NetPoirot: Taking The Blame Game
Out of Data Center Operations

Behnaz Arzani, Selim Ciraci, Boon Thau Loo,
Assaf Schuster, Geoff Outhred

. . R 400 P
¥ Microsoft ¢ Penn

Datacenters can fail ..

T

Ien se
Northe
center

disrup!

Cloud
Web
suffere
Sunda
shocky
Web.w
unable

online

Datacenter 1

ust 19, 2015

Lightning strikes Google dat

Tndatad tn slarif:

that indidant shnart nuhlichsd

R_N

Wednesday, May 6, 2015

Ry

Azure Nightmare: Customer’

A Microsoft Azure
customer who experienced
a nine-day service
disruption last month is
furious over the software
giant's lack of clear and
transparent

communication about the

ISSue.

The customer. who uses the
Azure Virtual Machines
Infrastructure-as-a-Service

encountersd major
problems with two of his
VMs running in
Microsoft’s | lowa

center starting April 7.

data

One of the VMs was down
continwously. for : two
straight days, and was then
able only
intermittently for seven
days. The other VM was
available intermittently for

Rer®
foll
5
imp.
1
The;
thal,,
refay
the »
beh
ofa
exp
inl
its

Failures are disruptive

* They can cause significant user downtime
e Loss of revenue for network providers
* L ower QoE (Quality of Experience) for the users

* This introduces the need for debugging tools

Why is debugging hard?

Azure VM Azure Network Service X

——
F--
1

Penn researcher

In the case of a failure...

Someone accepts responsibility Each blames the other

@w/\

A real example... Event X

* Azure hypervisors connect to a remote service

e |f these connections fail, the VM has uncertain state
* VM has to reboot

 Did the service fail, or was it the network”?

Current tools are insufficient

TRat

SIGCOMM-02 Netprofile

Sherlock NetMedic
SIGCOMM- SIGCOMM-
07 09

Can we do better? (Overview)

 Introducing...

Learning

_—
—
—
—
—
—
—
—
—
—
—
—
b
_—

.H NetPoirot

The monitoring agent

 Runs on all clients in our data center
* Captures and digests Windows TCP events
* Reports digests every 30 seconds

* Examples of metrics captured
 Number of duplicate Acks
* Number of timeouts
* Time spent in zero window probing

Whatis the TCP event digest?

* We aggregate the captured TCP data into epoch digests

« Keep the min, max, 10t 50" 35 percentile, as well as mean
and standard deviation across all connections in an epoch
for each metric

* Helps compare performance across the various connections

10

Why do we think this can work?

* TCP observes the entire communication path
* It goes through the client, the network, and the server

* [t "sees” the failure no matter where it happened
* We know how network failures impact TCP

* How does it react to end point failures?
* Hard to predict based on protocol design

11

To distinguish failures...

 \We use variants of decision trees

» Other algorithms combine/manipulate features
 Makes it hard to reason about why they arrive at a decision

12

Decision trees...

* Greedily pick features that maximize information gain

Will it rain
today”? Hey, its cloudy
outside.

His uncertainty is X

13

Decision trees...

* Greedily pick features that maximize information gain
* Pick the most “informative” features in each step

Will it rain today
given that its
cloudy outside”

N

r-
@5
o

~A

His uncertainty ¥ X-

Decision trees alone are not enough

Decision trees alone are not enough

16

trees alone are not enough

ision

Dec

Z 9Inlea]

Feail,},re 1

Feature 2

>

Decision trees alone are not enough

Hardest to classif

Easiest to \

OO

O 04

O OO0

00000
O O

>
Feaiilére 1 \

What we do to deal with this

<
Z 9Inlea]

Feature 1

Upper portion of an example tree...

Mean of max congestion
window

Min of the last congestion 50th percentile of number of

window triple duplicate ACKs

50th percentile of
connection duration

y |
95th percentile of the max
congestion window

Max of the number of triple
duplicate Acks

20

What we do to deal with this

<

Z 9Inlea]

Feature 1

Upper portion of an example tree...

50TH percentile of the max
l RTT

Number of flows

50th percentile of amount of
data received

\

95th percentile of the
number of timeouts

22

trees alone are not enough

ision

Dec

<

Z 9Inlea]

Feaﬁlére 1

The upper portion of an example

tree... . .
Mean time spent in zero
window probing

95th percentile of the ratio
of number of bytes posted
to received

Number of flows

95th percentile of
connection durations

v

' Minimum of the number of
Number of flows bytes received

24 o

Isit a network failure?

\ 4
v
.

Isit a client side problem?

Isitaserver problem?

25

Other details

 \We had to use random forest
e More stapble

* Per application training

If tHrdhrghpghipat < x:
Send fpen dadta®n the
samequorrestioos

~

e Normalize the datao

26

What did we learn from all this?

* TCP sees everything, even at a single end point
» Allows us to find who was responsible for a failure

* Failures in a group (Client/Server/Network) are similar
* Makes individual failure classification more challenging
* Helps NetPoirot be resilient to failures we haven't seen in the past

* The relationship between failures and TCP metrics is non-linear
* Pearson correlation is low

* Two features suffice to describe each failure as observed by TCP
 Two largest eigenvalues of the data matrix capture S5% of its variance

27

Evaluation

* What is the worst case performance’?
» Applications react to failures
e Their reactions provide useful information
* But what if this information is not available”?

* What if we did not anticipate a failure type”?
 Dormant failures
e Unknown failures

28

How did we get labeled data?

* We inject faults into the communication
* Over b months of data

e Examples:
* High CPU load on the client
* High I/O load on the server
* Bandwidth throttling in the network
* Packet reordering in the network

29

Worse case application

* Only TCP statistics are used from the client side machine

100

Percentage classified in each class

80

60

40+

20

.Normal
Mclient
; DServer

; .Network _

R | s |

0 Bal_ -m

0
Normal(P.:

89.9%)

Client(P.: 81%) Server(P.: 81.8%) Network(P.: 99.2%)
Ground Truth Labels

30

What if we haven't seen the failure

before?

Dormant Bnormal Unknown

High Latency
Reordering
Packet Drop
Throttling

High Mem. Client
High I/O Client
High CPU Client
High Mem. Server
High I/O Server
Slow Reading Server
High CPU Server

0 50% 100%

Mclient
DSewer ngh Lat'enCY
.Network

Reordering
Packet Drop
Throttling
High Mem. Client
High I/O Client

High CPU Client
High Mem. Server
High I/O Server
Slow Reading Server
High CPU Server

0 50% 100%

31

Performance onreal applications

100

a B Normal

S 80 BiClient

é DServer
General Normal Client Networ < BNctwork
label k E o~ . || =
Precisio 97.78% 99.7% 100% i, 8 8
n
Recall 99.68% 98.25% 99.37 520‘

YouTube

| | -
0Normal: (P.:100%) Client: (P.: 97.54) Server: (P.:85.6) Network: (P.: 87.65)
Ground Truth Labels

Event X
32

Things we did not talk about

* Identifying the actual type of failure

e Sensitivity to machine location

* Aggregation vs per connection classification

e Sensitivity to failure duration

* Modifications to traditional cross validation required

33

What's next?

« Can we make this application independent”?
* Transfer learning

« Can the end point identify the device causing the failure
e Correlate information across clients

34

Conclusion

* [CP’s reactions to network and endpoint failures are
significantly different

* We can utilize these differences to find the entity that
caused the failure

