run is then used as a search term in this database, so that the
nearest neighbor runs returned by the query (in particular, their differences from the faulty run
in term of code coverage) can be used to produce a fault localization report with plausible target
code areas responsible for the fault. The spectral representation of runs is here constituted by sets

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:30 P. Notaro et al.

of executed program blocks, on which the Hamming distance is computed to perform neighbor
queries. In the same paper, a measure quantifying the examination effort required to find a bug,
called the T-score, is introduced and it is later used by other approaches as a comparison measure
[30, 85, 145].

Zeller et al. [156] propose Delta Debugging, an algorithm for the determination of state variables
causing a change in the outcome of execution runs. Via graph modeling techniques, the state
differences between failing and passing runs are examined to understand how state alterations
influence the outcome of runs. In this way, it is possible to extract the variable interested by the
fault from the variation space. In the specific case of the paper, the program state is represented as
a memory graph. In a following work [30], the previously proposed search-in-space approach is
complemented by a search-in-time approach, for those situations where a failure depends on when
variables are assigned wrong values, an event called “cause transition.” Through this consideration,
programmers can reduce the amount of code that needs to be examined. During the evaluation
phase conducted on the Siemens test suite [59], the cause-transition (CT) approach is compared
to Reference [121] in terms of T-score, where CT can pinpoint defects for 5.43% of all the runs, with
more than one-third (35.66%) of these runs requiring examination of less than 10% of the entire
code. The described approach also provides insights about the causes behind errors and therefore
supports root-cause diagnosis as well.
Liu et al. [85] adopt a statistical debugging approach (SOBER) based on the analysis of predicate

evaluations in failing and passing runs. In predicate-based statistical debugging, the conditional
probability of observing a failure given the observation of a particular predicate is estimated for
a multitude of predicates present in the code. Predicates with a higher probability are more likely
to contain a software bug or to be in the proximity of one. In this paper, a probabilistic model of
predicates is introduced, including a ranking criterion to evaluate the connection of predicates to
software bugs. The approach is tested on the Siemens test suite and compared using T-score and
detection rate to the CT approach of Cleve and Zeller [30], pushing state-of-the-art results: when
a developer is willing to analyze 1% of the interested code, SOBER can capture 8.46% of the bugs
(4.65% for CT); at 20% coverage, the detection rate climbs to 73.85% (39% for CT).

Abreu et al. [1] propose a Bayesian reasoning approach (BARINEL) based on the analysis of
program spectra, this time incorporated in a probabilistic framework used to estimate the health
probability of components. In BARINEL, which can be applied to localize multiple faults simultane-
ously, coverage flags are used as a spectral representation of tests on components. A model-based
reasoning system, founded on propositional logic, is constructed from the interaction between
components. This model is then augmented with failure probabilities that are estimated via maxi-
mum likelihood to obtain an approximate reasoning approach, completed by a candidate ranking
heuristics to deal with the high dimensionality of the problem. BARINEL can find 60% of software
faults by examining less than 10% of the source code.
Wong et al. [145] propose DStar (D*), a technique to automatically suggest suspicious locations

for fault localization. In particular, D* adopts a newmethod to compute suspiciousness coefficients
from test coverage data and run outcomes. This method is based on a modification of the Kulczyn-
ski coefficients with the addition of a variable exponentiation factor (denoted by superscript *, as
in the name). The approach is compared with several previous SFL techniques across 24 programs
and 38 techniques, where D* is shown to bemore effective on single fault localization than previous
coefficient-based methods.

4.4.2 Root-cause Diagnosis. Root-cause diagnosis identifies the causes of behavior leading to
failures, by recognizing the primary form of fault. For this reason, it is typically treated as a clas-
sification problem. Due to the inherent complexity and inter-dependency between components in

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:31

Table 7. Summary of Described Fault Localization Methods, Categorized by Data Sources and Target

Component, with Corresponding Advantages and Disadvantages

Paper(s)
Data Sources Targets

Advantages/Disadvantages
S
o
u
rc
e
C
o
d
e

M
e
tr
ic
s

K
P
Is

L
o
g
s

N
e
tw

.
T
ra
ffi
c

A
p
p
li
ca
ti
o
n

H
a
rd
w
a
re

N
e
tw

o
rk

D
a
ta
ce
n
te
r

[1, 30, 85, 121,
145, 156]

• • points directly to root cause/
applicable only to software bugs

[110] • • • unsupervised, online learning/
black-box monitoring

[80, 132] • •
general-purpose, unsupervised/
complex analysis, requires space

pruning techniques

[9] • • • • unsupervised, accurate, robust/
requires topology and traffic info

[83] • •
general-purpose, unsupervised/
complex analysis, requires space

pruning techniques

[72] • • specific/exclusive for
network-traffic fault localization

software systems, it is considered a challenging task [6]. In the context of request tracing and diag-
nosis, the Pinpoint system [25] is one of the earliest andmost salient contributions. The approach is
based on the analysis of end-to-end traces of client requests, through which requests are clustered.
This later enables the correlation of similar failures with components causing them. The method
is tested on a simulated web e-commerce environment where artificial faults involving single and
multiple components, are injected. In a following work [26] (see also Section 4.3.1), decision trees
and association rules are learned to correlate failed requests with root causes. Both approaches
identify the great majority of failures (93%), with variable false-positive prediction rates (23% and
50%, respectively).
Kandula et al. [64] develop Shrink, a failure diagnosis tool designed for optical links in IP net-

works, but certainly extendable to other networking scenarios (the authors mention, for example,
the diagnosis of routers and servers). Shrink takes as input the configuration of the network (both
physical and software-defined) and the current IP link status to estimate the most likely explana-
tion for the observed failure. The diagnosis task is modeled using a bipartite Bayesian Network,
connecting the set of IP links with the set of physical components on which they rely to operate;
the network is then augmented with low-probability edges between unrelated nodes to improve
robustness. Diagnoses are inferred by finding the maximum-likelihood state in the physical link
space given the observation from the IP link status. The NP-hard search problem is approximated
using a greedy inference algorithm. Since Shrink performs both detection and diagnosis, the suc-
cess rate and false-positive/-negative rate are measured in the evaluation phase. Shrink excels at
the diagnosis task (99.5%) in the presence of an accurate configuration description, while other
approaches outperform it for detection [9].
SherLog [154] performs post-mortem analysis of logs and source code to diagnose software

faults (such as code bugs and configuration errors). SherLog consists of three main building blocks:
a log parser, which extract structure from log messages and identifies corresponding print state-
ments (log points) in the source code; a path inference engine, which reconstructs execution paths

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:32 P. Notaro et al.

from log entries and known log points; a value inference engine, which executes the program sym-
bolically to re-compute the value of variables along the inferred path. This type of information is
directly applicable to diagnosis by programmers. SherLog is designed as a general tool, applica-
ble without previous knowledge of the system (e.g., the structure of logs) required. Therefore its
validity highly relies on the information obtainable from system logs. Moreover, the approach de-
scribed is designed for single-machine, non-concurrent programs where the log information is
self-enclosed in one unique source. For distributed and multi-process applications, considerations
may differ.
Attariyan et al. [6] introduce X-Ray, a tool to diagnose performance anomalies in production soft-

ware. X-ray implements performance summarization, a newly introduced technique for root-cause
diagnosis. Performance summarization associates execution costs to fine-grained operations (such
as system calls) and then assigns costs to root causes employing control flow analysis modeled ad
the event level. The output corresponds to a list of root causes ranked by associated performance
costs. The system is designed to identify configuration errors and user input problems. During the
evaluation, measuring response time, root-cause identification ability, and necessary computation
overhead, X-Ray was able to identify the first root cause in 16 of 17 tests performed on four dif-
ferent server frameworks (Apache, Postfix, PostgreSQL, and lighttpd), with an average runtime
overhead of 2.3% in production and an average identification time of 2 min.
With their system CloudPD [127], Sharma et al. automatically construct fault signatures from

the observation of past failures in the cloud. These signatures, which are composed of pairs of
tracked variables and thresholds, are used at runtime to diagnose problems identified with the
behavioral modeling engine (see Section 4.3.1) previously discussed. The system can diagnose sev-
eral cloud and VM-related anomalies, such as invalid resource sizing, VM faulty reconfiguration,
or workload mix change. The accuracy of their approach ranges between 83% and 88%, depending
on the employed benchmark.
Samir et al. [124] utilizeHierarchicalHiddenMarkovModels (HHMM) to associate resource

anomalies to root causes in clustered resource environments, on the different levels of container,
node, and cluster. Markovmodels are constructed on different levels, trained with the Baum-Welch
algorithm using response time sequences as observations. The identification approach is evaluated
in terms of accuracy and compared to two other algorithms. The predictions obtained during the
identification step are also fed into a recovery component for automatic healing (see Section 4.5.3).
In conclusion, the already mentioned approach of Cohen et al. [31] (see Sections 4.2.2 and 4.3.1)

can also be used to diagnose observed failures. The described TAN model correlates observable
metrics to SLO violations. If during the diagnosis the same input metrics are measured, then it is
possible to use the probabilistic model to obtain a list of metrics correlating with specific events
or problems. While this information may not always constitute the final diagnosis, the approach
supports human diagnosis with viable hypotheses and evidence.

4.4.3 Other Tools Supporting RCA. This section analyses other smart software tools that, al-
though they do not diagnose or localize faulty behavior, can assist operators and developers while
investigating detected problems and can, therefore be seen as ancillary resources for the main root-
cause analysis task [3]. These tools may include, for example, information retrieval mechanisms to
quickly gather evidence of recurrent problems, like their relative frequency; or dependencymodels
for distributed systems used to understand causal relationships between events and/or components
to accelerate future diagnoses.
Aguilera et al. [3] describe several approaches to identify performance problems in distributed

systems by analyzing causal path dependencies between black-box components. Causal path pat-
terns are extracted from message traces using two different algorithms, the first applying a search

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:33

heuristic on single messages to identify nested call pairs, the second based on signal processing.
The algorithms are compared in different applicability scenarios and tested on different categories
of traces, both synthetic and real. The off-line analysis proposed, while not directly focusing on
failures, can prove useful from the perspective of IT operators, willing to acquire a component de-
pendency model. Such a model can therefore represent a valuable tool to diagnose failures. Similar
conclusions can be drawn for other dependency modeling approaches [9, 29].

Podgurski et al. [120] propose to use Machine Learning algorithms to classify and group soft-
ware failures to facilitate error prioritization and diagnosis. Programs are instrumented to collect
execution profile data, which are then used to train a logistic regression classifier to predict failure
causes. The feature coefficients obtained during this training procedure are used to select relevant
features for the clustering task, where related failures are grouped using the k-medoids algorithm.
In the experimental phase, failures collected from three large compiler programs are grouped ac-
cording to the described method and the corresponding clusters are visualized in combination
with results from the classification phase. The experimental evaluation shows, with various ex-
periments, how for a large number of clusters (≥71%) the majority of failures originated from the
same cause were assigned to the same cluster.
Cohen et al. [32] present a method for extracting signatures describing the state of a running

system, which can be later used to retrieve similar previous states. The same method can be used
to group similar problems and quantify the frequency of recurring problems for prioritization pur-
poses. Starting from the observation that recording raw system metrics as state representation
is ineffective from a retrieval perspective, in the proposed approach state signatures incorporate
information about the relation between the Service-level Agreement (SLA) state and the abnor-
mality level of the metrics measured during the state observation. In particular, relevant metrics
are selected and their values are characterized as typical or atypical, by learning a joint descriptive
model of metric and SLA state (as previously done in Reference [31]). Individual metrics are also
marked as attributed, not attributed, or irrelevant to the SLA state, based on the interpretation
given by the model for each specific metric. These flags constitute the final signature representa-
tion, in combination with the SLA state predicted by the model. The signature representations of
states are clustered using the k-means and k-medians algorithms. The approach is validated on
traces from two distributed applications, serving synthetic and real production workloads, show-
ing the retrieval system to be successful in recognizing different performance problems. A similar
approach is proposed in Reference [14], where the values of performance metrics are categorized
in different classes (“hot,” “cold,” and “normal”) based on their quantile distribution. Relevant met-
rics are selected by measuring their predictive power when training a logistic regression classifier
to predict SLA violations. Fingerprints are constructed both at the epoch and crisis level, indicating
different durations in time for non-conformant episodes, and are compared using distance func-
tions. The approach can associate new crises to past behavior in 80% of the cases with an average
running time of 10 min.
With LogCluster [84], Lin et al. use a knowledge base, obtained via clustering, to quickly re-

trieve logs of recurrent problems and facilitate problem identification. Logs, which are interpreted
as sequences of discrete log events, are first transformed to a vector representation using Inverse
Document Frequency (IDF), where events represent terms. Then, logs are clustered using ag-
glomerative hierarchical clustering and one element for each cluster is selected as the represen-
tative instance. At runtime, the system performs queries on the restricted set of representatives,
rather than the entire knowledge base, reducing efforts for similarity-based retrieval. In the evalu-
ation performed on Hadoop applications (WordCount, PageRank) and Microsoft internal services,
LogCluster outperforms previous approaches in retrieval relevance (measured in precision) and
number of log sequences needed to be examined to identify failures.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:34 P. Notaro et al.

4.5 Remediation

Thanks to the problem-specific knowledge gathered during the diagnosis step, like the identifica-
tion of root causes or the isolation of a faulty component, it is possible to initiate a sequence of
automatic repair actions, which are here described as remediation. Remediation approaches are
often linked with certain concepts of service desk management, such as ticket routing or ticket so-
lution recommendation. Remediation has experienced less scientific contributions linked with AI
compared to the prevention, prediction, detection, and diagnosis tasks. This is possibly due to the
above-mentioned fact that, once the nature of the underlying problem has been clarified through
diagnosis, the recovery steps are almost immediately identifiable and attainable without resort-
ing to complex models. We divide the available contributions into three categories, constituting
successive steps toward resolution: incident triage, solution recommendation, and recovery.

4.5.1 Incident Triage. Incident triage is the step in problem resolution dealing with categorizing
a reported problem. The purpose of triage is often the assignment to the correct expert resolution
group [126, 158]. Triage can also be used to select a suitable diagnosis and remediation algorithm.
Shao et al. [126] propose to mine resolution sequences, i.e., the steps followed by a problem

ticket from reporting to resolution, to improve future ticket routing and speed up recovery. Ticket
routing sequences are analyzed employing aMarkovModel, fromwhich several routing algorithms
are developed and later tested in terms of effectiveness, robustness, and applicability. The Mean
number of Steps to Resolve is reduced from 3.94 to 2.58 (−34.52%) on 2,634 tickets. The approach
is entirely based on the observation of resolution sequences and does not rely on ticket content.
Zeng et al. [158], however, propose with Kilo to classify ticket data on multiple levels by ana-

lyzing symptom descriptions of problems. Their work deals with the ticket labeling problem from
a hierarchical perspective, where tickets are assigned to increasingly specific subclasses in a tree
hierarchy. The classification algorithm, based on Bayesian decision theory, introduces a new hier-
archical loss functionminimizing the expectedmisclassification risk whenmaking non-leaf predic-
tions in the tree label structure. A greedy prediction algorithm is deployed to perform hierarchical
classification, with the ability to integrate available domain expert knowledge in the form of prior
probabilities.

4.5.2 Solution Recommendation. The approaches here described provide implementations for
recommending solutions to occurring problems. Most solutions are based on past incident his-
tory and rely on the annotation of solutions in a previous resolution window. Therefore, these
approaches mostly operate as retrieval systems that resemble the ones described for root-cause
analysis in Section 4.4.3. In the presence of annotated solutions, those approaches can equally be
a viable solution for this task.
Zhou et al. [166] propose similarity-based algorithms to suggest the resolution of repeating

problems from incident tickets. The basic approach consists in retrieving k ticket resolution sug-
gestions using a k-NN approach. The similarity between tickets is evaluated based on a mixture of
the available numerical, categorical, and textual data, for which individual and aggregate similar-
ity measures are defined. The basic solution is extended to deal with the problem of false-positive
tickets, present in the historical ticket data as well in the incoming tickets requiring a new solution.
To solve this, each ticket is classified as real or false using a binary classifier with a k-NN approach
and then byweighing ticket importance based on the prediction outcome. The final solution recom-
mendation takes into account both importance and similarity. The paper also incorporates other
ideas for improving feature extraction such as topic discovery and metric learning.
Wang et al. [140] propose a cognitive framework based on the use of ontologies to construct

domain-specific knowledge and suggest recovery actions for tickets in IT service management.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:35

The approach is based on the analysis of free-form text present in summary and resolution de-
scriptions in tickets. First, domain-specific phrases are extracted from text fields using different lan-
guage processing techniques; then, an ontology model is developed to provide definitions, classes,
and interconnecting relations of keywords, for which a hierarchy is also established; the obtained
model can then be used to recommend resolution actions by matching concept patterns extracted
in incoming and historical tickets via similarity functions (such as the Jaccard distance). In the
experimental phase, the extracting accuracy of concept patterns is tested with ground truth labels,
reaching the value of 86.2% for the prediction of required actions.
In a work presented by Facebook [82], natural language processing techniques are deployed to

predict repair actions from closed tickets. Up to five repair actions are recommended by analyzing
raw text logs as input features, with accuracy ranging from 50% to 80% (no experimental evalua-
tion is described). In the same paper, other in-house failure management systems are illustrated,
including an online anomaly detection algorithm and an automatic repair engine.

4.5.3 Recovery. We define as recovery approaches those methods taking direct and indepen-
dent actions toward the resolution of a diagnosed problem. According to the analysis derived
from our mapping study, no distinctive contribution has been proposed to perform direct recov-
ery actions with AI. The closest match is represented by the work of Samir et al. [124], where
a combined detection/RCA/remediation framework associates detected anomalies to root causes
utilizing HHMM (see Section 4.4.2). The last step of their pipeline consists in performing recovery
actions based on the insights obtained in the identification step. Specific recovery actions are de-
fined for each failure case in a predefined manner. The efficiency of the recovery step is assessed
via MTTR and recovery rate.

By applying the term in a broader sense, we may consider as recovery all those preventive
actions that do not require diagnosis information to be undertaken. This is the case, for example of
reactive mechanisms applied in combination with online failure prediction mechanisms (described
in Section 4.2), to perform data migration or checkpointing [33, 78] preemptively.

5 CONCLUSION

5.1 Current and Future Trends in Failure Management

In the previous section, we described many AI contributions to deal with failures in AIOps. In this
final section, we focus on the large picture and analyze the current status of failure management
of AIOps. We also make use of our observations to examine the currently open challenges suggest
future directions for research.
AIOps has shown a steady growing trend in the last years, manifested both in the number and va-

riety of contributions present. In the last five years, at least 100 contributions have been proposed
on a yearly average. We can expect the field to continue its growth, due to increasing demand
for reliability and efficiency in large-scale computing systems. The evolution of cloud technolo-
gies (e.g., in virtualization, monitoring tools) will provide large space for future improvements
and the experimentation of new techniques. To fulfill these great expectations, the field must be
able to provide a solid ground for experimentation, based on a more formal standardization of
problems and stronger attitude toward benchmarks, needed for comparison and evaluation of the
results achieved. Efforts in creating standard problems and benchmark datasets would therefore be
rewarding.
The analysis of the topics and tasks in the current AIOps landscape, as observed and described

in Section 4, equally allows one to investigate possible future directions. First, Table 8 shows how
the majority of works utilize only one or few types of data. Multimodal approaches, able to take

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

81:36 P. Notaro et al.

Table 8. Papers Analyzed in the Survey Grouped by Employed Data Sources, Targets, and Categories

Paper(s)
Data Sources Targets

Category

S
o
u
rc
e
C
o
d
e

T
e
st
in
g
R
e
so
u
rc
e
s

S
y
st
e
m

M
e
tr
ic
s

K
P
Is
/S
L
O
d
a
ta

N
e
tw

o
rk

T
ra
ffi
c

T
o
p
o
lo
g
y

In
ci
d
e
n
t
R
e
p
o
rt
s

E
v
e
n
t
L
o
g
s

E
x
e
cu

ti
o
n
T
ra
ce
s

S
o
u
rc
e
C
o
d
e

A
p
p
li
ca
ti
o
n

H
a
rd
w
a
re

N
e
tw

o
rk

D
a
ta
ce
n
te
r

[35, 38, 52, 94, 102, 117, 153] • • Software Defect Prediction
[42, 50, 76, 98, 103, 115, 141] • • Software Defect Prediction

[105, 128] • • • Fault Injection
[4, 49, 136] • • • Software Rejuvenation
[21, 137] • • • • Software Rejuvenation

[62, 95, 114] • • Checkpointing
[77, 78, 89, 104, 138] • • Hardware Failure Prediction
[54, 88, 143, 165, 167] • • Hardware Failure Prediction
[101, 148, 149, 164] • • Hardware Failure Prediction

[37] • • • Hardware Failure Prediction
[33] • • • Hardware Failure Prediction
[161] • • • Hardware Failure Prediction
[23] • • • System Failure Prediction
[31] • • • System Failure Prediction
[61] • • • • System Failure Prediction
[119] • • • • System Failure Prediction
[81] • • • System Failure Prediction
[123] • • • • • System Failure Prediction

[44, 160] • • System Failure Prediction
[151] • • • Anomaly Detection

[7, 131, 159] • • • Anomaly Detection
[86, 150] • • Anomaly Detection
[127] • • • • Anomaly Detection
[72] • • • Anomaly Detection
[73] • • • • Anomaly Detection

[12, 18, 41, 45, 92, 162] • • Anomaly Detection
[29] • • • • Anomaly Detection
[11] • • • Anomaly Detection

[26, 87] • • Anomaly Detection
[8, 43, 97, 142] • • • Internet Traffic Classification
[163, 168] • • • Log Enhancement

[1, 30, 85, 121, 145, 156] • • • • Fault Localization
[110] • • • • Fault Localization

[80, 132] • • Fault Localization
[83] • • Fault Localization
[9] • • • • Fault Localization
[154] • • • Root-cause Diagnosis
[6] • • • • Root-cause Diagnosis
[64] • • • Root-cause Diagnosis
[25] • • • Root-cause Diagnosis
[120] • • • RCA - Others
[14, 32] • • • • RCA - Others
[84] • • • RCA - Others
[3] • • • RCA - Others

[126, 158] • • • Incident Triage
[140, 166] • • • Solution Recommendation

[82] • • • • Solution Recommendation
[124] • • • • Recovery

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

A Survey of AIOps Methods for Failure Management 81:37

advantage of different data sources, may prove more effective and robust to new observations,
thanks to the increase in system visibility.
We also observed how some areas of failure management have experienced less scientific inter-

est compared to others. A clear example is the recovery task, which, although a fundamental and
concrete step to deal with failures, still presents a minute group of contributions. A similar con-
sideration applies for failure prevention, where all the contributions are concentrated around few
tasks (we presented four subcategories). However, failure prevention can be performed in many
other ways, some of which are still to be explored. Currently, the majority of approaches for failure
prevention are applied online and concentrate exclusively on the current-future state characteris-
tics. Introducing assumptions and information about the system working principles may set the
ground for much more actionable insights. For example, model-based prevention would allow op-
erators to estimate in advance the risks associated with particular actions, such as a canary release
or a server shutdown.
In addition, the advent of virtualization technologies requires new research focusing on specific

targets (e.g., hypervisors, virtual machines, containers, etc.), creating new tasks, such as hypervisor
anomaly detection, container failure prediction and so on.
Finally, the application of novel AI approaches may prove beneficial to advance AIOps. In the

decade, the rise of Deep Learning methods has translated into a variety of new approaches for
failure prediction, anomaly detection and root-cause analysis. This may occur again with future
breakthroughs.

5.2 Concluding Remarks and Future Work

In this work, we explored a variety of AIOps approaches for the management of failures in IT
systems. To conduct our research, the AIOps concept has been explored starting from the available
definitions, allowing us to capture a precise characterization of the topic in terms of goals, sources,
andmethods. Our survey study focusing on failuremanagement analyzed 100 contributions, across
all identified categories, data sources, and target components. When possible, we have focused our
attention on the limitations of current approaches and the possibilities to expand and integrate the
current areas of research in AIOps. We hope that the results here presented can actively support
researchers and engineers working with AIOps by providing a comprehensive overview of the
topic to support future investigations. As AIOps is an active and increasingly popular research area,
we expect future works to update this article with new references and contribute to expanding the
discussion with newly established topics.

REFERENCES

[1] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2009. Spectrum-based multiple fault localization. In Pro-

ceedings of the IEEE/ACM International Conference on Automated Software Engineering. IEEE, 88–99. https://doi.org/
10.1109/ASE.2009.25

[2] Armen Aghasaryan, Eric Fabre, Albert Benveniste, Renée Boubour, and Claude Jard. 1998. Fault detection and diag-
nosis in distributed systems: An approach by partially stochastic petri nets. Discrete Event Dynam. Syst. 8, 2 (1998),
203–231. https://doi.org/10.1023/a:1008241818642

[3] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha Muthitacharoen. 2003. Per-
formance debugging for distributed systems of black boxes. ACM SIGOPS Operat. Syst. Rev. 37, 5 (Dec. 2003), 74–89.
https://doi.org/10.1145/1165389.945454

[4] Javier Alonso, Jordi Torres, Josep Ll. Berral, and Ricard Gavalda. 2010. Adaptive on-line software aging prediction
based on machine learning. In Proceedings of the IEEE/IFIP International Conference on Dependable Systems Networks

(DSN’10). IEEE, 507–516. https://doi.org/10.1109/dsn.2010.5544275
[5] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, and D. Powell. 1990. Fault injection for

dependability validation: A methodology and some applications. IEEE Trans. Softw. Eng. 16, 2 (Feb. 1990), 166–182.
https://doi.org/10.1109/32.44380

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1023/a:1008241818642
https://doi.org/10.1145/1165389.945454
https://doi.org/10.1109/dsn.2010.5544275
https://doi.org/10.1109/32.44380

81:38 P. Notaro et al.

[6] Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-Ray: Automating root-cause diagnosis of performance
anomalies in production software. In Proceedings of the 10th USENIX Conference on Operating Systems Design and

Implementation (OSDI’12). USENIX Association, 307–320. https://doi.org/10.5555/2387880.2387910
[7] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A. Zuluaga. 2020. USAD: UnSuper-

vised anomaly detection on multivariate time series. In Proceedings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD’20). ACM, New York, NY, 3395–3404. https://doi.org/10.1145/3394486.
3403392

[8] Tom Auld, Andrew W. Moore, and Stephen F. Gull. 2007. Bayesian neural networks for internet traffic classification.
IEEE Trans. Neural Netw. 18, 1 (Jan. 2007), 223–239. https://doi.org/10.1109/tnn.2006.883010

[9] Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula, David A. Maltz, and Ming Zhang. 2007. To-
wards highly reliable enterprise network services via inference of multi-level dependencies. In Proceedings of the

Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM’07).
ACM, New York, NY, 13–24. https://doi.org/10.1145/1282380.1282383

[10] Chetan Bansal, Sundararajan Renganathan, Ashima Asudani, Olivier Midy, and Mathru Janakiraman. 2020. DeCaf:
Diagnosing and triaging performance issues in large-scale cloud services. In Proceedings of the ACM/IEEE 42nd In-

ternational Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP’20). ACM, New York, NY,
201–210. https://doi.org/10.1145/3377813.3381353

[11] Paul Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth Narayanan. 2003. Magpie: Online modelling and
performance-aware systems. In Proceedings of the 9th Conference on Hot Topics in Operating Systems, Vol. 9. USENIX
Association, 15. https://doi.org/10.5555/1251054.1251069

[12] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, and Arvind Krishnamurthy. 2014. Inferring models of concurrent
systems from logs of their behavior with CSight. In Proceedings of the 36th International Conference on Software

Engineering (ICSE’14). ACM, New York, NY, 468–479. https://doi.org/10.1145/2568225.2568246
[13] Netflix Technology Blog. 2016. Netflix Chaos Monkey Upgraded. Retrieved from https://netflixtechblog.com/netflix-

chaos-monkey-upgraded-1d679429be5d.
[14] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B. Woodard, and Hans Andersen. 2010. Fingerprinting the dat-

acenter: Automated classification of performance crises. In Proceedings of the 5th European Conference on Computer

Systems (EuroSys’10). ACM, New York, NY, 111–124. https://doi.org/10.1145/1755913.1755926
[15] A. T. Bouloutas, S. Calo, and A. Finkel. 1994. Alarm correlation and fault identification in communication networks.

IEEE Trans. Commun. 42, 2/3/4 (2 1994), 523–533. https://doi.org/10.1109/tcomm.1994.577079
[16] L. C. Briand, J. W. Daly, and J. K. Wust. 1999. A unified framework for coupling measurement in object-oriented

systems. IEEE Trans. Softw. Eng. 25, 1 (1 1999), 91–121. https://doi.org/10.1109/32.748920
[17] Broadcom. 2020. AIOps—Broadcom. Retrieved from https://www.broadcom.com/products/software/aiops.
[18] Andy Brown, Aaron Tuor, Brian Hutchinson, and Nicole Nichols. 2018. Recurrent neural network attention mech-

anisms for interpretable system log anomaly detection. In Proceedings of the 1st Workshop on Machine Learning for

Computing Systems (MLCS’18). ACM, New York, NY, Article 1, 8 pages. https://doi.org/10.1145/3217871.3217872
[19] Lisa Burnell and Eric Horvitz. 1995. Structure and chance: Melding logic and probability for software debugging.

Commun. ACM 38, 3 (Mar. 1995), 31–ff. https://doi.org/10.1145/203330.203338
[20] K. L. Butler and J. A. Momoh. 1999. A neural net based approach for fault diagnosis in distribution networks. In

Proceedings of the IEEE Power Engineering Society, Vol. 1. IEEE, 353–356. https://doi.org/10.1109/PESW.1999.747478
[21] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi, K. Vaidyanathan, and W. P. Zeggert. 2001.

Proactive management of software aging. IBM J. Res. Dev. 45, 2 (Mar. 2001), 311–332. https://doi.org/10.1147/rd.452.
0311

[22] Raghavendra Chalapathy and Sanjay Chawla. 2019. Deep Learning for Anomaly Detection: A Survey. Retrieved from
http://arxiv.org/abs/1901.03407.

[23] Thanyalak Chalermarrewong, Tiranee Achalakul, and Simon ChongWee See. 2012. Failure prediction of data centers
using time series and fault tree analysis. In Proceedings of the IEEE 18th International Conference on Parallel and

Distributed Systems. IEEE, 794–799. https://doi.org/10.1109/icpads.2012.129
[24] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. Comput. Surveys 41, 3

(July 2009), 15:1–15:58. https://doi.org/10.1145/1541880.1541882
[25] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. 2002. Pinpoint: Problem determination in large, dynamic

Internet services. In Proceedings of the International Conference on Dependable Systems and Networks. IEEE, 595–604.
https://doi.org/10.1109/DSN.2002.1029005

[26] Mike Y. Chen, Anthony Accardi, Emre Kiciman, Jim Lloyd, Dave Patterson, Armando Fox, and Eric Brewer. 2004.
Path-based failure and evolution management. In Proceedings of the 1st Conference on Symposium on Networked

Systems Design and Implementation (NSDI’04). USENIX Association, 23. Retrieved from https://dl.acm.org/doi/10.
5555/1251175.1251198.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

https://doi.org/10.5555/2387880.2387910
https://doi.org/10.1145/3394486.3403392
https://doi.org/10.1109/tnn.2006.883010
https://doi.org/10.1145/1282380.1282383
https://doi.org/10.1145/3377813.3381353
https://doi.org/10.5555/1251054.1251069
https://doi.org/10.1145/2568225.2568246
https://netflixtechblog.com/netflix-chaos-monkey-upgraded-1d679429be5d
https://doi.org/10.1145/1755913.1755926
https://doi.org/10.1109/tcomm.1994.577079
https://doi.org/10.1109/32.748920
https://www.broadcom.com/products/software/aiops
https://doi.org/10.1145/3217871.3217872
https://doi.org/10.1145/203330.203338
https://doi.org/10.1109/PESW.1999.747478
https://doi.org/10.1147/rd.452.0311
http://arxiv.org/abs/1901.03407
https://doi.org/10.1109/icpads.2012.129
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/DSN.2002.1029005
https://dl.acm.org/doi/10.5555/1251175.1251198

A Survey of AIOps Methods for Failure Management 81:39

[27] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman. 2014. Failure analysis of jobs in compute clouds: A Google
cluster case study. In Proceedings of the IEEE 25th International Symposium on Software Reliability Engineering. IEEE,
167–177. https://doi.org/10.1109/issre.2014.34

[28] S. R. Chidamber and C. F. Kemerer. 1994. A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 20, 6
(6 1994), 476–493. https://doi.org/10.1109/32.295895

[29] Michael Chow, DavidMeisner, Jason Flinn, Daniel Peek, and Thomas F.Wenisch. 2014. Themysterymachine: End-to-
end performance analysis of large-scale internet services. In Proceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation (OSDI’14). USENIX Association, 217–231. https://dl.acm.org/doi/10.5555/2685048.
2685066

[30] Holger Cleve and Andreas Zeller. 2005. Locating causes of program failures. In Proceedings of the 27th International

Conference on Software Engineering (ICSE’05). ACM, New York, NY, 342–351. https://doi.org/10.1145/1062455.1062522
[31] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons, and Jeffrey S. Chase. 2004. Correlating instrumentation

data to system states: A building block for automated diagnosis and control. In Proceedings of the 6th Conference

on Symposium on Operating Systems Design and Implementation (OSDI’04). USENIX Association, 16. Retrieved from
https://dl.acm.org/doi/10.5555/1251254.1251270.

[32] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and Armando Fox. 2005. Capturing, in-
dexing, clustering, and retrieving system history. In Proceedings of the 20th ACM Symposium on Operating Systems

Principles (SOSP’05). ACM, New York, NY, 105–118. https://doi.org/10.1145/1095810.1095821
[33] Carlos H. A. Costa, Yoonho Park, Bryan S. Rosenburg, Chen-Yong Cher, and Kyung Dong Ryu. 2014. A system

software approach to proactive memory-error avoidance. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (SC’14). IEEE, 12 pages. https://doi.org/10.1109/SC.2014.63
[34] A. Csenki. 1990. Bayes predictive analysis of a fundamental software reliability model. IEEE Trans. Reliabil. 39, 2

(June 1990), 177–183. https://doi.org/10.1109/24.55879
[35] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2011. Evaluating defect prediction approaches: A benchmark

and an extensive comparison. Empir. Softw. Eng. 17, 4–5 (Aug. 2011), 531–577. https://doi.org/10.1007/s10664-011-
9173-9

[36] Yingnong Dang, Qingwei Lin, and Peng Huang. 2019. AIOps: Real-world challenges and research innovations. In
Proceedings of the IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE’19).
IEEE, 4–5. https://doi.org/10.1109/icse-companion.2019.00023

[37] Nickolas Allen Davis, Abdelmounaam Rezgui, Hamdy Soliman, Skyler Manzanares, and Milagre Coates. 2017. Fail-
ureSim: A system for predicting hardware failures in cloud data centers using neural networks. In Proceedings of the

IEEE 10th International Conference on Cloud Computing (CLOUD’17). IEEE, 544–551. https://doi.org/10.1109/cloud.
2017.75

[38] Karel Dejaeger, Thomas Verbraken, and Bart Baesens. 2013. Toward comprehensible software fault predictionmodels
using Bayesian network classifiers. IEEE Trans. Softw. Eng. 39, 2 (Feb. 2013), 237–257. https://doi.org/10.1109/tse.2012.
20

[39] B. Dhanalaxmi, G. Apparao Naidu, and K. Anuradha. 2015. A review on software fault detection and prevention
mechanism in software development activities. J. Comput. Eng. 17, 6 (2015), 25–30.

[40] Peter A. Dinda and David R. O’Hallaron. 1999. An evaluation of linear models for host load prediction. In Proceedings
of The 8th International Symposium on High Performance Distributed Computing. IEEE, 87–96.

[41] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly detection and diagnosis from
system logs through deep learning. In Proceedings of the ACM SIGSAC Conference on Computer and Communications

Security. ACM, 1285–1298. https://doi.org/10.1145/3133956.3134015
[42] Karim O. Elish and Mahmoud O. Elish. 2008. Predicting defect-prone software modules using support vector ma-

chines. J. Syst. Softw. 81, 5 (May 2008), 649–660. https://doi.org/10.1016/j.jss.2007.07.040
[43] Alice Este, Francesco Gringoli, and Luca Salgarelli. 2009. Support vector machines for TCP traffic classification. Com-

put. Netw. 53, 14 (Sep. 2009), 2476–2490. https://doi.org/10.1016/j.comnet.2009.05.003
[44] Ilenia Fronza, Alberto Sillitti, Giancarlo Succi, Mikko Terho, and Jelena Vlasenko. 2013. Failure prediction based on

log files using random indexing and support vector machines. J. Syst. Softw. 86, 1 (1 2013), 2–11. https://doi.org/10.
1016/j.jss.2012.06.025

[45] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly detection in distributed systems through
unstructured log analysis. In Proceedings of the 9th IEEE International Conference on Data Mining. IEEE Computer
Society, 149–158. https://doi.org/10.1109/icdm.2009.60

[46] Zhiwei Gao, Carlo Cecati, and Steven X. Ding. 2015. A survey of fault diagnosis and fault-tolerant techniques—
Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Trans. Industr. Electr. 62, 6 (June 2015),
3757–3767. https://doi.org/10.1109/tie.2015.2417501

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

https://doi.org/10.1109/issre.2014.34
https://doi.org/10.1109/32.295895
https://dl.acm.org/doi/10.5555/2685048.2685066
https://doi.org/10.1145/1062455.1062522
https://dl.acm.org/doi/10.5555/1251254.1251270
https://doi.org/10.1145/1095810.1095821
https://doi.org/10.1109/SC.2014.63
https://doi.org/10.1109/24.55879
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1109/icse-companion.2019.00023
https://doi.org/10.1109/cloud.2017.75
https://doi.org/10.1109/tse.2012.20
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1016/j.jss.2007.07.040
https://doi.org/10.1016/j.comnet.2009.05.003
https://doi.org/10.1016/j.jss.2012.06.025
https://doi.org/10.1109/icdm.2009.60
https://doi.org/10.1109/tie.2015.2417501

81:40 P. Notaro et al.

[47] Zhiwei Gao, Carlo Cecati, and Steven X. Ding. 2015. A survey of fault diagnosis and fault-tolerant techniques—Part
II: Fault diagnosis with knowledge-based and hybrid/active approaches. IEEE Trans. Industr. Electr. 62, 6 (June 2015),
3768–3774. https://doi.org/10.1109/TIE.2015.2419013

[48] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. 1995. Analysis of software rejuvenation using Markov regenerative
stochastic petri net. In Proceedings of the 6th International Symposium on Software Reliability Engineering (ISSRE’95)

(1995). IEEE, 180–187. https://doi.org/10.1109/issre.1995.497656
[49] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. S. Trivedi. 1998. A methodology for detection and estimation of

software aging. In Proceedings of the 9th International Symposium on Software Reliability Engineering. IEEE, 283–292.
https://doi.org/10.1109/issre.1998.730892

[50] Emanuel Giger, Marco D’Ambros, Martin Pinzger, and Harald C. Gall. 2012. Method-level bug prediction. In Proceed-

ings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM’12). ACM,
New York, NY, 171–180. https://doi.org/10.1145/2372251.2372285

[51] Tarun Goyal, Ajit Singh, and Aakanksha Agrawal. 2012. Cloudsim: Simulator for cloud computing infrastructure
and modeling. Proc. Eng. 38 (Nov. 2012), 3566–3572. https://doi.org/10.1016/j.proeng.2012.06.412

[52] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. 2000. Predicting fault incidence using software change history. IEEE
Trans. Softw. Eng. 26, 7 (July 2000), 653–661. https://doi.org/10.1109/32.859533

[53] Maurice H. Halstead. 1977. Elements of Software Science (Operating and Programming Systems Series). Elsevier Science
Inc..

[54] Greg Hamerly and Charles Elkan. 2001. Bayesian approaches to failure prediction for disk drives. In Proceedings of

the 18th International Conference on Machine Learning (ICML’01). Morgan Kaufmann, San Francisco, CA, 202–209.
https://doi.org/10.5555/645530.655825

[55] Seungjae Han, K. G. Shin, and H. A. Rosenberg. 1995. DOCTOR: An integrated software fault injection environment
for distributed real-time systems. In Proceedings of the IEEE International Computer Performance and Dependability

Symposium. IEEE, 204–213. https://doi.org/10.1109/IPDS.1995.395831
[56] J. L. Hellerstein, Fan Zhang, and P. Shahabuddin. 1999. An approach to predictive detection for service management.

In Proceedings of the 6th IFIP/IEEE International Symposium on Integrated Network Management. IEEE, 309–322. https:
//doi.org/10.1109/inm.1999.770691

[57] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. 1995. Software rejuvenation: Analysis, module and applications.
In Proceedings of the 25th International Symposium on Fault-Tolerant Computing. Digest of Papers. IEEE, 381–390.
https://doi.org/10.1109/FTCS.1995.466961

[58] G. F. Hughes, J. F. Murray, K. Kreutz-Delgado, and C. Elkan. 2002. Improved disk-drive failure warnings. IEEE Trans.

Reliabil. 51, 3 (Sep. 2002), 350–357. https://doi.org/10.1109/TR.2002.802886
[59] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. 1994. Experiments on the effectiveness of

dataflow- and control-flow-based test adequacy criteria—IEEE conference publication. In Proceedings of the 16th In-

ternational Conference on Software Engineering. IEEE, 191–200. Retrieved from https://ieeexplore.ieee.org/document/
296778.

[60] Olumuyiwa Ibidunmoye, Francisco Hernández-Rodriguez, and Erik Elmroth. 2015. Performance anomaly detection
and bottleneck identification. Comput. Surveys 48, 1 (Sep. 2015), 1–35. https://doi.org/10.1145/2791120

[61] Tariqul Islam and Dakshnamoorthy Manivannan. 2017. Predicting application failure in cloud: A machine learning
approach. In Proceedings of the IEEE International Conference on Cognitive Computing (ICCC’17). IEEE, 24–31. https:
//doi.org/10.1109/ieee.iccc.2017.11

[62] Itthichok Jangjaimon and Nian-Feng Tzeng. 2015. Effective cost reduction for elastic clouds under spot instance
pricing through adaptive checkpointing. IEEE Trans. Comput. 64, 2 (Feb. 2015), 396–409. https://doi.org/10.1109/tc.
2013.225

[63] David Jauk, Dai Yang, and Martin Schulz. 2019. Predicting faults in high performance computing systems: An in-
depth survey of the state-of-the-practice. In Proceedings of the International Conference for High Performance Com-

puting, Networking, Storage and Analysis (SC’19). ACM, New York, NY, Article 30, 13 pages. https://doi.org/10.1145/
3295500.3356185

[64] Srikanth Kandula, Dina Katabi, and Jean-Philippe Vasseur. 2005. Shrink: A tool for failure diagnosis in IP networks.
In Proceeding of the ACM SIGCOMM Workshop on Mining Network Data (MineNet’05). ACM, New York, NY, 6 pages.
https://doi.org/10.1145/1080173.1080178

[65] N. Karunanithi, D. Whitley, and Y. K. Malaiya. 1992. Prediction of software reliability using connectionist models.
IEEE Trans. Softw. Eng. 18, 7 (July 1992), 563–574. https://doi.org/10.1109/32.148475

[66] Taghi M. Khoshgoftaar and David L. Lanning. 1995. A neural network approach for early detection of program
modules having high risk in the maintenance phase. J. Syst. Softw. 29, 1 (Apr. 1995), 85–91. https://doi.org/10.1016/
0164-1212(94)00130-f

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

https://doi.org/10.1109/TIE.2015.2419013
https://doi.org/10.1109/issre.1995.497656
https://doi.org/10.1109/issre.1998.730892
https://doi.org/10.1145/2372251.2372285
https://doi.org/10.1016/j.proeng.2012.06.412
https://doi.org/10.1109/32.859533
https://doi.org/10.5555/645530.655825
https://doi.org/10.1109/IPDS.1995.395831
https://doi.org/10.1109/inm.1999.770691
https://doi.org/10.1109/FTCS.1995.466961
https://doi.org/10.1109/TR.2002.802886
https://ieeexplore.ieee.org/document/296778
https://doi.org/10.1145/2791120
https://doi.org/10.1109/ieee.iccc.2017.11
https://doi.org/10.1109/tc.2013.225
https://doi.org/10.1145/3295500.3356185
https://doi.org/10.1145/1080173.1080178
https://doi.org/10.1109/32.148475
https://doi.org/10.1016/0164-1212(94)00130-f

A Survey of AIOps Methods for Failure Management 81:41

[67] Barbara A. Kitchenham, David Budgen, and O. Pearl Brereton. 2010. The value of mapping studies - A participant-
observer case study. In Proceedings of the 14th International Conference on Evaluation and Assessment in Software

Engineering (EASE’10). BCS Learning & Development, 25–33. https://doi.org/10.14236/ewic/EASE2010.4
[68] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo. 1995. A Coding Approach to Event Correlation. Springer US,

Boston, MA, 266–277. https://doi.org/10.1007/978-0-387-34890-2_24
[69] Yevgeniy Sverdlik Data Center Knowledge. 2016. What Facebook Has Learned from Regularly Shutting Down

Entire Data Centers. Retrieved from https://www.datacenterknowledge.com/archives/2016/08/31/facebook-learned-
regularly-shutting-entire-data-centers.

[70] Khairy A. H. Kobbacy and Sunil Vadera. 2011. A survey of AI in operations management from 2005 to 2009. J.
Manufact. Technol. Manage. 22, 6 (July 2011), 706–733. https://doi.org/10.1108/17410381111149602

[71] K. A. H. Kobbacy, S Vadera, and M. H. Rasmy. 2007. AI and OR in management of operations: History and trends. J.
Oper. Res. Soc. 58, 1 (Jan. 2007), 10–28. https://doi.org/10.1057/palgrave.jors.2602132

[72] Anukool Lakhina, Mark Crovella, and Christophe Diot. 2004. Diagnosing network-wide traffic anomalies. In Pro-

ceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications

(SIGCOMM’04). ACM, New York, NY, 219–230. https://doi.org/10.1145/1015467.1015492
[73] Anukool Lakhina, Mark Crovella, and Christophe Diot. 2005. Mining anomalies using traffic feature distributions. In

Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications

(Philadelphia, Pennsylvania) (SIGCOMM’05). ACM, New York, NY, 217–228. https://doi.org/10.1145/1080091.1080118
[74] Andrew Lerner. 2017. AIOps Platforms—Gartner. Retrieved from https://blogs.gartner.com/andrew-lerner/2017/08/

09/aiops-platforms/.
[75] Anna Levin, Shelly Garion, Elliot K. Kolodner, Dean H. Lorenz, Katherine Barabash, Mike Kugler, and Niall

McShane. 2019. AIOps for a cloud object storage service. In Proceedings of the IEEE International Congress on Big

Data (BigDataCongress’19). IEEE, 165–169. https://doi.org/10.1109/BigDataCongress.2019.00036
[76] Jian Li, Pinjia He, Jieming Zhu, and Michael R. Lyu. 2017. Software defect prediction via convolutional neural net-

work. In Proceedings of the IEEE International Conference on Software Quality, Reliability and Security (QRS’17). IEEE,
318–328. https://doi.org/10.1109/qrs.2017.42

[77] Jing Li, Xinpu Ji, Yuhan Jia, Bingpeng Zhu, GangWang, Zhongwei Li, and Xiaoguang Liu. 2014. Hard drive failure pre-
diction using classification and regression trees. In Proceedings of the 44th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks. IEEE, 383–394. https://doi.org/10.1109/dsn.2014.44
[78] Jing Li, Rebecca J. Stones, Gang Wang, Zhongwei Li, Xiaoguang Liu, and Kang Xiao. 2016. Being accurate is not

enough: New metrics for disk failure prediction. In Proceedings of the IEEE 35th Symposium on Reliable Distributed

Systems (SRDS’16). IEEE, 71–80. https://doi.org/10.1109/srds.2016.019
[79] Yangguang Li, Zhen Ming (Jack) Jiang, Heng Li, Ahmed E. Hassan, Cheng He, Ruirui Huang, Zhengda Zeng, Mian

Wang, and Pinan Chen. 2020. Predicting node failures in an ultra-large-scale cloud computing platform: An AIOps
solution. ACM Trans. Softw. Eng. Methodol. 29, 2 (27 4 2020), 13:1–13:24. https://doi.org/10.1145/3385187

[80] Zeyan Li, Chengyang Luo, Yiwei Zhao, Yongqian Sun, Kaixin Sui, Xiping Wang, Dapeng Liu, Xing Jin, Qi Wang,
and Dan Pei. 2019. Generic and robust localization of multi-dimensional root causes. In Proceedings of the IEEE 30th

International Symposium on Software Reliability Engineering (ISSRE’19). IEEE, IEEE, 47–57.
[81] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo. 2007. Failure prediction in IBM bluegene/l event

logs. In Proceedings of the 7th IEEE International Conference on Data Mining (ICDM’07). IEEE, 583–588. https://doi.
org/10.1109/icdm.2007.46

[82] Fan Lin, Matt Beadon, Harish Dattatraya Dixit, Gautham Vunnam, Amol Desai, and Sriram Sankar. 2018. Hardware
remediation at scale. In Proceedings of the 48th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks Workshops (DSN-W’18). IEEE, 14–17. https://doi.org/10.1109/dsn-w.2018.00015
[83] Fred Lin, Keyur Muzumdar, Nikolay Pavlovich Laptev, Mihai-Valentin Curelea, Seunghak Lee, and Sriram Sankar.

2020. Fast dimensional analysis for root cause investigation in a large-scale service environment. Proc. ACM Meas.

Anal. Comput. Syst. 4, 2, Article 31 (June 2020), 23 pages. https://doi.org/10.1145/3392149
[84] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. 2016. Log clustering based problem

identification for online service systems. In Proceedings of the 38th International Conference on Software Engineering

Companion (ICSE’16). ACM, New York, NY, 102–111. https://doi.org/10.1145/2889160.2889232
[85] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P. Midkiff. 2005. SOBER: Statistical model-based bug local-

ization. ACM SIGSOFT Softw. Eng. Notes 30, 5 (Sep. 2005), 286. https://doi.org/10.1145/1095430.1081753
[86] Dapeng Liu, Youjian Zhao, Haowen Xu, Yongqian Sun, Dan Pei, Jiao Luo, Xiaowei Jing, and Mei Feng. 2015. Oppren-

tice: Towards practical and automatic anomaly detection through machine learning. In Proceedings of the Internet

Measurement Conference. ACM, New York, NY, 211–224. https://doi.org/10.1145/2815675.2815679
[87] David Lo, Hong Cheng, Jiawei Han, Siau-Cheng Khoo, and Chengnian Sun. 2009. Classification of software behaviors

for failure detection: A discriminative pattern mining approach. In Proceedings of the 15th ACM SIGKDD International

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

https://doi.org/10.14236/ewic/EASE2010.4
https://doi.org/10.1007/978-0-387-34890-2_24
https://www.datacenterknowledge.com/archives/2016/08/31/facebook-learned-regularly-shutting-entire-data-centers
https://doi.org/10.1108/17410381111149602
https://doi.org/10.1057/palgrave.jors.2602132
https://doi.org/10.1145/1015467.1015492
https://doi.org/10.1145/1080091.1080118
https://blogs.gartner.com/andrew-lerner/2017/08/09/aiops-platforms/
https://doi.org/10.1109/BigDataCongress.2019.00036
https://doi.org/10.1109/qrs.2017.42
https://doi.org/10.1109/dsn.2014.44
https://doi.org/10.1109/srds.2016.019
https://doi.org/10.1145/3385187
https://doi.org/10.1109/icdm.2007.46
https://doi.org/10.1109/dsn-w.2018.00015
https://doi.org/10.1145/3392149
https://doi.org/10.1145/2889160.2889232
https://doi.org/10.1145/1095430.1081753
https://doi.org/10.1145/2815675.2815679

81:42 P. Notaro et al.

Conference on Knowledge Discovery andDataMining (KDD’09). ACM,NewYork, NY, 557–566. https://doi.org/10.1145/
1557019.1557083

[88] Ao Ma, Fred Douglis, Guanlin Lu, Darren Sawyer, Surendar Chandra, and Windsor Hsu. 2015. RAIDShield: Charac-
terizing, monitoring, and proactively protecting against disk failures. In Proceedings of the 13th USENIX Conference

on File and Storage Technologies (FAST’15). USENIX Association, 241–256. https://www.usenix.org/conference/fast15/
technical-sessions/presentation/ma

[89] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca Schroeder. 2017. Proactive error prediction to improve storage
system reliability. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’17). USENIX Association,
391–402. Retrieved from https://www.usenix.org/conference/atc17/technical-sessions/presentation/mahdisoltani.

[90] T. J. McCabe. 1976. A complexity measure. IEEE Trans. Softw. Eng. SE-2, 4 (Dec. 1976), 308–320. https://doi.org/10.
1109/TSE.1976.233837

[91] Meiliana, Syaeful Karim, Harco Leslie Hendric Spits Warnars, Ford Lumban Gaol, Edi Abdurachman, and Benfano
Soewito. 2017. Software metrics for fault prediction using machine learning approaches: A literature review with
PROMISE repository dataset. In Proceedings of the IEEE International Conference on Cybernetics and Computational

Intelligence (CyberneticsCom’17). IEEE, 19–23. https://doi.org/10.1109/cyberneticscom.2017.8311708
[92] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao Chen, Ruizhi Zhang, Shimin Tao,

Pei Sun, et al. 2019. LogAnomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured
logs. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI’19). 4739–4745. https:
//doi.org/10.24963/ijcai.2019/658

[93] Tim Menzies. 2004. PROMISE DATASETS PAGE. Retrieved from http://promise.site.uottawa.ca/SERepository/
datasets-page.html.

[94] Tim Menzies, Jeremy Greenwald, and Art Frank. 2007. Data mining static code attributes to learn defect predictors.
IEEE Trans. Softw. Eng. 33, 1 (Jan. 2007), 2–13. https://doi.org/10.1109/TSE.2007.256941

[95] AdamMoody, Greg Bronevetsky, KathrynMohror, and de Bronis R. Supinski. 2010. Design, modeling, and evaluation
of a scalable multi-level checkpointing system. In Proceedings of the ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis. IEEE, 1–11. https://doi.org/10.1109/sc.2010.18
[96] Moogsoft. 2020. What Is AIOps? Moogsoft. Retrieved from https://www.moogsoft.com/resources/aiops/guide/

everything-aiops/.
[97] Andrew W. Moore and Denis Zuev. 2005. Internet traffic classification using bayesian analysis techniques. In Pro-

ceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems (SIG-

METRICS’05). ACM, New York, NY, 50–60. https://doi.org/10.1145/1064212.1064220
[98] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A comparative analysis of the efficiency of change

metrics and static code attributes for defect prediction. In Proceedings of the 13th International Conference on Software
Engineering. ACM, New York, NY, 181–190. https://doi.org/10.1145/1368088.1368114

[99] Mukosi Abraham Mukwevho and Turgay Celik. 2021. Toward a smart cloud: A review of fault-tolerance methods in
cloud systems. IEEE Trans. Serv. Comput. 14, 2 (2021), 589–605. https://doi.org/10.1109/tsc.2018.2816644

[100] Joseph F. Murray, Gordon F. Hughes, and Kenneth Kreutz-Delgado. 2003. Hard drive failure prediction using non-
parametric statistical methods. Retrieved from http://dsp.ucsd.edu/~jfmurray/publications/Murray2003.pdf.

[101] Joseph F. Murray, Gordon F. Hughes, and Kenneth Kreutz-Delgado. 2005. Machine learning methods for predicting
failures in hard drives: A multiple-instance application. J. Mach. Learn. Res. 6 (Jan. 2005), 783–816. https://doi.org/10.
5555/1046920.1088699

[102] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. 2006. Mining metrics to predict component failures. In
Proceeding of the 28th International Conference on Software Engineering (ICSE’06). ACM, New York, NY, 452–461.
https://doi.org/10.1145/1134285.1134349

[103] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. 2013. Transfer defect learning. In Proceedings of the 35th Inter-

national Conference on Software Engineering (ICSE’13). IEEE, 382–391. https://doi.org/10.1109/icse.2013.6606584
[104] Iyswarya Narayanan, Kushagra Vaid, Di Wang, Myeongjae Jeon, Bikash Sharma, Laura Caulfield, Anand Sivasub-

ramaniam, Ben Cutler, Jie Liu, and Badriddine Khessib. 2016. SSD failures in datacenters: What? When? and Why?
In Proceedings of the 9th ACM International on Systems and Storage Conference (SYSTOR’16). ACM, New York, NY,
Article 7, 11 pages. https://doi.org/10.1145/2928275.2928278

[105] Roberto Natella, Domenico Cotroneo, Joao A. Duraes, and Henrique S. Madeira. 2013. On fault representativeness
of software fault injection. IEEE Trans. Softw. Eng. 39, 1 (Jan. 2013), 80–96. https://doi.org/10.1109/tse.2011.124

[106] Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. 2016. Assessing dependability with software fault
injection: A survey. Comput. Surveys 48, 3 (Aug. 2016), 44:1–44:55. https://doi.org/10.1145/2841425

[107] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. 2019. Anomaly detection and classification using distributed tracing
and deep learning. In Proceedings of the 19th IEEE/ACM International Symposium onCluster, Cloud andGrid Computing

(CCGRID’19). IEEE, 241–250. https://doi.org/10.1109/ccgrid.2019.00038

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

https://doi.org/10.1145/1557019.1557083
https://www.usenix.org/conference/fast15/technical-sessions/presentation/ma
https://www.usenix.org/conference/atc17/technical-sessions/presentation/mahdisoltani
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/cyberneticscom.2017.8311708
https://doi.org/10.24963/ijcai.2019/658
http://promise.site.uottawa.ca/SERepository/datasets-page.html
https://doi.org/10.1109/TSE.2007.256941
https://doi.org/10.1109/sc.2010.18
https://www.moogsoft.com/resources/aiops/guide/everything-aiops/
https://doi.org/10.1145/1064212.1064220
https://doi.org/10.1145/1368088.1368114
https://doi.org/10.1109/tsc.2018.2816644
http://dsp.ucsd.edu/~jfmurray/publications/Murray2003.pdf
https://doi.org/10.5555/1046920.1088699
https://doi.org/10.1145/1134285.1134349
https://doi.org/10.1109/icse.2013.6606584
https://doi.org/10.1145/2928275.2928278
https://doi.org/10.1109/tse.2011.124
https://doi.org/10.1145/2841425
https://doi.org/10.1109/ccgrid.2019.00038

A Survey of AIOps Methods for Failure Management 81:43

[108] NetManAIOps. 2019. SMD Dataset—OmniAnomaly. Retrieved from https://github.com/NetManAIOps/
OmniAnomaly.

[109] Clodoaldo Brasilino Leite Neto, Pedro Batista De Carvalho Filho, andAlexandre NÃşbrega Duarte. 2013. A systematic
mapping study on fault management in cloud computing. In Proceedings of the International Conference on Parallel

and Distributed Computing, Applications and Technologies. IEEE, 332–337. https://doi.org/10.1109/PDCAT.2013.59
[110] Hiep Nguyen, Zhiming Shen, Yongmin Tan, and Xiaohui Gu. 2013. FChain: Toward black-box online fault localization

for cloud systems. In Proceedings of the IEEE 33rd International Conference on Distributed Computing Systems. IEEE,
21–30. https://doi.org/10.1109/icdcs.2013.26

[111] Thuy T. T. Nguyen and Grenville Armitage. 2008. A survey of techniques for internet traffic classification using
machine learning. IEEE Commun. Surveys Tutor. 10, 4 (2008), 56–76. https://doi.org/10.1109/surv.2008.080406

[112] Changhai Nie and Hareton Leung. 2011. A survey of combinatorial testing. Comput. Surveys 43, 2 (Apr. 2011),
11:1–11:29. https://doi.org/10.1145/1883612.1883618

[113] Paolo Notaro, Jorge Cardoso, and Michael Gerndt. 2020. A systematic mapping study in AIOps. In Proceedings of

the International Conference on Service-oriented Computing (ICSOC’20). Workshops: AIOps, CFTIC, STRAPS, AI-PA,

AI-IOTS, and Satellite Events. Springer, 110–123. Retrieved from http://arxiv.org/abs/2012.09108.
[114] H. Okamura, Y. Nishimura, and T. Dohi. 2004. A dynamic checkpointing scheme based on reinforcement learning.

In Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing. IEEE, 151–158. https:
//doi.org/10.1109/PRDC.2004.1276566

[115] Ahmet Okutan and Olcay Taner Yıldız. 2012. Software defect prediction using bayesian networks. Empir. Softw. Eng.

19, 1 (Aug. 2012), 154–181. https://doi.org/10.1007/s10664-012-9218-8
[116] OpsRamp. 2020. AIOps (AI for IT Operations)—OpsRamp. Retrieved from https://www.opsramp.com/solutions/

service-centric-aiops/.
[117] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. 2005. Predicting the location and number of faults in large software

systems. IEEE Trans. Softw. Eng. 31, 4 (Apr. 2005), 340–355. https://doi.org/10.1109/tse.2005.49
[118] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. 2007. Failure trends in a large disk drive popula-

tion. In Proceedings of the 5th USENIX Conference on File and Storage Technologies (FAST’07). USENIX Association, 2.
Retrieved from https://www.usenix.org/conference/fast-07/failure-trends-large-disk-drive-population.

[119] Teerat Pitakrat, Dušan Okanović, André van Hoorn, and Lars Grunske. 2018. Hora: Architecture-aware online failure
prediction. J. Syst. Softw. 137 (Mar. 2018), 669–685. https://doi.org/10.1016/j.jss.2017.02.041

[120] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, Jiayang Sun, and Bin Wang. 2003. Automated support for
classifying software failure reports. In Proceedings of the 25th International Conference on Software Engineering. IEEE,
465–475. https://doi.org/10.1109/icse.2003.1201224

[121] M. Renieris and S. P. Reiss. 2003. Fault localization with nearest neighbor queries. In Proceedings of the 18th IEEE Inter-
national Conference on Automated Software Engineering. IEEE, 30–39. https://ieeexplore.ieee.org/document/1240292

[122] Felix Salfner, Maren Lenk, andMiroslawMalek. 2010. A survey of online failure predictionmethods. Comput. Surveys

42, 3 (Mar. 2010), 1–42. https://doi.org/10.1145/1670679.1670680
[123] Felix Salfner and Miroslaw Malek. 2007. Using hidden semi-Markov models for effective online failure prediction.

In Proceedings of the 26th IEEE International Symposium on Reliable Distributed Systems (SRDS’07). IEEE, 161–174.
https://doi.org/10.1109/srds.2007.35

[124] Areeg Samir and Claus Pahl. 2019. A Controller Architecture for Anomaly Detection, Root Cause Analysis and Self-
Adaptation for Cluster Architectures. Retrieved from https://orbilu.uni.lu/handle/10993/42062.

[125] Mark Schwabacher and Kai Goebel. 2007. A survey of artificial intelligence for prognostics. In Proceedings of the

AAAI Fall Symposium on Artificial Intelligence for Prognostics. AAAI, 108–115. Retrieved from https://www.aaai.org/
Library/Symposia/Fall/2007/fs07-02-016.php.

[126] Qihong Shao, Yi Chen, Shu Tao, Xifeng Yan, and Nikos Anerousis. 2008. Efficient ticket routing by resolution se-
quence mining. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD’08). ACM, New York, NY, 605–613. https://doi.org/10.1145/1401890.1401964
[127] Bikash Sharma, Praveen Jayachandran, Akshat Verma, and Chita R. Das. 2013. CloudPD: Problem determination

and diagnosis in shared dynamic clouds. In Proceedings of the 43rd Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN’13). IEEE, 1–12. https://doi.org/10.1109/dsn.2013.6575298
[128] Akbar Siami Namin, James H. Andrews, and Duncan J. Murdoch. 2008. Sufficient mutation operators for measuring

test effectiveness. In Proceedings of the 13th International Conference on Software Engineering (ICSE’08). ACM, New
York, NY, 351–360. https://doi.org/10.1145/1368088.1368136

[129] BMC Software. 2020. AIOps—BMC. Retrieved from https://www.bmc.com/it-solutions/aiops.html.
[130] Marc Solé, VictorMuntés-Mulero, Annie Ibrahim Rana, and Giovani Estrada. 2017. Survey onModels and Techniques

for Root-Cause Analysis. Retrieved from http://arxiv.org/abs/1701.08546.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

https://github.com/NetManAIOps/OmniAnomaly
https://doi.org/10.1109/PDCAT.2013.59
https://doi.org/10.1109/icdcs.2013.26
https://doi.org/10.1109/surv.2008.080406
https://doi.org/10.1145/1883612.1883618
http://arxiv.org/abs/2012.09108
https://doi.org/10.1109/PRDC.2004.1276566
https://doi.org/10.1007/s10664-012-9218-8
https://www.opsramp.com/solutions/service-centric-aiops/
https://doi.org/10.1109/tse.2005.49
https://www.usenix.org/conference/fast-07/failure-trends-large-disk-drive-population
https://doi.org/10.1016/j.jss.2017.02.041
https://doi.org/10.1109/icse.2003.1201224
https://ieeexplore.ieee.org/document/1240292
https://doi.org/10.1145/1670679.1670680
https://doi.org/10.1109/srds.2007.35
https://orbilu.uni.lu/handle/10993/42062
https://www.aaai.org/Library/Symposia/Fall/2007/fs07-02-016.php
https://doi.org/10.1145/1401890.1401964
https://doi.org/10.1109/dsn.2013.6575298
https://doi.org/10.1145/1368088.1368136
https://www.bmc.com/it-solutions/aiops.html
http://arxiv.org/abs/1701.08546

81:44 P. Notaro et al.

[131] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019. Robust anomaly detection for multivari-
ate time series through stochastic recurrent neural network. In Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD’19). ACM, New York, NY, 2828–2837.
[132] Yongqian Sun, Youjian Zhao, Ya Su, Dapeng Liu, Xiaohui Nie, Yuan Meng, Shiwen Cheng, Dan Pei, Shenglin Zhang,

Xianping Qu et al. 2018. Hotspot: Anomaly localization for additive kpis with multi-dimensional attributes. IEEE
Access 6 (2018), 10909–10923.

[133] Resolve Systems. 2020. What is AIOps?—Resolve. Retrieved from https://resolve.io/what-is-aiops.
[134] D. Tang and R. K. Iyer. 1993. Dependability measurement and modeling of a multicomputer system. IEEE Trans.

Comput. 42, 1 (1993), 62–75. https://doi.org/10.1109/12.192214
[135] Timothy K. Tsai and Ravishankar K. Iyer. 1995. FTAPE: A fault injection tool to measure fault Tolerance. NASA

STI/Recon Technical Report. 25333 pages. https://doi.org/10.2514/6.1995-1041
[136] K. Vaidyanathan and K. S. Trivedi. 1999. A measurement-based model for estimation of resource exhaustion in op-

erational software systems. In Proceedings of the 10th International Symposium on Software Reliability Engineering.
IEEE, 84–93. https://doi.org/10.1109/issre.1999.809313

[137] K. Vaidyanathan and K. S. Trivedi. 2005. A comprehensive model for software rejuvenation. IEEE Trans. Depend.

Secure Comput. 2, 2 (Feb. 2005), 124–137. https://doi.org/10.1109/tdsc.2005.15
[138] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. 2010. Characterizing cloud computing hardware reliability.

In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC’10). ACM, New York, NY, 193–204. https://doi.
org/10.1145/1807128.1807161

[139] Jing Wang, Daniel Rossell, Christos G. Cassandras, and Ioannis Ch. Paschalidis. 2013. Network anomaly detection: A
survey and comparative analysis of stochastic and deterministic methods. In Proceedings of the 52nd IEEE Conference

on Decision and Control. IEEE, 182–187. https://doi.org/10.1109/CDC.2013.6759879
[140] Qing Wang, Wubai Zhou, Chunqiu Zeng, Tao Li, Larisa Shwartz, and Genady Ya. Grabarnik. 2017. Constructing the

knowledge base for cognitive IT service management. In Proceedings of the IEEE International Conference on Services

Computing (SCC’17). IEEE, 410–417. https://doi.org/10.1109/scc.2017.59
[141] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic features for defect prediction. In

Proceedings of the 38th International Conference on Software Engineering (ICSE’16). ACM, New York, NY, 297–308.
https://doi.org/10.1145/2884781.2884804

[142] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang. 2017. End-to-end encrypted traffic classi-
fication with one-dimensional convolution neural networks. In Proceedings of the IEEE International Conference on

Intelligence and Security Informatics (ISI’17). IEEE, 43–48. https://doi.org/10.1109/isi.2017.8004872
[143] Yu Wang, Qiang Miao, Eden W. M. Ma, Kwok-Leung Tsui, and Michael G. Pecht. 2013. Online anomaly detection for

hard disk drives based on mahalanobis distance. IEEE Trans. Reliabil. 62, 1 (Mar. 2013), 136–145. https://doi.org/10.
1109/tr.2013.2241204

[144] AmyWard, Peter Glynn, and Kathy Richardson. 1998. Internet service performance failure detection. ACM SIGMET-

RICS Perform. Eval. Rev. 26, 3 (Dec. 1998), 38–43. https://doi.org/10.1145/306225.306237
[145] W. Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2014. The DStar method for effective software fault local-

ization. IEEE Trans. Reliabil. 63, 1 (Mar. 2014), 290–308. https://doi.org/10.1109/tr.2013.2285319
[146] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A survey on software fault localization.

IEEE Trans. Softw. Eng. 42, 8 (Aug. 2016), 707–740. https://doi.org/10.1109/tse.2016.2521368
[147] Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. 2011. ReLink: Recovering links between bugs

and changes. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations

of Software Engineering (ESEC/FSE’11). ACM, 15–25. https://doi.org/10.1145/2025113.2025120
[148] Jiang Xiao, Zhuang Xiong, Song Wu, Yusheng Yi, Hai Jin, and Kan Hu. 2018. Disk failure prediction in data centers

via online learning. In Proceedings of the 47th International Conference on Parallel Processing (ICPP’18). ACM, New
York, NY, Article 35, 10 pages. https://doi.org/10.1145/3225058.3225106

[149] Chang Xu, Gang Wang, Xiaoguang Liu, Dongdong Guo, and Tie-Yan Liu. 2016. Health status assessment and failure
prediction for hard drives with recurrent neural networks. IEEE Trans. Comput. 65, 11 (Nov. 2016), 3502–3508. https:
//doi.org/10.1109/tc.2016.2538237

[150] Haowen Xu, Yang Feng, Jie Chen, Zhaogang Wang, Honglin Qiao, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao
Bu, Zhihan Li et al. 2018. Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web
applications. In Proceedings of the World Wide Web Conference (WWW’18). ACM, New York, NY, 187–196. https:
//doi.org/10.1145/3178876.3185996

[151] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. 2009. Detecting large-scale system
problems by mining console logs. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles

(SOSP’09) . ACM, New York, NY, 117–132. https://doi.org/10.1145/1629575.1629587

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

https://resolve.io/what-is-aiops
https://doi.org/10.1109/12.192214
https://doi.org/10.2514/6.1995-1041
https://doi.org/10.1109/issre.1999.809313
https://doi.org/10.1109/tdsc.2005.15
https://doi.org/10.1145/1807128.1807161
https://doi.org/10.1109/CDC.2013.6759879
https://doi.org/10.1109/scc.2017.59
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1109/isi.2017.8004872
https://doi.org/10.1109/tr.2013.2241204
https://doi.org/10.1145/306225.306237
https://doi.org/10.1109/tr.2013.2285319
https://doi.org/10.1109/tse.2016.2521368
https://doi.org/10.1145/2025113.2025120
https://doi.org/10.1145/3225058.3225106
https://doi.org/10.1109/tc.2016.2538237
https://doi.org/10.1145/3178876.3185996
https://doi.org/10.1145/1629575.1629587

A Survey of AIOps Methods for Failure Management 81:45

[152] Zhenghua Xue, Xiaoshe Dong, Siyuan Ma, and Weiqing Dong. 2007. A survey on failure prediction of large-scale
server clusters. In Proceedings of the 8th ACIS International Conference on Software Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed Computing (SNPD’07). IEEE, 733–738. https://doi.org/10.1109/snpd.2007.284
[153] Xiaoxing Yang, Ke Tang, and Xin Yao. 2015. A learning-to-rank approach to software defect prediction. IEEE Trans.

Reliabil. 64, 1 (3 2015), 234–246. https://doi.org/10.1109/tr.2014.2370891
[154] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar Pasupathy. 2010. SherLog: Er-

ror diagnosis by connecting clues from run-time logs. ACM SIGARCH Comput. Architect. News 38, 1 (Mar. 2010),
143–154. https://doi.org/10.1145/1735970.1736038

[155] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M. Lee, Xiaoming Tang, Yuanyuan Zhou, and Stefan
Savage. 2012. Be conservative: Enhancing failure diagnosis with proactive logging. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation (OSDI’12). USENIX Association, 293–306.

[156] Andreas Zeller. 2002. Isolating cause-effect chains from computer programs. In Proceedings of the 10th ACM SIGSOFT

Symposium on Foundations of Software Engineering (SIGSOFT’02/FSE’10). ACM, New York, NY, 1–10. https://doi.org/
10.1145/587051.587053

[157] Andreas Zeller. 2006. Eclipse Bug Data!—Software Engineering Chair (Prof. Zeller)—Saarland University. Retrieved
from https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/.

[158] Chunqiu Zeng, Wubai Zhou, Tao Li, Larisa Shwartz, and Genady Ya Grabarnik. 2017. Knowledge guided hierarchical
multi-label classification over ticket data. IEEE Trans. Netw. Service Manage. 14, 2 (6 2017), 246–260. https://doi.org/
10.1109/tnsm.2017.2668363

[159] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei Cheng, Jingchao Ni, Bo Zong,
Haifeng Chen, and Nitesh V. Chawla. 2019. A deep neural network for unsupervised anomaly detection and diag-
nosis in multivariate time series data. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. AAAI,
1409–1416.

[160] Ke Zhang, Jianwu Xu, Martin Renqiang Min, Guofei Jiang, Konstantinos Pelechrinis, and Hui Zhang. 2016. Auto-
mated IT system failure prediction: A deep learning approach. In Proceedings of the IEEE International Conference on

Big Data (BigData’16). IEEE, 1291–1300. https://doi.org/10.1109/bigdata.2016.7840733
[161] Shenglin Zhang, Weibin Meng, Jiahao Bu, Sen Yang, Ying Liu, Dan Pei, Jun Xu, Yu Chen, Hui Dong, Xianping Qu,

and et al. 2017. Syslog processing for switch failure diagnosis and prediction in datacenter networks. In Proceedings

of the IEEE/ACM 25th International Symposium on Quality of Service (IWQoS’17). IEEE, 1–10. https://doi.org/10.1109/
iwqos.2017.7969130

[162] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang, Chunyu Xie, Xinsheng Yang, Qian
Cheng, Ze Li, Junjie Chen, Xiaoting He, Randolph Yao, Jian-Guang Lou, Murali Chintalapati, Furao Shen, and
Dongmei Zhang. 2019. Robust log-based anomaly detection on unstable log data. In Proceedings of the 27th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineer-

ing (ESEC/FSE’19). ACM, New York, NY, 807–817. https://doi.org/10.1145/3338906.3338931
[163] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and Yuanyuan Zhou. 2017. Log20: Fully automated op-

timal placement of log printing statements under specified overhead threshold. In Proceedings of the 26th Symposium

on Operating Systems Principles (SOSP’17). ACM, New York, NY, 565–581. https://doi.org/10.1145/3132747.3132778
[164] Ying Zhao, Xiang Liu, Siqing Gan, and Weimin Zheng. 2010. Predicting disk failures with HMM- and HSMM-based

approaches. In Proceedings of the 10th Industrial Conference on Advances in Data Mining: Applications and Theoretical

Aspects (ICDM’10). Springer-Verlag, Berlin, 390–404.
[165] Shuai Zheng, Kosta Ristovski, Ahmed Farahat, and Chetan Gupta. 2017. Long short-term memory network for re-

maining useful life estimation. In Proceedings of the IEEE International Conference on Prognostics and Health Manage-

ment (ICPHM’17) (2017–06). IEEE, 88–95. https://doi.org/10.1109/icphm.2017.7998311
[166] Wubai Zhou, Liang Tang, Tao Li, Larisa Shwartz, and Genady Ya. Grabarnik. 2015. Resolution recommendation for

event tickets in service management. In Proceedings of the IFIP/IEEE International Symposium on Integrated Network

Management (IM’15). IEEE, 287–295. https://doi.org/10.1109/inm.2015.7140303
[167] Bingpeng Zhu, Gang Wang, Xiaoguang Liu, Dianming Hu, Sheng Lin, and Jingwei Ma. 2013. Proactive drive failure

prediction for large scale storage systems. In Proceedings of the IEEE 29th Symposium on Mass Storage Systems and

Technologies (MSST’13). IEEE, 1–5. https://doi.org/10.1109/msst.2013.6558427
[168] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and Dongmei Zhang. 2015. Learning to log: Help-

ing developers make informed logging decisions. In Proceedings of the IEEE/ACM 37th IEEE International Conference

on Software Engineering. IEEE, 415–425. https://doi.org/10.1109/icse.2015.60

Received April 2021; revised July 2021; accepted August 2021

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 6, Article 81. Publication date: November 2021.

https://doi.org/10.1109/snpd.2007.284
https://doi.org/10.1109/tr.2014.2370891
https://doi.org/10.1145/1735970.1736038
https://doi.org/10.1145/587051.587053
https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
https://doi.org/10.1109/tnsm.2017.2668363
https://doi.org/10.1109/bigdata.2016.7840733
https://doi.org/10.1109/iwqos.2017.7969130
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3132747.3132778
https://doi.org/10.1109/icphm.2017.7998311
https://doi.org/10.1109/inm.2015.7140303
https://doi.org/10.1109/msst.2013.6558427
https://doi.org/10.1109/icse.2015.60

