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ABSTRACT
The management of cloud service incidents (unplanned interrup-
tions or outages of a service/product) greatly a�ects customer sat-
isfaction and business revenue. After years of e�orts, cloud enter-
prises are able to solve most incidents automatically and timely.
However, in practice, we still observe critical service incidents
that occurred in an unexpected manner and orchestrated diagnosis
work�ow failed to mitigate them. In order to accelerate the under-
standing of unprecedented incidents and provide actionable rec-
ommendations, modern incident management system employs the
strategy of AIOps (Arti�cial Intelligence for IT Operations). In this
paper, to provide a broad view of industrial incident management
and understand the modern incident management system, we con-
duct a comprehensive empirical study spanning over two years of
incident management practices at Microsoft. Particularly, we iden-
tify two critical challenges (namely, incomplete service/resource
dependencies and imprecise resource health assessment) and inves-
tigate the underlying reasons from the perspective of cloud system
design and operations. We also present IcM BRAIN, our AIOps
framework towards intelligent incident management, and show its
practical bene�ts conveyed to the cloud services of Microsoft.
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1 INTRODUCTION
In recent years, IT enterprises started to deploy their applications
and services on cloud platforms, such as Microsoft Azure, Amazon
AWS, and Google Cloud Platform. Di�erent from traditional shrink-
wrapped software, online services serve hundreds of millions of
customers around the world aiming at a 24x7 availability. Towards
this end, cloud vendors have devoted tremendous e�orts to service
quality assurance [18, 27, 29, 38]. However, in reality, cloud services
are still su�ering from live-site service incidents, which can lead
to huge economic loss, user dissatisfaction, and other unexpected
consequences. For example, the cost of one hour’s service downtime
for Amazon.com is estimated to be as high as $100 million [5].

Once a service incident occurs, service provider should immedi-
ately take actions to diagnose the problem and bring the service
back to normal, which is called incident management. To ensure
highly available cloud infrastructure, incident management should
be e�cient and e�ective. In practice, a typical procedure of incident
management goes as follows: when a service incident is detected by
engineers or machine-based monitors, an incident ticket document-
ing relevant information will be created in incident management
system. Based on the ticket, the incident will be assigned to respon-
sible service team to quickly restore the service. More details about
incident management will be introduced in Section 2.2.1.

Ideally, if the entire procedure of incident management goes
smoothly, the service can be quickly recovered.With years of e�orts,
Microsoft is now capable of alerting 97% incidents automatically
and controlling more than 90% incidents by immediate mitigation.
However, there are still severe and complex incidents that take a
long time to handle. Our investigation reveals that the delay hap-
pens mainly in the following three scenarios. First, it is not rare that
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critical incidents cannot be immediately detected as they are often
induced by unexpected system/customer behaviors. Second, fail-
ure’s symptoms are sometimes hardly enough to directly pinpoint
the responsible service team, as distinct problems could induce sim-
ilar symptoms. Incidents are therefore reassigned for multiple times.
Third, engineers usually need a long time to identify incident’s root
cause and the corresponding impact scope, i.e., impacted services
and customers. Motivated by these observations, we conduct an
empirical study to understand the key challenges bringing about
the delay in these steps as well as the fundamental reasons behind.

Microsoft runs world-wide cloud systems with thousands of ser-
vices. Such a large scale makes it challenging to conduct incident
management. Particularly, we have summarized two critical chal-
lenges: (1) building dependencies amongmassive services/resources
and (2) assessing the health state of numerous cloud resources to
�re reasonable alerts. In large cloud enterprises, the performance
and reliability of any particular application may rely on multiple
services and resources, spanning many hosts and network com-
ponents [32]. The dependency issue refers to the incompleteness
and vagueness of such relationships across the entire system. Con-
sequently, the culprits of incident cannot be easily found. Even
provided with the dependencies, we still need to assess the health
condition of resources to locate root causes. In this paper, to help
understand these issues, we carefully select some real-world coun-
terintuitive incident cases to illustrate di�erent types of pain points,
and why heuristic solutions would fail. Meanwhile, we present four
interesting lessons learned. For example, while root cause localiza-
tion stands as the core of impactful incident mitigation, addressing
all impacted services could be equally important; �ood of alerts dur-
ing impactful incidents is inevitable even careful aggregations and
tuned thresholds have been applied. In addition, we quantitatively
analyze the incidents collected from six core large-scale services at
Microsoft and conduct a series of experiments to derive statistical
support for our �ndings.

Given incident management is data-driven by nature, the concept
of AIOps was proposed to address the challenges of IT operations
with AI techniques [10, 12, 23]. Particularly, we have seen its great
potential in extracting patterns from recurrent incident symptoms
to provide actionable recommendations. We present IcM BRAIN
(BRAIN for short), our AIOps framework for incident management.
First, we introduce di�erent types of data utilized in the frame-
work and the data preprocessing procedure. Then, we elaborate on
the techniques for mitigating the aforementioned challenges. Fi-
nally, we share the application results to demonstrate the industrial
bene�ts conveyed to the incident management of Microsoft.

To sum up, this work makes the following major contributions:
• We report the current state of incident management in a
large-scale cloud production system. Particularly, we studied
the points that cause the ine�cient and error-prone man-
agement work�ow for critical and complicated incidents.

• We are the �rst to conduct a comprehensive study (based
on over two years of incident tickets) to provide a broad
view of the key challenges of incident management and
detail the associated problems. Meanwhile, we try to explain
these challenges from the perspective of cloud system design
and operations. In particular, we present representative real-
world cases and statistical evidences for our �ndings.

Cloud Services

Customers

Engineers

MonitorsMonitors

Service Teams

Incident InvestigationIncident mitigation

Incident 
Reporting

Incident 
Triage

Incident 
Mitigation

Time to Detect Time to Engage Time to Mitigate

Detection
TTD TTE TTM

Engagement Mitigation

Started Detected Engaged Mitigated

Incident 
Lifecycle

Incident Reporting Incident Triage Incident Mitigation

Time to Detect Time to Engage Time to Mitigate

Detection

TTD TTE TTM
Engagement Mitigation

StartedStarted

Incident Lifecycle

Incident Reporting Incident Triage Incident Mitigation

DetectedDetected EngagedEngaged MitigatedMitigated

Figure 1: The TTx metrics

• We introduce our AIOps framework, IcM BRAIN, for inci-
dent management, which is an e�ort towards more failure-
resilient cloud services. Our evaluation demonstrates a sig-
ni�cant improvement in production systems.

The remainder of this paper is organized as follows. Section 2
provides some background of incident management. Section 3 dis-
cusses our study methodology and the identi�ed characteristics of
incidents. Section 4 presents the key challenges of incident man-
agement and the underlying reasons. Section 5 presents our AIOps
framework for incident management. Section 6 discusses some
related work. Finally, Section 7 concludes this work.

2 BACKGROUND
2.1 Incident
In cloud systems, an incident is any unplanned interruption or per-
formance degradation of a service or product, which can lead to ser-
vice shortages at all service levels, i.e., IaaS, PaaS, SaaS. For example,
a bad HTTP request, security vulnerability, or customer-reported
error could constitute an incident. In particular, each incident has
a severity level, which is set according to its potential impact on
customers. Every organization has a di�erent classi�cation criteria,
but many follow such pattern: Low, Medium, High, and Critical. For
example, a datacenter power failure may bring down dozens of ser-
vices, which should be treated as a Critical incident. Typically, one
service relies on many supporting services, such as SQL Database
and Domain Name System (DNS), to function properly. Such depen-
dency quickly increases the chances of incidents as any component
along the dependency graph can be the source of failure.

2.2 Incident Management
In this subsection, we �rst elaborate on the typical procedure of in-
cident management and then introduce the metrics that are widely-
used to measure its performance.

2.2.1 Incident Management Procedure. Incident management is a
process of detecting a live service problem, creating an incident,
determining the cause, restoring the service to full operation, and
capturing knowledge to prevent the incident from happening again.
Typically, there are three steps involved [5, 10]: incident reporting,
incident triage, and incident mitigation, as shown in Fig. 1.

1) Incident Reporting. Incident reporting is to detect service vi-
olation or performance degradation and create a ticket to record
relevant information. In cloud systems, engineers can manually
submit incident ticket if abnormal system behaviors are detected
or customer-reported failure messages are con�rmed. Meanwhile,
monitors can detect incidents by periodically monitoring the run-
time information of service systems, such as software/system logs,
performance counters, and process/machine/service-level events.
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2) Incident Triage. Incident triage is to engage the responsible
service team for problem investigation. However, due to cloud sys-
tem’s high complexity and dependencies, incidents are frequently
assigned to wrong responsible teams, which signi�cantly prolongs
service downtime.

3) Incident Mitigation. Incident mitigation is the process of bring-
ing problematic service back to normal, so it can continue to serve
customers. In practice, some temporary workarounds (e.g., server
rebooting and service redeployment) will be applied �rst to quickly
mitigate the impact, as a short period of downtime could become
an expensive drain on company revenue and user trust.

2.2.2 TTx Metrics of Incident Management. Incident management
is critical for cloud vendors to pursue its ultimate goal: Service Level
Agreement (SLA). Cloud SLA is a commitment of a cloud service
provider to its customers, which guarantees a minimum level of
system/service availability, reliability, and responsiveness. Similarly,
objectives are also set for di�erent phases of incident management,
which are described by the TTx metrics, as shown in Fig. 1. The
goal of improving incident management is to minimize these TTx,
e�ciently mitigate the incident impact, and reduce operation loads.

• Time to Detect (TTD): The time it takes to detect an incident
from the start of its impact (SLA breached).

• Time to Engage (TTE): The time it takes to engage correct
responsible service team from incident detection.

• Time to Mitigate (TTM): The time it takes to mitigate cus-
tomer impact and re-establish SLA (SLA re-established).

3 ANALYZING INCIDENT TICKETS
3.1 Methodology
3.1.1 Raw Dataset. Microsoft provides thousands of cloud ser-
vices and applications which run on a 24/7 basis. To support the
requirements of services, cloud system incorporates sophisticated
monitoring mechanisms, where each monitor is tailored for a spe-
ci�c type of service-a�ecting symptom. The entity over which to
perform health evaluation, monitoring, and alerting is called re-
source, which can be physical resource like a computer device or
logical resource like a virtual machine or role. Upon a violation on
any prede�ned performance metric (e.g., availability and latency),
the corresponding monitor will render an incident ticket with the
timestamp, location, severity, involved services/teams, impacted
resources/components, a title brie�y describing the symptom, etc.
Besides auto alerts, manual reporting (i.e., detected by customers
or engineers) is another important source of incidents, in which
an extra text snippet summarizing the cloud issue is included. Par-
ticularly, during problem investigation, discussion conducted by
On-Call Engineers (OCEs) will be continuously added to the ticket.

We have studied incidents from all services over two years.
Among them, we select six core services at Microsoft, namely, Data-
center Management (DCM), Network, Storage, Compute, Database,
and Web Service (WS), which are known as the fundamental basis
that thousands of other services rely on. In this paper, we report our
�ndings obtained through the analysis of incident tickets reported
by these services. Particularly, we exclude the incidents that are
intentionally generated for testing purpose. For over two years of
operations, these core services produce a large number of incidents
and almost half of impactful incidents at Microsoft.

3.1.2 Study Approaches. After collecting incident tickets, we per-
form the following investigations to derive insights:

1) Incident ticket analysis. We calculate the distribution of inci-
dents along multiple dimensions (e.g., severity and root cause) to
obtain a clear view of their characteristics. Moreover, we manually
study the impactful incidents as well as their postmortem reports
to understand the issues of incident management that constitute
the unique challenges of troubleshooting in cloud systems.

2) Field studies. Besides statistical analysis, we discuss with OCEs
to collect �rst-hand information regarding the pain points of inci-
dent handling and empirically verify our hypotheses. In this process,
we acquire much valuable feedback and suggestions, e.g., the selec-
tion of representative incident examples (Section 4.1).

3) Validation. To support our �ndings, we design dedicated exper-
iments to obtain statistical evidences from the collected incidents.
Moreover, to validate the e�ectiveness of our AIOps framework
in production systems, we perform a non-parametric hypothesis
testing on incidents with and without BRAIN support.

3.2 Characteristics of Incident Tickets
3.2.1 Incident Severity. Table 1 shows the distribution of incident
severity among six services. We can see that in all services, the
Low and Medium incidents together take up more than 90% of
the total. Particularly, in Network and Storage, the numbers of
these two types of incidents are similar; while in others, Medium
incidents outnumber Low incidents by a substantial margin. The
number of High incidents drops signi�cantly, whose proportion
ranges from 1.21% (Network) to 5.48% (DCM). Finally, incidents of
Critical type account for a very small portion, i.e., < 0.5%. However,
such incidents constitute a great threat to the SLA of cloud vendors
and thus should be addressed promptly and carefully.

3.2.2 Incident Fixing Time. We calculate incident �xing time and
denote it as Time to Fix (TTF). Formally, it is de�ned as the time
from the start of an incident to its �nal mitigation, i.e., ))� =
))⇡ +))⇢ +))" . In particular, to ignore infrequent peaks, we
report 90th percentile, which is chosen empirically. The results are
shown in Table 2. Due to privacy concern, we conceal the abso-
lute results by dividing them by the smallest �gure obtained in
each experiment. A counter-intuitive observation is that the TTF
of incidents with a lower severity (i.e., Medium and Low) is usu-
ally larger than that of incidents with a High severity. We �nd it
is because low-severity incidents are usually trivial issues. Engi-
neers will not address them immediately as they often could be
mitigated by automatic routines. Meanwhile, except in Network,
Critical incidents are always the most time-consuming incidents
to mitigate. One reason is that the respective root causes (such as
wrong con�gurations, software bugs, faulty devices, etc.) of Critical
incidents will be �xed soon after postmortem analysis and most of
them will never re-occur. Every new Critical incident is likely to
carry a brand-new failure, so OCEs need a long time for root cause
identi�cation and mitigation. Moreover, there exist hierarchical
dependencies among these services. DCM is in charge of infrastruc-
ture maintenance and thus is a service at the lowest layer. On top of
DCM is Network and then Storage, which are also fundamental ser-
vices. Compute belongs to the next tier, followed by Database and
WS, which have complicated dependencies on low-layer services.
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Table 1: Distribution of incident severity
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Table 2: Distribution of relative incident �xing time
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Table 3: Distribution of incident root causes
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Therefore, high-layer services (i.e., Compute, Database, and WS)
may have hierarchical root causes. The increased problem search
space leads to a longer TTF.

3.2.3 Root Causes. To have an in-depth analysis of the incidents,
we need to understand the reasons of their occurrence, which also
helps characterize the failure patterns of cloud systems. Thus, we
manually inspect the Critical incidents along with their postmortem
reports and summarize their root causes into di�erent categories.
The results are shown in Table 3. We group incident root causes into
six categories, which are Network Issue, Human Error, Deployment
Issue, External Issue, Capacity Issue, and Others. Furthermore, we
summarize them into 16 subcategories. From Table 3, we can see
Network Issue with hardware failure and Human Error with code
defect are the two dominant root causes, accounting for 22.95% and
19.23%, respectively. Meanwhile, Human Error with con�guration
issue and Capacity Issue are another two important causes.

4 UNDERSTAND INCIDENT MANAGEMENT
In the management of high-impact incidents, we have observed
an ine�cient work�ow of the system. Particularly, we have seen
cases where a small-scale issue in one service yielded more severe
impact across multiple services before its o�cial declaration. A
natural problem then arises: why is the issue not detected at the
�rst place? In incident triage phase, we have noticed that incidents
often require a long routine to �nd the correct responsible team,
especially for incidents with high-level severity. Similar pain points

can be seen in incident mitigation phase. The connection between
issue, cause, and impact can sometimes take a long time to establish.

In this section, we �rst summarize the key challenges that lead to
the aforementioned pain points of incident management. Then, we
investigate the reasons behind these challenges from the perspec-
tive of cloud system design and operations. Particularly, we design a
series of validation experiments to derive statistical evidences from
raw dataset. The results are in relative value due to company policy.
Moreover, to facilitate a better understanding of the challenges, we
provide some interesting real-world incident examples, which are
suggested by on-call engineers during �eld studies. Similarly, we
hide sensitive information for privacy protection.

4.1 Key Challenges of Incident Management
We identify two fundamental challenges of incident management
and the associated pain points, which are general across di�er-
ent cloud vendors because of the high resemblance in the design
principles of cloud systems.

1) Service/Resource Dependency Discovery. Dependency is the re-
lationship that a cloud application relies on multiple services/micro-
services/APIs and physical/logical resources to function properly.
The dependencies can be either static or dynamic, which play an
important role in the troubleshooting of distributed systems. How-
ever, thus far the only proven approach to discover these depen-
dencies, especially �ne-grained ones, is by gathering human expert
knowledge cross di�erent service teams. More often than not, the
dependency requires the con�rmation of two related teams. This ap-
proach is not only ine�cient, but also unscalable due to numerous
services and resources in large enterprises. In incident management,
the absence of a complete and real-time dependency graph will
mainly bring about the following two critical problems.

Imprecise Impact Estimation.When an incident occurs, OCEs
need to estimate the impact scope of the failure and understand
how the failure is propagated across the system. Such information
is essential as a high-layer service (e.g., Database) needs to know
which low-layer services (e.g., Storage) it depends upon are prob-
lematic for running corresponding diagnostic tools. However, delay
happens as we are missing the whole �ne-grained graph of how
cloud systems are connected and a�ecting each other. Although up-
stream dependencies can be easily gathered (e.g., Database knows
which Storage nodes its components are deployed on and what
services they call), downstream dependencies could be vague (e.g.,
Storage is not aware of how its APIs/resources are visited by other
services). Precise impact estimation for incident plays an impor-
tant role to automatically identify the a�ected customers, which
is the main criteria to decide incident’s severity. Workarounds or
solutions can then be delivered to the customers su�ering from the
failure promptly and proactively.

Meanwhile, impact estimation can accelerate the procedure of
service restoration. Speci�cally, due to the complexity of distributed
systems, even incident is resolved, the impacted services may not
return back to normal automatically and demand manual check-
ing and recovery for sick cloud resources. Improper planning of
resource recovery would delay the restoration of critical high-layer
services. Example shown in Fig. 2 demonstrates that even the root
cause is found, we still need a big picture of which and how ser-
vices/customers are impacted to prioritize the recovery of cloud
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Incident ID 
Resolved 
Critical

Multiple air handling unit failure
Service: DCM
Datacenter: DC #1

# of impacted requests: ~1,000,000
# of impacted accounts: ~1,500

Summary 
An air conditioning system failure caused device clusters overheating, which 
brought down tens of thousands of storage nodes.

Diagnosis 
When the air conditioning system was restored, a small portion of failure storage 
nodes (<1%) failed to recover automatically due to different errors (e.g., main 
board broken, CPU overheating, data inconsistency, etc.). These nodes demanded 
manual checking and recovery one by one. With the gradual recovery of storage 
nodes, many high-layer services confirmed mitigation. However, a Cloud Resource 
Management (CRM) service serving a large number of users failed to reconnect. It 
took some time to figure out that a specific node hosting Software Load Balancer 
(SLB) service was not back to normal. This caused impact to CRM as its load 
balancing was governed by the SLB node, which therefore deserved a higher 
priority when planning the order of node recovery. However, this was not the case 
because: (1) SLB team was not aware of which service instances were running on 
which SLB nodes, and (2) CRM team attributed the failures to Storage (instead of 
SLB) at the beginning. Although the dependencies between storage nodes and 
SLB service were clear, the second-degree dependency that SLB could constitute 
a single point of failure for CRM was not.

Figure 2: Incident example 1

Incident ID 
Resolved 
Critical

A high error rate of operation [API] has been seen

Service: CRM
Datacenter: DC #2

# of impacted requests: ~1,000,000
# of impacted accounts: ~10,000

Summary 
Monitor has detected multiple VMs and web applications unavailable.

Diagnosis 
Some operations of Cloud Resource Management (CRM) service suffered from a 
high error rate. Engineering team found the frontend web service was in a loop of 
crash and reboot. This resulted in customer requests being held for an extended 
period of time in web server request queue, leading to slow responses and request 
timeouts. More than five other services suffered from different failures such as login 
failures, request timeout errors, etc. The cascading effects and implicit service 
dependencies made the engineering team hard to know and notify all impacted ser-
vice teams, especially during busy bug fixing time. Therefore, many impacted ser-
vices received failure reports and diagnosed their services independently. Particu-
larly, an IT Management Software (ITMS) service attributed the failures to DNS ser-
vice due to the direct dependency. However, the DNS service was managed by the 
CRM service (the true root cause), which took ITMS team some time to figure out.

Figure 3: Incident example 2

resources. Clear service hierarchical dependencies can dramatically
facilitate this process.

To understand how the estimation of incident’s impact is delayed,
we carefully study the postmortem report of impactful incidents.
Particularly, we de�ne Time to Broadcast (TTB) as the time it takes
to broadcast a failure to all of the impacted services, and compare it
with other incident management phases, i.e., TTD, TTE, and TTM.
Table 4 presents the results, where, again, the absolute values are
concealed. We can see TTB has comparable values with TTM in
almost all services and they are the two dominant TTx in incident
management work�ow. Particularly, DCM, serving as a fundamen-
tal support to many services, owns the largest TTB. This is because
serious failures happened to it often have widespread impact.

L����� L������ 1. Enumerating all impacted services based on
dependencies and prioritizing the cloud resource recovery are as
important as locating the root cause of high-impact incidents.

Redundant Engineering E�orts. Services usually report their
own failures independently. The design purpose is to cover missing
failures of other services. However, when separate incidents are

Table 4: Distribution of TTx from postmortem reports
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Figure 4: No. of incidents incurring redundant e�ort and av-
erage no. of involved service teams (with di�erent bases)

being handled by di�erent teams, it may not be immediately obvious
that there exists a caused-by relation among some of them. This may
lead to not only delay in mitigation, but also redundant engineering
e�orts as di�erent teams are addressing the same problem. Fig. 3
presents one such incident. A �ne-grained dependency graph can
dramatically improve the situation as we can correlate incidents
by, for example, comparing their origins and tracing their impact.
Another circumstance where redundant e�ort often happens is
dealing with historically repeated incidents. In this case, incident
correlation can also help by providing similar solutions.

To understand the situation of redundant e�orts at Microsoft,
we calculate the number of incidents that are redundantly han-
dled by more than one service teams and the average number of
teams involved for such incidents. Particularly, we make use of the
links between incidents to identify the incidents of interest. These
links are marked by OCEs during incident investigation and the
caused-by relations can be deduced from them. Speci�cally, for
each incident, we �rst �nd its responsible team and the incident
that triggers it (if any), called parent incident. Then, for incidents
with the same parent, the associated teams will be considered as
addressing a same root cause, i.e., the parent incident. Since the
links are incomplete, this selection criteria is quite conservative,
yet we still notice a serious situation of redundant e�ort across
di�erent services. In Fig. 4, we can see Database has both the least
number of redundant e�ort-inducing incidents and the average
number of teams. However, Network and Storage generate nearly
�ve times more such incidents and involve more service teams.

L����� L������ 2. Merging separate maintenance work from
dependent service teams is important for a quick incident mitiga-
tion and e�ort saving.

2) Resource Health Assessment. In cloud systems, it is an art to
design monitoring mechanisms that are able to cover di�erent types
of failures for numerous resources and APIs. Particularly, it includes
signal (time-series telemetry data from resources) capturing and
anomaly detection. On one hand, too sensitive alerts would cause
�ooding alarms; on the other hand, too tolerant alerts would cause
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Incident ID 
Resolved 
Critical

High Storage resource utilization detected

Service: Storage
Datacenter: DC #3

# of impacted requests: ~100,000
# of impacted accounts: ~10,000

Summary 
Monitor has detected an anomalous high storage resource utilization, impacting 
multiple properties in [Region].

Diagnosis 
The root cause found was the misconfiguration on the request throttling threshold 
for a specific group of storage nodes. The storage nodes were therefore overload-
ed. In addition, an OS upgrade by management service was underway at the same 
time, which further increased the number of transactions and pushed the CPU uti-
lization to an overwhelming level. As many services rely on virtual storage service, 
12 other services got impacted, triggering a large number of alerts although they 
were already aggregated. For example, a web app service reported high failure 
rate, long response time of some APIs, etc.; a business app service reported SLA 
drop for different job types, high ratio of unhealthy nodes, etc. Besides, the cloud 
storage service reported even more types of incidents, such as customer low 
availability, high impacted counts on VM, different API requests in low availability, 
high error rate of different container types, etc.

Figure 5: Incident example 3

Incident ID 
Resolved 
Critical

Disk firmware update disabled disk cache
Service: Storage
Datacenter: DC #4

# of impacted requests: ~100,000
# of impacted accounts: ~10,000

Summary 
Writing to a big data storage platform experienced high failure counts.

Diagnosis 
Firmware upgrade to a game drive service inadvertently disabled write cache. At 
the beginning, there was no direct impact on the service because the number of 
machines getting into bad state was small and the system was built to tolerate 
such instances. However, as more and more machines were getting upgraded, the 
overall latency of the service stack was slowly accumulating and at some point got 
tipped. It took quite some time to detect the incident which unfortunately deterio-
rated into a critical issue.

Figure 6: Incident example 4

missing of potentially impactful failures. The following highlights
the pain points that we have observed.

Flooding Alarms. Normally, the alerting threshold of monitors
is set to be static and conservative, which will inevitably produce a
large number of non-critical alarms. Moreover, due to cloud appli-
cation’s multi-tiered structure, services in each tier will generate
alerts for their failed components. Such chain e�ect will trigger
a �ood of homologous incidents. To alleviate this situation, cloud
systems adopt aggregation policies to merge duplicated alerts in ap-
propriate resource levels. Each respective level may contain failures
happened to �ner level of resources. For example, let us assume that
a datacenter has the following toy resource hierarchy: datacenter
> row > rack > node (there are more logical layers in real-world
systems). When failure happens, instead of generating incidents for
each separate node, incidents should be created in datacenter level
to merge the failures of impacted rows, in row level to merge failed
racks, and so forth. Such �ne-grained aggregation rules should be
carefully kept as merging all failures only in the highest possible
level would mislead the diagnosis. We have seen cases where simi-
lar failures of hardware devices in a datacenter were coincidentally
caused by distinct reasons (power failure and �rmware bug). In
general, to pro�le service failures more comprehensively, cloud
systems apply aggregation to the following monitoring aspects:

• Resource/API : Cloud entities associated with the failures.
• Failure type: Error type, error code, etc.

Incident ID 
Resolved 
Critical

High latency and timeouts on blob writes

Service: Network
Datacenter: DC #5

# of impacted requests: ~100,000
# of impacted accounts: ~100

Summary 
A Storage blob write API was suffering from long latency (95 quantile latency 
exceeds threshold). Auto log analysis showed the bottleneck of most requests 
were on a storage frontend service API.

Diagnosis 
Storage team found there were no failures in the storage API, but some network 
errors in related APIs. The first glance of Network team did not find any bad links. 
The incident was transferred back to Storage team. However, further checking 
uncovered a rise on CRC (Cyclic Redundancy Check) error counter on some core 
regional router devices. One link from router to the regional hub was flapping, 
which was caused by an unstable cable. Replacing the cable fixed the problem. 
The issue was not reported immediately, because: (1) the CRC error counter of 
the router was too small to hit the alerting threshold, and (2) Network service had 
enough redundant devices and alternative routers to tolerate the errors; therefore, 
such a small proportion of bad links (<0.1%) was hidden in network UI tool by 
default. However, the impacted service happened to be very sensitive to jitters, 
so problem got triggered.

Figure 7: Incident example 5

• Impact type: Availability, performance, task error rate, etc.
• Customer : Users experiencing the failures.
• Location: Regions where service failures happen.

The goal of alert aggregation is to provide engineers and opera-
tors a clear and integrated view of service health status. However,
there are still entities from identical aspects that cannot be merged
(e.g., multiple APIs impacted, multiple failure types). Thus, the num-
ber of incidents is still overwhelming incident management system.
Fig. 5 presents a case showing a failure could trigger a large number
of incidents even aggregations have been applied.

L����� L������ 3. Monitoring cloud system in di�erent resource
levels is proven to be e�ective for improving the coverage of fail-
ure detection in early stage. However, this may induce �ooding
alarms even signal aggregations have been applied. More sophisti-
cated signal aggregation strategies are in high demand.

Gray Failures. Di�erent from fail-stop failures, the manifes-
tations of gray failures are fairly subtle and thus defy quick and
de�nitive detection, which is quite common for large-scale services.
Huang et al. [22] conducted a systematic study on gray failures.
For example, if a system’s request handling module is stuck but
its heartbeat module is not, an error-handling module dependent
on heartbeats will perceive the system as healthy while a client
seeking service will regard it as failed. We have also observed such
gray failures incidents in cloud systems (Fig. 6 and 7). In both cases,
the error rate reported by monitors is in a reasonable level, so the
issues are mistakenly tolerated by the monitoring systems.

We design the following experiments to study the problem of
incident false detection. For �ooding alarms, although falsely de-
tected incidents will be marked in our system, we also consider
incidents which never get handled and mitigate automatically as
�ooding cases. Another type of �ooding alarms is the incidents gen-
erated due to the chain e�ect of cloud failures. We adopt redundant
e�ort-inducing incidents (Fig. 4) as such cases, as they stem from
identical issues. Particularly, duplicated incidents found by di�er-
ent criteria are removed. Regarding gray failure, our system does
not explicitly mark them because: (1) trivial mistakes can be safely
ignored as they have no impact on services; (2) serious failures will
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Figure 8: No. of �ooding alarms and gray failures

eventually be found when they manifest themselves, but there is
no need to mark them as technically they are all failed detection.
To tackle this problem more reasonably, we make use of incident’s
severity. Speci�cally, during the lifetime of an incident, if its sever-
ity level ever gets upgraded, it will be considered as a gray failure
because it is not correctly identi�ed regarding how serious it is at
the beginning. Again, the designed rules for discovering incident
false detection are quite conservative, but we can still see it is an
ubiquitous problem in cloud services. As shown in Fig. 8, compared
to DCM andWS, other services have a much more serious situation
of �ooding alarms. Regarding gray failure, other services encounter
much more cases than WS does, especially Network. This aligns
with the results shown in Table 3, demonstrating the complexity of
Network-related failures.

L����� L������ 4. Large-scale cloud systems are prone to gray
failures. Setting insensitive alarms to avoid �ooding alerts may
cause missing of critical issues.

4.2 Understand the Key Challenges
In this section, we detail the fundamental reasons behind the afore-
mentioned key challenges. Speci�cally, we believe the dependency
issues are essentially brought by system modular design and the
virtualization of physical infrastructure; the di�culty of resource
health assessment is twofold: (1) system’s fault-tolerant property
and (2) a series of monitor design and distribution problems.

Software System Modularity. In cloud systems, applications
follow a microservice-based architecture that decomposes the ap-
plication logic into several interacting component services. These
components are often independently developed in a cloud hosting
environment, making cloud systems much more complicated than
conventional ones. The complexity of dependency graph would
grow exponentially with the number of services. One important
reason is that there is no general way to identify from which source
an API is called. The capacity planner and load balancer used in the
architecture further complicate the API calling, as shown in Fig. 9.
Therefore, we need to start from the source side to collect respective
dependency sub-graphs and integrate them into a global one. In
this manner, it might seem that the graph can be easily constructed
if service designer can generate rules to specify its dependencies.
However, typical challenges include diversity of di�erent services,
fast system evolution, and rule unavailability of legacy systems,
which are also mentioned by Bahl et al. [1].

Physical Infrastructure Virtualization. Virtualization allows
abstraction of physical infrastructure, which however makes it dif-
�cult to identify the dependency graph from an incident to the
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Figure 9: A typical cloud computing architecture

problematic physical component(s). There are mainly two reasons.
First, the dependencies are dynamically constructed due to system
recon�guration and/or resource migration. For example, if one VM
is temporarily stopped on its host machine, it can be moved to a new
host without disrupting its users. Therefore, services can be dynami-
cally deployed in di�erent VMs and the dependencies between VMs
and physical machines are also dynamic, as shown in Fig. 9. Second,
logically related resources can be highly geographically-distributed.
For example, many modern cloud applications use clusters of vir-
tual machines to implement load-balancing and ensure resilience
for critical tasks. The physical nodes that host the VMs in a same
cluster could be in di�erent datacenters or regions, which increase
the di�culty of problem localization, as illustrated in Fig. 9.

Fault Tolerance. Fault tolerance is critical for cloud platforms
to provide highly stable availability and business continuity of
mission-critical systems or applications. In cloud computing, avail-
ability zone is one of the best practices of fault tolerance, which
protects service availability from datacenter failures by replicating
applications and data. The resiliency is ensured by its physical sep-
aration in terms of power, data, networking, etc. However, in some
cases, fault tolerance hinders the assessment of resource health
by hiding problems in the early stage. These small issues have the
potential to incur fatal consequences if not handled seriously and
timely. Fig. 6 presents such a potential threat, demonstrating the
need of more sophisticated fault-tolerant mechanisms.

Monitor Design and Distribution. Monitor design and moni-
tor distribution are two important factors a�ecting the performance
of assessing resource health. Speci�cally, monitor design refers to
what signals should be monitored and the corresponding alert-
ing logic; monitor distribution describes what resources should be
monitored to pursue an accurate and timely incident detection.

When designing monitors, we need to identify what metrics and
events that are most representative of resource health status. More
often than not, a set of metrics collectively can constitute a stronger
performance predictor as they provide more complete and compre-
hensive information. This is a typical feature engineering problem
which relies on IT practitioners’ domain knowledge. Another issue
of monitor design is the alerting rules determining when to raise
incidents. One widely-adopted rule is setting thresholds on the
time-series signals of resource and check whether any of them is
violated. However, this kind of rules is too simple which causes a
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large number of �ooding alarms. To address this problem, some
monitors incorporate dynamic thresholds, multi-dimension-metrics
based diagnostics, and others. However, in spite of the advances in
monitor design, there are still far too many �ooding alarms.

In cloud systems, how monitors should be distributed still re-
mains an unexplored problem. Typical challenges include: (1) re-
sources can be either physical or virtual; (2) granularity problem, i.e.,
sometimes a single computer should be monitored, sometimes a
single process is appropriate [1]. For the case in Fig. 7, as there is no
monitor monitoring per-service errors, it is hard to provide tailored
troubleshooting for individual services. However, it is not saying
that we should deploy as many monitors as possible, which is prac-
tically infeasible and will incur system performance degradation.

5 BRAIN: AN AIOPS FRAMEWORK
As shown by our previous study, critical cloud incidents often occur
in an unexpected manner and thus dedicated approaches could fail.
Nevertheless, we notice the root causes of critical incidents share
many similar features. This is where we see AI/ML techniques can
help by extracting patterns from recurrent incident symptoms and
providing actionable recommendations.

We present BRAIN, an AIOps framework aiming at improving
the entire pipeline of incident management at Microsoft. As shown
in Fig. 10, BRAIN consists of three modules: Data and Feature, Data
Preprocessing, and Techniques.

5.1 Design Principles
Based on our experience and empirical analysis, we �rst describe
the design principles of BRAIN, i.e., how BRAIN addresses the
identi�ed key challenges (Section 4.1).

Regarding dependency discovery, attempts have been made to
track the run-time dependencies of applications by standardizing
the middleware infrastructure [2, 4, 9]. However, as applications
come from a wide variety of vendors, it is impractical that all ven-
dors will instrument their services in a common fashion [1]. Log
analysis [3, 30, 35] would be a non-intrusive way to construct de-
pendencies across di�erent servers, processes, and third-party ser-
vices. However, this solution cannot meet the real-time needs of
extremely large-scale distributed systems due to data explosion,
log’s heterogeneity, dynamic changes of dependencies, etc. On the
other hand, we notice that before the occurrence of a critical cloud

issue, many related incidents would have happened in a short pe-
riod of time. In this process, individual service teams are alerting
and mitigating incidents separately. Being able to provide OCEs
with related incidents can dramatically save redundant engineer-
ing e�ort and facilitate root cause localization. Therefore, instead
of tracking �ne-grained service dependencies, BRAIN resorts to
incident correlation to pursue reliable cloud services.

The accuracy of resource health assessment is crucial to cloud
systems. However, it cannot be achieved by pursuing the perfec-
tion and completeness of purely rule-based monitoring system.
As in Fig. 7, the essential reason of such failure is the absence of
per-service monitors. Given system’s dynamicity and the intrans-
parency between di�erent application tiers, it is extremely hard to
formulate the problem of monitor design and distribution mathe-
matically. In contrast, BRAIN develops a series of incident detection
algorithms on top of various system signals, e.g., service health
data, infrastructure signals. Moreover, the resource hierarchy rela-
tionship is used to understand topologies, resiliency models, and
dependencies among the entire cloud system.

5.2 Data and Features
Two sources of data are utilized in BRAIN, namely, raw incident
tickets and various system input signals.

1) Raw incident tickets. In BRAIN, we utilize all incident tickets
that have been reported to the incident management system at
Microsoft. These incidents come from di�erent service teams and
therefore can provide us with a global view of service health state
across the cloud system.

2) System input signals. BRAIN runs 24⇥7 non-stop analyzing the
signals and patterns to detect anomalies in the systems. Particularly,
the input to BRAIN includes the following categories:

• Near Real Time (NRT) health signals. The health signals are
collected from each cloud resource, individual services’ mon-
itors, and system deployed active monitors.

• NRT metrics. Service availability, performance metrics, re-
quest volume, etc.

• System topology. The hierarchy information of di�erent re-
sources across the entire cloud system.

• Infrastructure signals. Low level infrastructure sensors sens-
ing datacenter tra�c volume, temperature, power consump-
tion, local weather, etc.

• Customer input. Customer Service & Support reports, which
consist of many categorical attributes such as product ver-
sion, the problematic product feature, product con�guration,
client OS, service package, etc. [28, 39].

• Historical data. Change history, metric history, etc.

5.3 Data Preprocessing
Incident management system at Microsoft is a hub system which in-
volves thousands of service teams. Particularly, di�erent teams may
have their own platforms of monitoring and processing service fail-
ures. The tools for incident diagnosis may also vary. Consequently,
incident tickets in the system are rendered by di�erent monitoring
platforms with di�erent diagnosis tools, and thus contain various
types of data. Poor signal-to-noise ratio and data inconsistency
are therefore inevitable. Moreover, incident management system is
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essentially a ticketing system only recording relevant information
throughout the lifecycle of incidents. Such system is not dedicated
to facilitate data analysis in postmortem phase regarding its de-
sign. Therefore, we value the procedure of data preprocessing and
propose the following three methods to improve data quality.

1) Entity Extraction. For large-scale cloud enterprises, di�erent
service teams and monitors usually have distinct standards on ren-
dering incident tickets, such as di�erent abbreviations for locations,
di�erent incident title templates, etc. Consequently, it is very di�-
cult to design an incident ticket parser that is generally applicable
for raw feature extraction. Therefore, to pro�le incidents in an uni-
�ed manner, we maintain global dictionaries for di�erent entities
in incidents, e.g., resource, device name, etc. Particularly, entities
are extracted through regular expressions combined with exist-
ing resource base at Microsoft. Such dictionaries can assist us in
recognizing special terms with low occurrence frequency [33].

2) Feature Repair. Incorrect and empty features are two common
data quality issues in incident management. To tackle them, we
propose to conduct feature repair for incidents before consuming
them. Speci�cally, we �rst search empty �elds in an incident ticket
and check whether each non-empty �eld has a valid value. This is
done by querying the global dictionaries built in entity extraction
stage. Then, problematic �elds will be auto-�lled or -corrected
by borrowing the setting of the alerting monitors or mining the
right features from its textual descriptions (i.e., title, summary,
and discussions) with prede�ned regular expressions. Meanwhile,
for impactful incidents, due to their signi�cance and minority, we
perform manual correction for their features.

3) Signal Selection. When diagnosing failures for cloud services,
engineers usually start from hunting for a small subset of system
signals that are symptoms incurred by the causes of the incidents,
called service-incident beacons [31]. However, manual signal se-
lection is too ine�cient and relies heavily on domain expertise.
To tackle this problem, we develop a Bayesian network inference
method [8] to model the relationship between system signals and
impactful incidents. The most relevant signals will be selected as
the features for model training.

5.4 Techniques of BRAIN
1) Incident Detection. Incident detection is to identify service issues
based on various system signals. It pursues an early detection of
gray failures and recognizes important issues from trivial ones. In
cloud systems, time series and event sequence are two major types
of telemetry data, where anomalies often manifest themselves as
having a large magnitude of upward/downward changes. Besides
traditional martingale methodologies [14, 20], BRAIN also exploits
sophisticated characteristics of the signals. Particularly, signals
are classi�ed as temporal or spatial, which are tackled by a LSTM
model and a Random Forest model, respectively [27]. To enhance
the interaction among di�erent signals, BRAIN calculates a series
of statistical features for a set of data points in a rolling window,
e.g., mean, variance [37]. In BRAIN, signi�cant progress (e.g., ⇠0.7
F1 score [8]) has been made when detecting certain types of cloud
failures, e.g., unplanned VM reboot, node failure, API throttling.

2) Incident Auto-triage. In incident triage phase, OCEs contin-
uously hold discussions until the correct service team is found.
During this process, knowledge is accumulated with the number of

discussions. BRAIN tries to automate the triage of incidents with
fewer discussions such that problem investigation can be triggered
earlier. Speci�cally, we design a GRU-based model [6] to e�ectively
utilize incremental discussions by considering their temporal re-
lationship. Three types of data are fed into our model: 1) incident
title and summary, 2) incident raw discussions, and 3) environment
information, e.g., incident type, monitor and device reporting the
incident, etc. The global entity dictionaries can be used to ensure
the correctness and consistency of these information. However,
since discussions are conducted by engineers, it tends to intro-
duce noise. We propose an attention-based mask strategy [6] to
bypass the noise. In this way, di�erent weights can be automati-
cally assigned to di�erent discussion information and noise can be
masked out by assigning it trivial weights. Due to low frequency,
special terms (e.g., API and component names) cannot be properly
encoded by traditional text encoding methods. We adopt a CNN-
based neural-language model [24, 25] to perform domain-speci�c
text encoding. Particularly, our model [6] has achieved a notable
accuracy of 0.64-0.73, which outperforms the state-of-the-art bug
triage approach [26] by a signi�cant margin of 12.2%-35.5%.

3) Incident Correlation. Incident correlation tries to alleviate the
situation of redundant e�orts and assist the impact estimation of
failures. We propose two algorithms: event-based and resource-
guided methods. In event-based method, due to the high resem-
blance between incident title and log, we use an automatic log
parsing method [15] to extract templates from the repaired incident
titles. Based on word-level similarity, templates are grouped to form
incident events, representing di�erent types of service issues. The
relationship among incident events are deduced from incidents’
historical links, which are marked by OCEs during incident inves-
tigation. Such links are used for model training and evaluation.
During evaluation, incidents will be connected if their representing
events are ever linked before. Although this is an e�ective way of
using OCEs’ domain knowledge, in some cases, log parsing meth-
ods cannot meet our needs. It is because in titles, special terms with
small frequency are often erased and the extracted events are indis-
tinguishable in terms of identifying which resource is unhealthy.
Thus, we develop a resource-guided method to perform incident
correlation in a �ne-grained manner. Speci�cally, two incidents
are considered as correlated if they are tagged with identical or
related resources (with appropriate location and time constraints).
In particular, there are two ways for identifying related resources:
(1) leveraging existing hierarchy information of resources at Mi-
crosoft, and (2) mining their spatial and temporal co-occurrences
in incidents. Combining these two methods, we are able to achieve
>0.89 precision, recall, and F1 score for incident correlation.

5.5 Evaluation
BRAIN features have been continuously deployed in the incident
management system at Microsoft. To evaluate its e�ectiveness so
far, we collected impactful incidents captured in the past one year
and split them into two groups. The �rst group, referred to as "No
BRAIN", contains 55.2% of the total incidents that were not engaged
with BRAIN. The second group, referred to as "BRAIN", contains the
rest 44.8% incidents engaged with BRAIN. Particularly, we compare
the time spent in di�erent phases of incident management. The bar
chart in Fig. 11 shows the 75th percentile TTx of the two groups,
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Figure 11: BRAIN’s e�ect on TTx (normalized)

and it clearly shows impactful incidents engaged with BRAIN have
shorter TTD, TTE, TTM, TTB (Section 4.1), and TTF (Section 3.2.2).

To account for the sample-to-sample variation, we performed
a non-parametric hypothesis test (Mann-Whitney-Wilcoxon test).
The null hypothesis is that the reduction TTx seen here is due to
the randomness in the data. The p-value measures how probable
the null hypothesis is, given the observed trend in the sample. If
the p-value is low (i.e., <0.05, at the 95% signi�cance level), we
would claim that the null hypothesis is improbable and reject it in
favor of the alternative hypothesis - the observed reduction of TTx is
indeed related to BRAIN. The key results are summarized in Table 5.
Supported by this testing, we conclude that BRAIN’s associations
with shorter TTx are statistically signi�cant. Therefore, BRAIN
manifests itself as an e�ective facilitator for TTx reduction.

6 RELATEDWORK
6.1 Reliability and Resilience of Cloud Services
There are many methods focusing on improving the reliability and
resilience of cloud systems. In terms of failure prediction in cloud
systems, Xu et al. [34] formulated the disk failure prediction prob-
lem (a major source of service incidents) as a ranking problem and
adopted FastTree algorithm to do prediction. Log analysis is also an
important means of failure detection [11, 13, 15, 17–19]. Particularly,
He et al. [18] proposed a cascading clustering algorithm to identify
the impactful problems by correlating the clusters of log event se-
quences with system KPIs. Zhang et al. [36] addressed the problem
of general bug management in software systems. Hu et al. [21] au-
tomated this process by constructing a developer-component-bug
network, which models the relationship among developers, source
code components, and the associated bugs.

Some approaches have been proposed to address the service
dependency issues for cloud services. For example, Bahl et al. [1]
presented Leslie Graph, an abstraction describing the complex de-
pendencies between network, host, and application components
in networked systems. Particularly, they systematically discussed
the challenges and di�culties of discovering service dependencies.
Chen et al. [7] introduced Orion, a system searches dependencies
using packet headers and timing information in network tra�c.

6.2 Analysis of Incident Management
Recently, cloud service incidents and their management are gaining
more and more popularity. For example, Zhou et al. [40] performed
an empirical study on the quality issues of a big data computing plat-
form. They analyzed 210 real service quality issues and investigated
their common symptoms, causes, and mitigation solutions. Their

Table 5: Non-parametric hypothesis test on TTx reduction
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�ndings show that 21.0% of major issues encountered by customers
are caused by hardware faults, 36.2% are caused by system side
defects, and 37.2% are due to customer side faults. Huang et al. [22]
studied the gray failures in production cloud-scale systems. They
found this type of failure is hardly noticed by system’s failure de-
tectors even when applications are a�icted by them. Chen et al. [5]
studied the incident triage problem on 20 large-scale online service
systems in Microsoft. Their results reveal the fact that incorrect
assignment of incident reports occurs frequently, especially for
the incidents with high severity. Dang et al. [12] summarized the
real-world challenges in building AIOps solutions and proposed a
roadmap of AIOps related research directions. Gunawi et al. [16]
conducted a cloud outage study of 32 popular Internet services.
They provided answers to why outages still take place in cloud
environments by analysing 1,247 headline news and public post-
mortem reports which detail 597 unplanned outages. While these
work only studies one speci�c aspect of cloud system’s incident
management, we present a comprehensive characterization for it.

7 CONCLUSIONS
With years of e�orts, cloud incident management has become much
more automated and faster. However, some critical incidents still
occur in an unexpected manner and thus require intensive human
e�ort. In this paper, we summarize two main challenges incurring
such ine�cient and error-prone work�ow: (1) the lack of a �ne-
grained service/resource dependency graph; and (2) the imprecision
of health assessment for cloud resources. Particularly, the depen-
dency graph is dramatically complicated by system modularity and
visualization technology. While fault tolerance mechanism could
sometimes impede the detection of unhealthy resources, the im-
perfection of monitor design and distribution further compound
the problem. We conduct quantitative analysis of incidents from
six core services at Microsoft and provide �ve real-world incident
examples as well as four lessons learned. We also present BRAIN,
our AIOps framework, which is able to e�ectively reduce the time
cost in di�erent incident management phases.

We believe our work could shed light on future research and
engineering e�ort towards failure-resilient cloud systems, for exam-
ple, high-performance algorithms for accelerating di�erent incident
management phases, design of e�cient incident management work-
�ow, and more advanced cloud architecture.
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