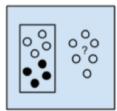
Deep Reinforcement Learning MIT 6.S191

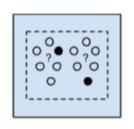
Alexander Amini January 30, 2019

Play Video@ 01:00

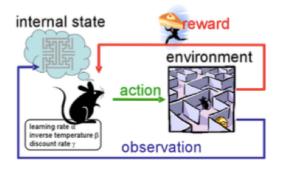
Types of Deep Learning



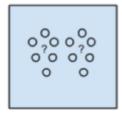
Supervised Learning



Semi-Supervised Learning



Reinforcement Learning



Unsupervised Learning

Supervised Learning

Data: (*x*, *y*) *x* is data, *y* is label

Goal: Learn function to map $x \rightarrow y$

Apple example:

This thing is an apple.

Supervised Learning

Unsupervised Learning

Data: (*x*, *y*) *x* is data, *y* is label

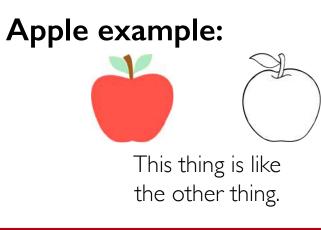
Goal: Learn function to map $x \rightarrow y$

Apple example:

This thing is an apple.

Data: *x x* is data, no labels!

Goal: Learn underlying structure



Supervised Learning

Unsupervised Learning

Data: (x, y)x is data, y is label

Goal: Learn function to map $x \rightarrow y$

Apple example:

This thing is an apple.

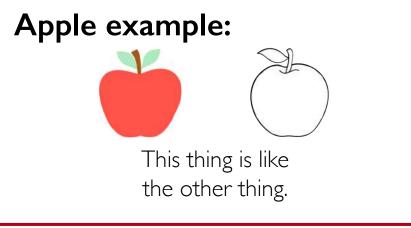
Data: *x* is data, no labels!

Goal: Learn underlying structure

Reinforcement Learning

Data: state-action pairs

Goal: Maximize future rewards over many time steps



Apple example:

Eat this thing because it will keep you alive.

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Data: (x, y) x is data, y is labe

Data: *x* is data, no labels

Data: state-action pairs

General RL: our focus today.

 $x \to y$

structure

Goal: Maximize future rewards over many time steps

Apple example:

Apple example:

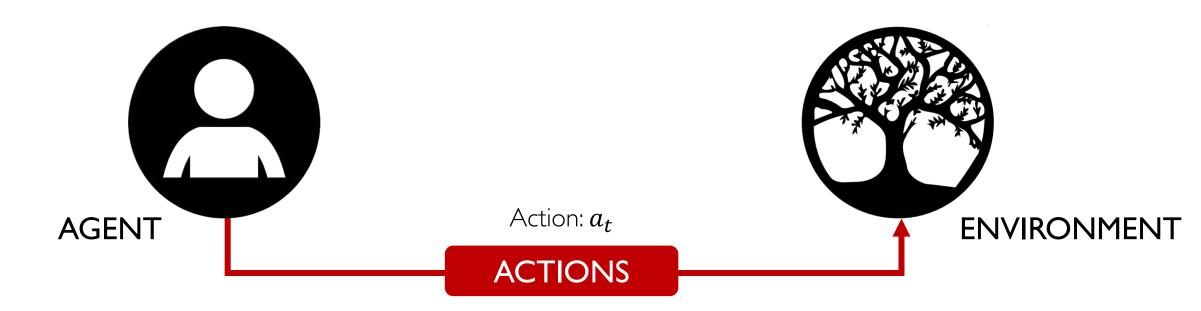
Apple example:

Eat this thing because it will keep you alive.

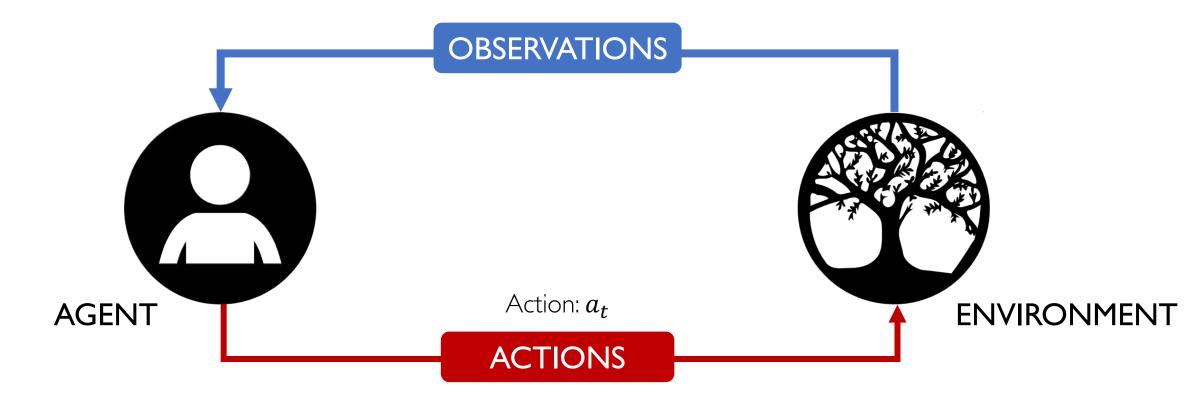
6.5191 Introduction to Deep Learning introtodeeplearning.com

Agent: takes actions.

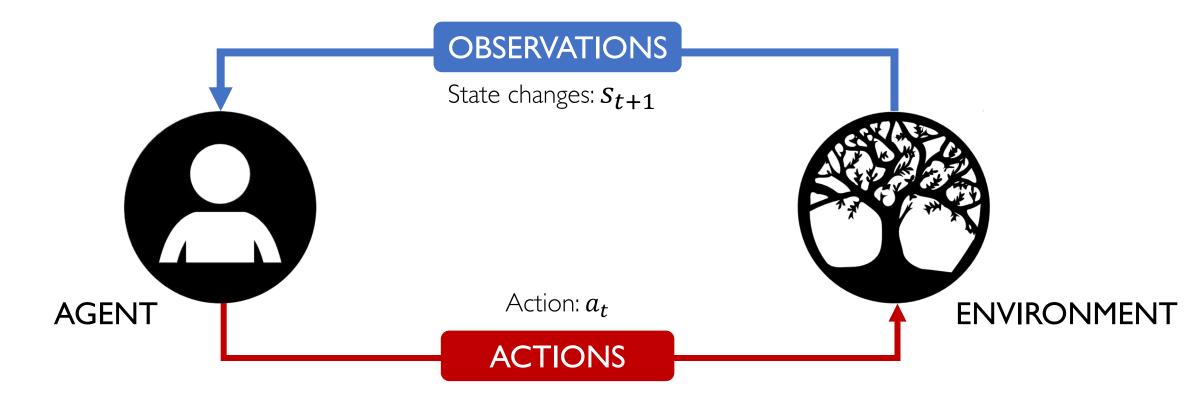
Environment: the world in which the agent exists and operates.



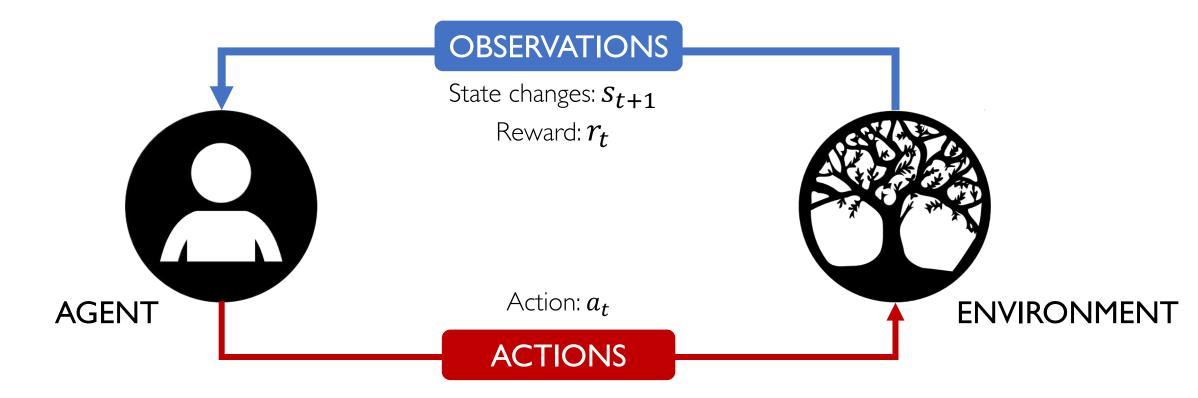
Action: a move the agent can make in the environment.



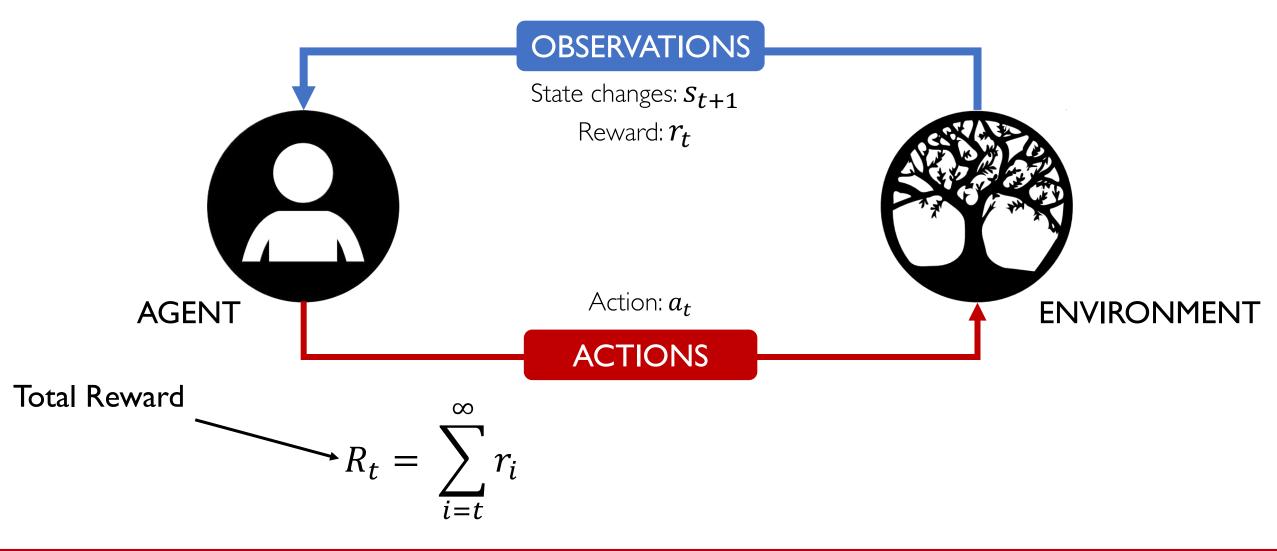
Observations: of the environment after taking actions.

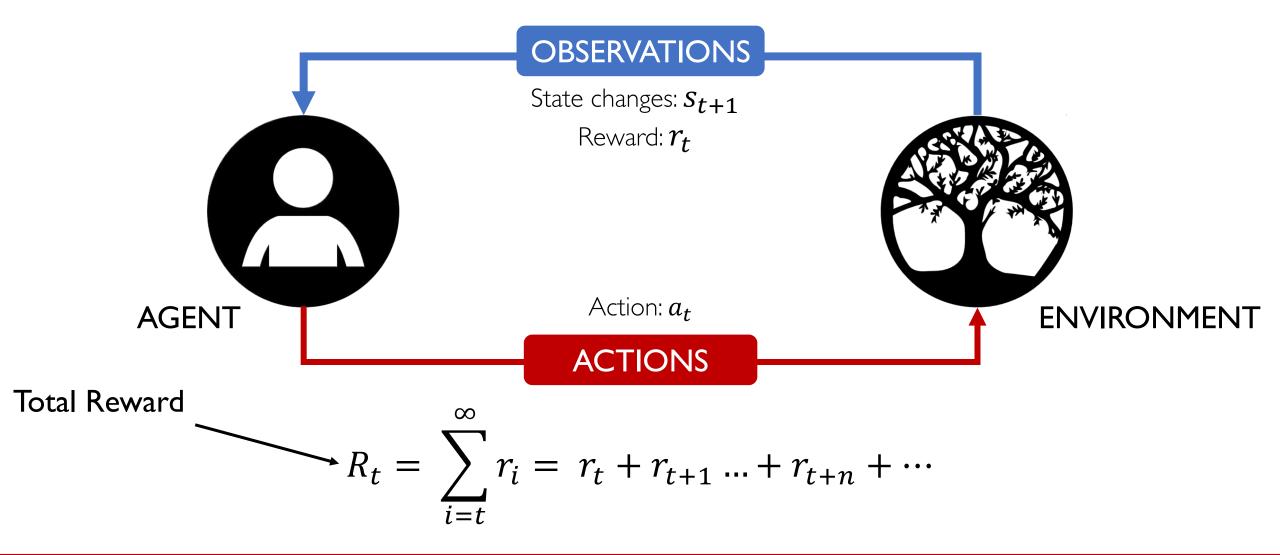


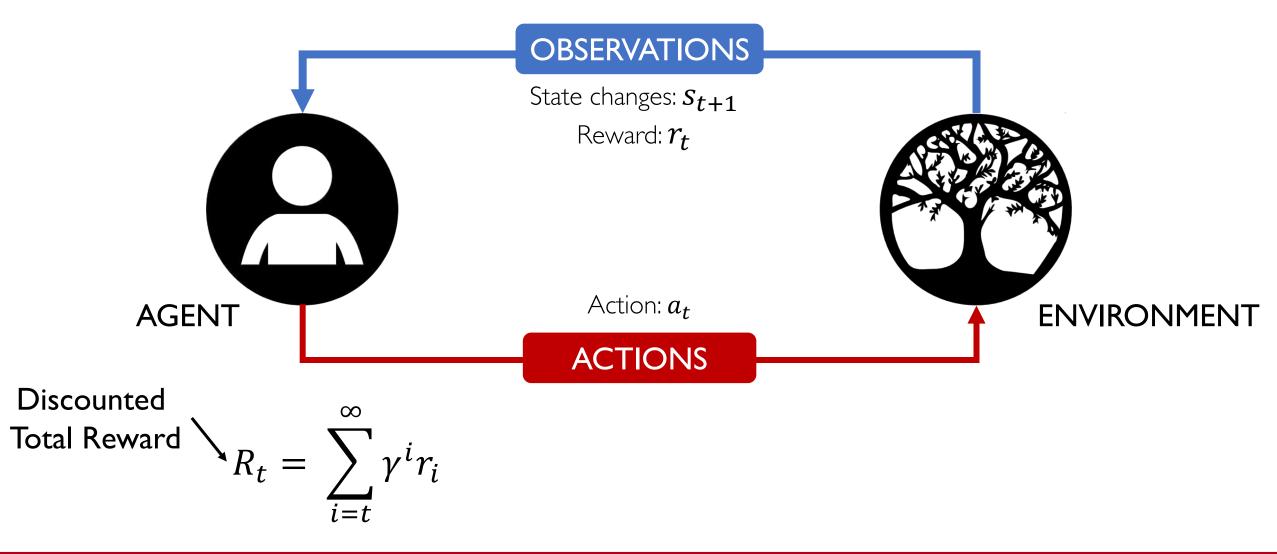
State: a situation which the agent perceives.

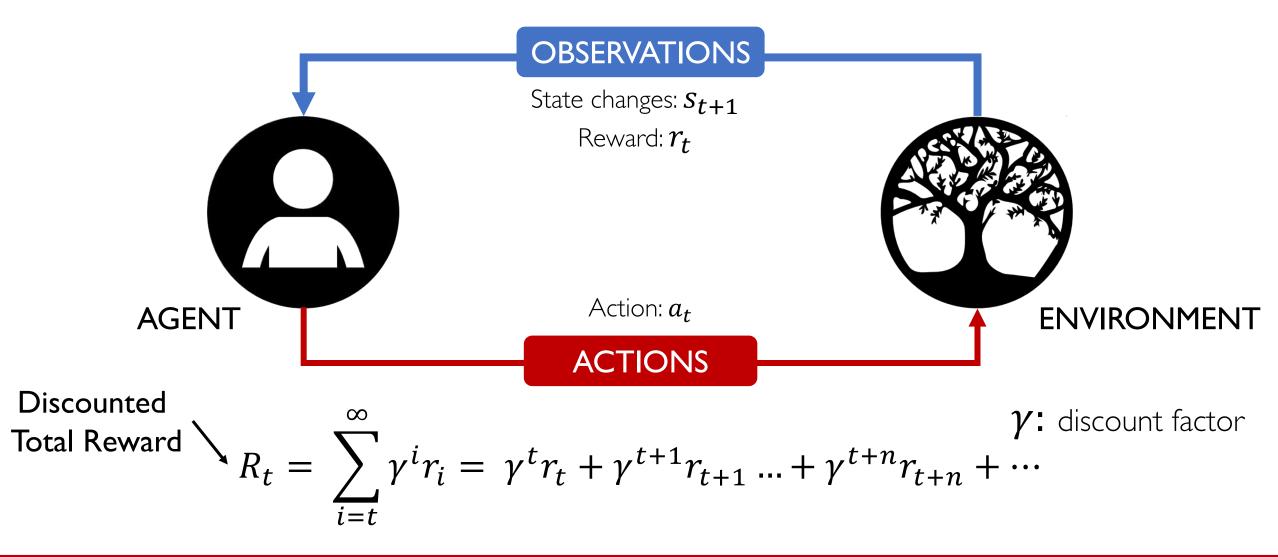


Reward: feedback that measures the success or failure of the agent's action.



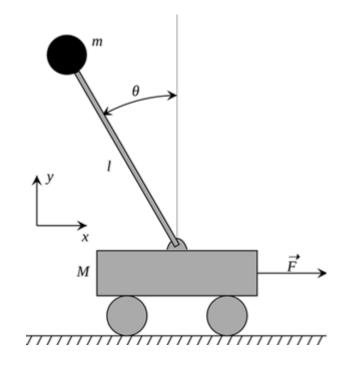






Reinforcement learning is a general-purpose framework for decision-making:

- An agent operates in an environment: Atari Breakout
- An agent has the capacity to act
- Each action influences the agent's **future state**
- Success is measured by a reward signal
- Goal is to select actions to maximize future reward



Cart-Pole Balancing

- **Goal** Balance the pole on top of a moving cart
- State Pole angle, angular speed. Cart position, horizontal velocity.
- Actions horizontal force to the cart
- **Reward** 1 at each time step if the pole is upright

Doom

- Goal Eliminate all opponents
- **State** Raw game pixels of the game
- Actions Up, Down, Left, Right etc
- **Reward** Positive when eliminating an opponent, negative when the agent is eliminated



Bin Packing

- Goal Pick a device from a box and put it into a container
- State Raw pixels of the real world
- Actions Possible actions of the robot
- Reward Positive when placing a device successfully, negative otherwise

Defining the Q-function

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

Total reward, R_t , is the discounted sum of all rewards obtained from time t

 $Q(s, a) = \mathbb{E}[R_t]$

The Q-function captures the **expected total future reward** an agent in state, *s*, can receive by executing a certain action, *a*

How to take actions given a Q-function? $Q(s, a) = \mathbb{E}[R_t]$ f(state, action)

Ultimately, the agent needs a **policy** $\pi(s)$, to infer the **best action to take** at its state, s

Strategy: the policy should choose an action that maximizes future reward

$$\pi^*(s) = \operatorname*{argmax}_{a} Q(s, a)$$

Deep Reinforcement Learning Algorithms

Value Learning

Find Q(s, a) $a = \operatorname*{argmax}_{a} Q(s, a)$

Policy Learning

Find $\pi(s)$

Sample $a \sim \pi(s)$

Deep Reinforcement Learning Algorithms

Value Learning

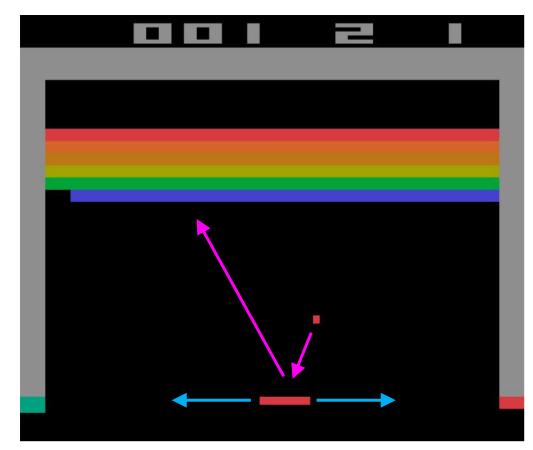
Find Q(s, a) $a = \underset{a}{\operatorname{argmax}} Q(s, a)$

Policy Learning

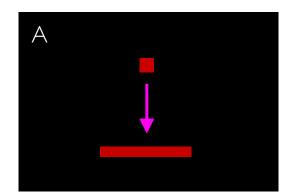
Find $\pi(s)$

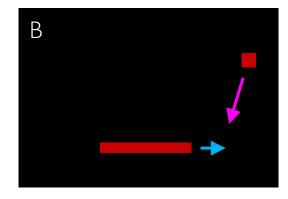
Sample $a \sim \pi(s)$

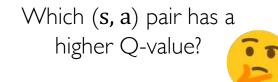
Example: Atari Breakout



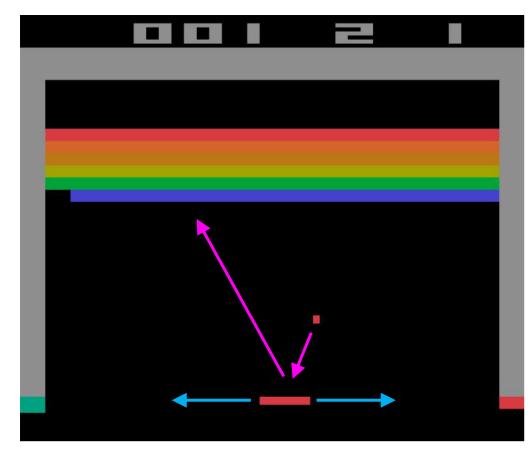
It can be very difficult for humans to accurately estimate Q-values



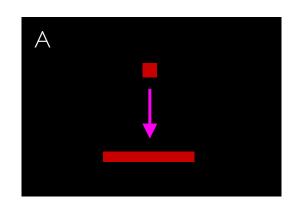


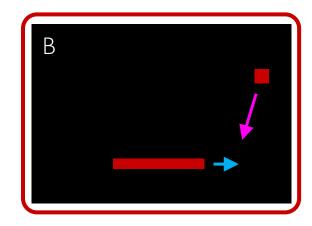


Example: Atari Breakout



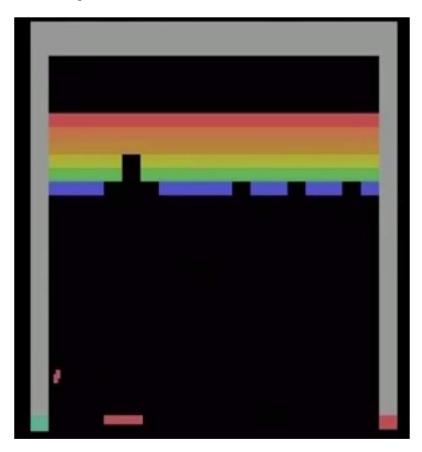
It can be very difficult for humans to accurately estimate Q-values



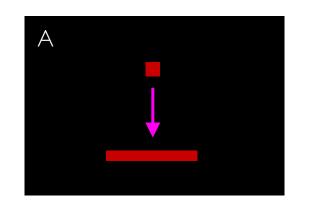


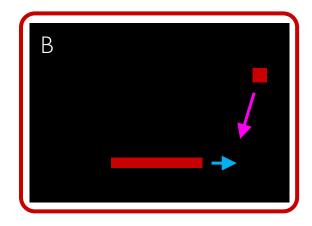
Which (**s**, **a**) pair has a higher Q-value?

Example: Atari Breakout - Middle



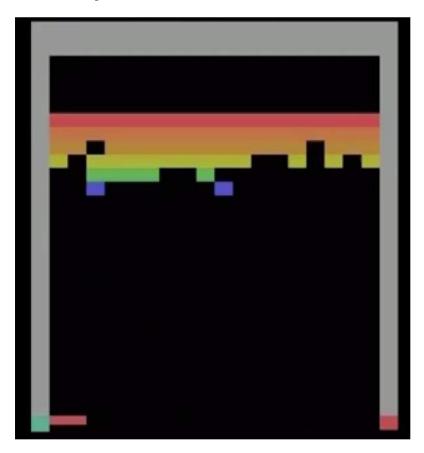
It can be very difficult for humans to accurately estimate Q-values



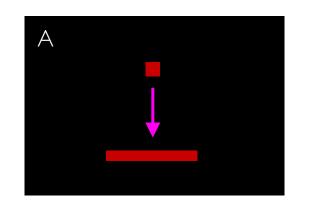


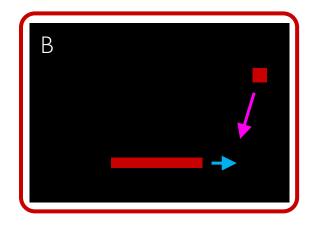
Which (**s**, **a**) pair has a higher Q-value?

Example: Atari Breakout - Side



It can be very difficult for humans to accurately estimate Q-values



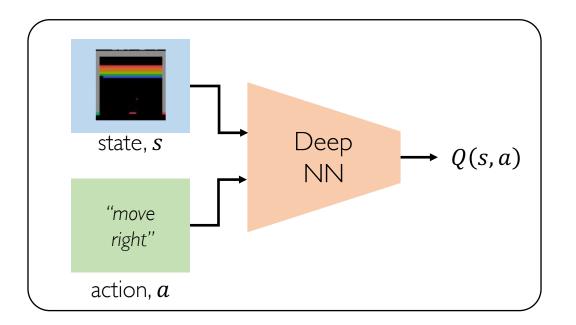


Which (**s**, **a**) pair has a higher Q-value?

Play Video @19:48

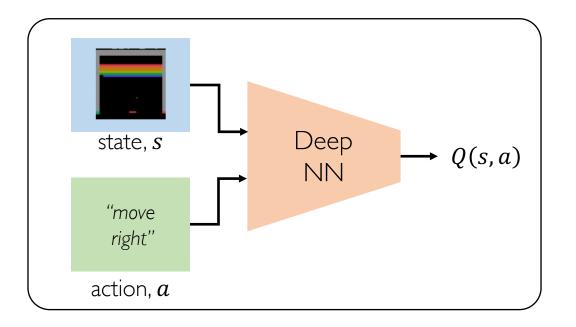
Deep Q Networks (DQN)

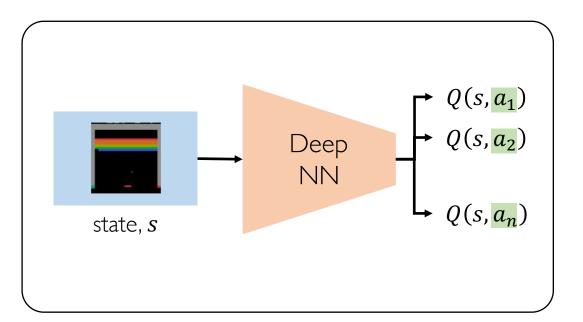
How can we use deep neural networks to model Q-functions?



Deep Q Networks (DQN)

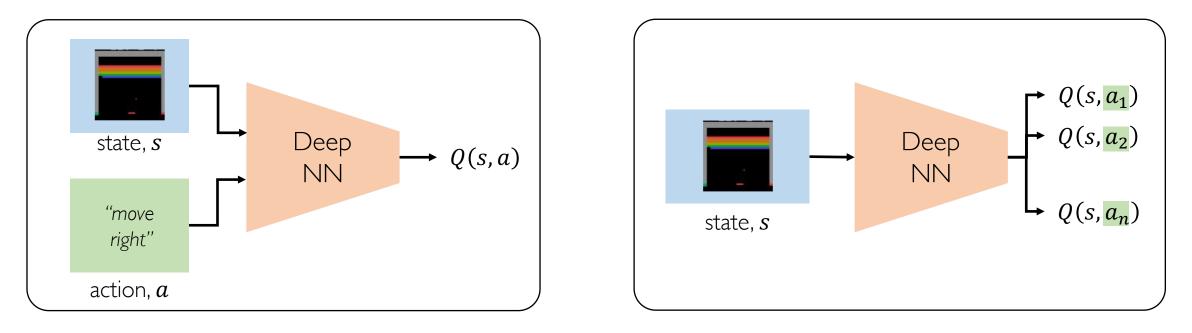
How can we use deep neural networks to model Q-functions?





Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions?

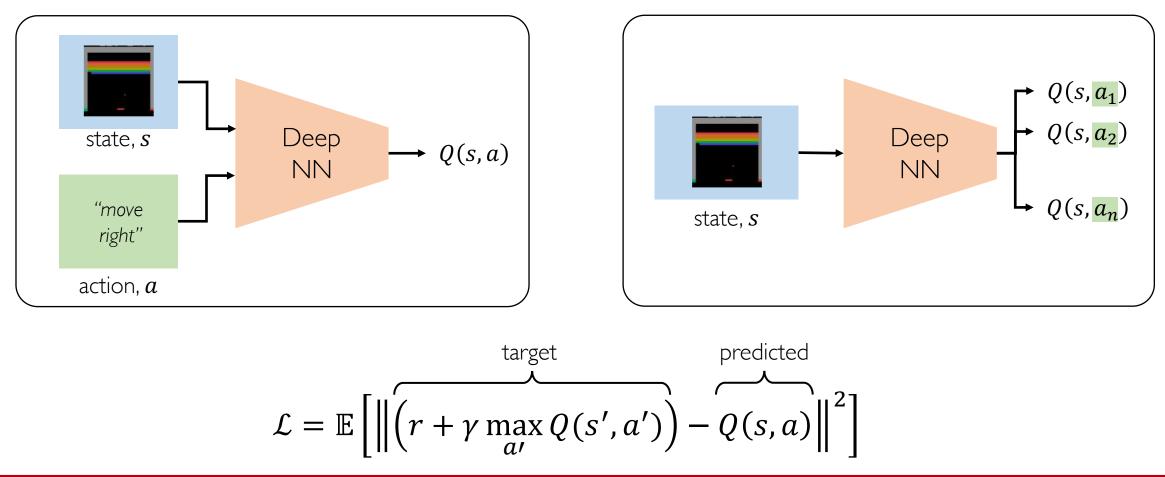


$$\mathcal{L} = \mathbb{E}\left[\left\| \left(r + \gamma \max_{a'} Q(s', a')\right) - Q(s, a) \right\|^2\right]$$

6.S191 Introduction to Deep Learning introtodeeplearning.com

Deep Q Networks (DQN): Training

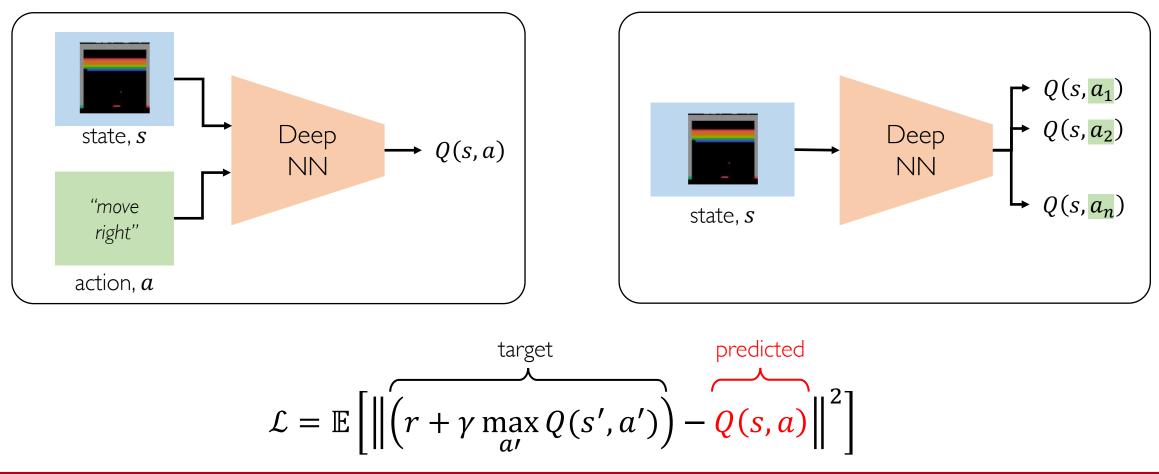
How can we use deep neural networks to model Q-functions?



6.5191 Introduction to Deep Learning introtodeeplearning.com

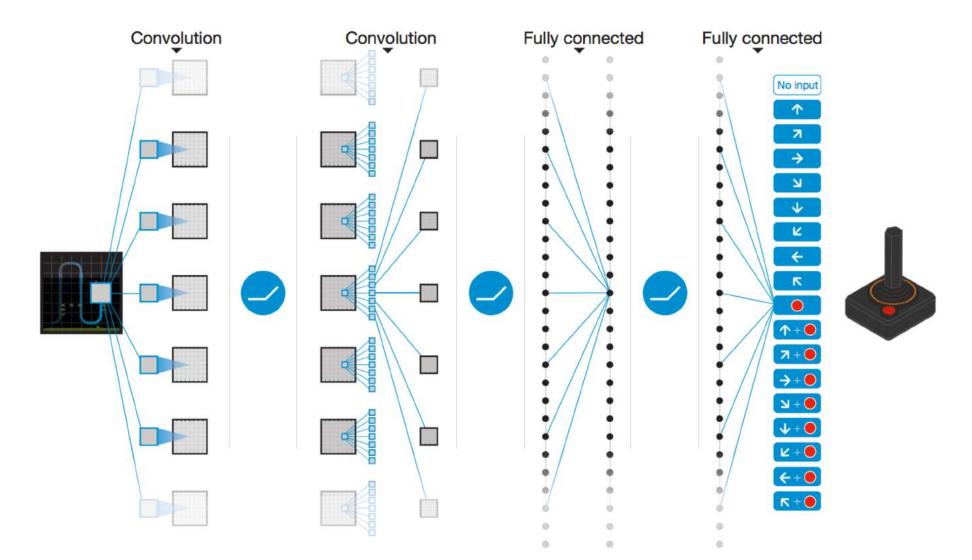
Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions?



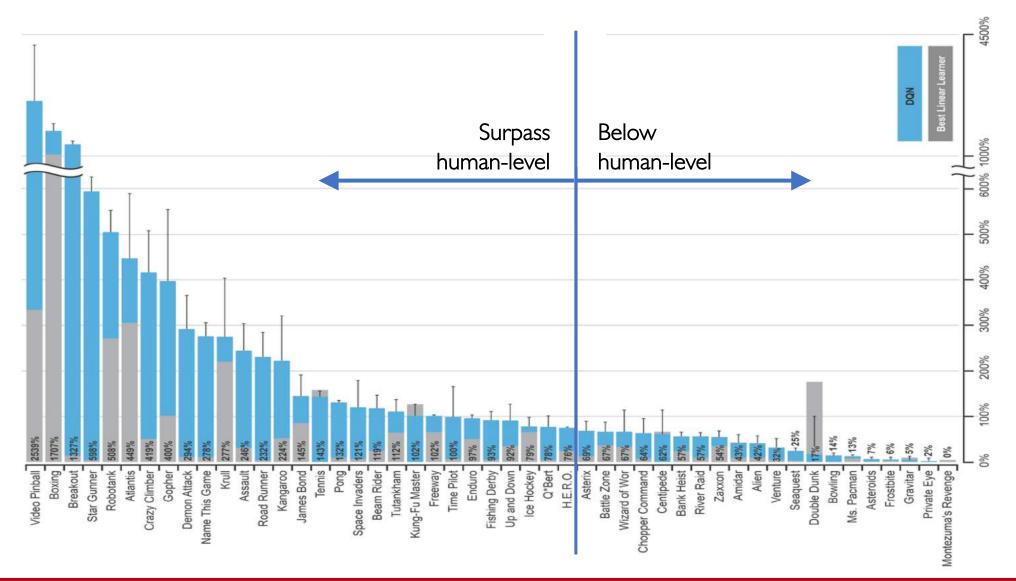
6.5191 Introduction to Deep Learning

DQN Atari Results



6.5191 Introduction to Deep Learning introtodeeplearning.com

DQN Atari Results



Massachusetts Institute of Technology 6.5191 Introduction to Deep Learning

Downsides of Q-learning

Complexity:

- Can model scenarios where the action space is discrete and small
- Cannot handle continuous action spaces

Flexibility:

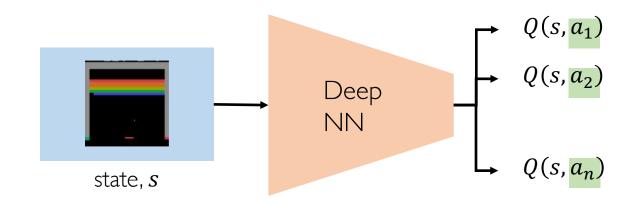
• Cannot learn stochastic policies since policy is deterministically computed from the Q function

To overcome, consider a new class of RL training algorithms: Policy gradient methods

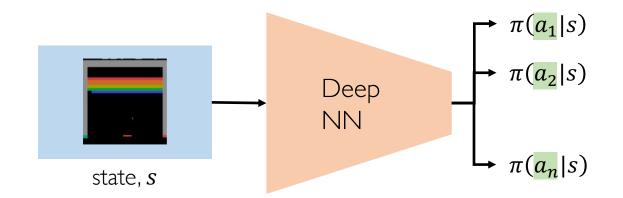
IMPORTANT:

Imagine you want to predict steering wheel angle of a car!

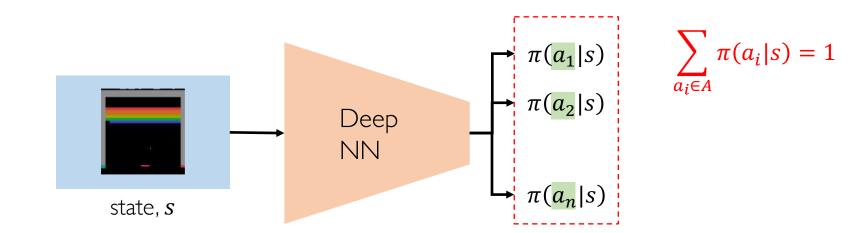
DQN (before): Approximating Q and inferring the optimal policy,



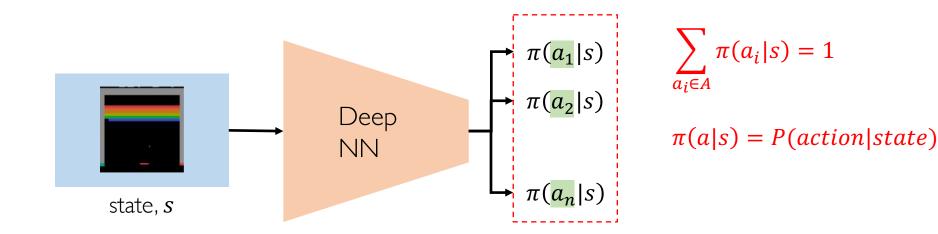
DQN (before): Approximating Q and inferring the optimal policy,



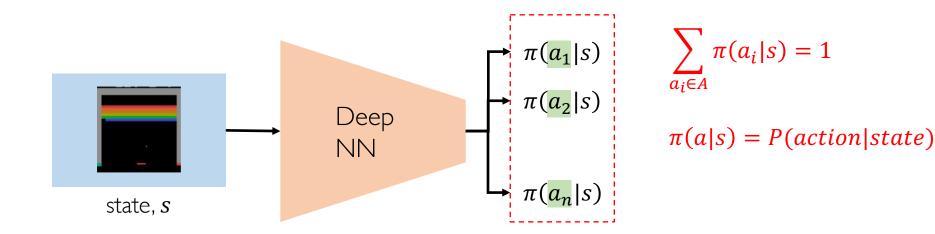
DQN (before): Approximating Q and inferring the optimal policy,



DQN (before): Approximating Q and inferring the optimal policy,

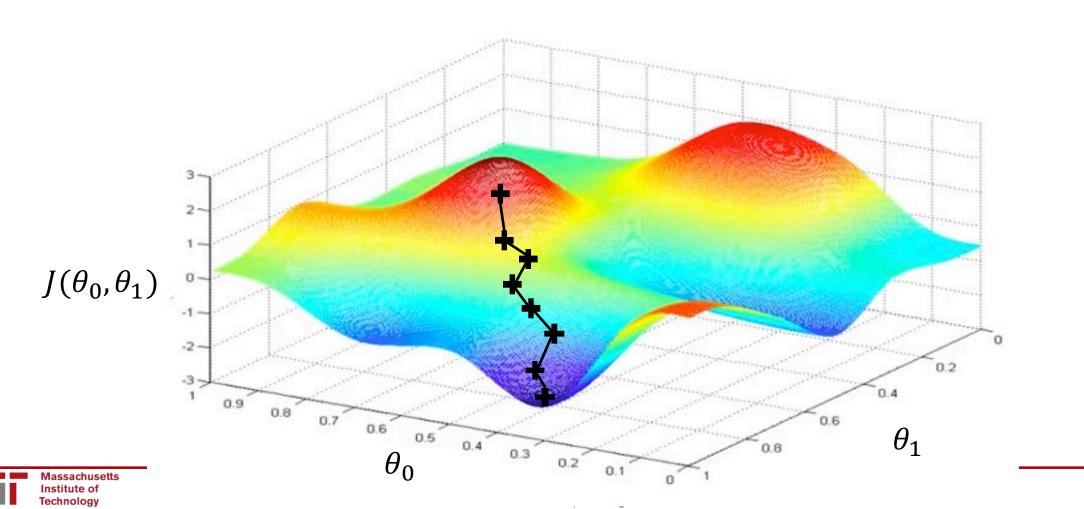


DQN (before): Approximating Q and inferring the optimal policy,



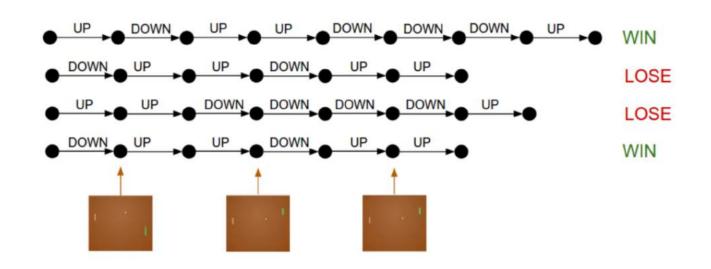
Gradient Descent in Deep Neural Network

Repeat until convergence



1/29/18

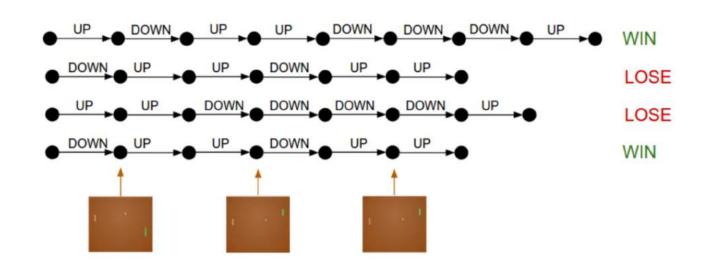
Policy Gradient (PG): Training



function REINFORCE Initialize θ for episode ~ π_{θ} $\{s_i, a_i, r_i\}_{i=1}^{T-1} \leftarrow episode$ for t = 1 to T-1 $\nabla \leftarrow \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R_t$ $\theta \leftarrow \theta + \alpha \nabla$ return θ

- I. Run a policy for a while
- 2. Increase probability of actions that lead to high rewards
- 3. Decrease probability of actions that lead to low/no rewards

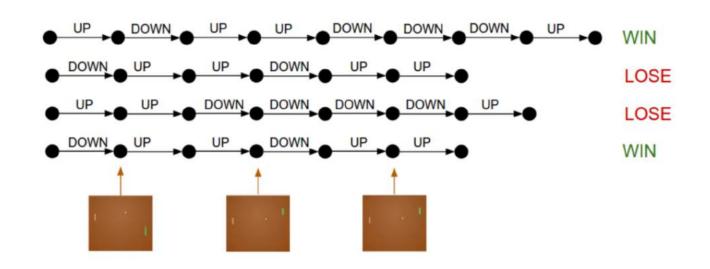
Policy Gradient (PG): Training



function REINFORCE Initialize θ for episode ~ π_{θ} $\{s_i, a_i, r_i\}_{i=1}^{T-1} \leftarrow episode$ for t = 1 to T-1 $\nabla \leftarrow \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R_t$ $\theta \leftarrow \theta + \alpha \nabla$ return θ

- I. Run a policy for a while
- 2. Increase probability of actions that lead to high rewards
- 3. Decrease probability of actions that lead to low/no rewards

Policy Gradient (PG): Training



- I. Run a policy for a while
- 2. Increase probability of actions that lead to high rewards
- 3. Decrease probability of actions that lead to low/no rewards

function REINFORCE Initialize θ for episode ~ π_{θ} $\{s_i, a_i, r_i\}_{i=1}^{T-1} \leftarrow episode$ for t = 1 to T-1 $\nabla \leftarrow \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R_t$ $\theta \leftarrow \theta + \alpha \nabla$ return θ

log-likelihood of action

 $\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R_t$

Calculate derivative to obtain the direction that gives a higher log-likihood of a_t action at s_t

reward

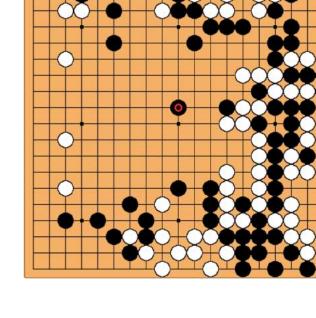
The Game of Go

Aim: Get more board territory than your opponent.

Since each location on the board can be either empty, black, or white

Board Size n x n	Positions 3 ^{n²}	% Legal	Legal Positions
×	3	33.33%	I
2×2	81	70.37%	57
3×3	19,683	64.40%	12,675
4×4	43,046,721	56.49%	24,318,165
5×5	847,288,609,443	48.90%	414,295,148,741
9×9	4.434264882×10 ³⁸	23.44%	1.03919148791×10 ³⁸
3× 3	4.300233593×10 ⁸⁰	8.66%	3.72497923077×10 ⁷⁹
9× 9	1.740896506×10 ¹⁷²	1.20%	2.08 68 99382× 0 ⁷⁰

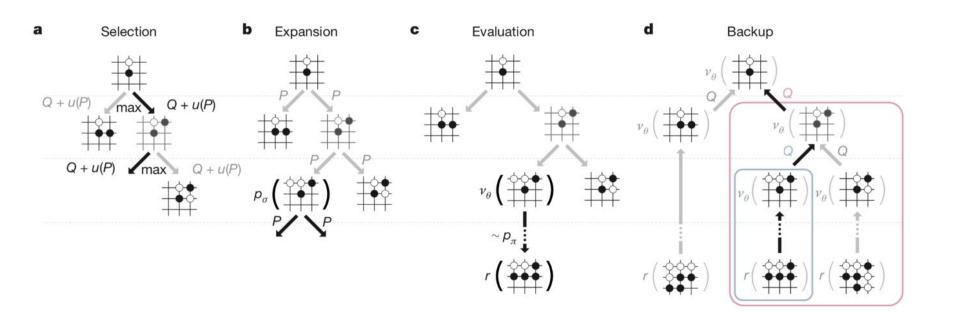
Greater number of legal board positions than atoms in the universe.



Source: Wikipedia.

AlphaGo Approach

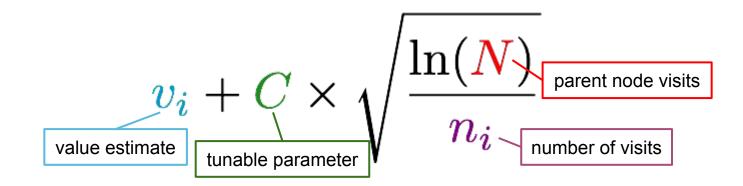
- Monte Carlo Tree Search (MCTS)
 - Balance exploitation/exploration (going deep on promising positions or exploring new underplayed positions)
- Use a neural network as "intuition" for which positions to expand as part of MCTS



For the full updated list of references visit: https://selfdrivingcars.mit.edu/references [170]

Upper confidence bound (UCB)

Pick each node with probability proportional to:

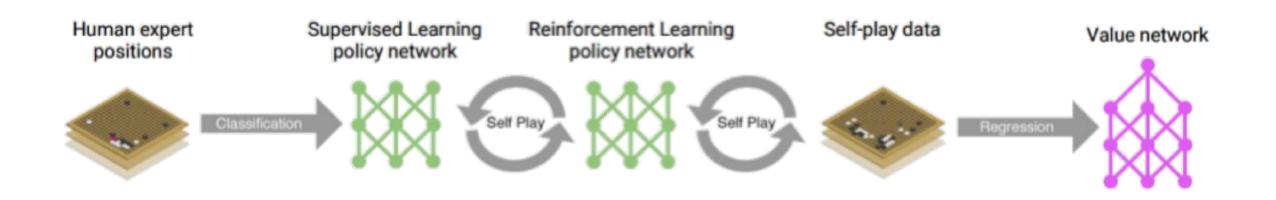


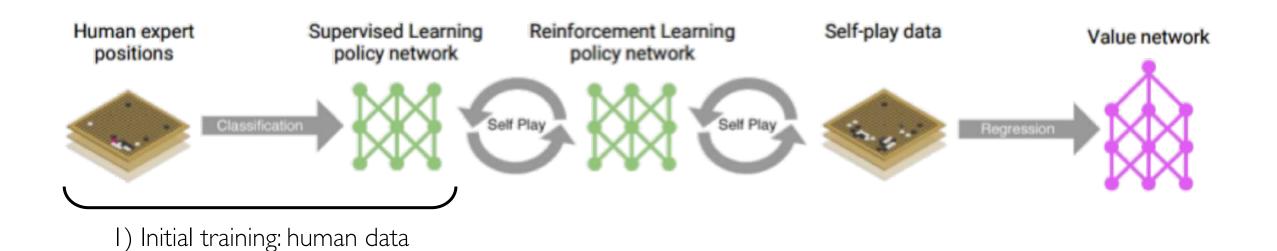
- probability is decreasing in the number of visits (explore)
- probability is increasing in a node's value (exploit)
- always tries every option once

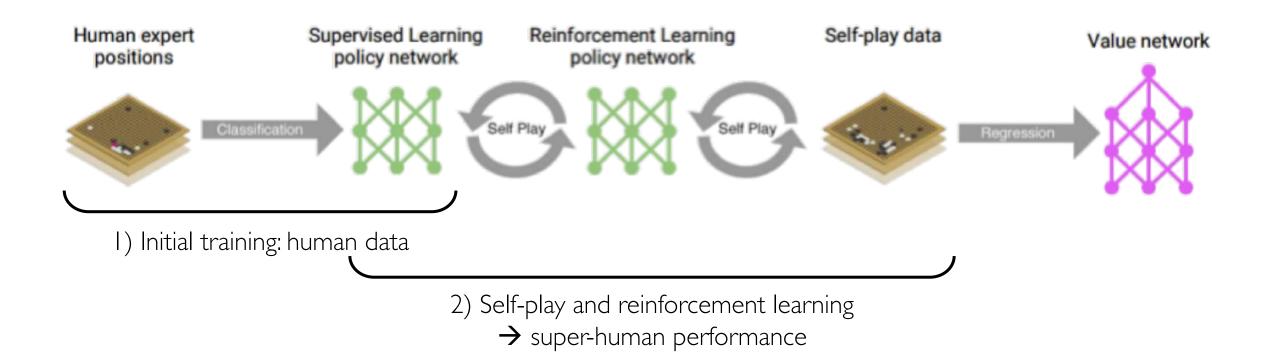
UCB1 Formula (Auer et al 2002)

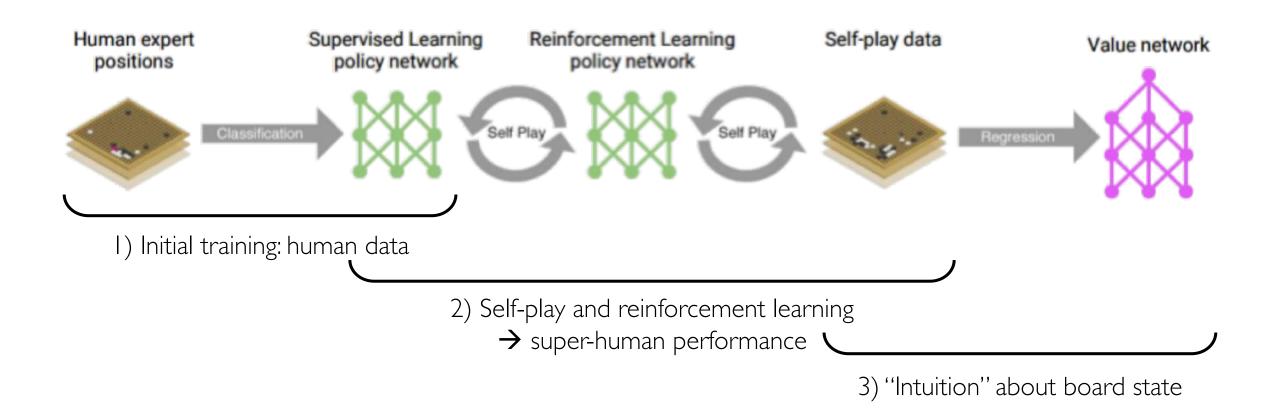
- **Policy**:
- 1. First, try each arm once
- 2. Then, at each time step:
 - choose arm *i* that maximizes the UCB1 formula for the upper confidence bound:

$$\bar{x_i} + \sqrt{\frac{2\ln(n)}{n_i}}$$









Play Video @41:51

