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ABSTRACT

Internet-based service companies monitor a large number of KPIs
(Key Performance Indicators) to ensure their service quality and
reliability. Correlating KPIs by fluctuations reveals interactions
between KPIs under anomalous situations and can be extremely
useful for service troubleshooting. However, such a KPI flux-
correlation has been little studied so far in the domain of Internet
service operations management. A major challenge is how to
automatically and accurately separate fluctuations from normal
variations in KPIs with different structural characteristics (such
as seasonal, trend and stationary) for a large number of KPIs.
In this paper, we propose CoFlux, an unsupervised approach, to
automatically (without manual selection of algorithm fitting and
parameter tuning) determine whether two KPIs are correlated by
fluctuations, in what temporal order they fluctuate, and whether
they fluctuate in the same direction. CoFlux’s robust feature
engineering and robust correlation score computation enable it
to work well against the diverse KPI characteristics. Our extensive
experiments have demonstrated that CoFlux achieves the best F1-
Scores of 0.84 (0.90), 0.92 (0.95), 0.95 (0.99), in answering these three
questions, in the two real datasets from a top global Internet com-
pany, respectively. Moreover, we showed that CoFlux is effective
in assisting service troubleshooting through the applications of
alert compression, recommending Top N causes, and constructing
fluctuation propagation chains.
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1 INTRODUCTION

Large-scale Internet-based service companies provide a large
number of services and applications through thousands of servers
[1, 2]. However, service interruptions are inevitable due to many
reasons, such as network outages, server breakdown and malicious
attacks [3, 4]. To stay competitive, operators in these companies
take great efforts to keep their services reliable. They constantly
monitor KPIs (Key Performance Indicators), time series that contain
service quality measures (such as success ratio and number of
requests [5]). An incident can trigger fluctuations in some KPIs,
and the fluctuations may propagate to more related KPIs to form
interweaved fluctuations, which complicate incident resolution and
root cause analysis [6]. Without understanding their relationships,
it is challenging for operators to prioritize alerts triggered by
interweaved fluctuations and identify possible incident impact.

In this paper, we focus on analyzing the correlation between KPI
fluctuations. Fluctuations are deviations from expected values in
a KPI Large fluctuations likely are anomalies and often presented
as sudden spikes or dips [3]. We define that two KPIs are flux-
correlated if fluctuations in one KPI are correlated with those in
the other over a period of time. Note that flux-correlation is different
from KPI correlation which is often calculated using the raw values of
KPI Two flux-correlated KPIs may be uncorrelated when their raw
values are considered. For example, as shown in Fig. 1(a), the raw
values of K; and K; (or K; and K3) are not correlated by algorithms,
for example, Pearson Correlation [7]. However, the fluctuations of
these two KPIs, as shown in Fig. 1(b), are highly correlated since
they often happen synchronously or in sequence. As a result, flux-
correlation should be analyzed based on fluctuations rather than
raw KPIs.
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Figure 1: Examples of Flux-correlation.

Flux-correlation can assist operators in service troubleshooting
in many aspects. An Internet-based service often consists of a
stack of software modules deployed on multiple machines [1]. The
service is monitored by a number of KPIs at different levels, such
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as machine-level and module-level [2]. When a failure happens,
excessive and often correlated alerts are generated from these KPIs.
These redundant alerts compete for operators’ attention and distract
them from diagnosis. With flux-correlation, first, we can cluster
KPIs based on their flux-correlation results for alert compression
[8]. If two or more KPIs are flux-correlated, they can be grouped
into a cluster, alerts are raised based on the cluster as a whole as
opposed to individual KPIs, greatly reducing operators’ workload.
For example, in Fig. 1(a), K1, Kz and K3 can be grouped into one
cluster, while K4, K5 and K¢ form another cluster. Second, when
anomalies occur at a KPI, operators can check the fluctuations of
its Top N flux-correlated KPIs to narrow down their analysis scope.
Third, in order to infer root causes, we can construct a fluctuation
propagation chain by the temporal order in which KPIs fluctuate
(e.g., first Ky, then K5 and finally K¢, as shown in Fig. 1(a)). As
suggested by [6], within a service, KPIs with the earliest anomalous
changes can better reflect actual root causes.

The idea of flux-correlation has also attracted interest from
other fields such as system modeling [9] and stock market [10].
[9] aims at characterizing the anomalous interactions among KPIs
in a system and constructing Structure-of-Influence Graphs (SIG).
The anomaly signals of a KPI are computed by KL divergence
between the distribution of data in a sliding window and the entire
distribution of the KPI. As a result, [9] focuses on the outliers
[11] (or novelty anomalies) and cannot identify anomalies that are
mainly judged by partial history data. The statistical models ARCH
[10], VARMA [12], and Colntegration [13] have been developed
to analyze correlations in stock price changes, or study volatility
across stock markets, etc. However, these models cannot solve
the flux-correlation problem well in our scenario because they
cannot accurately identify fluctuations of KPIs. Another related
area is the correlation analysis between raw time series. Pearson
[7] and Spearman Correlation focus on linear and rank correlation
between raw KPIs respectively. They cannot work well with
fluctuations, especially when two KPIs have different patterns, such
as seasonality and phase shift. Granger causality [14] identifies
the correlation between two KPIs by whether one KPI is useful
for forecasting another. However, in our context, fluctuations are
usually caused by unexpected accidents and may not be predicted
by regression. Therefore, these methods cannot solve our flux-
correlation problem well.

This paper fills the gap by focusing on KPI flux-correlation anal-
ysis. The major challenges are as follows.

o There is no generic mechanism for fluctuation extraction.
Different KPIs often have different time series characteristics
(such as seasonal, stationary and trend) [15] and need specific
models to capture their fluctuations [3]. Typically 10k to 1
million KPIs exist in Internet companies, it would be time-
consuming and unrealistic to manually search for a suitable
fluctuation extraction model for each of them. Thus, it is
challenging to design a generic fluctuation (i.e., flux-feature)
extraction mechanism that is robust against diverse KPI
characteristics.

o Flux-correlation should not be based on anomaly detection.
One might be tempted to apply J-measure [2] to the binary
results of anomaly detection. However, selecting anomaly
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detection models and determining their thresholds often
highly depend on specific characteristics of KPIs and users’
sensitivity preferences [16]. Thus, flux-correlation should
not be based on anomaly detection.

e Two flux-correlated KPIs may present different interaction
patterns. In practice, KPIs may fluctuate synchronously
or in sequence with a delay. Also, sometimes, when one
KPI plunges, some KPIs follow with a big dip, while other
KPIs respond with a spike. These patterns complicate flux-
correlation analysis.

We make the following contributions in this paper when
addressing the above challenges:

o To the best of our knowledge, this paper is the first attempt to
formulate flux-correlation and study it in detail in the domain
of Internet service operations management. We propose
a novel unsupervised algorithm, CoFlux, to automatically
and accurately measure the flux-correlation between KPIs
based on their flux-features, without the need for anomaly
detection. CoFlux can answer three questions. (1) Are two
KPIs flux-correlated? If flux-correlated, (2) in what temporal
order they fluctuate? (3) are they positively or negatively
correlated?

e CoFlux includes a robust set of flux-features extracted
from forecast errors of well-accepted time series models.
Our intuition is that, at least one of these flux-features
is capable of capturing a given KPI’s fluctuations in a
sufficiently accurate way, although we do not know which
one beforehand. This makes our feature extraction robust
against diverse KPI characteristics, and can work with a large
number of KPIs without algorithm fitting and parameter
tuning.

o CoFlux computes two KPIs’ flux-correlation score by using
the best Cross-correlation [17] score among different flux-
features of two KPIs. Intuitively, if two KPIs X and Y are
flux-correlated, then the best flux-features from X and Y are
also correlated. There is no need to identify this best flux-
feature pair beforehand or manually, making CoFlux robust
against diverse KPI characteristics.

o Our extensive experiments have demonstrated that CoFlux
achieves the best F1-Scores of 0.84 (0.90), 0.92 (0.95), 0.95
(0.99), in answering the three questions in flux-correlation
analysis, in the two real datasets from a top global Internet
company, respectively, significantly outperforming the base-
line algorithms and their variants. Moreover, we showed
that CoFlux is effective in assisting service troubleshooting
through the applications of alert compression, recommend-
ing Top N causes, and constructing fluctuation propagation
chains.

2 PROBLEM STATEMENT

In this section, we first define several key terms, including KPIs,
flux-feature, flux-correlation, and two flux-Correlation patterns,
and then describe our objective in this study.

KPIs and flux-features. A KPI is a series of successive ob-
servations collected at equal-spaced timestamps [2], denoted as
S = [s1, S2, .- Sm], Where s; is the observation corresponding to



CoFlux: Robustly Correlating KPIs by Fluctuations for Service Troubleshooting

time index i for i € 1,2, ..., m, and m is the length of the KPL If two
KPIs have different sampling intervals, when considering their flux-
correlation, we resample them using the Lowest Common Multiple
of their intervals as the final interval. We define a predicted KPI as
a sequence of predicted values produced by a time series forecast
model, denoted as P = [py, p2, ..., pm], where p; is the predicted
value of s;. The prediction errors are denoted as F = [fi, f2, --., fm],
where f; = s; — p;. While normal observations can be well predicted,
fluctuations often generate prediction errors. Thus, prediction
errors can be very useful in analyzing fluctuations. In this work,
the prediction errors are treated as fluctuation features, referred to
as flux-features. Accordingly, the time series model with specific
parameters used for prediction is a feature detector. We can create
many flux-features for a KPI through different time series forecast
models.

Fig. 2 shows an example of a real KPI, its predicted values by
Historical Average [18], and the corresponding flux-feature. Since
flux-features are generated by time series forecast models, the model
selection is critical to the flux-feature extraction. If a model can
predict normal values precisely, then prediction errors can capture
fluctuations well. We will discuss the model selection in detail later.
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Figure 2: A real KPI, predicted KPI and flux-feature.

Flux-correlation. In this study, for a KPI pair, X and Y, we
first determine whether their fluctuations are correlated, i.e., flux-
correlated. We define that X and Y are flux-correlated, denoted as
XY, if their flux-features are correlated. X~Y if X and Y are not
flux-correlated. For example, Fig. 1 shows six KPIs and their flux-
features. The flux-features of K; and K; look highly correlated, so
they are flux-correlated, i.e., K;~K,. However, K; and K, are not
flux-correlated, i.e., Ky ~Kjy.

When two KPIs are flux-correlated, we continue to understand
their temporal order and whether they fluctuate in the same
direction, as described below.

Temporal order of flux-correlation. The fluctuations from
two KPIs may be synchronized or shifted by some intervals.
Specifically, we use X—Y to denote the case that X fluctuates before
Y. If their fluctuations happen simultaneously, we denote it as X &Y.
As is shown in Fig. 1(a), the fluctuations of K, and K3 happen at the
same time, i.e., K, K3, while K; fluctuates before K, and K3, i.e.,
K;—K3, K1—Ks.

Direction of flux-correlation. When the fluctuations of X and
Y are correlated, the correlation can be positive or negative. If the
fluctuation of X is an increase but the corresponding fluctuation of Y
is a decrease, their flux-correlation is negative, denoted as X Y (or
X—=Y). On the other hand, if the fluctuation of X is an increase (or
decrease) and the corresponding fluctuation of Y is also an increase

(or decrease), their flux-correlation is positive, denoted as X Sy
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(or X i>Y). In Fig. 1(a), K, and K3 have positive flux-Correlation,
but K; is negatively flux-correlated with K, and K;.
With these definitions, we state that our objective is to solve the
following problems, denoted as questions Q1~3:
(1) determining the existence of flux-correlation between two
KPIs (Q1),
(2) for flux-correlated KPIs, understanding the temporal order
of their fluctuations (Q2), and,
(3) determining the direction of flux-correlation(Q3).

3 CORE IDEA

To solve the problems mentioned above, we designed an unsuper-
vised approach, called CoFlux, as shown in Fig. 3. The input to
CoFlux is two KPIs. We first extract their flux-features through
feature engineering, and then measure the correlation of these
flux-features. In the end, we provide answers to questions Q1~3.
Note that, CoFlux aims at determining the flux-correlation of KPIs
over a long period, so it is an offline model and the timeliness is
not our goal. Moreover, the flux-correlation results can be updated
routinely (e.g., once per week or month) in consideration of the
current data.
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flux-features - i flux-correlation
Feature Correlation ! TF
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Figure 3: CoFlux architecture.

Feature engineering, as a key component in this architecture, is
to find suitable time series models as our flux-feature detectors.
Although many models have been proposed to forecast time
series, for example, MA (Moving average), TSD (Time Series
Decomposition) [19], each model only fits well with some types of
characteristics of time series. For example, for the two KPIs shown
in Fig. 1(a), K4 has strong seasonality while K; is stable. For seasonal
KPIs, models like TSD and Historical Average may be appropriate.
Stable KPIs can be better predicted by MA or weighted MA because
their prediction mainly relies on recent values [20]. Certainly, there
are no generic models that can predict any type of KPIs accurately.
As mentioned in Section 1, the challenge is that we have a large
number of KPIs with different characteristics. It would be very
time-consuming and unrealistic to manually search for a suitable
forecast model for each of them.

Therefore, we cannot rely on a single time series model to extract
flux-features. Instead, to make CoFlux as versatile as possible, we
adopt several well-accepted models with corresponding parameters
as flux-feature detectors. This design is based on the following two
intuitions:

e For any given KPI, if we survey a wide range of models, there
will be one or more of them that are capable of predicting
its normal observations precisely enough and producing a
close-to-truth flux-feature.

e If two KPIs, X and Y, are flux-correlated, then at least one
flux-feature of X and one flux-feature of Y are correlated.

We will use extensive experiments to validate these two intu-
itions in Section 5.4. With flux-features extracted, we continue to
improve them through denoising and amplification.



IWQoS ’19, June 24-25, 2019, Phoenix, AZ, USA

To determine flux-correlation, for each pair of KPIs, we cal-
culate the pairwise correlation over their flux-features by Cross-
correlation [17], a widely-accepted time series similarity measure-
ment. Then, the maximum one is used to determine whether the
two KPIs are flux-correlated. Since we have included many flux-
feature detectors in CoFlux, some may be able to extract close-
to-truth flux-features, while others may generate misleading flux-
features due to the inaccurate forecast. Averaging over all flux-
features or decision by majority vote would produce false negatives.
Certainly, our approach of only considering the maximum one
may cause potential false positives. We will use experiments in
Section 5.4.1 to demonstrate that with good flux-feature detectors,
false positives are very few.

4 DESIGN

In this section, we describe the details of the two components of
CoFlux: feature engineering and correlation measurement. We start
with feature engineering.

4.1 Feature engineering

Table 1: Prediction models and detectors.

Prediction models / # of detectors
Diff/ 2
Holt-Winters / 64
Historical average / 4
Historical median / 4
TSD/ 4
TSD median / 4
Wavelet / 4 window = 1, 3, 5,7 day(s)

In total: 7 prediction models / 86 detectors

Parameter Configurations
last-day, last-week
a, B,y ={0.2,04,0.6, 0.8}

window = 1, 2, 3, 4 week(s)

4.1.1 Feature extraction. As discussed before, KPIs often have
different shapes and time series characteristics. To understand their
flux-correlation, we need to use different suitable time series models
to generate flux-features. We carefully selected 7 widely-used
models, as listed in Table 1. Diff [3] simply uses the value of last day
or last week separately to predict the current one. Holt-Winters [21]
calculates forecast values using three smoothing equations (level,
trend and seasonal components) with three parameters ranged from
0 to 1. Historical Average/Median [18] calculates the average/median
of the historical data within a window as a prediction. TSD (Time
Series Decomposition) [19] extracts four components from a KPI:
level, trend, seasonality, noise, and then makes predictions using
the sum of the first three components. TSD Median is similar to
TSD, but it uses median value instead of mean when calculating
that three components. Wavelet decomposition [22] can cover the
entire frequency domain of a KPI and we set the high-frequency
part as predictions.

Most time series models have one or more parameters, and
their parameters have to be tuned to fit a KPI the best. However,
parameter tuning can be time-consuming and often requires domain
knowledge. In our study, our ultimate goal is to determine flux-
correlation. As long as a model can make sufficiently accurate
forecast such that the obtained flux-features capture real fluctuation
patterns, it is not necessary to strive for the best fitting parameters.
Thus, in CoFlux, for each model parameter, we enumerate a list of
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possible values empirically. For example, the parameter of Wavelet
can take several possible values. With each parameter configuration
(e.g., win=1 day), Wavelet model can produce one predicted KPI,
and then one flux-feature. We view a time series model with a specific
parameter configuration as a flux-feature detector. In total, We get
86 detectors from the models and parameter configurations shown
in Table 1. Accordingly, for each KPI, they produce 86 flux-features.

Certainly, our flux-feature extraction module in CoFlux can be
configured with other models or parameter values if needed. Note
that we have carefully evaluated most widely-used time series
models. Through our experiments, we found some of them, such as
MA (Moving average) [20], WMA (weighted MA) and Exponentially
WMA, did not perform well in extracting flux-features from our
testing KPIs, because the prediction of these models mainly rely
on recent data and cannot handle seasonal KPIs. Fig. 4 shows an
example that MA mistakenly captures the seasonality in KPI's main
patterns as flux-features, causing false positives.
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Figure 4: Two KPIs which are not flux-correlated and their
flux-features extracted by Moving average; The circles mark
the large fluctuations.

4.1.2  Feature amplification. After feature extraction, we get 86 raw
flux-features for each KPL The raw flux-features of different KPIs
usually have values in different scales and units. We apply z-score
to normalize each flux-feature. The closer to zero a value is in the
normalized flux-feature, the less the KPI fluctuates.

In general, most values in a KPI look quite normal and they
slightly deviate from forecast values mainly due to noises. To reduce
the influence of noises, we use modified exponential activation
(Eq. 1) to strengthen large fluctuations. Eq. 1 amplifies values
that significantly deviate from zero, while having little impact on
those close to zero. This amplification can make flux-feature more
distinguishable and help flux-correlation identification. In CoFlux,
we set a = 0.5 (the degree of growth, the larger the value, the faster
the growth) and f = 10 (if |x| > B, f value will not grow). The
effectiveness of modified exponential activation will be evaluated
by experiments and discussed later in Section 5.4.3.

eMmineBXe _q forx >0

fla, B, x) = { (1)

—emin(xl. fxa 4 ,forx <o

4.2 Correlation measurement

Cross-correlation [17], a similarity measurement for time-lagged
time series, has been widely used in signal and image processing.
Cross-correlation can determine the shape similarity of two time
series well with considering their distortions in amplitude and
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Algorithm 1: Correlation measurement

Input: af xSet: Set of amplified flux-features of KPI X
afySet: Set of amplified flux-features of KPI Y/
coT HR: Threshold of existence of flux-correlation

resultSet « []

// Set of candidate flux-correlation results

for afx in afxSet do

3 for afy in afySet do

-

N

4 | resultSet « FCC(afx, afy) //Eq.4

5 if abs(max(resultSet[:,0])) > abs(min(resultSet[:,0])) then

6 [ccV, shiftV] = max(resultSet) /* ccV: correlation value about the
existence of flux-correlation; shiftV: shifted value of X
when get ccV */

7 else [ccV, shiftV] = min(resultSet);
8 if abs(ccV) > coTHR then
9 if shiftV = 0 then

10 if ccV > 0 then X <> Y;
11 | else X «& Y;
12 if shiftV < 0 then
13 if ccV > 0then X 5 Y;
14 | else X > Y;
15 if shiftV > 0 then
16 if ccV > OthenYLX;
17 | else Y — X;

18 else X w Y;

phase, which is suitable for judging the three questions in CoFlux.
Thus, we choose Cross-correlation to measure the correlation
between flux-features in CoFlux. For two amplified flux-features
G=[g1, -, g/land H = [hy, - - -, hy], considering the shift between
G and H along the time axis, Cross-correlation always keeps one
vector (e.g., H) static and makes another one (e.g., G) slide over H
to calculate the inner product for each shift s of G (where s € (-1, 1),
1 is the length of amplified flux-feature). G;, the vector with shifted
value s (especially Gy = G), can be denoted as:

Is|

—_——
G. - (0,--+,0,91, ", g1-s],fors =0 @
* " Nlgis» -+ 91,0, -+, 0], fors <0
N

Is|
The inner product of Gs and H, and their Cross-correlation value
can be calculated as follows:
-1
R(Gs, H)= ) Glil x Hli] (3a)
i=—I+1
R(Gs, H)
VR(G, G)x R(H, H)
Enumerating all possible values of s, we can obtain a Cross-
correlation value vector of length 2/ — 1. Let the minimum and
maximum of the vector be minCC and maxCC, corresponding
to shifted values s1 and s2 respectively. Then the final Cross-
correlation value of G and H can be denoted as FCC:

CC(Gs, H) = (3b)

minCC = min (CC(GS, H)), s1 = arg min (cc(cs, H)) (4a)
S s
maxCC = max (CC(GS, H)), $2 = arg max (CC(GS, H)) (4b)
S s

[minCC, s1], for ‘maxCC) < ‘minCC‘
FCC(G, H) = (4c)

[maxCC, s2), for )maxCC‘ > ‘minCC‘
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From Eq. 3, we know that FCC € [-1, 1]. The closer to 1 or -1
FCC lies, the stronger the correlation between G and H. Moreover,
positive FCC means they move in the same direction, while negative
FCC indicates that one flux-feature increases while the other
decreases and vice versa. The effectiveness of Cross-correlation
can be seen in Section 5.4.4.

As shown in Algorithm 1, with amplified flux-features, we can
then analyze flux-correlation for two KPIs easily. We enumerate
all amplified flux-feature pairs to calculate their Cross-correlation
values. Among these values, the one with the maximum absolute
value is selected as the final score and compared with a threshold to
determine the existence of flux-correlation between the KPIs. This
threshold can be decided by practical requirements, or by precision-
recall curves, as discussed in Section 5.4.1. If the absolute value
of the final score is below the threshold, X~Y; otherwise XY. If
XY, we continue to find out the temporal order and direction. The
temporal order can be determined by the shifted value of X. If it is
zero (i.e., no shift) then X« Y; if it is negative (i.e., X shift to left)
then X—Y; otherwise, Y—X. This flux-correlation can be positive
or negative, as indicated by the final score.

5 EVALUATION

In this section, we evaluate the performance of CoFlux using two
real-world datasets.

5.1 Data sets

We collected two datasets, named Dataset I and II, from a top global
Internet company. Each dataset contains a number of KPIs, and their
flux-correlations have been labeled by domain experts to provide
us the ground truth for evaluation.

Table 2: Dataset I: “Ground truth” column lists the number
of intra-category flux-correlated KPI pairs.

Cate KPI ID, name, characteristics # Ground
gory KPIs| truth
1.1 Success rate of requests per cluster (stable) 21
1 1.2 Count of HTTP error code per cluster 91 33
(seasonal)
2.1 Error count of request per data center 14
9 (seasonal) 33
2.2 Error rate (Error count/ Total count) per data 14
center (stable)
3.1 Java Garbage Collection overhead per ma- "
3 chine (no clear pattern) 11
3.2JVM CPU usage per machine (no clear pattern) | 11
4 4.1 CPU Idle per machine (no clear pattern) 26 2%
4.2 Memory usage per machine (no clear pattern) | 26
5 5.1 Success rate of requests per product (stable) 16 20
5.2 CPU Idle per product (seasonal) 16

Dataset I: Flux-correlated KPIs with different time series charac-
teristics. As shown in Table 2, Dataset I contains 5 categories and
each category has two types of KPIs collected from different server
clusters, machines or products. The two flux-correlated KPIs often
have different time series characteristics (e.g., seasonal, stable). For
example, in Category 1, a fluctuation in “success rate of request” is
often accompanied by a sudden change in “count of HTTP error
code”, i.e., “success rate of request”«“count of HTTP error code”.
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Dataset II: Flux-correlated KPIs with homogeneous time series
characteristics. Dataset II contains KPIs that are collected from
services used by 10 software modules, from which customers can
request services from providers on demand. The details are shown
in Table 3. All KPIs are heavily influenced by the count of customer
requests, thus they are all seasonal. In each module, the services
are called in a chain, and therefore the corresponding KPIs are
flux-correlated with each other with temporal orders. For example,
in Module 1, there are 9 of 20 KPIs are flux-correlated. When a
fluctuation happens in “#customers request for providers”, after a
while, the fluctuation propagates to “#providers accept and manage
the orders” and then to “#customers pay for the orders”, etc.
Table 3: Dataset II: KPIs collected in 10 software modules. All
KPIs are seasonal. “Ground truth” column lists the number
of intra-module flux-correlated KPI pairs.

Module ID Module Name # KPIs | Ground truth
1 T services 20 36
2 Order creation services 26 66
3 H services 19 21
4 Payment actions services 15 6
5 Customer support services 36 171
6 Quality monitoring services 16 15
7 Provider support services 16 10
8 Location-based services 18 21
9 HS5 support services 22 45
10 Public platform services 18 21

Note that only intra-category and intra-module flux-correlations
are measured in our experiments. For example, in Dataset II, pair-
wise flux-correlations are done among 20 KPIs within Module 1.

5.2 Baseline algorithms

There exist no special methods designed to calculate the flux-
correlations of KPIs. In order to show the effectiveness of CoFlux,
we carefully choose seven baseline algorithms.

5.2.1 J-measure. a widely used event correlation method [2] which
calculates the correlation as the average information content of
a probabilistic classification rule. J-measure is designed for event
correlation and cannot be used here directly. Thus, we need to
detect anomalies first. Recall that flux-features are forecast errors.
We define anomalies as the values that differ from the mean by
more than 2 standard deviations [18] in the flux-features, and the
selection of flux-features will be described in a short while. As a
result, a KPI is transformed to a binary sequence. For two binary
variables X and Y, if the correlation of J-Measure is larger than some
threshold, then X—Y. Otherwise, X~Y. Neither the temporal order
nor direction of correlation can be determined by this approach.

For fair comparison, for the anomaly detection in J-measure, we
enumerated all detectors in Table 1 and selected one detector for
each dataset which can provide the best F1-score (see Section 5.3).
The same method has been used to choose the best performing
detectors for the other two algorithms, Pearson(2) and Granger(2),
too.

5.22 SIG[9]. [9] computes the anomaly signal of time series using
KL divergence and then get the correlation results using Cross-
correlation. However, its anomaly signal is relative entropy and
non-negative so SIG cannot judge the direction of correlation.
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5.2.3 Pearson Correlation. a popular technique for investigating
the correlation between two variables, say X and Y, [2]. The
threshold is TH, If p > TH, then X and Y are correlated with
positive direction; and if p < -1 TH, two KPIs are correlated and
the direction is negative. If not, X «Y. This method does not consider
the temporal order of correlation. Here we calculate Pearson
Correlation for each pair of raw KPIs (denoted as Pearson(D), and
for each pair of amplified flux-features (denoted as Pearson(?)), for
fair comparison.

5.2.4 Granger causality. Granger causality [14] captures the linear
interdependencies among time series using VAR (Vector autoregres-
sive). Specifically, Y Granger-causes X if and only if at least one of
the corresponding coefficients of Y is non-zero. If Y Granger-causes
X and X Granger-causes Y, X and Y occur simultaneously. Note
that, Granger causality cannot indicate whether the correlation
is positive or negative. Similar to Pearson Correlation, we calcu-
late Granger causality of raw KPIs (denoted as Granger(D) and
Granger causality of flux-features (denoted as Granger(2)), for fair
comparison.

5.2.5 Cross-correlation. We apply Cross-correlation, which is also
part of our CoFlux, to calculate the correlations between two KPIs
using its raw values instead of the flux-features.

5.3 Evaluation Metric
Table 4: Descriptions for FP and FN about three questions of
flux-correlation.

FP/FN | Ground Truth Output
Existenc FP XY XY
R Y XY XY

Temporal FP X->YorY-»X | XeY

order FN Y->XorXeY | XY
Direction FP neg;'itilve posm've
FN positive negative

We use F1-Score to evaluate the effectiveness of CoFlux and base-

i i ich i 2 Precision X Recall
line algorithms, which is defined as: F1-Score = 2X-recision X Recals
P Precision + Recall

5 Table 4 describes the
FP (false positive) and FN (false negative) about the three questions
of flux-correlation.

Because the thresholds for J-measure, SIG, Pearson Correlation,
Cross-correlation and CoFlux are usually determined based on
actual requirements for precision and recall, we apply PRC (Pre-
cision Recall Curve) to show their performance by varying the
threshold value from 0 to 1. A PRC close to the upper right has
better performance than one close to the bottom left. Moreover, the
best F1-Score can be selected using PRC.

s

. TP
where Precision = ————, Recall =
TP + FP

5.4 Result and Observations

5.4.1 CoFlux vs baseline algorithms. We compare CoFlux with
seven algorithms using the two datasets described before.

Table 5 lists the best F1-Scores of eight algorithms according to
PRC. CoFlux outperforms the other seven algorithms significantly
for both two datasets. The overall best F1-Scores of CoFlux for
the two datasets are over 0.84, 0.92, 0.95 for Q1~3, respectively.
Moreover, PRCs shown in Fig. 5 indicates CoFlux has overall better
performance in terms of all precision and recall combinations.



CoFlux: Robustly Correlating KPIs by Fluctuations for Service Troubleshooting

Table 5: Best F1-Scores of eight algorithms; for J-measure,
the best performing detector for Dataset I is Wavelet(win=1
day), for Dataset II is TSD(win=2 weeks); for Pearson2), the
best performing detector for Dataset I is Wavelet(win=1 day),
for Dataset II is diff(win=1 day); for Granger®2), the best
performing detector for Dataset I is Wavelet(win=1 day), for
Dataset II is TSD(win=2 weeks). (‘N/A’ denotes no results).
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J-measure achieves the second best performance in our experi-
ments. The best performing detector by F1-Score for Dataset I is
Wavelet(win=1 day). This detector decomposes a KPI into a set
of hierarchical structure series [22]. However, some KPIs have no
strong structural characteristics and are hard to be predicted. Thus
J-measure performs moderately. For Dataset II, TSD(win=2 weeks)
is the best detector and it fits well with the seasonal structure of
KPIs in this dataset. For SIG, its anomaly signal is computed by KL
divergence, so it works well with the outliers and is not suitable for
the anomalies that are mainly judged by partial history data. As a
result, SIG does not perform well on Dataset I, because the various
types of KPIs make its anomalies also complex.

Data Alsorithms Best F1-Score
set & Existence | Temporal order | Direction
CoFlux 0.8412 0.9608 0.9579
J-measure 0.7213 N/A N/A
SIG 0.5381 1.0 N/A
1 Pearson(D) 0.3106 N/A 0.6127
Pearson(2) 0.5909 N/A 0.6945
Granger(D 0.2864 0.9009 N/A
Granger(®) 0.4128 0.8952 N/A
Cross-correlation 0.3613 0.9320 0.9814
CoFlux 0.9026 0.9206 0.9987
J-measure 0.8462 N/A N/A
SIG 0.7706 0.8012 N/A
I Pearson(D) 0.7193 N/A 0.9845
Pearson(2) 0.7828 N/A 1.0
Granger(D 0.4533 0.9025 N/A
Granger(2) 0.6732 0.9141 N/A
Cross-correlation 0.7494 0.7781 1.0
CoFlux --~-- J-measure —+4- SIG -~ Pearson® - Pearson@ Cross-correlation
1.0 (a) Dataset | 10 (b) \D’atas.etutl
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Figure 5: PRCs about the existence of flux-

correlation among CoFlux and five baseline algorithms.
Granger causality is not shown here because it has no
thresholds thus no PRC.

Another observation is that these algorithms all perform better
in Dataset II than in Dataset I, because the KPIs in Dataset II are
homogeneous in nature (they are all part of service call graph,
heavily influenced by the patterns of customer requests) and
fluctuations follow the same pattern, while those in Dataset I
vary by their time series characteristics. As a result, it is relatively
easier to extract fluctuations from Dataset II. Next, we analyze each
algorithm’s performance in answering Q1~3.

With respect to Q1, our CoFlux excels the others in many
aspects. Particularly, its performance in Dataset I only drops
slightly compared to Dataset II, while other algorithms have more
significant changes. This indicates CoFlux is very robust and
can handle heterogeneous KPIs due to its rich detector library.
The precision and recall with best F1-score shown in Fig. 6
provides more details about the performance difference among
these algorithms. Particularly, the high precision of CoFlux indicates
a small false positive rate in identifying flux-correlation. This
demonstrates that it is appropriate to determine the final flux-
correlation by the maximum absolute Cross-correlation value, as
described in Section 3.

CoFlux B4 SIG [X] Pearson® Granger®
E J-measure A Pearson® Bd Granger® 1 Cross-correlation
Precision Recall
10 (a) Precisiol 10 _ (b) Reca
0.8 | J 0.8 1
. | . ¢ L
5 | B 3 i
306 } i T 06 o
Kol | 1
304 J ANERELE e
o ¢
o = o i
0.2 F{ A F 0.2 D¢ a
0 -] INTd ¢ il
0.0 T 1 0.0 + y
Dataset | Dataset Il Dataset | Dataset Il

Two datasets Two datasets

Figure 6: Precision and recall with best F1-Score about the
existence of flux-correlation among eight algorithms.

For Pearson(D), the recall of Dataset I drops dramatically com-
pared to Dataset II, because two flux-correlated KPIs in different
shapes often have weak linear association. Pearson®) performs
better than Pearson(D) because it uses flux-features which remove
most inherent characteristics of KPL. Granger(D) tries to predict
one KPI using another one, and its prediction performance mostly
depends on the raw KPI instead of the fluctuation part, thus it
performs not well. Granger(2) works better than Granger(D), but
it cannot achieve satisfactory performance either, because in our
scenario, flux-features are usually created by unexpected accidents
and it is not promising to predict them using regression. Cross-
correlation with raw KPIs does not work well for flux-correlation,
because flux-correlation mainly cares about the fluctuations instead
of raw KPIs. It performs poorer on Dataset I than Dataset II because
the KPIs of Dataset I are with different characteristics, which also
demonstrates the effectiveness of flux-features.

Now we turn to Q2. Note that, only after an algorithm correctly
recognizes Q1 of flux-correlation for a KPI pair, the test on Q2
and Q3 will continue for this pair. Although Granger causality
has about 0.90 F1-Score in recognizing the temporal order, it has
difficulties in identifying Q1 of flux-correlation. As a result, its
overall performance is unsatisfactory. The temporal order of flux-
correlation cannot be calculated by Pearson Correlation and J-
measure. On the other hand, CoFlux and SIG perform very well in
identifying the temporal order due to the use of Cross-correlation.

Finally, regarding Q3, Pearson Correlation can indicate positive
or negative flux-correlation. The direction cannot be obtained by
SIG, J-measure and Granger causality. Again, CoFlux has excellent
performance in this regard.

Summary. CoFlux performs better than J-measure, an algorithm
based on anomaly detection, because CoFlux does not need to define
anomalies and the flux-features have more information than the
binary results of anomaly detection. For SIG, it computes anomaly
signal of KPIs using KL divergence, thus it focuses on the outliers
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the flux-correlation results.

and cannot identify anomalies that are mainly judged by partial
history data. Compared with SIG, we includes a robust set of flux-
features, so CoFlux is robust against diverse anomalies and KPI
characteristics. CoFlux performs better than Pearson(@), Granger(D
and Cross-correlation, because raw KPIs can not reflect the flux-
correlation well. Unlike Pearson(2) and Granger(2), CoFlux uses
Cross-correlation which can work well with the shape similarity
of flux-features in consideration of the distortions in amplitude
and phase. Moreover, in practice, for J-measure, Pearson(2) and
Granger(2), the anomaly detector selection for different KPIs is also
very challenging, while the detector selection for different KPIs in
CoFlux is determined automatically.

5.4.2  Analysis of detectors in CoFlux. Since CoFlux uses a number
of time series models with different parameters as its flux-feature de-
tectors, a natural question is whether so many detectors are needed
and what detectors are the most useful. We analyzed the detectors
that are used to produce the final flux-correlation for all the KPIs
pairs in each dataset. Fig. 7 shows Top 5 detectors used in the two
datasets. Wavelet is the most popular one in Dataset I, but TSD
takes the lead in Dataset II. This can be explained by the fact that
many KPIs in Dataset I have no fixed structural characteristics, and
Wavelet fits better with this kind of KPIs. Most KPIs in Dataset II
present seasonal characteristics, which can be handled by TSD very
well. In either case, the proportion of Top 1 detector is no more than
20%, and the total proportion of Top 5 detectors in each dataset is
less than 50%. Therefore, we can conclude that it is necessary to
include a variety of detectors in Table 1, to boost the robustness of
CoFlux.

5.4.3 The effectiveness of feature amplification in CoFlux. In this
section, we evaluate whether feature amplification can indeed
improve the performance of CoFlux. Fig. 8 shows the PRCs obtained
by two versions of CoFlux: with and without amplification. Without
amplification, the performance of CoFlux degrades significantly.
Feature amplification can boost the performance, because it makes
large fluctuation larger and then reduces the impact of noises on
flux-features.

5.4.4 The effectiveness of Cross-correlation in CoFlux. In this
section, we evaluate the benefits of Cross-correlation in terms of
measuring the existence of flux-correlation in CoFlux. Because
Granger causality works worse than the other algorithms, we use
Pearson Correlation and J-measure to replace Cross-correlation
separately in CoFlux, denoted as CoFlux with Pearson Correlation
and CoFlux with J-measure. Fig. 8 shows their PRCs, which indicates
that CoFlux achieves a much better performance with Cross-
correlation. The main reason is that both Pearson Correlation and

correlation among CoFlux and its variants.

varying data length.

J-measure cannot appropriately handle fluctuation similarity and
the situation where there is a delay between the fluctuations in two
KPIs. We can also learn that Pearson Correlation performs better
than J-measure because of the difficulty of anomaly definition for J-
measure. Therefore it is a good choice to apply the Cross-correlation
for the flux-correlation measurement.

5.4.5 The efficiency study of CoFlux. The experiments about the
efficiency of CoFlux were run on a server with 24-core Intel(R)
Xeon(R) CPU E5-2620 v3 @ 2.40GHz with 64GB RAM. The flux-
features of one KPI are calculated only once and used repeatedly
in the Cross-correlation measurement with other KPIs. Execution
time of Dataset I and II are shown in Table 6 and 7. Data length is
the number of data points in a KPI. The execution time of all KPI
categories and modules are less than 25 minutes. Certainly, longer
or more KPIs can increase execution time. Also, execution time can
be significantly reduced by using more computation resources.

Table 6: Execution time Table 7: Execution time (seconds)
(seconds) on Dataset L. on Dataset II (Length: 6720).

Cate| # | Data Time Mod| # Time Mod| # Time
gory| KPI| length ule | KPI ule | KPI

1 42 | 6720 | 1014 20 | 174 6 16 | 176
28 | 3024 | 462 26 | 334 7 16 | 181
22 5040 304 19 242 8 18 | 234
52 5040 1478 15 153 9 22 | 314

32 | 5040 | 584 36 | 770 | 10 | 18 | 232

g w|
g ||| =

Furthermore, we test the impact of KPI length on execution
time. In order to obtain KPIs in different lengths, we use two
synthetic KPIs and vary their lengths. As shown in Fig. 9, the
execution time increases with the KPI length almost in a linear
fashion. It ranges from 15 to 180 seconds as the data length
increases from 5k to 50k, while it is less than 20 seconds for baseline
algorithms. Considering CoFlux is offline, the time is acceptable.
The time of feature engineering is sensitive to data length, and
the computational cost is O(n), where n is the KPI length. When
the number of detectors is fixed, the time complexity of Cross-
correlation is affected by data length. We use Fast Fourier Transform
to accelerate Cross-correlation and its computation complexity is
O(nlog(n)).

6 APPLICATIONS OF COFLUX

In this section, we demonstrate how CoFlux can be used to assist
operators in assisting service troubleshooting in a top online
shopping service company.
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6.1 Clustering KPIs for alert compression

We evaluated CoFlux’s effectiveness in alert compression on 118
KPIs provided by the company. Operators manually analyzed the
699 alerts generated during a month by anomaly detection on
individual KPIs. They concluded that only 184 alerts should be
raised (served as the ground truth in our evaluation), and all other
alerts are correlated with the ones in the ground truth.

To demonstrate how CoFlux can be used to compress alerts
[8] and reduce operators’ workload, we group these KPIs into 23
clusters by K-Means based on the absolute flux-Correlation values
of KPIs. K is determined by silhouette coefficient [23] which has
shown good performance in experiments, and the largest silhouette
coefficient over different clustering number indicates the best K
for clustering. Fig. 10 shows 3 of the clusters composed of 24
KPIs. Apparently, KPI pairs within a cluster have stronger flux-

Correlation than those outside it.
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Figure 10: Heat map visualization for clustering results
of 24 KPIs. The value at (x, y) means the absolute flux-
correlation value between KPI x and y. Cluster1: KPI1 ~
KPI13; Cluster2: KPI14 ~ KPI19; Cluster3: KPI120 ~ KPI24.

Then we can monitor all KPIs within a cluster as a whole,
and raise only one alert when one or more anomalies occurred
at these KPIs, resulting in only 208 alerts, achieving 70.24% (1-
208/699) compression ratio. We calculate compression accuracy by
comparing the compressed alerts with the alerts in the ground truth,
and CoFlux obtained 0.9748 compression F1-Score. For comparison,
we conduct another experiment where raw KPIs were clustered
based on their Cross-correlation, and achieved 70.67% compression
ratio and 0.8322 compression F1-Score. In practice, it is critical for
alert clustering to maintain a high compression F1-Score (i.e., close
to 1). Although these two experiments gave similar compression
ratios, clustering by CoFlux leads to far fewer compression errors
than by Cross-correlation of raw KPIs, demonstrating its excellent
capability in alert compression.

6.2 Recommending Top N flux-correlated KPIs

Fig. 11 shows a given KPI, say X, and its Top 5 flux-correlated KPIs
out of the remaining 117 KPIs ranked by flux-correlation. Clearly,
these KPIs are highly flux-correlated with KPI X. Thus, when KPI X
suffers from an anomaly, operators can narrow down their analysis
scope to the Top N flux-correlated KPIs for more efficient diagnosis.
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Motivated by the idea of HitRate@K for recommender systems
[24], we calculate the recommendation accuracy using the KPIs in
Section 6.1, and the result is 0.8051 for HitRate@5. In comparison,
recommendation based on Cross-correlation of raw KPIs achieved
only 0.5594 for HitRate@5.

KPI X

1st flux-correlated KPI of X

2nd flux-correlated KPI of X

L
3rd flux-correlated KPI of X Vk
4th flux-correlated KPI of X
Sth flux-correlal KPI gf, X

1 2 3 4 5 9 10 1 12 13 14

Value Value Value Value Value Value

6 7 8
Time (day)

Figure 11: Top 5 flux-correlated KPIs for a given KPI X.

6.3 Constructing fluctuation propagation
chains
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the operators. CoFlux with threshold = 0.65.

Figure 12: Fluctuation propagation chains of a database
service constructed by the operators and CoFlux. — and <
denote the temporal order of flux-correlation, + and - denote
the direction.

Understanding how fluctuations are propagated through KPIs
is extremely useful in root cause analysis, but this requires deep
domain knowledge of the KPIs. Intuitively, fluctuation propagation
chains can be constructed based on flux-correlation. Fig. 12 shows
such chains of a database service in the Internet company, where
each node denotes a KPI and each edge denotes the flux-correlation
between KPIs. To make the figures less crowded, an edge ended
at a dashed box means the originating KPI of this edge is flux-
correlated with every KPI inside this box. Fig. 12(a) presents the
fluctuation propagation chain manually constructed by operators
based on their deep domain knowledge, which serves as the ground
truth in our comparison. When there happens a fluctuation for
SQL Execution in a storage engine, it first propagates to the
connection/thread module and then to the network interface card
which provides the hosting service for database. Fig. 12(b) shows
the fluctuation propagation chain generated by CoFlux. Apparently,
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Fig. 12(b) can almost replicate Fig. 12(a), with high F1-scores,
0.8684, 0.9524, 1.0 for Q1~3 respectively. Thus, operators can
apply CoFlux to automatically construct fluctuation propagation
chains even without deep domain knowledge. In comparison, Cross-
correlation of raw KPIs achieves inferior F1-scores: 0.5455, 0.9412,
1.0 for Q1~3 respectively.

7 RELATED WORK

Over the years, a substantial body of research has been conducted
to analyze different types of correlations which can be divided into
three categories: correlation between KPIs [14, 17, 25], correlation
between events [6], correlation between event and KPI [2]. Those
correlating algorithms mainly analyze the correlation of raw KPIs,
or turn the KPIs into events and analyze the correlation using events.
According to the analysis in Section 5.4.1, these algorithms cannot
accurately analyze flux-correlation.

Besides our baseline algorithms, there are other generic methods
that aim to find relationships among KPIs. Colntegration [13]
transforms a collection of non-stationary KPIs to be stationary by a
linear combination. However, flux-correlated KPIs may have similar
fluctuations but different seasonal and trend components. As a
result, they cannot be made stationary easily through Colntegration.
VARMA [12] is a model for producing linear forecasts of many KPI
variables, and provides an intuitive explanation for the correlations
of KPIs. However, through the experiments with Granger causality
in Section 5.4.1, we found that it is difficult to model the correlation
between flux-features through regression. [10] uses ARCH models
to predict the volatility of stock market and learn their correlations,
but volatility, measured by the standard deviation of a time series,
is conceptually different from fluctuations in our context.

In summary, all these methods cannot work well in identifying
flux-correlation. Our work differs from them in that we extract
features capturing fluctuations by time series models, and focus on
flux-features instead of raw KPIs.

8 CONCLUSION

Correlating KPIs by fluctuations is extremely useful for service
troubleshooting in many respects such as alert compression, recom-
mending Top N flux-correlated KPIs and constructing fluctuation
propagation chains. However, such a KPI flux-correlation has
been little studied in the domain of Internet service operations
management. To the best of our knowledge, this paper is the first
attempt to formulate flux-correlation and study it in detail. For
the large number and diverse characteristics of KPIs, with CoFlux,
we can measure their flux-correlations automatically and robustly.
Our experiments have demonstrated that CoFlux significantly
outperforms baseline algorithms by a large margin, and the
applications of CoFlux in a top global Internet company also
demonstrated its effectiveness in assisting service troubleshooting.

As our future work, we will explore deep learning as flux-
correlation algorithm and possible models to fit flux-features to
further understand the nature of flux-correlation.
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