DATA MINING SIMILARITY \& DISTANCE

Similarity and Distance

Recommender Systems

SIMILARITY AND DISTANCE

Thanks to:
Tan, Steinbach, and Kumar, "Introduction to Data Mining" Rajaraman and Ullman, "Mining Massive Datasets"

Similarity and Distance

- For many different problems we need to quantify how close two objects are.
- Examples:
- For an item bought by a customer, find other similar items
- Group together the customers of a site so that similar customers are shown the same ad.
- Group together web documents so that you can separate the ones that talk about politics and the ones that talk about sports.
- Find all the near-duplicate mirrored web documents.
- Find credit card transactions that are very different from previous transactions.
- To solve these problems we need a definition of similarity, or distance.
- The definition depends on the type of data that we have

Similarity

- Numerical measure of how alike two data objects are.
- A function that maps pairs of objects to real values
- Higher when objects are more alike.
- Often falls in the range $[0,1]$, sometimes in $[-1,1]$
- Desirable properties for similarity

1. $s(p, q)=1$ (or maximum similarity) only if $p=q$. (Identity)
2. $s(p, q)=s(q, p)$ for all p and q. (Symmetry)

Similarity between sets

- Consider the following documents

apple	apple	new		
releases				
new ipod			\quad	releases
:---				
new ipad	\quad	apple pie		
:---				
recipe				

-Which ones are more similar?
-How would you quantify their similarity?

Similarity: Intersection

- Number of words in common

| apple | apple
 releases
 new ipod | new
 new ipad |
| :--- | :--- | :--- | | apple pie |
| :--- |
| recipe |

- $\operatorname{Sim}(D, D)=3, \operatorname{Sim}(D, D)=\operatorname{Sim}(D, D)=2$
- What about this document?

> Vefa releases new book with apple pie recipes

- $\operatorname{Sim}(D, D)=\operatorname{Sim}(D, D)=3$

Jaccard Similarity

- The Jaccard similarity (Jaccard coefficient) of two sets $\mathrm{S}_{1}, \mathrm{~S}_{2}$ is the size of their intersection divided by the size of their union.
- $\operatorname{JSim}\left(S_{1}, S_{2}\right)=\left|S_{1} \cap S_{2}\right| /\left|S_{1} \cup S_{2}\right|$.
- Extreme behavior:
- $\operatorname{Jsim}(X, Y)=1$, iff $X=Y$
- $J \operatorname{sim}(X, Y)=0$ iff X, Y have no elements in common
- JSim is symmetric

Jaccard Similarity between sets

- The distance for the documents

apple	apple	new
releases		
new ipod	releases new ipad	apple pie recipe

Vefa releases
new book with
apple pie
recipes

- JSim (D,D) $=3 / 5$
- $\operatorname{JSim}(D, D)=\operatorname{JSim}(D, D)=2 / 6$
- $\operatorname{JSim}(D, D)=\operatorname{JSim}(D, D)=3 / 9$

Similarity between vectors

Documents (and sets in general) can also be represented as vectors

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D3	60	30	0	0
D4	0	0	10	20

How do we measure the similarity of two vectors?

- We could view them as sets of words. Jaccard Similarity will show that D4 is different form the rest
- But all pairs of the other three documents are equally similar

We want to capture how well the two vectors are aligned

Example

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D3	60	30	0	0
D4	0	0	10	20

Documents D1, D2 are in the "same direction"
Document D3 is on the same plane as D1, D2
Document D4 is orthogonal to the rest

Example

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D3	60	30	0	0
D4	0	0	10	20

Documents D1, D2 are in the "same direction"

Document $D 3$ is on the same plane as $D 1, D 2$
Document D4 is orthogonal to the rest

Cosine Similarity

- $\operatorname{Sim}(X, Y)=\cos (X, Y)$
- The cosine of the angle between X and Y

Figure 2.16. Geometric illustration of the cosine measure.

- If the vectors are aligned (correlated) angle is zero degrees and $\cos (X, Y)=1$
- If the vectors are orthogonal (no common coordinates) angle is 90 degrees and $\cos (\mathrm{X}, \mathrm{Y})=0$
- Cosine is commonly used for comparing documents, where we assume that the vectors are normalized by the document length, or words are weighted by tf-idf.

Cosine Similarity - math

- If d_{1} and d_{2} are two vectors, then

$$
\cos \left(d_{1}, d_{2}\right)=\left(d_{1} \bullet d_{2}\right) /\left\|d_{1}\right\|\left\|d_{2}\right\|,
$$

where \bullet indicates vector dot product and $\|d\|$ is the length of vector d.

- Example:

$$
\begin{aligned}
& d_{1}=3205000200 \\
& d_{2}=100000102 \\
& d_{1} \bullet d_{2}=3^{*} 1+2^{*} 0+0^{*} 0+5^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+2^{*} 1+0^{*} 0+0^{*} 2=5 \\
& \left\|d_{1}\right\|=\left(3^{*} 3+2^{*} 2+0^{*} 0+5^{*} 5+0^{*} 0+0^{*} 0+0^{*} 0+2^{*} 2+0^{*} 0+0^{*} 0\right)^{0.5}=(42)^{0.5}=6.481 \\
& \left\|d_{2}\right\|=\left(1^{*} 1+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+0^{*} 0+1^{*} 1+0^{*} 0+2^{*} 2\right)^{0.5}=(6)^{0.5}=2.245 \\
& \cos \left(d_{1}, d_{2}\right)=.3150
\end{aligned}
$$

Note: We only need to consider the non-zero entries of the vectors

What if we have $0 / 1$ vectors?

Example

document	Apple	Microsoft	Obama	Election
D1	10	20	0	0
D2	30	60	0	0
D3	60	30	0	0
D4	0	0	10	20
$\operatorname{Cos}(\mathrm{D} 1, \mathrm{D} 2)=1$				
$\operatorname{Cos}(\mathrm{D} 3, \mathrm{D} 1)=\operatorname{Cos}(\mathrm{D} 3, \mathrm{D} 2)=4 / 5$				

Correlation Coefficient

- The correlation coefficient measures correlation between two random variables.
- If we have observations (vectors) $X=\left(x_{1}, \ldots, x_{n}\right)$ and $Y=\left(y_{1}, \ldots, y_{n}\right)$ is defined as

$$
\operatorname{CorrCoeff}(X, Y)=\frac{\sum_{i}\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right)}{\sqrt{\sum_{i}\left(x_{i}-\mu_{X}\right)^{2}} \sqrt{\sum_{i}\left(y_{i}-\mu_{Y}\right)^{2}}}
$$

- This is essentially the cosine similarity between the normalized vectors (where from each entry we remove the mean value of the vector.
- The correlation coefficient takes values in [-1,1]
- -1 negative correlation, +1 positive correlation, 0 no correlation.
- Most statistical packages also compute a p-value that measures the statistical importance of the correlation
- Lower value - higher statistical importance

Correlation Coefficient

Normalized vectors

document	Apple	Microsoft	Obama	Election
D1	-5	+5	0	0
D2	-15	+15	0	0
D3	+15	-15	0	0
D4	0	0	-5	+5

$$
\operatorname{CorrCoeff}(X, Y)=\frac{\sum_{i}\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right)}{\sqrt{\sum_{i}\left(x_{i}-\mu_{X}\right)^{2}} \sqrt{\sum_{i}\left(y_{i}-\mu_{Y}\right)^{2}}}
$$

CorrCoeff(D1,D2) = 1
CorrCoeff(D1,D3) $=$ CorrCoeff(D2,D3) $=-1$
CorrCoeff(D1,D4) $=$ CorrCoeff(D2,D4) $=$ CorrCoeff(D3,D4) $=0$

Distance

- Numerical measure of how different two data objects are
- A function that maps pairs of objects to real values
- Lower when objects are more alike
- Higher when two objects are different
- Minimum distance is 0 , when comparing an object with itself.
- Upper limit varies

Distance Metric

- A distance function d is a distance metric if it is a function from pairs of objects to real numbers such that:

1. $d(x, y) \geq 0$. (non-negativity)
2. $d(x, y)=0$ iff $x=y$. (identity)
3. $d(x, y)=d(y, x)$. (symmetry)
4. $\quad d(x, y) \leq d(x, z)+d(z, y)$ (triangle inequality).

Triangle Inequality

- Triangle inequality guarantees that the distance function is wellbehaved.
- The direct connection is the shortest distance
- It is useful also for proving useful properties about the data.

Distances for real vectors

- Vectors $x=\left(x_{1}, \ldots, x_{d}\right)$ and $y=\left(y_{1}, \ldots, y_{d}\right)$
- L_{p}-norms or Minkowski distance:

$$
L_{p}(x, y)=\left[\left|x_{1}-y_{1}\right|^{p}+\cdots+\left|x_{d}-y_{d}\right|^{p}\right]^{1 / p}
$$

- L_{2}-norm: Euclidean distance:

$$
L_{2}(x, y)=\sqrt{\left|x_{1}-y_{1}\right|^{2}+\cdots+\left|x_{d}-y_{d}\right|^{2}}
$$

- L_{1}-norm: Manhattan distance:

$$
L_{1}(x, y)=\left|x_{1}-y_{1}\right|+\cdots+\left|x_{d}-y_{d}\right|
$$

- L_{∞}-norm:

$$
L_{\infty}(x, y)=\max \left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{d}-y_{d}\right|\right\}
$$

- The limit of L_{p} as p goes to infinity.

Example of Distances

$$
\begin{aligned}
& L_{\infty} \text {-norm: } \\
& \operatorname{dist}(x, y)=\max \{3,4\}=4
\end{aligned}
$$

Example

$$
L_{2}(x, y)=\sqrt{\left|x_{1}-y_{1}\right|^{2}+\cdots+\left|x_{d}-y_{d}\right|^{2}}
$$

L_{1}-norm: Manhattan distance:

$$
L_{1}(x, y)=\left|x_{1}-y_{1}\right|+\cdots+\left|x_{d}-y_{d}\right|
$$

$$
L_{\infty}(x, y)=\max \left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{d}-y_{d}\right|\right\}
$$

Green: All points y at distance $L_{1}(x, y)=r$ from point x
Blue: All points y at distance $L_{2}(x, y)=r$ from point x
Red: All points y at distance $L_{\infty}(x, y)=r$ from point x

L_{p} distances for sets

- We can apply all the L_{p} distances to the cases of sets of attributes, with or without counts, if we represent the sets as vectors
- E.g., a transaction is a $0 / 1$ vector
- E.g., a document is a vector of counts.

Similarities into distances

- Jaccard distance:

$$
\operatorname{JDist}(X, Y)=1-J \operatorname{Sim}(X, Y)
$$

- Jaccard Distance is a metric
- Cosine distance:

$$
\operatorname{Dist}(X, Y)=1-\cos (X, Y)
$$

- Cosine distance is a metric

Hamming Distance

- Hamming distance is the number of positions in which bit-vectors differ.
- Example:
- $\mathrm{p}_{1}=10101$
- $p_{2}=10011$.
- $d\left(p_{1}, p_{2}\right)=2$ because the bit-vectors differ in the $3^{\text {rd }}$ and $4^{\text {th }}$ positions.
- The L_{1} norm for the binary vectors
- Hamming distance between two vectors of categorical attributes is the number of positions in which they differ.
- Example:
- $x=$ (married, low income, cheat)
- $\mathrm{y}=$ (single, low income, not cheat)
- $d(x, y)=2$

Why Hamming Distance Is a Distance Metric

- $d(x, x)=0$ since no positions differ.
- $d(x, y)=d(y, x)$ by symmetry of "different from."
- $d(x, y) \geq 0$ since strings cannot differ in a negative number of positions.
- Triangle inequality: changing x to z and then to y is one way to change x to y.
- For binary vectors if follows from the fact that L_{1} norm is a metric

Distance between strings

-How do we define similarity between strings?

```
weird wierd
intelligent unintelligent
Athena Athina
```

- Important for recognizing and correcting typing errors and analyzing DNA sequences.

Edit Distance for strings

- The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other.
- Example: $x=$ abcde $; y=$ bcduve.
- Turn x into y by deleting a, then inserting u and v after d.
- Edit distance $=3$.
- Minimum number of operations can be computed using dynamic programming
- Common distance measure for comparing DNA sequences

Why Edit Distance Is a Distance Metric

- $d(x, x)=0$ because 0 edits suffice.
- $d(x, y)=d(y, x)$ because insert/delete are inverses of each other.
- $d(x, y) \geq 0$: no notion of negative edits.
- Triangle inequality: changing x to z and then to y is one way to change x to y. The minimum is no more than that

Variant Edit Distances

- Allow insert, delete, and mutate.
- Change one character into another.
- Minimum number of inserts, deletes, and mutates also forms a distance measure.
- Same for any set of operations on strings.
- Example: substring reversal or block transposition OK for DNA sequences
- Example: character transposition is used for spelling

Distance between sets of points

How do we measure the distance between the two sets?

Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs

Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs
Maximum distance over all pairs

Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs
Maximum distance over all pairs
Average distance over all pairs

Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs
Maximum distance over all pairs
Average distance over all pairs
Distance between averages

Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs
Maximum distance over all pairs
Average distance over all pairs
Distance between averages

Hausdorff distance:

- For each red point x compute the distance to the closest Blue point: $d(x$, Blue $)=\min _{y \in B l u e} d(x, y)$

Distance between sets of points

How do we measure the distance between the two sets?

Minimum distance over all pairs
Maximum distance over all pairs
Average distance over all pairs
Distance between averages

Hausdorff distance:

- For each red point x compute the distance to the closest Blue point: $d(x$, Blue $)=\min _{y \in B l u e} d(x, y)$
- Find the maximum: this is the distance from Red to Blue: $d($ Red, Blue $)=\max _{x \in R e d} d(x$, Blue $)$

Distance between sets of points

How do we measure the distance between the two sets?
Minimum distance over all pairs
Maximum distance over all pairs
Average distance over all pairs
Distance between averages

Hausdorff distance:

- For each red point x compute the distance to the closest Blue point: $d(x, B l u e)=\min _{y \in B l u e} d(x, y)$
- Find the maximum: this is the distance from Red to Blue: d (Red, Blue $)=\max _{x \in \text { Red }} d(x$, Blue $)$
- Compute the d (Blue,Red)

Distance between sets of points

Hausdorff distance:

- For each red point x compute the distance to the closest Blue point: $d(x, B l u e)=\min _{y \in B l u e} d(x, y)$
- Find the maximum: this is the distance from Red to Blue: d (Red, Blue $)=\max _{x \in \text { Red }} d(x$, Blue $)$
- Compute the d (Blue,Red)
- Take the maximum of the two

$$
d_{H}(\text { Red }, \text { Blue })=\max \left\{\max _{x \in \text { Red }} \min _{y \in B l u e} d(x, y), \max _{x \in \text { Red }} \min _{y \in B l u e} d(x, y)\right\}
$$

Distances between distributions

- Some times data can be represented as a distribution (e.g., a document is a distribution over the words)

document	Apple	Microsoft	Obama	Election
D1	0.35	0.5	0.1	0.05
D2	0.4	0.4	0.1	0.1
D3	0.05	0.05	0.6	0.3

-How do we measure distance between distributions?

Variational distance

- Variational distance: The L_{1} distance between the distribution vectors

document	Apple	Microsoft	Obama	Election
D1	0.35	0.5	0.1	0.05
D2	0.4	0.4	0.1	0.1
D3	0.05	0.05	0.6	0.3

$$
\begin{aligned}
& \operatorname{Dist}(\mathrm{D} 1, \mathrm{D} 2)=0.05+0.1+0.05=0.2 \\
& \operatorname{Dist}(\mathrm{D} 2, \mathrm{D} 3)=0.35+0.35+0.5+0.2=1.4 \\
& \operatorname{Dist}(\mathrm{D} 1, \mathrm{D} 3)=0.3+0.45+0.5+0.25=1.5
\end{aligned}
$$

-D1 - D2 - D3

Information theoretic distances

document	Apple	Microsoft	Obama	Election
D1	0.35	0.5	0.1	0.05
D2	0.4	0.4	0.1	0.1
D3	0.05	0.05	0.6	0.3

- KL-divergence (Kullback-Leibler) for distributions P,Q

$$
D_{K L}(P \| Q)=\sum_{x} p(x) \log \frac{p(x)}{q(x)}
$$

- KL-divergence is asymmetric. We can make it symmetric by taking the average of both sides

$$
\frac{1}{2}\left(D_{K L}(P \| Q)+D_{K L}(Q \| P)\right)
$$

- JS-divergence (Jensen-Shannon)

$$
\begin{aligned}
& J S(P, Q)=\frac{1}{2} D_{K L}(P \| M)+\frac{1}{2} D_{K L}(Q \| M) \\
& M=\frac{1}{2}(P+Q) \quad \text { Average distribution }
\end{aligned}
$$

Ranking distances

	x	y	\mathbf{z}	\mathbf{w}
R_{1}	1	2	3	4
R_{2}	4	1	3	2

- The input in this case is two rankings/orderings of the same n items. For example:

$$
\begin{aligned}
& R_{1}=\langle x, y, z, w\rangle \\
& R_{2}=\langle y, w, z, x\rangle
\end{aligned}
$$

- How do we define distance in this case?
- Kendal's tau distance: Number of pairs of items that are in different order:

$$
|\{(x, y),(x, z),(x, w),(z, w)\}|=4
$$

- Defines a metric.
- Maximum: $\frac{n(n-1)}{2}$ when rankings are reversed.
- Spearman rank distance: L_{1} distance between the ranks
- $\operatorname{SR}\left(R_{1}, R_{2}\right)=|1-4|+|2-1|+|3-3|+|4-2|=6$

Why is similarity important?

- We saw many definitions of similarity and distance
- How do we make use of similarity in practice?
-What issues do we have to deal with?

