
CloudRanger: Root Cause Identification for Cloud Native Systems

Ping Wang ∗†‖, Jingmin Xu †‡, Meng Ma §, Weilan Lin†, Disheng Pan ¶, Yuan Wang ‡, Pengfei Chen ‡
∗ National Engineering Research Center for Software Engineering, Peking University,

† School of Software and Microelectronics, Peking University,
‡ IBM Research China,

§ School of Electronics Engineering and Computer Science, Peking University,
¶ School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School,
‖ Key Laboratory of High Confidence Software Technologies (PKU), Ministry of Education

∗§†¶‖ {pwang, mameng, weilan.lin, pdisheng}@pku.edu.cn; ‡{xujingm, crlwangy, cpfchen}@cn.ibm.com

Abstract—As more and more systems are migrating to cloud
environment, the cloud native system becomes a trend. This
paper presents the challenges and implications when diagnosing
root causes for cloud native systems by analyzing some real
incidents occurred in IBM Bluemix (a large commercial cloud).
To tackle these challenges, we propose CloudRanger, a novel
system dedicated for cloud native systems. To make our system
more general, we propose a dynamic causal relationship analy-
sis approach to construct impact graphs amongst applications
without given the topology. A heuristic investigation algorithm
based on second-order random walk is proposed to identify
the culprit services which are responsible for cloud incidents.
Experimental results in both simulation environment and
IBM Bluemix platform show that CloudRanger outperforms
some state-of-the-art approaches with a 10% improvement in
accuracy. It offers a fast identification of culprit services when
an anomaly occurs. Moreover, this system can be deployed
rapidly and easily in multiple kinds of cloud native systems
without any predefined knowledge.

Keywords-Cloud native systems, Micro-service architecture,
Root cause analysis, Anomaly detection, Causality

I. INTRODUCTION

Nowadays, increasingly business applications are “born

on cloud” for taking advantages of all the benefits of a

cloud native system such as horizontal design, continuous

delivery, etc. [1]. The three properties “container packaged”,

“dynamically managed” and “microservice oriented” of a

cloud native system allow easy abstraction and modularity

for implementation, reuse, as well as independent component

scaling [2]. The microservice oriented architecture distribut-

ing different responsibilities of the system into autonomous

services enhances the cohesion and decreases the coupling,

which allows the architecture of an individual service to

evolve through continuous refactoring [3]. However, it can

yield hundreds, or even thousands, of microservices, which

introduces new challenges in managing both the deployment

as well as the performance of cloud native systems.
First, monitoring microservice can be a big challenge

due to the dynamic natures of the elastic environment. The

number microservices can increase or decrease instantly in

order to react to workload changes. Furthermore, a container

can be deactivated, restarted, or even migrated to different

nodes for system resiliency or resource optimization. Canary

release [4], which is a technique used for reducing the risk of

introducing new software versions, does both as frequent as

new versions of a microservice are delivered. The dynamics

make it difficult to track the containers in the context of their

associated business transactions. The monitoring solution

has to be able to pick up from right where it left off when a

container is deactivated and subsequently restarted in order

to provide continued historical performance of the container.

Second, the best strategy for managing the performance

of a cloud native system is to measure both the perfor-

mance of business transactions holistically as well as the

individual microservices because a performance problem in

an individual microservice may not surface at the busi-

ness transaction level. However, the traditional approach to

performance baselining can be a daunting undertaking for

cloud native systems because you have to construct baselines

for each business transaction and microservice. The sheer

scale and magnitude of managing thousands of business

transactions and microservices negates the practicality of

manually instrumenting them for performance monitoring

and setting realistic service level agreement (SLA) thresh-

olds. The automation of such tasks is always challenged by

middleware adaptivity and business transaction coverage. In

addition, the baselines also have to catch up with the pace

of the version progression of each microservice, but it is

quite challenging due to the continuous delivery nature of

the microservice world.

Third, compared to the traditional monolith, business

transactions in a cloud native system usually have a much

longer calling path with dozens of distributed microservices

participating. Any performance problem or failure in the

downstream nodes can be quickly propagated backwards to

the upstream nodes, and eventually crashes the entire system

if the problem is not identified and isolated in time. Some

cloud design patterns, e.g. circuit breaker, can be used to

mitigate the issue for improving the resiliency of the system,

but it hinders the problem from being quickly identified from

performance perspective.

In order to address these challenges, we propose Cloud

492

2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-5386-5815-4/18/$31.00 ©2018 IEEE
DOI 10.1109/CCGRID.2018.00076

Ranger, a novel approach to performance management for

cloud native systems. It basically takes four steps: anomaly

detection, impact graph construction, correlation calculation,

and root cause identification. It treats a cloud native system

as a black box and monitors its performance in the service

endpoints. Once an anomaly is detected, an impact graph is

constructed based on dynamic causal relationship analysis

against the observed performance metrics. A heuristic in-

vestigation algorithm based on second order random walk

against the graph is then used to identify the problem-

atic services. As you will see, this approach automatically

constructs the impact graph with no need to trace and

aggregate business transactions. Therefore, it is immune

from the backend dynamics and performance baselining. We

developed a prototype system and validated its effectiveness

against a sample cloud native system running on top of

IBM Bluemix Platform through comparing with selected

state of the art approaches and tools. The results shows

CloudRange gets 10% improvements in accuracy for root

cause identification without given call graphs compared with

some state-of-the-art.

The remainder of this paper is organized as follows. Re-

lated works are summarized in Section 2. Section 3 presents

our monitoring architecture and dataset. Section 4 elaborates

our proposed solution, CloudRanger, in terms of its high-

level framework and details. Experiments and evaluations

are included in Section 5. We discuss the advantages of

CloudRanger and conclude the paper in Section 6.

II. RELATED WORKS

Significant research efforts have been devoted to related

topics like finding root causes of anomalies in computer

networks [5, 8-12]. In computer networks, the data is

usually real-time metrics/events or link information between

network devices [6, 7, 13], and a strong assumption is made

that the links in the computer network structure represent a

reliable dependency. This is true in computer network area.

But for large-scale cloud native applications, this is not the

case due to two facts. One is that the linkage between run-

ning nodes in cloud is usually loosely coupled and the switch

from time to time (due to application scale out/in or load

balancer). The other one is that some popular cloud design

patterns such as circuit breaker, bulkhead, and so on can fur-

ther change the error propagating pattern among cloud native

services. Hence, in [14], Kim et. al., proposed a real-time

metric collection system and anomaly detection framework

named MonitorRank. It is an unsupervised and heuristic

method based on random walking strategy. MonitorRank

uses the historical and current performance metrics of each

services as its input, along with the call graph generated

between them. MonitorRank does not assume the reliable

dependency between services, but it does need the call graph

as the base. In cloud native environment, it costs much to

capture the precise call graph. You need to deploy a whole

set of topology capturing infrastructure such as Zipkin [15]

to get a call graph in such a dynamic environment, which

is usually impossible to perturb a running cloud platform.

Another problem of MonitorRank is that even you have the

precise call graph, you cannot assume the error propagating

paths are always embedded in it. For example, due to the

resource sharing nature of the cloud, several containers are

running on the same physical node. One container’s defect

exhausts the network bandwidth and this will cause the

problems of other containers. However, in call graph, these

containers may not have network connections among them.

In this paper, a data driven impact graph is proposed to

replace the need of precise call graph to capture the error

propagating pattern, a heuristic investigation algorithm based

on second order random walk against the impact graph is

used to handle the various cloud design patterns and identify

the problematic services. Anomaly detection algorithms is

also related to this paper, since an anomaly detector is

needed to detector end user facing anomaly as the start point

of our method, in this paper, we use our previous work [7] as

the anomaly detection algorithm since it is more suitable to a

dynamic workload environment and unsupervised comparing

with other algorithms listed in [16]. Besides, traditional

approaches did not consider about a higher order correlation

when they infer the root causes leading to a biased result

such as [17].

III. BACKGROUND AND MOTIVATION

On IBM Bluemix platform, we are building and op-

erating large-scale cloud native applications and services

either for customer and platform itself, for example, IBM

runs over 200 categories of public micro-services including

Big Data, IBMWatson, Data Analytics, Internet of Things,

Security, DevOps, Application, etc. [18], and each category

of micro-service provides a bunch of service instances,

APIs and runtimes. These services are running on thousands

of machines in multiple cloud centers around the world,

severing for over a million of users and producing over

1.5 billion API requests every single day according to

a recent report [19]. In real production operations, the

service deficiencies occasionally cause anomalies as high

service latency and low usability, which propagates along

the platform and has chance to crash the system finally.

To keep the services running continuously, reliably, and

diagnose anomalies quickly, heath checks and performance

metric (e.g. latency and throughput) are usually collected for

an application in a regular intervals as an indication of its

basic performance status. In Table I, the details of collected

dataset is summarized for a real anomaly in Bluemix system.

In this incident, Bluemix web UI and command-line user

interface (CLI) are slow in response time which is regarded

as “performance down-gradation”. Note that this dataset only

records some key Bluemix system APIs and removes most

unrelated application APIs. In Figure 1, performance metrics

493

are shown for 4 typical APIs selected from 1732 APIs.

The main process of manual root cause identification is

conducted as follows.

Table I
METRICS NOTATION

Type Details
Duration 7200 seconds (2 hours)
Interval every 1 second

Total Metrics >11,000,000 (latency / throughput)
Total API 1732

End User Facing API 54
Raw Data Size 4.6GB

Metrics investigation. First, we examine different kind

of metrics for their effectiveness. As Figure 1 shows,

given the performance degradation anomaly, the latency is

better to reflect the abnormal status of service compared

to the throughput. When an anomaly occurs, the latency

of Bluemix Dashboard API increases sharply however its

throughput keeps relatively stable most of the times. It is

because throughput is more dynamic as it is associated with

the external API calling behavior (see Bluemix Console API

for a clear instance). Besides, we find that all the original

metrics are very sparse with 1-second sampling interval.

Therefore, we need to aggregate them with an appropriate

time interval. Meanwhile, the range of metrics varies for

different APIs, for example. Nature Language Processing

(NLP) service is time consuming so that its latency is

determined by a specific task, sometimes thousand times

longer than other services.

Topology investigation. The actual root cause in this

incident is that several Bluemix event process components

run out of memory. It propagates in the infrastructure and

causes the console slowing down and finally freezes the

dashboard. Accordingly, Figure 1 compares three kinds

of services related to anomaly, where Event Component

API stands for the root cause service, Bluemix Console

API is the intermediate service in anomaly propagation,

and Bluemix Dashboard API is the front-end service with

anomaly. However, it is challenging to find this propagation

pattern “Event → Console → Dashboard” from total 1732

different APIs. Worse still, some services are ambiguous to

judge whether they participate in the anomaly propagation

for the non-expert. For example, we find there are substantial

increase in latency of NPL and IBM Watson API. While

they are actually not related with the anomaly propagation in

this incident. In real-world systems, the anomaly propagation

path could be much more complex as it may affect hundreds

of related services. In many situations, it is impossible to

have complete knowledge about the relationships between all

services. So, we need a methodology to establish the impact

graph from raw metrics, helping us depict and analyze the

anomaly propagation.

To keep this huge platform running continuously and

reliably, there is a dedicated Bluemix SRE (Site Reliability

Engineer) team insensitively watching and fixing anomalies.

But due to the complexity of the system, it is usually difficult

and time-consuming to find the actual root cause even for

the experienced SRE. Without using any automation tools,

an SRE needs to spend 3 hours on average in identifying

the root causes of an incident. Therefore, our work in this

paper aims to help SRE to quickly identify which service or

component is most likely the one leading to the incident.

IV. PROBLEM AND OUR SOLUTION

A. Problem definition

In this work, we assume a cloud native system is com-

posed by various services. And we treat it as a black box.

It means we only have access to the basic performance

metrics for each service and have no other system domain

knowledge such as the actual calling graph among these ser-

vices. This assumption comes from the real cloud platform

Bluemix. There are more than 5000 services communicating

and collaborating each other to support and control the

platform. Each service is monitored by collecting some basic

metrics like response time and throughput. But there are

no way to get the precise calling graph among these 5000

services since they are so dynamic and complex. So this

assumption makes the proposed method more general for

various situations. Without loss of generality, for a certain

kind of metric, we suppose that an anomaly is observed in a

frontend service vfe in time period [1, t] from service set V
(Other services are called “backend” correspondingly). Let

an n× t matrix T where [T]i,j = ti,j be the metric data of

node vi at time j ∈ [1, t] for all the n services node in V .

Therefore, our goal is to find a set of services vrc ⊂ V ,

which cause the observed anomaly in vfe given T. Table II

lists the notations in this paper.

Table II
NOTATIONS

Notation Definitions
G(V, E) directed graph G with vertex and edge set V,E
vfe, vrc frontend service; set of root cause services
Ii, Oi set of in and out-neighbor nodes of node i
n,m, t number of services; edges; metrics
ti,j monitor metric of service node i at time j ∈ [1, t]
ti,T [ti]j = ti,j ; T : n× t matrix, [T]i,j = ti,j
�i gradient matrix of ti, [�i]k = [ti]k − [ti]k−1

ci,j correlation score of service i to j
pi,j transition probability from service i to j
pk,i,j transition prob. from i to j from k
pu,v transition prob. from edge u to v

C m×m correlation matrix, [C]i,j = ci,j
P node-to-node transition matrix, [P]i,j = pi,j
M edge-to-edge transition matrix, [M]u,v = pu,v
σ threshold in anomaly detection
α significance for conditional independence tests
β, ρ second-order, backward transition constant

S(vi, vj) set of nodes that d-separate i and j

494

Figure 1. Performance monitoring metrics for key services

Figure 2. The framework of CloudRanger

B. CloudRanger Framework

We propose a novel framework to solve this problem,

named CloudRanger. In order to rank services according

to their potentiality contributing to the given anomaly,

CloudRanger decomposes the task into four stages: anomaly

detection, impact graph construction, correlation comput-

ing/calibration, and root cause investigation (See Figure

2). In CloudRanger, we first detect the occurrence of an

anomaly, to remove normal services and find abnormal

candidates from numerous targets. Second, we extract a

service impact graph by causal analysis based on intra-

correlations between services. Third, we compute the corre-

lation score for any pair of services as a quantitative measure

of dependence between them with respect to given metrics.

When needed, CloudRanger detects and calibrates special

design patterns in micro-service architecture, to eliminate

their negative effects on algorithm accuracy. Finally, we

conduct a second-order random walk based on the impact

graph and correlation scores, resulting into an anomalous

service rank. We elaborate different phases of CloudRanger

in the following subsections.

C. Anomaly Detection

Anomaly detection is the starting phase of CloudRanger.

In this paper, we leverage our previous work [7] as the

anomaly detection method. There are two main benefits by

using this method. First, it is a dynamic threshold method

and it can follow and trace the dynamic running infras-

tructure and workload by introducing an on-line learning

algorithm. Second, the method can individually detect all

services’ performance degradation by response time and

throughput. Moreover, this will dramatically narrow down

the root cause analysis scope since we can only focus on

the services which are reported as the anomaly service.

When using the anomaly detection method in [7], there

is an important factor, which will influence a lot in the later

impact graph construction. That is he time window used

to compute the average response time and throughput of a

specific service. As the time window in anomaly detection

will naturally be used as the aggregation window in the

impact graph algorithm meaning that when two anomalies

happened within the time window, we assume that they

may possibly has directed impact relationship with each

other. So how to select the time window is non-trivial in

this paper. We determine it in this way. Since we aim to

discover the impact relationship between services when an

anomaly occurs, a reasonable selection of the aggregation

window is the statistical average delay between services that

call each other directly. In other words, they have one hop

link on transaction call graph (direct call relationship). In

practice, we calculate the statistics of the service average

delay and do some experiments on the values around it.

we choose several highly related services and do anomaly

detection on them, then analysis if the anomalies of different

services well synchronized with each other under different

aggregation windows. The result shows that when the time

window is small, for example, 1-second and 2-second, too

many anomalies of different services are detected and they

are not very synchronized with each other in time line. On

the contrary, if we aggregate with a larger interval e.g.,

window = 10s, some anomalies will be ignored to catch

the actual propagation topology even these anomalies should

show good synchronized. We conclude from the experiments

that 5 seconds is a preferred aggregation time window for

Bluemix platform to group the anomalies.

495

D. Impact Graph Construction

CloudRanger extracts the impact graph by causal analysis

based on intra-correlations between services. We design

the impact graph construction algorithm on the basis of

PC-algorithm [20], which is under the assumption that

the distribution of the observed metrics is faithful to a

DAG (Directed Acyclic Graph). This assumption is true

in our fine-grained monitoring architecture because API-

level calling are naturally acyclic. We construct the skeleton

without directions and generate a DAG according to the

orientation rules mentioned in [20] which you will see in

the following part. Different from previous approaches [21-

23], our method is unsupervised, meaning that it does not

need to label the normal and abnormal services manually.

Impact graph. Let G(V,E) be a DAG describing the

impact relationship between vertex (service) set V , it may

contain undirected and directed edges, which have the fol-

lowing interpretation: (1) there is an edge between vi and vj
if and only if these two services are conditionally dependent

given all the possible subsets of V \ {vi, vj}; (2) a directed

edge vi → vjmeans that this directed edge is present in all

DAGs. It stands for the change of vicauses the change of

vj . In other word, vi impacts vj ; (3) an undirected edge

vi − vjmeans that there is at least one DAG with edge

vi → vjand vi ← vj . Let V be the input vertex set, given a

significance level α ∈ (0, 1), the impact graph construction

consists of four steps:

• Step 1. Generate a completely undirected graph on V ;

• Step 2. Test conditional independence given subsets of

adjacency sets at a given significance level α and delete

edges if conditional independence is accepted;

• Step 3. Orient v-structures;

• Step 4. Orient remaining edges.

We leverage the concept of d-separation to determine the

conditional independence, see [24] for details. Given a DAG

model, two services vi and vj are d-separated by a set

of services S, if and only if vi and vj are conditionally

independent given any subset of S. We denote the set of

services that d-separate vi and vj as a function S(vi, vj). Let

G be the generated graph in Step 1 and adj(G, vi) denote

the set of nodes in graph G that are directly connected

to vi. In the second step, all pairs of services (vi, vj) are

tested for conditional independent given any single node

in adj(G, vi) \ {vj} or adj(G, vi) \ {vi}. If there is any

service vk that makes (vi, vj) conditionally independent,

edge vi−vj is removed and vk is inserted into S(vi, vj) and

S(vj , vi). If all one-step adjacent pairs have been tested, a

new graph is generated and the algorithm continues in this

way by increasing the size of the conditioning set step by

step. The process stops if all neighborhoods in the current

graph are smaller than the size of the conditional set. The

result of Step 2 is called skeleton in which every edge is

still undirected. In this process, a higher significance level α

place a more strict restriction on conditionally independent

judgement. Therefore, the algorithm Step 2 removes less

edge from G and we obtain a result with more edges.

Step 3 and 4 orient the skeleton into a DAG. First, we

considers all triples (vi, vj , vk) that vi, vk and vi, vk are

adjacent in skeleton however vi, vj is not. All such triples

are oriented as vi → vk ← vj (also known as v-structure)

if vk /∈ S(vi, vj) ∧ vk /∈ S(vj , vi). For any remaining

undirected edge, the algorithm checks whether any of its two

possible directions introduces a new v-structure or a directed

cycle. If so, that direction will be marked as invalid. Such

edges can be found by repeatedly applying the following

rules [25]:

• Rule 1. Orient vj − vk into vj → vk whenever there

is a directed edge vi → vj such that vi and vk are not

adjacent (otherwise a new v-structure is created);

• Rule 2. Orient vi − vj into vi → vj whenever there is

a chain vi → vk → vj (otherwise a directed cycle is

created);

• Rule 3. Orient vi−vj into vi → vj whenever there are

two chains vi−vk → vj and vi−vl → vj such that vk
and vl are not adjacent (otherwise a new v-structure or

a directed cycle is created).

For the sake of clarity, we summarize the process of

impact graph construction in Algorithm 1. In order to

facilitate the investigation of root causes, we reverse all the

direction of edges in constructed DAG. The complexity of

the Algorithm 1 is bounded by the largest degree in G.

Let k be the maximal degree of any vertex and let n be

the number of vertices. In the worst case, the number of

conditional independence tests required by the algorithm is

bounded by 2
(
n
k

)∑k
i=0

(
n−1
i

)
. Hence, our impact graph con-

struction algorithm has a much lower complexity compared

to the exponential complexity of Bayesian network-based

algorithms [26].

Example. In Figure 3, we demonstrate the construction

details with a demo impact graph based on the latency

metrics of Bluemix Dashboard, Console, Event Component

and Nature Language Classifier (namely NLP in the Figure).

It starts with a complete undirected graph G1. First, we

set level = 0 and test all service pairs for their condi-

tional independence. For example, Event is independent with

Dashboard in G2. Therefore, the edge ?Event-Dashboard?

is removed from G2. Likely, we remove the edge between

Dashboard and NLP in G3. When all the independences un-

der the condition level = 0 are tested, we get G4. After that,

we test the independences when level = 1 and level = 2.

In G5, Event is conditionally independent with NLP given

Dashboard. Therefore, Dashboard ∈ S(Event,NLP). In

G7, we find Console is conditionally independent with NLP

given {Event, Dashboard}. Until level = 3, the algorithm

stops because |adj(G, vi) \ {vj}| < level, ∀vi ∈ G, so that

we obtain the skeleton of the impact graph as shown in G8.

496

Algorithm 1 Impact Graph Construction

Input: Vertex V , separation function S, significance α
Output: Reversed DAG G
1: new DAG G from V , level = 0
2: for ∀(vi, vj) ∈ G do
3: if |adj(G, vi) \ {vj}| ≥ level then
4: for ∀vk ⊂ adj(G, vi)with|k| = level do
5: if vi, vj conditionally independent given vk, α

then
6: remove vi − vj from G
7: insert vk into S(vi, vj) and S(vj , vi
8: end if
9: end for

10: end if
11: level← level + 1
12: end for
13: for ∀vi − vj − vk ∈ G, vk /∈ S(vi, vj) ∧ vk /∈ S(vj , vi)

do
14: replace vi − vj − vk by vi → vk → vj
15: end for
16: for ∀(vi, vj) ∈ G do
17: check vi → vj and vi ← vj with Rule 1-3
18: end for
19: for ∀(vi, vj) ∈ G do
20: replace vi → vj by vi ← vj
21: end for

Figure 3. An example of impact graph construction

Finally, we orient G8 by Rule 1-3 and output the reversed

graph shown in G9 representing the impact relationship

Event→ Console→ Dashboard.

E. Correlation calculation

Intuitively, one simple way of identifying the root cause

possibility of a backend service is computing how its metric

pattern is similar to the observation in the frontend service.

This simple idea is basically the same as how we investigate

the root cause manually, that is, if two services share similar

abnormal patterns in a given metric series, they should

be affected by the same root cause. Therefore, we define

a correlation function to measure the similarity. Given a

service set V and its metric data matrix T, for any pair of

service vi, vj ∈ V , the correlation ci,j scores the relevance

of vi to vj in terms of T. The value of ci,j is in [0, 1]. A

value of ci,j = 1 implies completely correlation, whereas

ci,j = 0 implies that there is no correlation between them.

We propose a revised Pearson correlation function as a

measure of the linear dependence between two metric series

for service vi and vj , defined as

[C]i,j =

∣∣∣∣∣

∑t
k=1([ti]k − t̄j)([tj]k − t̄j)∑t

k=1

√
([ti]k − t̄j)2

√
([tj]k − t̄j)2

∣∣∣∣∣ (1)

In particular, the correlation function used in this paper

is actually the absolute values of original Pearson algorithm

because both the positive and negative correlation exist in

the anomaly propagation in cloud native systems. According

to specific problem scenarios, different correlation functions

can be defined in CloudRanger framework.

F. Root Cause Identification

In the constructed impact graph, each node vi ∈ V indi-

cates a service, each edge ei,j ∈ E is set to 1 when service

vi is impacted by vj . For simplicity, we use the notation of

original correlation score ci,j in the following discussion.

The algorithm proposed to find the root cause is inspired

by the real-world system operator’s behavior in manual

root cause investigation. Assuming that we have no domain

knowledge about the anomaly but only have the discovered

impact graph G and correlation score C, one of the natural

diagnosis methods is to randomly traverse services following

G with preferentially looking for a high correlation score

ci,j regard to anomaly in frontend service vfe. The traverse

should not only consider the correlation of current service,

but also take into account the relation between previous

walked service. For example, during random walk, when the

correlation of previous and current node is both high, it is

more possible to find the root cause if we move forward in-

stead of backward troubleshooting. To this end, we propose

our scheme leveraging the concept of a second-order random

walk [27]. In a first-order random walk, a surfer walks from

service vi to vj with probability pi,j . Let Xt be the service

visited by the surfer at time t, pi,j can be represented as

conditional probability P [Xt = vj |Xt−1 = vi]. The surfer

visit vj proportionally to its correlation score to vfe, i.e.,

497

cj,fe. Hence, the node-to-node transition probability matrix

P is defined as [P]i,j = pi,j =
cj,fe∑

l∈Oi
cl,fe

.

Forward transition. In our scheme, the surfer considers

the previous visited node. Let pk,i,j be the transition prob-

ability from service vi to vj ∈ Oi given that vk ∈ Ii is

previously visited, pk,i,j = P [Xt+1 = vj |Xt−1 = vk, Xt =
vi] = P [Xt+1 = vj , Xt = vi|Xt−1 = vk, Xt = vi]. We con-

sider edge-to-edge transitions, pk,i,j , which can be denoted

as pk,i,j = pu,v if we let u = (vk, vi) and v = (vi, vj) be

the edge from vk to vi and vi to vj respectively. In edge-to-

edge transitions, we define an autoregressive model where

p
′
k,i,j = (1 − β)pk,i + βpi,j , taking the previously visited

node into consideration. The parameter β ∈ (0, 1] controls

the strength of effect from the previous visited services.

When β = 1, we have p
′
k,i,j = pi,j , i.e., the edge-to-edge

transition degenerates to node-to-node. Let M be an m×m
transition matrix, with element pu,v . Therefore, our forward

transition probability calculates as:

[M] = pk,i,j =
p

′
k,i,j∑

l∈Oi
p

′
k,i,l

=
(1− β)pk,i + βpi,j∑

l∈Oi
[(1− β)pk,i + βpi,l]

Backward transition. Given only forward transition, the

surfer can only move forward along the impact graph even

if the current service shows a high correlation with the

frontend service while all other neighbor services do not.

Correspondingly, we setup two additional types of transi-

tions, namely backward and selfward, helping the surfer

to find more routes and making its random walk more

heuristic. Assume the surfer is visiting a service vi with a

low correlation score ci,fe. If all its out-neighbor services in

Oi show less correlation to the given anomaly, there will be

no way to escape but trapped in this wrong route. Backward

transition is introduced to resolve this issue. Let pbk,i,j be

the backward transition probability from current service vi
to its in-neighbor vj ∈ Ii given vk previously visited, pbk,i,j
is restricted by a backward constant ρ ∈ [0, 1), defined as

pbk,i,j = ρ
p

′
k,i,j∑

l∈Ii p
′
k,i,l

= ρ
(1− β)pk,i + βpi,j∑

l∈Ii [(1− β)pk,i + βpi,l]

. The backward constant ρ represent the restriction strength

of the direction of impact graph on the surfer. If we set

ρ lower, the surfer is more restricted to the direction of

the impact graph. Conversely, if the value of ρ is higher,

the surfer walks with more flexibility as it would explore

downstream and upstream.

Selfward transition. The surfer is also encouraged to

stay longer on the visiting service if none of its in and

out-neighbor services are of high correlation score. To this

end, we introduce selfward transition. Let psi be the selfward

transition probability when vi is the visiting service. We

denoted it as psk,i,i given vk previously visited. Specifically,

psi is determined by the difference of pk,i,i and the maximum

transition probability of its in and out-neighbor services.

Hence, psk,i,i = max(0, pk,i,i − max
l∈Ii∪Oi

pk,i,l).

Random walk algorithm. Given G(V,E) and C, the

surfer starts from vfe, calculates the probability of forward,

backward and selfward transition, and randomly walks fol-

lowing the impact graph. Different services are visited in

sequence by randomly choosing the next service among

their neighbors. We record that how many times for each

service being visited and output the list descending as the

root cause identification result. We summarize this process

in the following algorithm. In CloudRanger framework,

the route of random walk is determined by the impact

relationship between services reflected by metrics. Hence,

the constructed impact graph is more accurate than actual

calling topology in specific situation when the interested

anomaly occurs and propagates. Meanwhile, the impact

graph contains implicit relationships which are not defined

in the calling topology. Therefore, for a given anomaly, the

result of random walk in CloudRanger framework is more

heuristic, and more accurate.

Algorithm 2 Random Walk

Input: G(V,E),M, vfe.
Output: R[n].
1: new Array R[n], vs = vfe, vp = vfe
2: repeat
3: vp ← vs
4: for each l ∈ Os calculate pp,s,l
5: for each l ∈ Is calculate pbp,s,l
6: calculate psp,s,s, row normalize [M]p,s
7: vs ← randomly choose from Os ∪ Is ∪ {vs}
8: R[s]← R[s] + 1
9: until n rounds

10: R[n]← Sort(R[n])

V. EMPIRICAL STUDY

A. Testbed and Evaluation Metric

We use both simulated environment and real-world pro-

duction cases from Bluemix for validation. As the acurate

service calling topology is hard to obtain in real complex

production environment, in order to compare the algorithm

accuracy with other methods, we use Pymicro [28] to

simulate the micro-service-based systems and their anomaly

propagation. Bluemix is our real production testbed. We

use dozens of different Bluemix incidents to validate our

method. For each incident, the typical data size comprises

more than 10,000,000 metric points including response time

and throughput collected for over 1,000 micro-service APIs

during 2 hours which embraces the period when the incident

happened.

Three kinds of methods are selected for comparison,

namely random selection, TBAC [29] (Timing Behavior

498

Anomaly Correlation) and MonitorRank [14]. Random se-

lection is a most basic way to investigate the root cause in

random order given no domain knowledge about anomaly.

The comparison between random selection and other three

algorithms reflects the improvement by introducing metric-

based knowledge into problem solving. TBAC is a non-

heuristic method, working on the anomaly metric correlation

and improved using a series of weighted rating based on the

dependency relation graph [29]. We compare TBAC with

heuristic algorithms to show the advantage and robustness

of random walking in solving this issue. MonitorRank is

a heuristic algorithm based on first-order random walk.

MonitorRank requires to obtain the true calling topology

of target system [14]. Therefore, the comparison between

MonitorRank and CloudRanger first validate the advantage

of using impact graph instead of following true service

calling topology.

To quantify the performance of each algorithm, we intro-

duce a performance metric for result accuracy. This metric

indicates the probability that top k result given by each

algorithm includes the real root causes for all given anomaly

cases, denoted as AC@k. A higher result of AC@k, espe-

cially when the value of k is small, represents the algorithm

identifies the actual root cause more accurate, resulting in

less services for further investigation. Let R[n] be the result

rank of each service, specifically, AC@k is defined on a set

of given anomalies A as:

AC@k =
1

|A|
∑

a∈A

∑
i<k R[i] ∈ vrc

min(k, |vrc|) . (2)

We also compare the overall performance of each algorithm

by computing the average AC@k, which defines as:

Avg@k =
1

k|A|
∑

a∈A

∑

1≤j≤k

AC@j. (3)

Our evaluation system is implemented by Python. The

impact graph construction algorithm is implemented with

the R language. Experiments were performed on a work-

station with an Intel Xeon CPU 3.4GHz and 64GB RAM

running Java HotSpot Server VM in 64 bit Windows Server.

All experimental results are averaged over twenty different

rounds of test.

B. Simulation Experiment and Analysis

Impact graph construction. The first experiment exam-

ines the constructed impact graph based on the collected

latency and throughput metrics from Pymicro system. Note

that these collected metric data includes normal and abnor-

mal observations. We record the latency when every time of

calling for each service. In order to simulate the occurrence

and propagation of anomalies, we randomly select several

services and inject fault to them, for example, shutdown

the service host or attacks using denial of service. Given

ω = 5 (every 5 seconds) and α = 0.1, we calculated

Figure 4. Pymicro impact graph

t = 1500 metric samples using Algorithm 1 to obtain the

results shown in Figure 4. In this topology, “Request” means

that edge exists in the actual calling topology of Pymicro.

If the edge in the impact graph does not exist in the actual

topology, we call it “implied”. Conversely, if any linkage in

the actual topology has not been discovered in impact graph,

it is called ”missing”. We find that the constructed impact

graph skeleton and directions are generally consistent and

can reflect the actual service calling relationship in Pymicro.

The implied edges in Figure 4 indicate that there are implicit

associations between services. These edges are most bi-

directional, for example, S4 ↔ S5 and S7 ↔ S8 ↔ S9

as they call the same DB services in Pymicro. We note

some edges are missing in the constructed impact graph

compared with the actual calling topology, which implies

that the missing calling relationship has very low relevancy

with the given anomaly.

Root cause identification. The second experiment com-

pares the accuracy of selected algorithms. We use actual

calling topology of Pymicro in TBAC and MonitorRank

algorithm. For CloudRanger, we use the constructed im-

pact graph. We compare the AC@1, 3, 5 and Avg@5 when

t = 1500 based on latency and throughput respectively.

The experimental result is summarized in Table III (we

denote four algorithms as RD, TB, MR, SR for short). It

shows that CloudRanger outperforms other algorithms in

terms of accuracy with both latency and throughput metric.

Especailly, CloudRanger provides an accuracy of 59.4% in

the first recommended result and 85.2% for average top 5

result. In terms of the Avg@5, TBAC and MonitorRank

have the accuracy of 47.0% and 73.7% respectively. We

present an example of root cause result in Table IV, which

shows the top 13 results given by four algorithms (S1 is the

root cause, marked in bold). CloudRanger lists the accurate

root cause at the first one of its result list, which appears

499

in the fourth or even later in other algorithms. Therefore,

CloudRanger significantly improves the efficiency of root

cause investigation in cloud native systems. However, we

also find that the result based on throughput is not as good

as the result based on latency. Because Pymicro is a system

with single frontend service and synchronous request. As

a result, the correlation scores based on throughput metrics

are similar and hard to distinguish the pattern related with

given anomalies.

Table III
ROOT CAUSE IDENTIFICATION RESULT

RD TB MR SR
Latency
AC@1 06.1% 23.1% 25.4% 59.4%
AC@3 19.0% 45.3% 87.4% 89.5%
AC@5 31.8% 61.3% 89.7% 93.3%
Avg@5 30.1% 47.0% 73.7% 85.2%

Throughput
AC@1 06.0% 16.2% 41.9% 40.1%
AC@3 18.3% 35.9% 66.3% 68.2%
AC@5 30.5% 40.1% 72.1% 73.4%
Avg@5 31.8% 43.7% 64.1% 68.8%

Table IV
TOP 13 RESULT OF PYMICRO

RD TB MR SR
Service 3 Service 4 Service 2 Service 1
Service 5 Service 13 Service 3 Service 3

Service 13 Service 10 Service 5 Service 2
Service 11 Service 9 Service 1 Service 4
Service 4 Service 6 Service 6 Service 11
Service 8 Service 15 Service 15 Service 8

Service 12 Service 2 Service 7 Service 6
Service 10 Service 1 Service 11 Service 12
Service15 Service 14 Service 4 Service 5
Service 7 Service 7 Service 12 Service 9
Service 9 Service 11 Service 13 Service 13
Service 1 Service 12 Service 8 Service 15
Service 6 Service 8 Service 9 Service 14

Algorithm parameters. In the third experiment, we aim

to evaluate the result accuracy with different parameters

more specifically, t and α. We compare the accuracy of

CloudRanger algorithm when increasing t from 800 to 1500

and α from 0.01 to 0.5. According to our previous analysis,

when α is larger, the algorithm is more likely to find

potential impact relations. Likewise, in terms of t, the more

metric input (means t is higher), the result more accurately

reflects the impact relationship between services. This is

proved by the experimental result shown in Figure 5. It is

worth noting that a small parameter t results in a significant

impact on the accuracy, AC@1 < 20% when t = 800 as

indicated by the statistics. On the other hand, when the

value α is too small, for example α = 0.05. The AC@1
of CloudRanger is 66.3%, owing to the incomplete impact

graph. The algorithm accuracy is significantly decreased as

compared to the accuracy 91.1% if we set α = 0.5.

Figure 5. Accuracy of CloudRanger with different t and α

C. Real Production Environment Validation

Impact graph construction. Due to the limited space,

we select one of the aforementioned Bluemix incidents and

present the constructed impact graph in this experiment.

Taking into account that Bluemix is a very complex system,

a large part of its services are irrelevant with a particular

anomaly. In order to reduce the complexity and improve

the efficiency of CloudRanger, we generate a root cause

candidate list by choosing the top 5% alarmed service

API by anomaly detection. In the experiment, we set t =
1440, α = 0.5, ω = 5. As shown in Figure 6, most of the ab-

normal services are connected by constructed impact graph,

meaning they probably participate the anomaly propagation

path. Note that service API 18 ← 13 ← 6 represents the

impact relationships Event← Console← Dashboard we

find in Figure 3. Some services (See service No. 1, 12 and

27) are isolated of the graph, so that they will not be taken

into account in the following random walk. We are curious

about this result and seek advice to IBM Bluemix SRE

team. They find that these services represent HTML5 based

WebSocket server and Watson NLP. Similar to our analysis

in Figure 4, they are long connections and their response

times make no sense. In other words, these services have

no calling relationships with other services at all. Hence,

CloudRanger can filter out some irrelevant services in the

graph construction phase.

Root cause identification. To start the experiment, there

are two front-end candidates in Figure 6, namely Service

No.18 and No.26, which represent the end points of Bluemix

Dashboard and Interface respectively. According to the

judgement of SRE, the root cause should be Service 31, 30,

28 and 6 (marked underlined in the Figure). These service

APIs are provided by event process components. If we cans

identify these services as the root causes, SRE can quickly

check the event process components and find the actual

problem. Considering that the result based on latency is

significantly better than throughput, and in view that the

throughput will be more affected by the external calling

behavior, the following experimental results are obtained by

the metric of latency as it better reflects the characteristics

of service.

Algorithm parameters. We evaluate the result accuracy

500

Figure 6. Constructed impact graph of Bluemix incident

with Bluemix incidents by setting ω = 1, 2, 10, and

20 seconds. Consistent with our analysis in Section 4.3-

Sampling interval, as the result shows (See Table V and VI),

2-sigma of average time delay outputs the best result, over

90% specifically and all the root causes are listed in front of

the result in this incident example. Hence, it is a reasonable

selection of the parameter ω is the statistical average time

delay between services that call each other directly. If ω is

too large, there will be overmuch edges that do not reflect the

real calling relationship, and if ω is too small, some edges

will be lost to catch the actual topology. We also compare the

result with different values of t and α in Bluemix production

environment. Figure 7 shows the experimental result. Similar

to the result in Pymicro system, we have a higher result

accuracy with larger value of t and α.

Table V
ACCURACY WITH DIFFERENT ω

ω = 1 ω = 2 ω = 5 ω = 10 ω = 20
AC@1 26.1% 84.9% 98.6% 90.3% 12.0%
AC@3 36.5% 69.0% 92.5% 83.6% 18.6%
AC@5 62.1% 63.2% 90.5% 59.3% 24.6%
Avg@5 55.4% 79.3% 95.4% 82.9% 35.3%

Table VI
TOP 13 RESULT OF BLUEMIX INCIDENT

ω = 1 ω = 2 ω = 5 ω = 10 ω = 20
Service18 Service 31 Service 31 Service 31 Service5
Service 30 Service 30 Service 30 Service 6 Service20
Service 31 Service24 Service 28 Service 30 Service22
Service 28 Service 28 Service 6 Service26 Service21
Service3 Service9 Service13 Service9 Service 30
Service22 Service16 Service26 Service24 Service 28
Service16 Service 6 Service9 Service17 Service 31
Service24 Service14 Service16 Service21 Service7
Service26 Service18 Service24 Service 28 Service2
Service 6 Service32 Service7 Service20 Service 6
Service29 Service33 Service4 Service16 Service15
Service32 Service13 Service20 Service5 Service24
Service25 Service8 Service18 Service32 Service1

Figure 7. Accuracy in different t and α

VI. CONCLUSION

This paper introduces CloudRanger, a novel approach for

root cause identification in cloud native systems. Experi-

mental results show that CloudRanger outperforms other

methods in terms of accuracy and offers a fast identification

of root causes. Advantages of CloudRanger over state-of-art

methods are manifolds: i) we treat the cloud native system

as a “black box” and make no assumption of predefined

knowledge about the system. Therefore, CloudRanger can

be applied into extensive application scenarios since it does

not require a predefined service topology; ii) we can easily

integrate domain knowledge and maintenance experiences

into CloudRanger by replacing its correlation function or

predefining the topology. For example, we can replace the

correlation score function by the similarity of current metric

and historical observations, which can better reflect the

healthy states of IO-intensive or CPU-intensive services; iii)

CloudRanger is a framework with high adaptability, which

can be extended to handle more scenarios in cloud native

systems. Without significant modifications, CloudRanger can

also diagnose and analyze other complex networks such as

sensor, social, and biological networks.

ACKNOWLEDGMENT

The National Key R&D Program of China

(2017YFB1200700), National Natural Science Foundation

of China (61701007), China Postdoctoral Science

Foundation (2016M600865) and IBM Shared University

Research Project support this work. Meng ma is the

corresponding author.

REFERENCES

[1] Cloud Native Computing Foundation, http://www.nltk.org/,
[Accessed on Nov 17, 2017].

[2] S. Newman, “Building Microservices”, O’Reilly, 2015

[3] T. Erl, “Service-oriented architecture: concepts, technology,
and design”, Pearson Education India, 2005.

[4] Canary Release, https://martinfowler.com/bliki/CanaryRelease.html,
[Accessed on Nov 17, 2017].

501

[5] M. lgorzata Steinder, and A. S. Sethi, “A survey of fault
localization techniques in computer networks”, Science of
computer programming, vol. 53, no. 2, pp. 165-194, 2004.

[6] A. Homer, J. Sharp, L. Brader, M. Narumoto, and T. Swanson,
“Cloud Design Patterns: Prescriptive Architecture Guidance for
Cloud Applications”, Microsoft patterns & practices, 2014.

[7] J. Xu, Y. Wang, P. Chen and P. Wang, “Lightweight and
Adaptive Service API Performance Monitoring in Highly Dy-
namic Cloud Environment”, in Proceedings of 2017 IEEE
International Conference on Services Computing (SCC), pp.
35-43, 2017.

[8] T. Ahmed, B. Oreshkin, and M. Coates, “Machine learning
approaches to network anomaly detection”, in Proceedings
of the 2nd USENIX workshop on Tackling computer systems
problems with machine learning techniques, pp. 1-6, 2007.

[9] Y. Liu, L. Zhang, and Y. Guan, “A distributed data streaming
algorithm for network-wide traffic anomaly detection”, ACM
SIGMETRICS Performance Evaluation Review, vol. 37, no. 2,
pp. 81-82, 2009.

[10] R. Jiang, H. Fei, and J. Huan, “Anomaly localization for
network data streams with graph joint sparse PCA”, in Pro-
ceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 886-894, 2011.

[11] J. Gao, G. Jiang, H. Chen, and J. Han, “Modeling probabilistic
measurement correlations for problem determination in large-
scale distributed systems”, in 29th IEEE International
Conference on Distributed Computing Systems (ICDCS), pp.
623-630, 2009.

[12] C. Wang et al., “VScope: middleware for troubleshoot-
ing time-sensitive data center applications”, in
ACM/IFIP/USENIX International Conference on Distributed
Systems Platforms and Open Distributed Processing, pp. 121-
141, 2012.

[13] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly
detection and description: a survey”, Data Mining and
Knowledge Discovery, vol. 29, no. 3, pp. 626-688, 2015.

[14] M. Kim, R. Sumbaly, and S. Shah, “Root cause detection
in a service-oriented architecture”, in ACM SIGMETRICS
Performance Evaluation Review, vol. 41, no. 1, pp. 93-104,
2013.

[15] Zipkin, http://zipkin.io/, [Accessed on Nov 17, 2017].

[16] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey”, ACM Comput. Surv., 41(3), 2009.

[17] Y. Wu, Y. Bian, and X. Zhang, “Remember where you
came from: on the second-order random walk based proximity
measures”, Proc. VLDB Endow., vol. 10, no. 1, pp. 13-24,
2016.

[18] Cloud Connect China 2016, Sep 2016, Shanghai, China.

[19] Hystrix, https://github.com/Netflix/hystrix, [Accessed on Nov
17, 2017].

[20] P. Spirtes, C. N. Glymour, and R. Scheines, “Causation,
prediction, and search”, MIT press, 2000.

[21] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and
J. Symons, “Correlating Instrumentation Data to System States:
A Building Block for Automated Diagnosis and Control”, in
Proceedings of OSDI, vol. 4, pp. 16-16, 2004.

[22] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox,
“Ensembles of models for automated diagnosis of system
performance problems”, in Proceedings of the International
Conference on Dependable Systems and Networks (DSN), pp.
644-653, 2005.

[23] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and
A. Fox, “Capturing, indexing, clustering, and retrieving system
history”, in ACM SIGOPS Operating Systems Review, vol.
39, no. 5, pp. 105-118, 2005.

[24] D. Geiger, T. S. Verma, and J. Pearl, “d-separation: From
theorems to algorithms”, arXiv preprint:1304. 1505, 2013.

[25] M. Kalisch and P. Bhlmann, “Estimating high-dimensional
directed acyclic graphs with the PC-algorithm”, Journal of
Machine Learning Research, vol. 8, no. 3, pp. 613-636, 2007.

[26] B. Ellis and W. H. Wong, “Learning causal Bayesian network
structures from experimental data”, Journal of the American
Statistical Association, vol. 103, no. 482, pp. 778-789, 2008.

[27] Y. Wu, Y. Bian, and X. zhang, “Remember where you
came from: on the second-order random walk based proximity
measures”, Proc. VLDB Endow., vol. 10, no. 1, pp. 13-24,
2016.

[28] Pymicro, https://github.com/rshriram/pymicro, [Accessed on
Nov 17, 2017].

[29] N. Marwede, M. Rohr, A. van Hoorn, and W. Hasselbring,
“Automatic failure diagnosis support in distributed large-scale
software systems based on timing behavior anomaly correla-
tion”, in 13th European Conference on Software Mainte-
nance and Reengineering (CSMR), pp. 47-58, 2009.

502

