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Datacenters can fail ..
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Azure Nightmare: Customer’

A Microsoft Azure
customer who experienced
a nine-day service
disruption last month is
furious over the software
giant's lack of clear and
transparent

communication about the

ISSue.

The customer. who uses the
Azure  Virtual Machines
Infrastructure-as-a-Service

encountersd major
problems with two of his
VMs running in
Microsoft’s | lowa

center starting April 7.
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One of the VMs was down
continwously. for : two
straight days, and was then
able only
intermittently for seven
days. The other VM was
available intermittently for
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Failures are disruptive

* They can cause significant user downtime
e Loss of revenue for network providers
* L ower QoE (Quality of Experience) for the users

* This introduces the need for debugging tools



Why is debugging hard?
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In the case of a failure...

Someone accepts responsibility Each blames the other
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A real example... Event X

* Azure hypervisors connect to a remote service

e |f these connections fail, the VM has uncertain state
* VM has to reboot

 Did the service fail, or was it the network”?



Current tools are insufficient
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Can we do better? (Overview)

 Introducing...
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The monitoring agent

 Runs on all clients in our data center
* Captures and digests Windows TCP events
* Reports digests every 30 seconds

* Examples of metrics captured
 Number of duplicate Acks
* Number of timeouts
* Time spent in zero window probing



Whatis the TCP event digest?

* We aggregate the captured TCP data into epoch digests

« Keep the min, max, 10t 50" 35 percentile, as well as mean
and standard deviation across all connections in an epoch
for each metric

* Helps compare performance across the various connections
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Why do we think this can work?

* TCP observes the entire communication path
* It goes through the client, the network, and the server

* [t "sees” the failure no matter where it happened
* We know how network failures impact TCP

* How does it react to end point failures?
* Hard to predict based on protocol design
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To distinguish failures...

 \We use variants of decision trees

» Other algorithms combine/manipulate features
 Makes it hard to reason about why they arrive at a decision
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Decision trees...

* Greedily pick features that maximize information gain

Will it rain
today”? Hey, its cloudy
outside.

His uncertainty is X
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Decision trees...

* Greedily pick features that maximize information gain
* Pick the most “informative” features in each step

Will it rain today
given that its
cloudy outside”
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Decision trees alone are not enough



Decision trees alone are not enough
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trees alone are not enough
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Feature 2

>

Decision trees alone are not enough

Hardest to classif

Easiest to \

OO

O 04

O OO0

00000
O O

>
Feaiilére 1 \



What we do to deal with this
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Upper portion of an example tree...

Mean of max congestion
window

Min of the last congestion 50th percentile of number of

window triple duplicate ACKs

50th percentile of
connection duration

y |
95th percentile of the max
congestion window

Max of the number of triple
duplicate Acks
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What we do to deal with this
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Upper portion of an example tree...

50TH percentile of the max
l RTT

Number of flows

50th percentile of amount of
data received

\

95th percentile of the
number of timeouts
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trees alone are not enough
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The upper portion of an example

tree... . .
Mean time spent in zero
window probing

95th percentile of the ratio
of number of bytes posted
to received

Number of flows

95th percentile of
connection durations

v

' Minimum of the number of
Number of flows bytes received
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Isit a network failure?
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Isit a client side problem?

Isitaserver problem?
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Other details

 \We had to use random forest
e More stapble

* Per application training

If tHrdhrghpghipat < x:
Send fpen dadta®n the
samequorrestioos

~

e Normalize the datao
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What did we learn from all this?

* TCP sees everything, even at a single end point
» Allows us to find who was responsible for a failure

* Failures in a group (Client/Server/Network) are similar
* Makes individual failure classification more challenging
* Helps NetPoirot be resilient to failures we haven't seen in the past

* The relationship between failures and TCP metrics is non-linear
* Pearson correlation is low

* Two features suffice to describe each failure as observed by TCP
 Two largest eigenvalues of the data matrix capture S5% of its variance
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Evaluation

* What is the worst case performance’?
» Applications react to failures
e Their reactions provide useful information
* But what if this information is not available”?

* What if we did not anticipate a failure type”?
 Dormant failures
e Unknown failures
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How did we get labeled data?

* We inject faults into the communication
* Over b months of data

e Examples:
* High CPU load on the client
* High I/O load on the server
* Bandwidth throttling in the network
* Packet reordering in the network
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Worse case application

* Only TCP statistics are used from the client side machine
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What if we haven't seen the failure

before?

Dormant Bnormal Unknown

High Latency
Reordering
Packet Drop
Throttling

High Mem. Client
High I/O Client
High CPU Client
High Mem. Server
High I/O Server
Slow Reading Server
High CPU Server

0 50% 100%
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High CPU Server

0 50% 100%
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Performance onreal applications
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Things we did not talk about

* Identifying the actual type of failure

e Sensitivity to machine location

* Aggregation vs per connection classification

e Sensitivity to failure duration

* Modifications to traditional cross validation required

33



What's next?

« Can we make this application independent”?
* Transfer learning

« Can the end point identify the device causing the failure
e Correlate information across clients
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Conclusion

* [CP’s reactions to network and endpoint failures are
significantly different

* We can utilize these differences to find the entity that
caused the failure




