
Coordinated Analysis of Heterogeneous Monitor Data
in Enterprise Clouds for Incident Response

Uttam Thakore∗, Harigovind V. Ramasamy†, William H. Sanders∗
∗University of Illinois at Urbana-Champaign, Urbana, IL 61801

†IBM, Austin, TX 78758
Email: {thakore1, whs}@illinois.edu, {hvramasa}@us.ibm.com

Abstract— During incident analysis and response, enterprise
cloud administrators want to use as much of their generated
monitor data as possible. However, the reality is that decisions
are often dictated by the tools actually available to automatically
process the monitor data, rather than by an understanding of
the relevance of the data for incident response. The significant
manual effort and domain expertise required to process diverse
cloud monitors means that much monitor data remain unexam-
ined. We propose a framework for simplifying the complexity
of data analysis for incident response. Our framework enables
coordinated analysis of both metric (numerical) data and log
(semi-structured, textual) data and exposes salient features within
those data. As a foundation for the framework, we define a
taxonomy for fields within monitor data based on insights gained
from analyzing logs and metrics collected from all levels of an
experimental platform-as-a-service (PaaS) cloud (EPC). Using
the taxonomy, we lay out a method for semi-automated feature
extraction and discovery across heterogeneous monitors. We then
describe a method for feature clustering to promote effective
analysis of the data, and to remove redundant and uninformative
features. We discuss the application of our framework for
incident response within the EPC, including root cause analysis.

Index Terms—cloud computing, log analysis, reliability, inci-
dent response, log clustering, AIOps

I. INTRODUCTION

In large-scale enterprise clouds, large volumes of system
data are collected for detection and investigation of undesirable
incidents, such as failures, performance bottlenecks, and attacks.
As cloud platforms grow in size and complexity, the diversity
and quantity of monitors that can be deployed to collect data
about system operation for incident analysis, as well as the
number of features that can be extracted from the data, increase
dramatically [1]. It is not always possible to efficiently analyze
information from all monitors that can be deployed, nor is it
necessarily known a priori which features will be important in
detecting incidents that will occur during system operation.

Existing monitoring and analysis frameworks can automat-
ically parse and analyze data from only a limited set of
cloud monitors, and most segregate analysis of numerical and
text data, limiting the types of analyses that can be done.
Furthermore, existing tools provide limited guidance about
which features are salient for reliability and security incident
response. For a cloud provider collecting data from multiple
monitors, most features are redundant or uninformative, often
increasing incident response time. Downtime due to incident
response can result in lost revenue and customer dissatisfaction.

In this paper, we introduce a framework to semi-automatically
process heterogeneous monitor data from multiple levels of a
cloud platform into a manageable set of meaningful time series
features useful in incident root cause analysis. We propose a
general taxonomy for monitor data fields that administrators can
use to easily label both structured and unstructured components

of monitor data. We then present a method to automatically
extract time series features based on labels from our taxonomy,
remove uninformative features, and reduce the overall number
of features by clustering together related and redundant features.

Our framework enables coordinated analysis of both metric
(numerical) data and log (semi-structured, textual) data, which
to the best of our knowledge is not supported by existing
techniques or tools, and typically presents a challenge to
cloud support engineers. Our framework also (1) supports
feature extraction from arbitrary cloud monitor types, (2)
requires limited annotation or custom parsing by domain
experts to operate on parameters within unstructured log
messages, (3) aids in the discovery of meaningful features while
minimizing feature redundancy, and (4) identifies meaningful
relationships between features that can aid in incident response.
We demonstrate the utility of our framework on incident data
collected from an experimental PaaS cloud service (EPC),
which was serving as a development-test environment. Our
approach significantly reduces the manual effort needed of
administrators to ingest and operationalize monitor data.

The rest of this paper is organized as follows. In Section II,
we describe the EPC for which we developed our framework
and the dataset we use for evaluation. In Section III, we explain
how monitoring and incident analysis are performed in practice
and illustrate the challenges faced in the EPC. Section IV details
our taxonomy of cloud monitor data fields, and Section V
describes our procedures for feature extraction and clustering.
Finally, in Section VI, we illustrate our approach’s ability to
aid in feature discovery and incident analysis.

II. SYSTEM AND DATA DESCRIPTION

To evaluate our work, we applied our approach to a case study
dataset containing three performance and reliability incidents
from end-to-end testing of the EPC.

At the base level, each instance of the EPC consisted of three
Linux VMs networked together: a web server, an application
server, and a database server. The case study dataset contains
system and application log and metric data for three separate
test failure incidents, each with a different cause of failure. The
exact set of monitor data differs for each incident; a summary
of the relevant monitor types is given in Table I.

To illustrate the feature extraction challenges faced by
administrators of the EPC, we provide sample log lines from
the Web application server (WAS) error logs (Listing 1) and
the Web application Security Access Manager (WSAM) error
logs (Listing 2). The WAS responds to application requests
from the web server and submits requests to the database server,
so its error logs contain exceptions raised by the application
and can provide insight into both application and database



TABLE I: Monitor types available per incident in our PaaS dataset

Monitor type 1 2 3

OS performance metrics (nmon) (all 3 VMs) 3 3 3
Per-process perf. metrics (top) (all 3 VMs) 3 7 7
Linux syslog (web server VM only) 3 7 7
Apache web server access logs 3 3 7
Apache web server error logs 3 3 7
Appl. server error logs 7 3 7
Appl. Security Access Manager request logs 7 7 3
Appl. Security Access Manager error logs 7 7 3

issues. The WSAM authenticates clients of the web server
and interacts with both the web server and WAS. Each of
the logs contains structured and unstructured fields, where
the unstructured messages can span multiple lines and are of
variable length, complicating automated log analysis.

III. BACKGROUND AND CHALLENGES

In practice, monitor data are conventionally classified as
either metric data or log data [2] [3]. At a high level,
periodically sampled numerical measurements are considered
to be metrics, and records of discrete events, whether structured
or unstructured (i.e., textual), are considered to be logs. For
example, host-level resource utilization values, such as those
generated by the Linux top utility, are considered metrics, and
logging messages generated by applications, such as those
accumulated by the Linux syslog utility, are considered logs.

Our work is motivated in part by the fact that existing log
analysis approaches are specialized to individual log types,
and cannot be easily adapted to operate on the wide range
of heterogeneous data that are present in large-scale cloud
systems. Some of the tools more commonly used in practice
to process and analyze diverse log and metric data include
Microsoft Azure Kusto [4], GrayLog [5], and Splunk [6]. Such
tools are sometimes called AIOps (artificial intelligence for
IT operations) tools if they use machine learning to process
the data. Each of the tools can consume a variety of logs by
using community-provided input plugins. However, in most
cases, the text components of log messages are not parsed
by the plugins because maintainance of the complex regular
expressions required for parsing is intractable, as logging
statements are constantly being updated [1] [7]. That prevents
utilization of parameter values present in the messages, even
though those are often important, as we show later in this paper.

Further, logs and metrics are traditionally stored and an-
alyzed separately. Within the EPC, metrics were stored in
a Graphite [8] time series database and used to generate
dashboards that administrators could monitor in real time, and to
generate e-mail alerts when certain undesirable conditions were
met. Logs were parsed and indexed using the ELK stack [9],
after which some logs were used to create dashboards in
Kibana [9] and some were filtered for error or failure keywords
and used to generate e-mail alerts.

That dichotomy between log analysis and metric analysis
caused a number of problems. First, analysis was fragmented;
since system administrators were required to maintain separate
dashboards for log and metric data, it was not possible to
directly compare the two, so investigation of incidents required
one to switch back and forth between dashboards and matching

0 [XX/XX/XX ##:##:26:266 UTC] 0000000a com.ibm.ws.session.
WASSession E SESN0042E: An error occurred
when trying to insert a session into the database.

1 [XX/XX/XX ##:##:29:384 UTC] 0000000b com.ibm.ws.webcontainer.util
.ApplicationErrorUtils E SRVE0777E: Exception thrown by
application class ’org.apache.jasper.runtime.PageContextImpl
.handlePageException:1234’

2 com.ibm.websphere.servlet.error.ServletErrorReport: ERROR: An
unknown or unexpected error occurred when requesting [...]

Listing 1: Sample Web application server (WAS) log lines.

0 201X-XX-XX-##:##:56.087+00:00I----- 0x38AD54BA webseald WARNING
wiv ssl SSLConnection.cpp 860 0x0000000a

1 DPWIV1210W Function call, gsk_secure_soc_init, failed error:
0000019e GSK_ERROR_BAD_CERTIFICATE.

2 201X-XX-XX-##:##:24.414+00:00I----- 0x132120DD webseald WARNING
ias authsvc pdauthn.cpp 2233 0x0000aaaa

3 HPDIA0221W Authentication for user bob@a.com failed. You have
used an invalid user name, password or client certificate.

Listing 2: Sample Web Security Access Manager (WSAM) log lines.

alert timestamps. Similarly, since the data were stored in
different databases in different formats, there was no way
to query log and metric data conjunctly.

Second, log data were heavily under-utilized. In order to parse
log messages, engineers needed to construct complex regular
expressions. Some applications produce highly structured and
detailed request and error logs, while others produce only
logs with limited structured information (such as message
severity level and error code) and predominantly unstructured
information, which was typically examined only during manual
incident analysis. That left important information unused,
especially within parameter values embedded in log messages.

Importantly, the dichotomy between log and metric data was
artificially imposed by the tools available to collect and analyze
the data, rather than by how the data needed to be used during
incident response. In many instances, administrators treated
logs like “metrics.” For example, the frequencies of different
Apache response status codes were counted per 30-minute
interval and monitored using a Kibana dashboard, as were
the frequencies of the application server error log messages
at ERROR and FAILURE severity levels. The admins needed a
coordinated method to convert the data from different monitors
in the EPC into a meaningful set of time series features that they
could easily monitor during system operation and use during
incident analysis to expedite discovery of incident root causes.

IV. TAXONOMY OF CLOUD MONITOR DATA

To support coordinated analysis of heterogeneous monitor
data, we define a general taxonomy of the types of fields present
in the data. The taxonomy has two purposes: 1) to support
labeling of all fields present in metric and log data so both may
be handled uniformly, and 2) to facilitate automated extraction
of time series features.

We identify the following field types across all data sources:
1) Timestamp: Fields representing the time at which a metric

was sampled or a logged event occurred.
2) Identity: Fields that uniquely identify a metric measurement

or log entry. For metric data, the monitor type and server
name are often the only identity features required, but when
multidimensional metrics are sampled conjunctly, additional
identity features may be required. For example, for the Linux
top utility, process ID must be used as an identity field to
uniquely identify the per-process memory utilization metric.



127.0.0.1 - - [29/Jun/201X:12:34:56 +0000] "GET / HTTP/1.1" 200 1948

client

hostname

remote

log name

remote

user

request

time

request

method

request

URL

protocol

version

status

code

response

size

categorical timestamp text numerical

(count)

request

protocol

Fig. 1: Field type labels for all fields in Apache access logs. The
name of each field is given below the sample log line, and the field
types are shown in bold below the field names.

3) Metadata: Fields with values that do not change over time
for a given feature or data source. Typically, metadata
describe some property of the generating process (e.g., the
hostname for syslog messages). Metadata fields can be
recorded exactly once for a particular feature.

4) Numerical: Most fields from metric data sources are either
numerical or categorical (see below). Numerical fields
describe quantitative measurements.

5) Categorical: Fields that describe qualitative measurements
with a discrete, often small range of possible values.
Examples include error code and HTTP method.

6) Text: Fields that contain semi-structured or unstructured
messages of arbitrary length or value, such as those coded
into software (e.g., logging statements), generated by users
(e.g., request URL strings), or generated randomly.

Numerical fields can be further classified into one of two
types: cumulative or instantaneous. Cumulative fields capture
the cumulative behavior of the underlying process over a given
sampling time interval. Examples include CPU utilization,
network traffic volume, and request counts. Within cumulative
fields, there are two subtypes that depend on whether the values
are normalized (averaged) with respect to the sampling interval.
If they are, they represent the rate (or proportion) of activity. If
they are not, they represent the count (or quantity) of activity.
Instantaneous fields measure the state of the underlying process
at the time of sampling. Examples include current memory
utilization and running process count.

To illustrate the use of our taxonomy, consider the field labels
for the Apache access logs shown in Figure 1. Aside from the
obvious timestamp field, we would classify the response size
field as a numerical feature describing a count (of bytes sent)
and the request URL as a text field, as it can contain arbitrary
data. We would classify all other features as categorical.

V. AUTOMATED FEATURE EXTRACTION AND REDUCTION

A. Feature Extraction

Our monitor field taxonomy enables us to automate feature
extraction and discovery by defining steps to be taken when
processing fields of each type.

Timestamp fields are used directly as the timestamps for
extracted features. Identity fields are used to separate monitor
data into logically distinct streams, each of which can be
thought of as a separate monitor. Metadata fields must be
unique per identity field, so they serve to validate the uniqueness
requirement of the identity fields.

The next two field types describe observations and mea-
surements made by the monitors, so they are used to generate
the values of the extracted features. The values of numerical

fields are used directly as the values of extracted features.
Categorical fields, on the other hand, are similar to identity
fields in that they describe classes of activity in the system.
We therefore treat them much like identity fields.

Finally, text fields constitute the unstructured component
of log messages. Text fields often contain information very
pertinent to incident analysis, but extracting the information
can be difficult because of format issues. For example, in the
case of the WAS logs in Listing 1, admins were interested in
distinguishing errors by their application exception type, but
this information was buried in the text component of the logs,
which made robust feature extraction difficult.

Rather than reinvent the wheel, we leverage existing tech-
niques in unsupervised log parsing [7] [10] to process text fields.
These techniques identify log message formats and parameters
by distinguishing between strings that are constant across all
messages of a particular format (labeled as log keys), and those
that are variable (labeled as parameters). We note that a recent
survey [7] shows that for most log types, it is possible to
achieve high parsing accuracy with limited preprocessing and
tuning, which we found to be the case, as we describe below.

After the message formats and parameters have been
extracted, our framework allows administrators to label relevant
parameters for message formats of interest with the field types
from our taxonomy. Once the parameters have been labeled,
we handle them as if they were structured fields, aggregating,
separating, or ignoring them accordingly. That is one respect
in which our approach improves upon previous work. We treat
the message formats as categorical fields.

We claim that manual labeling of relevant parameters is
tractable for most cloud log sources because the number of
unique message formats for a given cloud system is relatively
limited and changes slowly; in our dataset, the three monitors
for which we processed text fields contained 89, 32, and 79
unique message formats. Where the number of log formats is
too large, we believe that labeling of a small number of initial
parameters as categorical features can still provide valuable
feature separation, as early positional parameters often contain
message codes that fully specify the remaining message format.

In our implementation, we used a modified version of the
longest common subsequence (LCS) based parsing approach
proposed in Spell [10]. Because the text fields in our log
messages could take values with multiple lines (separated by
newline characters) and could have a large number of tokens
(e.g., exception stack traces), to improve parsing efficiency, we
chose to examine the longest common prefix instead of the
LCS, and bounded the number of tokens considered. We also
preprocessed our logs by replacing tokens that matched some
common parameter types (e.g., IP addresses, numbers, Java
class names, dates) with placeholders, as suggested in [7].

Figure 2 shows a sample of the hierarchy of message formats
we obtained for the WAS error logs. As we were primarily
interested in the app error code and Java exception
class parameters, we labeled those parameter values as
categorical fields within our taxonomy and ignored all others.
In general, however, a user of our framework could label all
parameters and rely on the feature reduction stage we describe
in Section V-B to remove redundant and non-descriptive



An un-handled server exception occurred. Please contact your administrator.

Exception is: <Java exception class> Unable to allocate new pages in [...]

timer <timer ID> for the JDETimer bean in the [...]

Exception thrown by application class <Java code ref> 
<Java exception class> [...]

security service has stopped.

<app error code> An error occurred when trying to insert a session [...]

EJB threw an unexpected (non-declared) exception [...]

The application <app name> has stopped successfully.

<JAR module> EJB module in the <app name> [...]

∅

Fig. 2: Example of the hierarchy of message formats for the
unstructured text field in the WAS error logs. Parameters are denoted
by parameter descriptions enclosed in angle braces.

features; we discuss this further in Section VII.
Procedure for automated feature extraction: Our framework
performs feature extraction in two stages. First, we process data
from each monitor individually to extract a set of time series,
which we refer to as features. Second, to allow features from
different monitors to be analyzed uniformly, we summarize
features from all monitors by resampling them to a common
sampling interval and aggregating them based on the field type.
Stage 1: Extraction

The procedure to extract features for a monitor is as follows.
1) Convert all text fields to categorical log keys and parameters

as described above and drop the text fields.
2) Split the data into separate streams, grouping by identity

field values.
a) Each metadata field should take the same value per stream.

Verify that this is true and save the metadata field value
for each stream.

b) Each numerical or categorical field now defines a proto-
feature keyed on the identity field values, with samples
for each timestamp value.

3) Identify the feature ID field sets for which features should
be extracted. A feature ID field set is a set of categorical
fields (including those derived from text fields) that, together
with the identity field(s), will uniquely identify a feature.
By default, a singleton feature ID field set is created for
each categorical field. We also used domain knowledge to
define additional ID field sets for some monitors.

4) For each feature ID field set, split the proto-features
into features by grouping samples that have the same
combination of values for each field in the feature ID field
set. Features that correspond to numerical proto-features
take the value of the proto-feature; those that correspond
to categorical ones take a value of 1 for each sample.

To demonstrate, recall the fields for Apache access logs from
Figure 1. The fields we extracted for the EPC web server were
request time, response size, client hostname, request method,
protocol version, and status code; values for the other fields
were empty or constant, so we omitted them. We created proto-
features for response size (the only numerical field) and request
count (taking a value of 1 for all samples). The last four fields
are categorical, so we created singleton feature ID field sets
for each. Based on our domain knowledge, we also chose to
create feature ID field sets for {status code, request method}
and {client hostname, status code, request method}. Feature
extraction using our framework yielded 98 distinct features for
incident 1’s Apache access logs.

In Table II, we show the total number of features extracted for
each incident in our case study dataset. Our feature extraction
approach intentionally generates a large number of features, as
our objective is to extract as many meaningful features from
the data as possible; in Section V-B, we show how we reduce
the features to a manageable number.
Stage 2: Summarization

The features we obtain from feature extraction will naturally
have varied timestamps, and, in the case of metric data, may
also have varied sampling intervals. In order to facilitate
cross-monitor feature analysis, we subsequently summarize
the features by resampling all features. That is, we bucket data
points for each feature into contiguous time windows of fixed
size (the resampling interval) and aggregate their values to
produce the summarized features.

In general, the resampling interval should be chosen based on
domain knowledge of the dynamics of the system in question—
smaller values allow for finer granularity in feature comparison,
whereas larger values support meaningful analysis of behaviors
that manifest over long timescales. It may also be valuable to
try multiple resampling intervals for different types of analysis.
Based on our knowledge of our system, in our experiments,
we chose a resampling interval of 10 seconds.

The appropriate aggregation method for each feature is
defined by our taxonomy: features representing rates are
averaged; those representing counts and categorical proto-
features are summed; and those representing states have a
representative value chosen (e.g., maximum or most recent).

B. Feature Clustering

To promote effective analysis of the data, and to remove
redundant and uninformative features, we propose a hierarchical
feature clustering method that groups highly correlated features
across all monitors. We now describe the method, and illustrate
its effectiveness using the EPC dataset.

Feature clustering is useful for two reasons. First, many
features are likely redundant. Within each monitor, many fields
represent similar values, and in some cases, splitting on a
categorical field does not yield a meaningfully different feature.
Furthermore, some monitors collect redundant data (e.g., some
OS-level vs. per-process performance metrics). Clustering can
reduce the number of such features an admin must examine.
Second, as we illustrate in Section VI, clustering can uncover
relationships between features across different monitors that
are important in incident detection and root cause analysis.

Before clustering the features, we first eliminate uninforma-
tive features. Some features extracted by our framework will
either have no value over the entire dataset (empty features),
or have a constant value (constant features). For example,
we found that some combinations of status code and request
method did not appear within the EPC’s web access logs, but
our framework created a feature for them. Empty and constant
features made up roughly 15% of all features in our dataset.

Next, we observe that many features derived from logs
are sparse (i.e., rare events)—they are zero-valued the vast
majority of the time—and should be clustered separately from
dense features. We define a feature f(t) to be sparse if∑

ti∈[t,t+w) [f(ti) 6= 0] > R for all t, where R is the rare
event occurrence threshold and w is the rare event window, and



TABLE II: No. of features per incident at each stage of reduction

Feat. reduction stage Incident 1 Incident 2 Incident 3 Total
Dense Sparse Dense Sparse Dense Sparse Dense Sparse

Original features 3693 2132 2231 8056
Without empty feat. 3327 1495 1704 6526

Pre-clustering 2238 1089 484 1011 426 1278 3148 3378
After clustering (1) 1302 347 357 340 306 625 1965 1965
After clustering (2) 1232 320 325 314 287 494 1844 1128
After clustering (3) 1108 273 296 287 260 475 1664 1035
Reduction % 50% 75% 39% 72% 39% 63% 47% 69%

Num. total clusters 1381 583 735 2699
Overall reduction % 63% 73% 67% 66%

dense otherwise. R and w should be defined based on domain
knowledge; in our dataset, we chose R = 3 and w = 500s
to separate dense and sparse features. We show the feature
clustering results for each incident separately in Table II.

We now propose a hierarchical feature clustering method
that groups highly correlated features at three levels: (1) within
each unique feature ID field set, (2) within each monitor, and
(3) across all monitors. At each level, we compute the pairwise
Spearman rank correlation between all features within the level
and identify maximal cliques with pairwise correlations that
exceed a feature similarity threshold. Each clique represents a
set of redundant features. For each clique, we choose the feature
with the highest sum of pairwise intra-clique correlations as
the clique’s representative feature to be used in the next level
of clustering. Hierarchical clustering improves scalability by
drastically reducing the number of features at lower levels,
where they are more likely to be redundant.

We chose to use Spearman rank correlation because unlike
Pearson correlation, as used in [11], which can only identify
linearly correlated features, Spearman correlation accurately
groups together features that trend together nonlinearly (such
as request count and request size). We propose the use of a
high feature similarity threshold (i.e., above 0.9) so as to limit
the number of spurious groupings; based on examination of
our dataset, we chose the value 0.96.

For example, for our EPC Apache access logs for incident 1,
our framework first found 11 of the 98 original features to be
empty, 68 to be dense, and 19 to be sparse. After clustering was
performed, the original features were grouped into 15 dense
clusters and 1 sparse cluster. Closer examination of the clusters
revealed that all but two of them grouped together requests
from hostnames that corresponded to different test roles, and
the two anomalous clusters grouped various hosts with error
status codes that corresponded to the failure incident.

Table II shows the results of feature clustering for the EPC
data. Overall, clustering reduced the number of features by 66%.

VI. APPLICATION TO INCIDENT RESPONSE

We now illustrate some of the ways our framework can
improve the effectiveness of enterprise cloud administrators in
reliability and performance incident data analysis.
A. Feature Discovery

Our approach enables administrators to discover meaningful
features more easily across their heterogeneous monitors,
reducing the time and domain expertise required in deciding
what features are relevant for analysis.

As we describe in Section III, prior to the development
of our approach, administrators of the EPC needed to decide
a priori which logs and metrics they considered useful for
incident analysis, and needed to construct dashboards manually
for each. Because of the engineering cost of developing tools
to perform complex analyses of the log data, the administrators
often used rudimentary filters, such as message severity level,
token count, and keyword presence, to define metrics based on
the logs. In some cases, where documentation stated that fields
from the structured part of the log described the unstructured
messages, they ignored the unstructured messages outright.

In our examination of the EPC dataset, we found that those
simplifying assumptions overlooked many features salient to
the incidents that took place.

Identifying unique feature ID field sets: The documenta-
tion for the WSAM error log states that the message number
field uniquely identifies the unstructured message format. As
a result, the EPC admins used the message number field to
count error messages of different types. However, our analysis
revealed that message number was common to multiple error
message formats, and that the set of (source line, message
number) was required to uniquely distinguish error types.

Feature separation by parameter value: Even within
errors of the same type, meaningful signals were sometimes
hidden within parameters of the unstructured message. For
example, for incident 3, EPC admins found that during periods
of service unavailability, there was a spike in a WSAM error
message that corresponded to loss of network connection with
another server, but as the IP address of the unresponsive server
was contained in the unstructured message, the admins were
forced to manually investigate the logs each time the error
message spiked to identify the server. Our framework enabled
us to automatically separate the features by server IP address;
the resulting subfeature for the WAS IP address clustered with
an error that corresponded to an SSL version issue, which had
been identified as the root cause of the incident.

B. Feature Deduplication
Another major challenge the administrators faced was

identification of meaningfully unique features within the data.
While it was obvious that OS performance metrics collected
from the nmon and top monitors provided duplicate information,
it was not clear whether, for example, failed requests in the web
access logs were similarly correlated with WAS errors. The
admins therefore made assumptions based on past experience
which of the thousands of candidate features to monitor.

Our framework automatically groups together strongly
correlated features, allowing redundant features to be monitored
once. We found many instances in the EPC where the use of our
framework would have prevented the creation of dashboards
for multiple log message types that were ultimately redundant.

C. Root Cause Analysis
Finally, an understanding of which features are strongly

correlated can help admins uncover insights about their system
that can aid in root cause analysis. For example, in incident
2, the database server ran out of free disk space, causing a
spike in WAS errors for application requests that required
database writes. As a consequence, the web server started



responding to requests with a status code of 500 (Server Error).
When we used our framework to examine the features clustered
together with the feature for status code = 500, we found that it
strongly correlated with a feature for a specific WAS error type.
Examination of the clusters that corresponded to the subfeatures
for that error type revealed a large cluster of 12 features, one
of which was a SQLException with the message “Unable to
allocate new pages in table space”, which indicated that the
root cause of the incident was likely a disk space issue. While
explicit monitoring of disk utilization would have identified
it as a possible cause, our approach enabled us to trace the
errors back to the disk space issue directly.

VII. DISCUSSION

Generality: Our approach can generalize well to other cloud
systems and log types. We have demonstrated its use for
8 considerably different log types in the EPC; practitioners
interested in applying the approach can follow the procedure
we have laid out to the monitors in their own system. In other,
ongoing work, we have successfully applied our framework to
syslogs, firewall logs, and security event logs.

Scalability: The most expensive operation in our framework
is the clustering-based feature reduction. While the cross-
correlation step scales quadratically in the number of features
and linearly in the length of the data, we found that because of
high redundancy at levels 1 and 2 of the clustering, the number
of features clustered across all monitors (level 3) is manageable.
Our Python implementation utilizes the Pandas library [12]
to compute correlation and the Bron-Kerbosch algorithm to
find cliques. It was able to process all features in our dataset
(which contained data from over 2 weeks of system operation)
in a few hours while running on a single server with an 8-core
Intel Xeon CPU E5-2450 processor and 64 GB of memory.

Extensions to feature extraction and clustering: We have
identified many alternative ways to extract features, and we
intend to examine them in future work. They include joining of
features across different monitors (e.g., on ID fields as in [13]),
and parsing of fields in alternative ways, such as by counting
the number of unique values taken by categorical features or
by computing interarrival times for sparse features.

VIII. RELATED WORK

The problem of extracting meaningful signals from het-
erogeneous log data for failure detection has been studied
extensively in the high-performance computing (HPC) literature.
LogDiver [11], Desh [14], and LogAider [15] all extract features
from HPC datasets, including hardware error, reliability, work-
load, and scheduler logs, using extensive domain knowledge
of the log semantics and structure. They then cross-correlate
features spatially and temporally. While those solutions are
useful, they are highly specialized for HPC problems, and do
not provide a method to extract features from arbitrary monitors.

Among commercial tools for cloud log analysis, VMWare
vRealize Log Insight [16] and Microsoft Azure Kusto [4]
provide the most similar functionality to our framework, but our
work is still distinct. Kusto does not support extraction of fields
from unstructured log messages, and while Log Insight does,
it does not allow parameters to be treated like structured fields.
Furthermore, while both support clustering of features—Kusto

by common discrete field values and Log Insight by message
format—clustering is limited to features within individual
monitors, whereas we perform cross-monitor clustering.

Our work relies on unsupervised approaches for identifying
message formats and parameters within unstructured log data.
Zhu et al. [7] examine 13 mainstream approaches that utilize
various techniques (data mining, clustering, heuristics, etc.).
They find that many cloud log types can be accurately parsed
with existing approaches. We extend the utility of those
techniques by enabling the extraction of meaningful time series
features from parsed logs in conjunction with metric data.

IX. CONCLUSIONS

Existing tools and techniques for parsing cloud monitor data
cannot handle diverse data types without considerable manual
administrator effort. We propose a monitor data analysis frame-
work for enterprise clouds that allows administrators to semi-
automatically process heterogeneous data from multiple levels
of a cloud platform into a manageable set of meaningful time
series features that are useful in incident analysis. We illustrate
the use of our framework on data from an experimental PaaS
cloud and demonstrate its utility in reducing the complexity of
monitor data analysis for incident response. In future work, we
intend to study how the features we have extracted can best be
used to detect anomalies and support rapid incident response.

ACKNOWLEDGMENTS

We thank Jenny Applequist for her editorial assistance, and
Yu Gu, Richard Harper, and Mahesh Viswanathan for many
constructive discussions and feedback. This work was supported
in part by an IBM Ph.D. Fellowship.

REFERENCES

[1] W. Xu, “System Problem Detection by Mining Console Logs,” Ph.D.
Dissertation, University of California at Berkeley, Aug. 2010.

[2] C. Sridharan, “Logs and Metrics,” Medium, Apr. 2017. [Online]. Available:
https://medium.com/@copyconstruct/logs-and-metrics-6d34d3026e38

[3] D. Reichert, “Logs and Metrics: What are they, and how do
they help me?” Sumo Logic, Jan. 2018. [Online]. Available: https:
//www.sumologic.com/blog/logs-metrics-overview/

[4] “Reference - Azure Data Explorer,” Microsoft, Accessed: 2019-08-31.
[Online]. Available: https://docs.microsoft.com/en-us/azure/kusto/

[5] “Enterprise Log Management for Any Scale,” GrayLog, Accessed: 2019-08-
31. [Online]. Available: https://www.graylog.org/products/enterprise

[6] “Machine Data Management & Analytics,” Splunk, Accessed: 2019-08-
31. [Online]. Available: https://www.splunk.com/en us/software/
splunk-enterprise.html

[7] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools and
Benchmarks for Automated Log Parsing,” in Proc. 2019 41st ACM/IEEE Int.
Conf. Softw. Eng.

[8] Graphite, Accessed: 2019-08-31. [Online]. Available: http://graphiteapp.org
[9] “ELK Stack: Elasticsearch, Logstash, Kibana,” Elastic, Accessed:

2019-08-31. [Online]. Available: https://www.elastic.co/elk-stack
[10] M. Du and F. Li, “Spell: Streaming Parsing of System Event Logs,” in Proc.

2016 IEEE 16th Int. Conf. Data Mining, pp. 859–864.
[11] C. D. Martino, S. Jha, W. Kramer, Z. Kalbarczyk, and R. K. Iyer, “LogDiver:

A Tool for Measuring Resilience of Extreme-Scale Systems and Applica-
tions,” in Proc. 2015 5th Workshop on Fault Tolerance for HPC at eXtreme
Scale, pp. 11–18.

[12] W. McKinney, “Data Structures for Statistical Computing in Python,” in
Proc. 9th Python in Sci. Conf., 2010, pp. 51–56.

[13] A. Bohara, U. Thakore, and W. H. Sanders, “Intrusion Detection in Enterprise
Systems by Combining and Clustering Diverse Monitor Data,” in Proc. 2016
ACM Symp. and Bootcamp Sci. of Secur., pp. 7–16.

[14] A. Das, F. Mueller, C. Siegel, and A. Vishnu, “Desh: Deep Learning for
System Health Prediction of Lead Times to Failure in HPC,” in Proc. 2018
27th ACM Int. Symp. High-Perform. Parallel and Distrib. Comput., pp. 40–51.

[15] S. Di, R. Gupta, M. Snir, E. Pershey, and F. Cappello, “LOGAIDER: A Tool
for Mining Potential Correlations of HPC Log Events,” in Proc. 2017 17th
IEEE/ACM Int. Symp. Cluster, Cloud and Grid Comput., pp. 442–451.

[16] “Log Management Tool And Analytics — vRealize Log Insight,” VMWare,
Accessed: 2019-08-31. [Online]. Available: https://www.vmware.com/
products/vrealize-log-insight.html


