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ABSTRACT

Today, root cause analysis of failures in data centers is mostly
done through manual inspection. More often than not, cus-
tomers blame the network as the culprit. However, other
components of the system might have caused these failures.
To troubleshoot, huge volumes of data are collected over the
entire data center. Correlating such large volumes of diverse
data collected from different vantage points is a daunting
task even for the most skilled technicians.

In this paper, we revisit the question: how much can you
infer about a failure in the data center using TCP statistics
collected at one of the endpoints? Using an agent that cap-
tures TCP statistics we devised a classification algorithm that
identifies the root cause of failure using this information at
a single endpoint. Using insights derived from this classi-
fication algorithm we identify dominant TCP metrics that
indicate where/why problems occur in the network. We val-
idate and test these methods using data that we collect over
a period of six months in the Azure production cloud.
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In today’s data centers, a common issue faced by opera-
tors is troubleshooting faults in complex services. It is often
unclear whether the cause of performance bottlenecks lies in
the underlying network, client, or service-level application
code/machine. Often times, the knee-jerk reaction is to first
blame the network whenever performance issues surface.

The problem is exacerbated by two issues. First, the par-
ties involved in diagnosing the errors (e.g. the service De-
vOps engineers, network operators) may operate as differ-
ent entities either within or across companies and each party
may lack easy access to the other’s performance/debugging
logs. This significantly increases debugging time and ex-
tends the mean time to recovery. Second, these failures
are sometimes intermittent and non-deterministic, and hence
difficult to reproduce without high fidelity, always on, mon-
itoring probes in place throughout the entire infrastructure.

To highlight these challenges, we present a real-world ex-
ample seen within our production cloud. Our public cloud
offering is used by over 1 billion customers, whose applica-
tions reside within VMs in our data centers. In one partic-
ular scenario, the VM triggers an operation within the hy-
pervisor, that requires the hypervisor to send a request to a
remote service. Whenever the request/response latency in-
creases (due to remote service failure, overload, or network
slowdowns), an error occurs in the hypervisor which in turn
causes the VM to panic and reboot, hence disrupting normal
operations. We refer to this as “Event X or EX”.

EX occurs intermittently and only on a subset of nodes at
any given time. However, its occurrence is sufficiently fre-
quent to degrade user experience. It is also unclear when a
reboot happens, whether the error is caused by a remote ser-
vice issue (overload, server failure), or a network problem
(e.g. packet drops or router misconfigurations). In one ex-
ample, when EX occurred the remote service DevOps team
was first contacted. They suspected that EX may be occur-
ring due to high request/response latencies, and blamed the
network, and passed on the diagnostics to the network engi-
neers. The network engineers observed normal RTT times in
TCP traces at the time of failure and suspected that the prob-
lem is probably due to slow server responses, and handed



over the issue back to the server operations team. The it-
erations continued until the various teams involved pieced
together the sequence of events that led to the service disrup-
tion. The entire process is time-consuming, expensive, and
involves many engineers and developers spanning different
organizations. To make matters worse, while the symptoms
of EX may be the same, the actual cause may differ across
occurrence, and fixing one occurrence of EX may not pre-
vent others from happening in the future. Note that such
lengthy debugging across multiple subsystems is an issue
not unique to our production cloud, and has been reported
elsewhere as well [26, 12].

While many network diagnosis tools have been developed
in the past, all of them come short in some way when solv-
ing problems such as EX. Some require access to the en-
tire system [28], others are too heavyweight and so cannot
be used in an always on fashion [29], and finally some re-
quire information that the service/network are not willing
to share [4, 28]. Many of the proposed concepts in these
tools [4, 28, 31] have been designed, developed, and adopted
by our organization. Their failure to diagnose EX is a moti-
vation for a more effective tool.

In the ideal case, one would like to quickly pinpoint the
most likely source of the failure within the infrastructure.
The team (client, network, or remote service) that owns the
failure can then provide a timely response, rather than have
the error be passed around within organizations.

To achieve this goal, we propose NetPoirot! that aims to
perform such failure attribution quickly and accurately. Net-
Poirot requires only a TCP measurement agent to be de-
ployed at each client VM in the cloud. The key insight of
NetPoirot is that different types of failures, albeit not net-
work related, will cause TCP to react differently. For ex-
ample, a slow reading remote service results in exhaustion
of the TCP receive window on the sender VM, which itself
triggers TCP zero window probing. Packet drops on a router
result in an increase in the number of duplicate ACKs. High
CPU load on the client result in fewer transmission opportu-
nities for the client application and thus fewer data sent by
TCP. These differences are not always easy to define, given
the high correlation between the various TCP metrics. Ad-
ditional information such as SNMP and network topology, if
available, can be utilized to improve the accuracy and scope
of the predictions made by NetPoirot. However, in practice,
these information may be unavailable or expensive to collect
in high fidelity. Hence, the goal of our work is to identify
the extent to which failure diagnostics can be achieved sim-
ply by using data available through the clients.

NetPoirot make the following contributions:

Lightweight continuous monitoring. We develop a TCP
monitoring agent that runs on all client machines within our
data centers. These machines request services within and
across data centers under our administration. The agent cap-
tures various TCP related metrics periodically. It is imple-
mented in Windows, although a similar tool in Linux can

'Named after Agatha Christie’s famous detective Hercule
Poirot.

be supported. Unlike more heavyweight approaches that re-
quire packet captures, NetPoirot’s agent is lightweight and
non-intrusive, requiring only aggregate TCP statistics to be
periodically collected and measured. At runtime, the agent
requires only 132 numeric values be examined (and then dis-
carded) by the client machine every 30 seconds.

Machine-learning based classification. Using data col-
lected from our agents, we study the extent in which TCP
statistics can be used to distinguish various failures in data
centers using decision-tree based supervised learning algo-
rithms. We then identify the key parameters in TCP that are
most representative of each type of failure in data centers.

Our approach is a significant improvement over tech-
niques previously deployed at Microsoft such as SNAP [28].
SNAP manually reasons about each type of failure and de-
vises a rule for each problem accordingly. Such manual
inspections are limited in scope, cannot capture the depen-
dency between the various metrics in the presence of fail-
ures, and are prone to human error. We found that many
of the TCP metrics selected by NetPoirot in identifying fail-
ures are not even monitored by SNAP. For these reasons, in
the design of NetPoirot we opted to use machine learning
instead, which allows us to uncover more complex insights.
Our use of decision trees allows us to identify the dominant
set of TCP metrics that help to classify each failure. Fur-
thermore, NetPoirot does not require any knowledge of the
topology, or client to server mappings.

NetPoirot implementation. We have designed and devel-
oped a proof-of-concept implementation of NetPoirot that
combines the above two ideas and is used for diagnosis at
runtime. NetPoirot consists of a training phase, where a va-
riety of faults are injected onto training VMs, in order to
produce a diagnosis function as output. This function is then
distributed to all machines in the data center to be used at
runtime to identify the source of failures. NetPoirot can be
used by both customers and data center operators as it does
not require any information from the network or service.

NetPoirot evaluation. We perform an extensive evaluation
of NetPoirot to validate its effectiveness. We evaluate the
worst case performance of NetPoirot using data collected
over a 6 month period in a production data center that hosts
over 170K web servers and transfers 10Tbps of traffic. We
have induced 12 different common types of failures of two
different applications running on 30 different machines and
observed the changes in TCP statistics collected from these
machines. NetPoirot performs coarse-grained blame allo-
cation on this data with high accuracy (96% for some fail-
ure types). NetPoirot’s accuracy improves even further if
its input information is augmented with additional informa-
tion from the endpoint on which it resides. Our monitoring
agent has currently been deployed on all the compute nodes
within our data centers. We show that NetPoirot can accu-
rately identify the entity responsible for a variety of failures.

The tradeoff that NetPoirot makes is that while it deter-
mines the entity (network, client, remote service) responsi-
ble for the failure, it does not pinpoint the exact physical
device. We argue this is a worthwhile tradeoff as identi-



fying the entity is often times the operationally most time-
consuming (hence expensive) part of failure detection, e.g.
EX failures take from 1 hour (high severity) to days to di-
agnose. In fact, the development of NetPoirot was commis-
sioned as a direct result of this problem in the case of EX.

In other words, NetPoirot does not eliminate the need for
more heavyweight tools but instead helps pinpoint which
tools to use and by whom. For example, to isolate sources of
failure at the client, the user> may need to use gdb, top, etc.
However, to pinpoint sources of failure in the network, net-
work operators use TCPdump, EverFlow [31], etc. Further-
more, many failures are sporadic. Therefore, without always
on monitoring, many of the available debugging tools will
fail to diagnose the failure. In such situations, finger point-
ing is the most that one may hope for in blame attribution.

While we do not claim that we can diagnose all potential
problems, our results indicate that it is possible to distin-
guish between a number of common network, server, and
client failures with high accuracy. This is significant, as we
do not need to use per-flow TCP metrics, nor do we need
data from both endpoints. Since only aggregate metrics are
collected, our methodology allows us to maimuain some ex-
tent of customer privacy.

2. OVERVIEW

© Run monitoring agent © Inject failures
@Collect normal data ~ @Collect faulty data

@ Distribute diagnosis function

Figure 1: Overview of NetPoirot

We first begin with an overview of NetPoirot, which con-
sists of two phases: training and runtime.
Training phase. Fig. 1 depicts the training phase. The train-
ing phase occurs in the production environment on a sub-
set of machines, termed as the training nodes. During this
phase, a TCP monitoring agent is installed on these nodes.
Details on the monitoring agent are presented in Section 3.
The agent can be either installed at the hypervisor or within
individual VMs hosted by the training nodes. When there
are no failures, agent statistics are periodically sent to the
learning agent to capture the behavior of a non-fault sce-
nario. From time to time, we use a fault injector to inject a
variety of failures listed in Table 1. We define the “client” as

2Here, by user we mean the owner of a VM in the data cen-
ter or in the case of EX the operator maintaining the hypervi-
sors. Note, that the operators maintaining the remote service
will also utilize similar tools for diagnosis.

General| Failure How it is induced
label
High CPU load on | Application running kernel level
Server |L_Server CPU intensive operations
Slow reading server | Modified the server application,
added a random delay to its read
operation
High I/O on server SQLIO [19]
High memory load | Testlimit [20]
on server
High CPU load on | Application running kernel level
Client client CPU intensive operations
High I/O on client SQLIO 1[19]
High memory load | Testlimit [20]
on client

Bandwidth  throt-
Network| tling

Added rules in the A10’s

Sporadic packet | SoftPerfect [1]
drops

Packet reordering SoftPerfect [1]
Random connection | NEWT [21]
drops

High Latency SoftPerfect [1]

Table 1: Table describing the types of faults we induced in
our system for train‘ng.

the local machine that is communicating with a remote ser-
vice, which we refer to as the “server”. Failures range from
increased CPU load, increased memory load, increased stor-
age load (by generating excess I/Os on either the client or
server using SQLIO), and also various forms of network-
related problems such as throttling or packet drops.

For each injected failure, the monitoring agent’s TCP
statistics are collected and used by the learning agent to cre-
ate a diagnosis function, trained using as the label, either the
actual failure itself or its type (e.g. client, remote, network).
The diagnosis function is the output of our supervised learn-
ing algorithm. The input to the function is the latest TCP
statistics read from the end point, and the output is the entity
most likely to be responsible for the failure. This function is
broadcast to all VMs at the end of the training phase.
Runtime phase. At run time, all monitored nodes run the
monitoring agent. Whenever failures are detected, each VM
invokes the diagnosis function using digests collected locally
and then generate as output the likely source of failure.

3. DESCRIPTION OF NetPoirot

In this section, we describe the various components of
NetPoirot. NetPoirot is comprised of a monitoring agent that
collects data that is then input to a learning agent. The learn-
ing agent uses this information to create a diagnosis function
that is used at runtime. The following describes the details
of each of these components in more detail.

3.1 Monitoring Agent

Our TCP monitoring agent is installed at each machine’s
hypervisor or within individual VMs. The installation is lim-
ited to only client machines communicating with various re-
mote services within/across data centers. For example, if the
remote service is storage, this precludes the need to run the
agent on storage servers. The agent collects TCP statistics
for all connections seen on its monitored node. Given that



metric statistics | abbreviation
calcu-
lated
Number of flows R NumFlows
Maximum congestion window in & S MCWND
The change in congestion window in § | S(x) DCWND
The last congestion window observedin | S(x) LCWND
[
The last advertised (remote)receive | S(x) LRWND
window observed in §
The change in (remote) receive window | S (*) DRWND
observed in &
Maximum smooth RTT estimate ob- | S (*) MRTT
served in §
Sum of the smooth RTT estimates ob- | S (*) SumRTT
served in §
Number of smooth RTT estimates ob- | S (*) NumRTT
served in §
Duration in which connection has been | S Duration
open
Fraction of open connections R FracOpen
Fraction of connection closed R FracClosed
Fraction of connections newly opened R FracNew
Number of duplicate ACKs S (*) DupAcks
Number of triple duplicate ACKs S (™) TDupAcks
Number of timeouts S (%) Timeouts
Number of resets S (*) RSTs
Time spent in zero window probing S Probing
Error codes observed by the socket R Error Code
Number of bytes posted by the applica- | S BPosted
tion
Number of bytes sent by TCP S BSent
Number of bytes received by TCP S (%) BReceived
Number of bytes delivered to the appli- | S (*) BDelivered
cation
Ratio of the number of bytes posted by | S BPostedToBSent
the application to the number of bytes
sent
Ratio of the number of bytes received | S BDToBRC
by TCP to the number of bytes deliv-
ered

Table 2: Features captured by the monitoring agent during
each epoch. We use R to show that the raw value of a feature
is captured and S to show that we capture the statistics of that
feature. (*) indicates normalized metrics.

our implementation is based on Windows, we will describe
the agent based on Windows terminology. These statistics
can also be collected in a Linux-based system.

The agent is implemented using Windows ETW
events [18], a publish-subscribe messaging system in the
Windows OS. A TCP ETW event is triggered every time a
TCP related event, e.g. the arrival of a duplicate ACK oc-
curs on any one of the connections currently active in the
OS. The agent collects and aggregates events at the granu-
larity of epochs so as to minimize bandwidth/storage over-
head during training. Within every epoch, it receives ETW
events, extracts relevant features and stores them in a hash
table based on TCP’s 5—tuple. At the end of an epoch, the
TCP metrics that depend on the transmission rate are nor-
malized by the number of bytes posted by the application in
that epoch. The normalized metrics are marked in Table 2.
Each individual metric is then further aggregated by calcu-
lating its mean, standard deviation, min, max, 10", 50",

and 95" percentile across all TCP connections going to the
same destination IP/Port. Given that NetPoirot only captures
statistics from TCP connections using ETW events, it is po-
tentially possible to instrument the hypervisor and the Win-
dows OS (as part of Windows updates), so that the hypervi-
sor captures these events and tags them with the process/cus-
tomer ID and by doing so avoid having to install software on
all customer VMs. These modifications are part of our future
work.

We assume that identical failures happen within a single
epoch, e.g. if a connection experiences failure A, then all
other connections between the same endpoints in the same
epoch either experience no failure, or also experience A.
Thus, the epoch duration needs to be carefully tuned. Small
epochs increase monitoring overhead as more data needs to
be stored, but large epochs run the risk that sporadic fail-
ures of different types will occur within one epoch, affecting
the accuracy of the learning algorithm. We currently use an
epoch of 30s which we found to work well in practice. Fine
tuning the epoch duration is part of our future work.

Table 2 shows the features maintained within an epoch by
the monitoring agent. Our aggregation method reduces the
amount of bandwidth required on the machines in the train-
ing stage? and has the added benefit of hiding the clients ex-
act transmission patterns. Furthermore, when applications
change their transmission pattern across connections in re-
action to failures it allows for this change to be detected.
In the other extreme, one may decide to use per connection
statistics with more overhead but with the benefit of detect-
ing why each individual connection has failed separately.

The agent imposes low runtime overheads. Based on our
benchmarks, even in the absence of aggregation, when pro-
cessing 500, 000 events per second, each agent uses 4% CPU
load on an 8 core machine and less than 20 MB in memory.

3.2 Learning Agent

During the training phase, the learning agent takes as in-
put TCP metrics gathered by monitoring agents on train-
ing nodes. At run time, it distributes the learned model
to all clients to be used for diagnosis. The model has to
quickly classify epochs with the appropriate labels to indi-
cate whether it is a remote (Server), local (Client), or Net-
work issue.

The learning agent uses decision trees as its classification
model. In a decision tree, each internal node conducts a test
on an attribute, each branch represents the outcome of the
test, and the leaf nodes represent the class labels. The paths
from root to leaf represents the classification rules.

In our setting, the internal nodes correspond to one of
the aggregated TCP metrics being monitored. The learning
phase determines the structure of the decision tree, in terms
of the choice of attributes and the order in which they are
used for testing along the path from the root to label (this
ordering is determined by the information gain of features in

3Without aggregation, the client needs to transmit 317 fea-
tures every epoch to the learning agent where n is the num-
ber of connections during that epoch. With aggregation, this
number is reduced to 130.



the dataset). The specific nature of the test at each node, i.e.
the inequality tests, is also determined in this phase.

As noted by prior work [8, 3, 9], the structure of deci-
sion trees allows for further understanding of the attributes
that identify each failure. For this reason, we found deci-
sion trees more attractive to use than other machine learning
approaches. We will elaborate further on this in Section 4.

Fig. 2 shows an example of a decision tree, that distin-
guishes packet reordering from normal data. Leaf colors in
the figure represent the labels of the training data that ended
up in those leaves. Most leaves are "pure", i.e. all the data in
those nodes have the same label. Leaf 2 shows an "impure"
leaf that has a mix of both labels. In such situations, the tree
picks the majority label in the leaf as its diagnosis.

=51587 >51587

TDupAcks95
>25273 r<=4
BDered max 0
<=25273 BDeliveredsd
<=11992
<=78601 >78601

>11992 l

BPosted10
"<=3853 3 >38533~¢

1 2

Figure 2: Example tree. The white/Black leave colors illus-
trate the labels of the training data that end up in that leaf.

Based on the concept of decision trees, our learning agent
requires three enhancements for improved stability and ac-
curacy:

Random forests. Our learning agent uses an enhanced type
of decision tree, known as random forests [5]*. In random
forests, multiple decision trees are generated from different
subsets of the data, and the classification is majority-based,
where a majority is defined based on a cutoff fraction spec-
ified by the user. For example, a cut-off of (0.2, 0.8) indi-
cates that for class 1 to be chosen as the label, at least, 20%
of the trees in the forest need to output 1 as the label as well.
Random forests improve stability and accuracy in the face of
differences in machine characteristics and outliers.

Multi-round classification. To improve accuracy, we do
rounds of classifications. First, the forest is trained to clas-
sify Network failures only. The Server and Client failures
in the training set are labeled as non-faulty (Normal) in this
phase. Next, the Network failure data is removed from the
training set, and a new forest is trained to find Server failures
with Client failures labeled as Normal. Finally, the Server
data is also removed and a forest is trained to identify client-
side failures. At run time, data is first passed through the
first forest, if classified as Network, the process terminates.
If it is classified as Normal, it is passed through the second

4Version 4.6-10 in R version 3.2.1.

forest. Again, if it is classified as Server failure the process
terminates. If not, the data is passed through the third forest
and is assigned a label of Normal/Client. In machine learn-
ing, such multi-round classifications are referred to as tour-
naments. In traditional tournaments, different decision trees
are used in pair-wise competitions. Our tournament strategy
is a modification of standard tournaments, as they did not
work well in our setting.

Per-application training. Applications react to failures dif-
ferently. One application may choose to open more TCP
connections when its attempts on existing connections fail
while others may keep retrying on the ones currently open.
Some form of normalization, such as that we use for the
monitoring agent, helps avoid dependence on the transmis-
sion rate of the client itself. However, it does not help avoid
this particular problem given that the effects of application
behavior go beyond the transmission rate but also influence
the number of connections, their duration, etc. Indeed, these
behaviors themselves improve NetPoirot’s accuracy as they
provide more information about the failure. Hence, it is ad-
vised to train NetPoirot for each application separately. We
argue that unless applications change drastically on a daily
basis, there is sufficient time in between major application
code releases and deploys for the model to be updated.
Two-phase tree construction with cross-validation. Each
forest is constructed in two phases. First, given the training
set, we determine basic parameters of the forest, e.g., its cut-
off value and a minimum number of data points required in
a leaf node. The latter is required to bound the tree sizes and
to avoid overfitting. Once these parameters are determined,
the training set is used to create the actual forest.

One of the pitfalls of any machine learning algorithm is
the danger of overfitting, where the trained model is tailored
to explicitly fit the subsequent testing set. This leads to poor
future predictive performance. To avoid overfitting, we ap-
ply a standard machine learning technique, namely a modi-
fied variant of cross validation (CV). In a nutshell, the first
phase is accomplished using N-fold [7] CV which estimates
error using subsets of the training data, while the second
phase builds the model using all the training data.

In the classic form of N-fold CV, the training data is ran-
domly divided into IV subsets (folds). Iterating over all folds
1, in each iteration ¢ is omitted from the training set and the
model is trained over the remaining (N — 1) folds. The
trained model is then tested using the 7*" fold. The estimated
errors in each iteration are averaged to provide an estimate
of the model’s accuracy. N-Fold cross-validation, however,
if used on our data set runs the danger of overestimating ac-
curacy as models will learn specific machine/network char-
acteristics when data from one machine leaks between folds.
Therefore, we divide data from each machine into its own
unique fold. We define CV error as the average error of CV
when each fold contains data from a single machine.

To show why this is important, we tested cross-validation
on our data set using both methods’. Using vanilla cross-
validation, we observe an error of 1.5%. However, when we

5This was done without the use of tournaments.



partition the data based on machine label, we get 10.55% er-
ror. This further indicates that if data from the same machine
is used for both training and at runtime one may get much
higher predictive accuracy than those reported in this paper.
Normalization. We normalize TCP statistics that depend
on the data being sent. Namely, features marked with (x) in
Table 2 were divided by the number of bytes posted by the
application in that epoch in order to minimize dependency
on the application’s transmission pattern.

4. TCP BEHAVIOR UNDER FAULTS

The hypothesis behind NetPoirot is that the different types
of failures, albeit not network related, cause TCP to react
differently. To study this further, we examine the changes in
various TCP parameters in the presence of different failures.
Decision trees allow for not only classifying faults, but also
illuminating features (in this case TCP metrics) affected by
each failure. It is this basis that allows us to develop Net-
Poirot and why we use decision trees in this section.

The algorithm used in NetPoirot is agnostic to the choice
of decision tree algorithm as we use random forests which
rely on weak classifiers as their basis. With regards to the
results in this section, we experimented with different types
of decision trees, and will present our results based on a de-
cision tree algorithm called C5.0 [16]. We used the 0.1.0.24
version of C5.0 in the 3.2.1 version of R. C5.0 is based on
information gain and aims to greedily reduce the amount of
uncertainty with respect to the data’s label. Nodes higher up
the tree provide the most information gain (the most reduc-
tion in uncertainty) with respect to the output.

For each type of failure, we train a decision tree from data
that includes that failure as well as Normal data. For each
failure, we select the top three TCP metrics (features) in the
tree. For each of these top features, we also measure the cor-
relation between its value and the actual ground truth. This
is done by computing the Pearson correlation (PC) between
each feature value and the corresponding ground truth label
(encoded as O for normal, and 1 for faulty) when that feature
value was recorded. The PC value is then computed across
all epochs for the duration in which the failure occurs.

PC is a measure of the linear correlation between the fea-
ture values and the labels (failure type/Normal) and provides
further insight into the level of (linear) dependency between
the features. PC’s value ranges between (—1, 1). The closer
the absolute PC is to 1, the higher the linear correlation and
therefore the easier it is to identify such correlations.

While PC is not required by NetPoirot for classification,
we calculate the PC value so as to provide insight into how
easy it would be for an operator to simply decipher the re-
lationship between the failure and the metrics used by the
decision tree. The human brain is relatively good at identify-
ing linear relationships between variables. Our results show
that often times, the relationship is non-linear, meaning that
a manual classification approach is not likely to work.

4.1 Fault Injection and Workloads

Failure injection. Supervised learning requires labeled data
for training. In order to train our model, we injected fail-
ures in the communication pattern of two different types of

applications running on a subset (30) of the VMs in four
of our production data centers located in West and Central
USA, North and West Europe. Our network serves over 1
billion customers and handles petabytes of traffic per day.
Given that networks in a data center environment are highly
symmetric, training on a small subset of machines in a given
cluster is sufficient for high accuracies at runtime. Some data
centers already purposefully inject faults on a regular basis
in their production environment in order to evaluate their de-
gree of fault tolerance [25]. The traffic of the nodes in the
path of these failures can be observed for training purposes.
Application workload. Applications are designed with a
degree of fault tolerance, and, therefore, react to any failures
that might occur. Given that NetPoirot uses per application
training, such reactions result in additional changes in the
TCP metrics that help NetPoirot isolate the type of failure.
However, to isolate the impact of failures on TCP behav-
ior (and not applications), we experiment using two appli-
cations that were designed to remain passive when failures
occur. The first is a duplex application, where we recorded
a hypervisor’s communication to a remote service (the one
that causes EX) for 6 hours. This trace is then replayed to
and from the server. There is no fault tolerance logic in the
application. Therefore, the duplex application mimics the
behavior of a typical application in our production data cen-
ter but without any additional logic that might affect the TCP
connection. The second application is a simplex application
that opens 128 connections® to a server and sends a constant
number of bytes on each connection every second. We use
three sending rates: 100, 500, 10000 Bps.

These applications are designed to capture the worst case
performance of NetPoirot. For example, the simplex appli-
cation involves communication in one direction. Therefore,
some metrics that depend on communication from the server
back to the client would not be captured. The duplex appli-
cation, on the other hand, is an extreme application that does
not react to failures. Overall, the simplex application results
in decision trees with higher CV errors ( Section 3.2) as a
result of fewer metrics being influenced by the failure.

Our data is gathered over a period of 6 months (July-
December 2015). All datasets are labeled with the corre-
sponding machine ID where the data is collected, to be used
for cross-validation (CV) described in Section 3.2.

4.2 Results

We inject failures listed in Table 1 to study their impact
on TCP. Tables 3 and 4 summarize our main findings. We
limit our investigation to the top three features (those which
provide the most information gain) of a decision tree trained
on the input dataset. These features are shown in each row
in Tables 3 and 4. For each feature, we include in () the cor-
responding PC value as described earlier. We also measure
the CV error, which represents the accuracy of the decision
tree. For the purpose of this section, we do not apply the
normalization described in Section 3.2 in order to gain more
visibility into the direct impact of TCP on the raw metrics.

This number is based on the number of connections opened
by clients connecting to one of our services.



be simple in principle if it results in zero window probing.
We induced a random delay of 0-100ms before the server
reads from the TCP socket in order to test this theory. Sur-
prisingly, the decision trees use measures of the congestion
window and duration instead. It seems that the secondary
effect of the delay was more pronounced on these metrics.
High 1/0 load on the client side. To induce high 1/O load,
we use the SQLIO tool [19] from Microsoft. High I/O load
on the client has all the markings of an application limited
connection. The decision trees both use the maximum of
BReceived, as well as the 954" percentile of the ratio of BDe-
liveredToBReceived.

High memory usage on the server. The selected values
point directly towards a problem on the server, these values
include the 95" percentile of BDeliveredToBReceived and
the maximum of BDelivered. This shows that the reduction
in memory on the server side has caused an impact on the
amount of data transmitted from the server. Note, that such
data is not available on the simplex application. Here, in-
stead the decision tree relies on the number of connections,
as well as the congestion window related metrics in order to
do classification.

General| Fault Features Selected CvV
label Err
High CPU load on | Probingsd(PC=0.27) 6
Server server Timeouts95(PC=0.009)
Duration50(PC=0.22)
Slow reading server LCWNDmin(PC=0.78) 3
Duration50(PC=0.21)
Durationmax(PC=0.15)
High I/O on server BDelivered95(PC=0.58) 0.2
BReceivedmax(PC=—0.72)
High memory load on | BDToBRC(PC=0.01) 0.1
server BReceived(PC=—0.74)
High CPU load on | Duration95(PC=—0.33) 0.6
Client client Duration50(PC=—0.03)
Durationmin(PC=0.4)
High I/O on client BReceivedmax(PC=—0.75)| 1.7
Probingsd(PC=—0.61)
BDToBRC95 (PC=0.01)
High memory load on | BReceivedmax(PC=—0.82)| 15
client LCWND10(PC=0.24)
BDelivered95(PC=0.3)
Bandwidth throttling BReceivedmax(PC=—0.78)| 0.05
Network Durationsd(PC=—0.14)
BDelivered95(PC=0.26)
Sporadic packet drops | BReceivedmax(—0.73) 3
MRTTmax(0.12)
BDelivered10(0.34)
Packet reordering MCWNDmean(PC=—0.07)| 0.1
MCWNDsd(PC=0.01)
TDupAcks95(PC=0.79)
Latency MRTTmean (PC=0.91) 0
Table 3: Important features in identifying failures for the

duplex application. CV Err. are percentages.

We observed that each type of failure can be defined suc-
cinctly using a few features. To validate this, we used a
standard machine learning technique, Principal Component
Analysis (PCA) [24], where we identify the highest Eigen-
values of the dataset for each failure type. The sum of the
Eigenvalues of a dataset equals its variance. Interestingly,
for almost all failures, the sum of the 2 highest Eigenvalues
captured more than 95% of the variance in the feature set.
This is important as it shows that the space of each failure
(as represented by TCP metrics) is compactly representable
on two dimensions’.

We next discuss interesting highlights of our analysis.
High CPU load on the server. The failure was induced
by a multithreaded program, where each thread performed
a CPU intensive system level operation. NetPoirot used the
standard deviation of the time spent in zero window probing,
which occurs when the remote side of the connection runs
out of receive buffer, as its top feature for the duplex appli-
cation. In the presence of high CPU load, the server would
not read from the receive buffer as regularly as normal oper-
ations resulting in higher variance in the size of the receive
buffer and by extension the time spent in zero window prob-
ing at the client. Transmissions will also be delayed due to
receive buffer limitations. This explains the prominence of
these features in the selection process.

Slow reading server Detecting a slow reading server should

"These dimensions can be derived from the original features
using PCA.

General| Fault Features Selected Cv
label Err.
High CPU load on | MRTT10(PC=0.87), 1.2
Server server MRTTsd(PC=—0.12),
Timeoutssd(PC=0.03)
Slow reading server NumberofFlows(PC=—0.22), | 13
DCWNDsd(PC=0.16),
LCWND95(PC=0.37)
High I/O on server NumberofFlows(PC=—0.08), | 14
MCWNDmax(PC=0.11),
LCWNDmax(PC=0.46)
High memory load on | NumberofFlows(PC=—0.04), | 16
server DCWNDsd(PC=0.08),
LCWNDmax(PC=0.49)
High CPU load on | MCWNDI10(PC=—0.07), 0
Client client BpostedtoSentmin(PC=—0.05
High I/O on client NumberofFlows (PC=0.32), | 15
MCWNDmean(PC=—0.31)
High memory load on | NumberofFlows (PC=0.57), | 13
client MRTTmax(PC=—0.47)
Bandwidth throttling NLossRecovery95(PC=0.66) | 0.02
Network| Sporadic packet drops | MCWND95(PC=—0.47), 4
BPostedmean(PC=0.24),
Durationmin(PC=—0.07)
Latency MRTTmax(PC=0.94) 0.02

Table 4: The important features for identifying each type of
failure in the simplex application. CV Err. are percentages.

High memory usage on client. As part of our analysis, for
all the failures, we used fast correlation-based filters for fea-
ture selection and compared the results with the top 3 fea-
tures of the decision tree. We found that feature selection
for this particular failure returned an unexpected subset of
the features. It returned the mean time spent in zero win-
dow probing and its standard deviation. On all machines,
the client had zero Probingmean when the memory usage on
the client was increased, whereas it was positive in the nor-
mal data. The client, having less memory, is pushing less
data to the server allowing it to “keep up”.



Packet drops. Using a commercial tool called SoftPer-
fect [1], we induce 5, 10, and 30 percent packet drop rates
on all connections to the service. Metrics pointing to TCP
throughput are those mostly used to identify the failure.
While packet drops do result in a decrease in throughput it
is surprising that DupAcks are not the most prominent met-
ric. Indeed, the maximum number of BReceived has twice
as high information gain than any of the DupAck statistics.
We plotted the CDF’s for both these metrics. Both showed
a significant difference between failure/normal data. And
therefore, we can only explain this choice by noting that the
impact of BReceived had a more pronounced effect on infor-
mation gain compared to the number of DupAcks.
Connection drops. This type of failure is one of the eas-
iest for our classification tool to identify as tracking SYN,
SYN/ACK ETW events suffice in understanding whether all
or only a random subset of connections are being dropped.
Thus, these failures are identified with 100% accuracy. With
clear indicators, that identify why they occur.

Overall takeaways. TCP reacts differently to different fail-
ures. Therefore, the top three features selected by the de-
cision tree also vary across failures. PC values are not a
good predictor of the importance of TCP metrics. In fact, the
top three features on occasion have low absolute PC values,
suggesting that the relationship between faults and TCP met-
rics may be more complex than a straightforward linear one.
This makes manual classification difficult and motivates the
need for automated approaches.

S. EVALUATION

We have developed a prototype of NetPoirot, which we
deployed in a production data center with failure injection
and application workloads as described in Section 4.1. The
focus of our evaluation is to measure the accuracy of Net-
Poirot in identifying each failure type. To this end, we com-
pute the confusion matrix [6] of the test set on the trained
model. A confusion matrix illustrates what each class of
failure in the test set is classified as by NetPoirot.

Within each class, we further report the precision and re-
call, defined as follows:

Precision is defined as the ratio of true positives divided by
the sum of true positives and false positives. It is a measure
of reliability. For example, if the precision of the network
failures are reported as 96%, it means that when NetPoirot
allocates responsibility to the network for a failure it is the
culprit with 96% likelihood.

Recall is the ratio of true positives to the actual number of
instances in a class and is a measure of NetPoirot’s ability to
recognize that an entity is indeed responsible for a failure.

We will first describe the performance of NetPoirot when
only TCP metrics from the client side are used. We then
show that by augmenting network information with high-
level counters, e.g. CPU load, on the same client machine
one can achieve almost perfect classification.

We use the workload described in Section 4 and partition
the measured data into two sets for training and testing. The
partition is done by using disjoint sets of machines from dif-
ferent data centers for the training and test sets in order to

avoid any bias in favor of NetPoirot. This also allows us
to illustrate that high precision/recall can be achieved even
without having data from the specific machines/data centers
in the training set. The datasets used for training and testing
are roughly the same size and contain aggregated informa-
tion for over 37 million connections.

General| Fault P(fault | errorn
label General label)

P(error | fault)

High CPU load | 66.36% 24%
Server |_omsever

Slow reading | 2.81% 4.06%

server

High /O on | 6.36% 9.66%

server

High  memory | 24% 17.51%

load on server

High CPU load | 4.78% 9.86%
Client on client

High T/O on | 33% 17.61%

client

High  memory | 61.52% 11.2%

load on client

Bandwidth throt- | 96.06% 20.06%
Network| tling

Sporadic packet | 0.21% 0.13%

drops

Packet reordering | 3.71% 1.52%

Latency 0 0

Table 5: The classification errors of NetPoirot in each gen-
eral label broken down in terms of faults.

5.1 Overall Accuracy
Duplex application. Fig. 3 shows the confusion matrix
of NetPoirot when tested on the duplex application. We fo-
cus here on identifying the entity responsible for a failure.
This could be the Client, Server, Network, or Normal (non-
failure). Individual failure classification is deferred to Sec-
tion 5.2. For better visualization, we show the confusion
matrix as a bar graph in each class, where labels on the x-
axis show the ground truth. The bars show what each failure
was classified as by NetPoirot. The bar matching the ground
truth label on the x-axis represents the value of recall. For
example, Normal (green bar) has a high recall value close to
100% (height of the green bar). Precision values are reported
on the x-axis next to the ground truth labels in parenthesis.
We make the following observations. First, network fail-
ures are the easiest to diagnose from TCP statistics and the
most reliable among the three types of failure classes. Net-
Poirot has 99% precision for network failures, indicating
that an output of “Network™ from NetPoirot can be trusted.
Server failures are the hardest to identify, given the lack of
direct access to server side information. Recall was 82% for
these failures, with the majority of errors going to Normal.
To understand the source of our errors, we looked into the
specifics of the misclassified subclasses. Table 5 shows this
information, limited to the misclassified data points from
Fig. 3. P(fault | error N General label) describes the prob-
ability of a failure given that it was erroneously classified
by NetPoirot and that it belonged to a particular class (Net-
work/Server/Client). In other words, this column shows the



breakdown of the error in each class to show how much was
attributed to each particular failure. The second column,
P(error | fault), shows the probability of classification error
given a failure type. This shows the likelihood that a failure
of a particular type will be misclassified by NetPoirot.

As can be seen, the error within each class is usually less
than 20%. However, High CPU load on server seems to be
the most problematic failure type with 24% misclassification
as normal data. Also, note that even though Network failures
have a high recall of 90%(as shown in Fig. 3), almost all the
error in the remaining 10% can be attributed to bandwidth
throttling. We found that within this failure, throttling at
50 and 1 Mbps caused the most problems as they did not
significantly disrupt application performance.

The above shows the performance of NetPoirot when it
relies only on TCP metrics from the client. We can achieve
near 100% precision/recall on Server and Client failures
by augmenting network information with CPU/IO/Memory
load from only the client machine (this is indicated by the
high precision in the Network class). We can then locally
check whether a client-side problem has occurred. If not,
NetPoirot can check whether the failure is due to a Net-
work problem. If both tests are negative, by elimination,
the Server is the cause of failure. Note that simply relying
on client information without TCP metrics (and NetPoirot)
would not work — it would provide high precision/recall for
client failures but fail (0% recall) for all other failures.

Finally, NetPoirot exhibits high precision in all classes of
failures indicating that the entity output by NetPoirot can be
trusted with high probability as the source of the failure.
Simplex application. The duplex application shows the
worst case performance of NetPoirot on typical applications
that have bidirectional communication. We also examine a
more extreme situation where data is only transmitted from
the client machine. Fig. 4 shows that while precision and
recall remain high for network failures, it is more difficult to
differentiate between Client/Normal and Server/Normal. We
note, however, that the errors are not uniformly spread across
all failures. In fact, NetPoirot achieved a recall of 99.9% in
detecting high CPU load on the server. However, high I/O
and high memory on the server side contribute to the ma-
jority of the misclassifications. This is because the simplex
application lacks information that relates to data transmitted
by the remote application, given that communication is only
in one direction. To understand why this information is crit-
ical, we observe from Table 3 that in the case of the duplex
application, the amount of data transmitted by the remote ap-
plication (BReceived) plays a significant role in identifying
the failure related to high memory on the server side.

We present the simplex application as an extreme sce-
nario. Given that most applications have bidirectional com-
munication similar to the duplex application, we focus on
the duplex application for the rest of this section.

5.2 Individual Failure Classification
NetPoirot is primarily designed to identify the entity re-

sponsible for a failure. As a more ambitious goal, it is highly

desirable to also identify the actual failure type itself. To test
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Figure 3: Confusion matrix on the duplex application’s
failure. Recall on each class is as follows: Normal:
97.94%.Client: 87.32%,Server: 81.89%, Network: 90%.
Precision values are included in the x axis for each class.
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Figure 4: Confusion matrix on the simplex application’s
failure. Recall on each class is as follows: Normal:
78%,Client: 47%,Server: 55%, Network: 95.4%. Precision
values are included in the x axis for each class.

the extent to which NetPoirot can accurately classify specific
failures (as opposed to responsible entities), once the failure
class is identified (Section 5.1), we use detailed failure la-
bels to train an additional diagnosis function to identify the
type of failure within the entity. The results are shown in Ta-
ble 6. The third column only uses TCP metrics at the client,
while the fourth column includes additional client-side in-
formation such as CPU, 10, and memory.

Table 6 shows that NetPoirot can classify the majority of
failures, particularly on the network and server. In fact, Net-
Poirot is accurate enough in these classes so that we simply
used a standard random forest trained for the failures without
having to resort to running tournaments. For the client side
failures, however, NetPoirot does not perform as well and
we have to run tournaments. Distinguishing between high
I/O and memory load on both the client and server proved
extremely difficult without client-side information as TCP
behavior remains largely the same in the presence of either
failure. They are presented as a single class in Table 6. We
note that, simply by augmenting the TCP statistics used by
NetPoirot with client-side information, one can achieve high
accuracy in identifying the individual failure type. While
these accuracies are not high enough to provide definitive an-



swers as to what caused the failure, they can serve in guiding
the operators/users towards a starting point. These results are
encouraging as they show that individual failure types have
distinguishing markers in the TCP metrics captured by Net-
Poirot. As part of our future work we plan to analyze these
markers and investigate whether we can modify NetPoirot
so as to allow for more detailed diagnosis.

General | Fault With only client | With all client
label network stats stats

High CPU load | Precision:99.69%, | Precision:99.78%,
Server sid¢ on server Recall:75.54% Recall: 76%

Slow reading | Precision:83.21%, | Precision:83.63%,
server Recall:95.66% Recall:96.44%

High T/O or | Precision:65.78%, | Precision:76.97%,

Memory on | Recall:98.75% Recall:98.75%
Server
High CPU load | Precision:75.64%,| Precision:100%,

Client side

on client Recall:88.05% Recall: 100%

High T/O or | Precision:82.63%,| Precision:100%,
Memory on | Recall:98.48 Recall:100%
Client

Bandwidth throt-
Network | tling

Precision:91.4%,
Recall:79.94%

Precision:92.14%,
Recall:85.53%

Sporadic packet | Precision: Precision:
drops 75.54%, Re- | 75.54%, Re-
call: 97.72% call: 97.72%
Packet reordering | Precision: Precision:
99.73%, Re- | 99.73%, Re-
call: 66.53% call: 66.84%
Latency Precision:99.47%, | Precision:
Recall: 100% 99.47%,
Recall=100%

Table 6: Detailed fault classification with and without addi-
tional client side information.

5.3 Untrained Failures

NetPoirot’s design is based on supervised learning and
thus requires labeled data for training. This means that it
should not be able to detect failures for which it was not
specifically trained. Thus, it is important to understand Net-
Poirot’s typical behavior in the presence of such failures.
The situation can occur in one of the following two ways:
Dormant failures: A previously unknown type of failure is
present during training and is labeled as Normal.

Unknown failures: A failure occurs for the first time during
runtime.

While we cannot anticipate what the “unknown/dormant”
failures would be, we attempt to illustrate this behavior by
purposefully changing our original training data to reflect
each of these behaviors. Ideally, we would like these failures
to be either classified as Normal by NetPoirot, or as their
ground truth class (actual entity).

To emulate dormant failures, we mislabeled each class in
our training data as Normal before training NetPoirot. Simi-
larly, to emulate unknown failures, we remove failed classes
from the training data. We then investigate what entity will
be output as being responsible for these unknown failures.
Fig. 5 shows that dormant failures result in most of the dor-
mant failure being classified as Normal (what we are hoping
for). This shows that in the presence of dormant failures, an
output of Normal from NetPoirot may require further inves-
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Figure 5: NetPoirot performance on dormant and unknown
failures, when all client statistics are used.

tigation to uncover the source of the problem. Fig. 5 also
shows that NetPoirot is resilient to unknown failures, as fail-
ures from each entity have similar characteristics®. In the
few failure types where significant misclassifications occur,
they usually result in classification to Normal.

5.4 Sensitivity Analysis
We do a series of sensitive analysis to explore NetPoirot’s
ability to detect failures across data centers.

So far we have shown the accuracy of NetPoirot when the
data center locations of the machines used for testing only
partially overlap with those used in training. Here we inves-
tigate whether the location of the machines used for training
and testing influences the performance of NetPoirot.
Sensitivity to Cross Data-center Effects. In this experi-
ment, we train NetPoirot for the duplex application using
client machines in data centers on the west coast and one of
the southern states. We then test the result on data from ma-
chines in the same southern state, and also on those in a mid-
west data center. Table 7 summarizes the precision and recall
for test data collected for two machines in the southern data
center, and two machines in the midwest. We observe that
NetPoirot is mostly resilient to the location on which it has
been trained. Interestingly, server-side failures are the most
sensitive to location. We conjecture that this may be caused
by cross-traffic effects as RTT variance increases. Further
investigation is needed as part of our future work.
Sensitivity To Failure Duration. We next investigate Net-
Poirot’s ability to identify short-lived failures. Table 8 sum-
marizes our results for three failures (high IO at server, high
IO at client, and high network latency). For training, we use
failures that last for the application’s lifetime. For each test
case, we inject failures with durations ranging from less than
30 seconds, to 5 to 6 minutes. We allow at least a 15 minute
gap between each failure. Our results indicate that NetPoirot
is not overly sensitive to the duration of the failure. Note

8Fig. 5 shows the results for when both client and network
statistics are used. Our results showed that NetPoirot per-
formed almost equally as well when using only network in-
formation.

100%



General label | Southern State Midwest
Normal Precision: Precision:
98.85% Re- | 83.34% Re-
call: 98.2% call: 99.07%
Client Precision: 100% | Precision: 100%
Recall: 100% Recall: 100%
Server Precision: Precision:
84.71% Re- | 97.75% Re-
call: 94.67% call: 78.91%
Network Precision: Precision: 100%
98.85% Re- | Recall: 98.82
call: 88.99%

Table 7: Performance breakdown by machine location. All
client statistics are used for classification.

the relatively higher accuracy in identifying high I/O on the
server side as compared to Table 5. This is because the VMs
we use for testing and training in this scenario are all from
the same data centers.

Duration C‘lient S.erver }Vetwork
(High 10) (High 10) (High Latency)
< 30s 100% 100% 100%
30s,1min] 100% 99.99 100%
1, 3]min 100% 96.96% 97%
3, 5] min 100% 99% 100%
5, 6] min 100% 96.01% 100%

Table 8: Sensitivity to failure duration. Recall numbers are
shown here.

Sensitivity to Per-connection Training. NetPoirot is
trained on a per-application basis, where the decision-tree
based forests are built using TCP metrics aggregated across
all connections of an application to the same service. This
aggregation method has three advantages: 1) It allows us
to take advantage of the differences across connections to
better detect failures, 2) It allows us to capture an applica-
tion’s reaction to failure, and 3) It reduces the runtime/train-
ing overhead of NetPoirot.

General | Normal Client Server Network
label

Precision | 74.2% 100% 48.16% | 89.53%
Recall 85.77% 100% 41.46% 77.82%

Table 9: Performance of NetPoirot when used for per con-
nection classification.

We explore another method of training, where we build
the forest on a per-connection basis. Table 9 shows the pre-
cision/recall achieved by NetPoirot, on failure detection us-
ing the duplex application. Here, NetPoirot is trained us-
ing per-connection metrics. We observe that training on a
per-connection basis requires 100X increased learning time.
Hence, we are restricted to only 40% of the earlier training
set. We observe that the recall and precision numbers are
lower. For example, server-side failures are the hardest to
classify, with a recall of 41.46%. Overall, per-application
aggregation is a more accurate and efficient approach, and
the alternative approach should only be considered if the op-
erator requires per-connection diagnostics information.

5.5 Real Application Analysis

Our test applications present challenging scenarios that
help us explore the limits of NetPoirot’s ability to detect
failures. As noted in Section 4.1, these are extreme appli-
cations as they do not modify their communication patterns
in response to failures. Here, we explore the performance
of NetPoirot on two real-world applications, one based on
video streaming, and another based on traces from our pro-
duction data center containing EX failures.
YouTube video streaming. We tested NetPoirot on data col-
lected while streaming YouTube videos in a browser. On 9 of
our VM’s located in three different data centers, we induced
Client/Network failures® while streaming YouTube Videos.
Table 10 shows the results for when only network statistics
are used. Compared to our results in Section 5.1, we observe
that NetPoirot does significantly better on the streaming ap-
plication than on the duplex and simplex applications.

General | Normal Client Network
label

Precision | 97.78% | 99.7% 100%
Recall 99.68% 98.25% 99.37%

Table 10: Performance of NetPoirot when used to identify
failures when streaming YouTube videos.

Production applications experiencing EX. We run an ex-
periment to validate NetPoirot’s effectiveness in identifying
causes of EX failures based on real production traces. We
use Syslog entries from our production machines to identify
when an EX event caused a VM reboot. As training and
test sets, we extract information captured by our monitoring
agent,which is deployed on all compute nodes in our data
centers, during the same time period . The monitoring agent
used to capture this data is an older version of NetPoirot and
does not report metrics such as time spent in zero window
probing which we added in subsequent releases. We addi-
tionally use resolved tickets to identify the cause of failures.

We use a large subset of machines (162/175) for training
as EX occurrences on any one machine tend to be low (typi-
cally at most 1), though in aggregate, they occur frequently.
The remaining machines are used for testing. We lack di-
rect access to the ground truth labels and have to use a com-
bination of log analysis and resolved tickets to identify the
start-time/type of the failure that lead to EX. Note that in a
real-world deployment, we would have injected faults as de-
scribed in Section 2 in the training phase to induce and learn
about all types of EX failures, leading to a more accurate
failure labeling process.

In the training set, we mark the duration of each failure
based on a simple heuristic. We know when the failure ended
as the VM experiencing EX reboots (detectable from Sys-
log), we set the failure start time to 3 minutes prior to this
reboot. We do not use data after the reboot. 3 minutes is a
conservative estimate that we apply. However, this is at best
an estimate. After talking to our engineers, they confirmed

9Server failures are excluded as we do not control the
Servers.
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Figure 6: Confusion matrix on EX. Recall on each class
is as follows: Normal: 94.53%,Client: 98.54%, Server:
100%,Network: 98.2%.

that the duration of failures that cause EX are highly variable
and can last from a couple of seconds to minutes.

To improve label accuracy, we first pass each class of fail-
ure in the test set through a classifier that identifies that fail-
ure (e.g. Client) from Normal data. We then label the data
based on the output as failure/Normal making sure that each
class occurs with contiguous time stamps. Similarly for the
data that we label as normal, based on the 3 minutes time-
frame, we first pass it through each of these classifiers and
label it as failure if its timestamp is a continuous extension
of the failure on the same machine. This allows us to extend
the failure labeling past the 3 minute conservative estimate.

Fig. 6 shows the confusion matrix similar to the format
described in Section 5.1. Since client information was not
collected, the results are based on NetPoirot when using net-
work statistics alone. We make the following observations.
First, despite lacking the actual ground truth on failures and
the time interval in which they occur, NetPoirot never mis-
classifies failures as other types of failures but instead re-
turns a label of Normal. This is important as an entity is
not blamed when it was not at fault.. Second, given course
granularity labels of failures vs normal, NetPoirot is able to
achieve very high recall values, consistently above 94%, and
in fact, achieves 100% recall for server failures. This sug-
gests that NetPoirot is a promising approach at pinpointing
the entity causing EX.

6. DISCUSSION

Our results in Section 5 demonstrates the effectiveness of
NetPoirot in pinpointing the source of failures in a data cen-
ter. We perform a range of sensitivity analysis, on different
applications to fully explore the efficacy of NetPoirot. In do-
ing so, we have identified possible extensions of NetPoirot,
as well as gained a better understanding of the scenarios in
which it is most useful. We briefly discuss these possibilities
here, as well as point out directions for future extensions.

NetPoirot uses lightweight endpoint monitoring, is non-
intrusive, and incurs minimal overhead to machines in a data
center. Despite being lightweight, NetPoirot is able to per-
form accurate failure detection of the entity responsible for
the failure, and even the type of failure itself. This precludes

identification of the actual device, e.g. the physical router
that causes a network problem. Another limitation of Net-
Poirot is its reliance on TCP metrics, which precludes fail-
ures observed by UDP. Given that most traffic within data
center uses TCP, a wide range of applications (e.g. web apps,
database applications) can still benefit from NetPoirot.
NetPoirot is a lightweight failure identification tool for
data center applications. We have identified several avenues
to further improve our results via more sophisticated learn-
ing techniques. These include:
Cross-application learning.  NetPoirot requires per-
application training, which we argue is feasible, given that
learning can be done offline for each new application being
deployed in a data center. One interesting idea we are ex-
ploring is the use of a concept in machine learning, known as
transfer learning [23], in which the feature space of one ap-
plication can be modified so that it can be used in NetPoirot
for identifying the cause of failures in another application.
Non-production training. NetPoirot exploits the fact that
data centers tend to have homogeneous setups, where fail-
ures can be induced on a subset for machines for supervised
learning. This has been explored by others [25]. As an en-
hancement, we plan to explore training in a staging environ-
ment. Our sensitivity analysis in Section 5.4 suggests that
NetPoirot is resilient to learning across data centers, sug-
gesting it is possible to limit the training to a single cluster
within a data center, and still apply the results to another
cluster with similar configuration.
Improving accuracy. In Section 3.2 we reported that tra-
ditional CV on our data set yields an error of 1.5%. Cross-
validation error where each fold comprises of data from only
a single machine is much higher (11%). This suggests that
if samples of faulty/normal data from a machine exist in the
training data, the classification error on that machine dramat-
ically decreases. Thus, continuously changing the machines
used in training should improve the accuracy of NetPoirot
even further over time.

7. RELATED WORK

Anomaly detection in distributed systems [10, 13, 11, 15]
detect when a failure has occurred, while the goal of Net-
Poirot is to find the entity responsible for the failure.
Inference and Trace-Based Algorithms [4, 2, 31, 12] ei-
ther require (a) data not locally available to the client at
runtime, (b) knowledge/inference of the probability distri-
bution of failure on each device in the system, (c) high re-
source consumption at runtime, or (d) knowledge/inference
of application dependence on the different network/service
devices. Each of these requirements raises the barrier of
adoption, as compared to NetPoirot.

Fault Localization by Consensus [22] violates the above
data locality requirement, but does not require any informa-
tion from the network or service. The work assumes that a
failure on a node common to the path used by a subset of
clients will result in failures on all or a significant number
of those clients. Therefore, if many clients in different loca-
tions report a failure, it is most likely caused by the service,
whereas if only a single client fails the problem is likely lo-



cal to that client. Fig.7 illustrates why this approach fails in
the face of problems such as EX. Here, we use the Network
Emulator Tool (NEWT) [21] to induce a 5% packet drop rate
on all TCP connections to the remote service on a single ma-
chine in our stage cluster. Even though the 5% drop rate was
present over the entire 6 hour period, only 3 EXs occurred.
These events happened when data transmissions increased.
This shows that even though a failure may be present in the
network, not all clients will observe it at the same time or in
the same way. NetProfiler [22] would erroneously, classify
such a problem as a client side problem. These approaches
require further information in order to provide reliable fault
localization. We do, however, envision a hybrid of this ap-
proach with NetPoirot to improve diagnosis accuracy.
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Figure 7: Each dot shows BPostedmax in time and is repre-
sentative of a 30s epoch.

Fault Localization using TCP statistics [17, 27, 29, 28] tar-
gets using TCP metrics for diagnosis. [17] requires heavy-
weight active probing. [27] uses learning techniques (SVM),
however, it relies on packet captures from both end points
and is limited in the scope of failures it detects (network
and application problems only). T-Rat [29] infers TCP infor-
mation from packet captures. It is used to understand why
a TCP connection is rate limited. Our diagnosis goals are
broader. T-Rat is too heavyweight to be used as always on.
SNAP [28] requires sensitive information, such as topology,
path information, and switch counters to identify applica-
tions with frequent problems. NetPoirot eliminates the need
to share such information with clients. SNAP manually rea-
sons about the relationship between each failure and the TCP
metrics it collects and devises detection rules accordingly.
Such reasoning is limited in its scope. NetPoirot instead
automates the creation of these rules through decision tree
based algorithms.

Tomography Based Approaches [30, 14] correlates active
measurements across multiple paths to determine the loca-
tion of failures, e.g. [30]. These techniques usually involve
active probing, which increases overhead in a data center.
Learning Based Approaches [8, 9, 3] do failure detection.
NetPoirot also uses machine learning techniques, but the ap-

plication domain is different (home networks [3] and mobile
video delivery [9]). [8] uses decision trees in order to locate
the device responsible for a failure by observing the path
traversed on the tree. It requires request to server mappings.
NetPoirot does not require this additional information.

8. CONCLUSION

In this paper we present NetPoirot, a diagnostic tool that
allows for identifying the cause of performance problems in
data centers. Our approach uses lightweight non-intrusive
continuous monitoring of TCP metrics only on client ma-
chines, and machine-learning based classification. Based on
extensive evaluation over a 6-month period in a production
environment across multiple data centers, we show that Net-
Poirot can accurately identify entities responsible for a wide
range of failures, achieving in some cases, above 96% accu-
racy for some failure types.
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