L7: Kernel density estimation

Non-parametric density estimation
Histograms
Parzen windows
Smooth kernels
Product kernel density estimation
The naïve Bayes classifier

Density Functions

Suppose we have some variable $X \sim f(x)$ where $f(x)$ is the probability density function (pdf) of X.

Note that we have two requirements on $f(x)$:

- $f(x) \geq 0$ for all $x \in \mathcal{X}$, where \mathcal{X} is the domain of X
- $\int_{\mathcal{X}} f(x) \mathrm{d} x=1$

Example: normal distribution pdf has the form

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

which is well-defined for all $x, \mu \in \mathbb{R}$ and $\sigma \in \mathbb{R}^{+}$.

Standard Normal Distribution

If $X \sim \mathrm{~N}(0,1)$, then X follows a standard normal distribution:

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \tag{1}
\end{equation*}
$$

Non-parametric density estimation

Sometimes we assume either

- The likelihoods $p\left(x \mid \omega_{i}\right)$ were known (LRT), or
- At least their parametric form was known (parameter estimation)

But in a lot of cases, we do not afford such luxuries

- Instead, they attempt to estimate the density directly from the data without assuming a particular form for the underlying distribution
- Sounds challenging? You bet!
 density estimation

The histogram

The simplest form of non-parametric DE is the histogram

- Divide the sample space into a number of bins and approximate the density at the center of each bin by the fraction of points in the training data that fall into the corresponding bin

$$
p_{H}(x)=\frac{1}{N} \frac{\left[\# \text { of } x^{(k} \text { in same bin as } x\right]}{[\text { width of bin }]}
$$

- The histogram requires two "parameters" to be defined: bin width and starting position of the first bin

The histogram is a very simple form of density estimation, but has several drawbacks

- The density estimate depends on the starting position of the bins
- For multivariate data, the density estimate is also affected by the orientation of the bins
- The discontinuities of the estimate are not due to the underlying density; they are only an artifact of the chosen bin locations
- These discontinuities make it very difficult (to the naïve analyst) to grasp the structure of the data
- A much more serious problem is the curse of dimensionality, since the number of bins grows exponentially with the number of dimensions
- In high dimensions we would require a very large number of examples or else most of the bins would be empty
- These issues make the histogram unsuitable for most practical applications except for quick visualizations in one or two dimensions
- Therefore, we will not spend more time looking at the histogram

Parzen windows

Problem formulation

- Assume that the region \mathfrak{R} that encloses the k examples is a hypercube with sides of length h centered at x
- Then its volume is given by $V=h^{D}$, where D is the number of dimensions

- To find the number of examples that fall within this region we define a kernel function $K(u)$

$$
K(u)= \begin{cases}1 & \left|u_{j}\right|<1 / 2 \quad \forall j=1 \ldots D \\ 0 & \text { otherwise }\end{cases}
$$

- This kernel, which corresponds to a unit hypercube centered at the origin, is known as a Parzen window or the naïve estimator
- The quantity $K\left(\left(x-x^{(n}\right) / h\right)$ is then equal to unity if $x^{(n}$ is inside a hypercube of side h centered on x, and zero otherwise
- The total number of points inside the hypercube is then

$$
k=\sum_{n=1}^{N} K\left(\frac{x-x^{(n}}{h}\right)
$$

Substituting back into the expression for the density estimate

$$
p_{K D E}(x)=\frac{1}{N h^{D}} \sum_{n=1}^{N} K\left(\frac{x-x^{(n}}{h}\right)
$$

- Notice how the Parzen window estimate resembles the histogram, with the exception that the bin locations are determined by the data

Smooth kernels

The Parzen window has several drawbacks

- It yields density estimates that have discontinuities
- It weights equally all points x_{i}, regardless of their distance to the estimation point x
For these reasons, the Parzen window is commonly replaced with a smooth kernel function $K(u)$

$$
\int_{R^{D}} K(x) d x=1
$$

- Usually, but not always, $K(u)$ will be a radially symmetric and unimodal pdf, such as the Gaussian $K(x)=(2 \pi)^{-D / 2} e^{-\frac{1}{2} x^{T} x}$
- Which leads to the density estimate

$$
p_{K D E}(x)=\frac{1}{N h^{D}} \sum_{n=1}^{N} K\left(\frac{x-x^{(k}}{h}\right)
$$

Interpretation

- Just as the Parzen window estimate can be seen as a sum of boxes centered at the data, the smooth kernel estimate is a sum of "bumps"
- The kernel function determines the shape of the bumps
- The parameter h, also called the smoothing parameter or bandwidth, determines their width

Bandwidth selection

The problem of choosing \boldsymbol{h} is crucial in density estimation

- A large h will over-smooth the DE and mask the structure of the data
- A small h will yield a DE that is spiky and very hard to interpret

Multivariate density estimation

For the multivariate case, the KDE is

$$
p_{K D E}(x)=\frac{1}{N h^{D}} \sum_{n=1}^{N} K\left(\frac{x-x^{(n}}{h}\right)
$$

- Notice that the bandwidth h is the same for all the axes, so this density estimate will weight all the axis equally
- If one or several of the features has larger spread than the others, we should use a vector of smoothing parameters or even a full covariance matrix, which complicates the procedure
There are two basic alternatives to solve the scaling problem without having to use a more general KDE
- Pre-scaling each axis (normalize to unit variance, for instance)
- Pre-whitening the data (linearly transform so $\Sigma=I$), estimate the density, and then transform back [Fukunaga]
- The whitening transform is $y=\Lambda^{-1 / 2} M^{T} x$, where Λ and M are the eigenvalue and eigenvector matrices of Σ
- Fukunaga's method is equivalent to using a hyper-ellipsoidal kernel

Product kernels

A good alternative for multivariate KDE is the product kernel

$$
\begin{gathered}
p_{\text {PKDE }}(x)=\frac{1}{N} \sum_{i=1}^{N} K\left(x, x^{(n}, h_{1}, \ldots h_{D}\right) \\
\text { where } K\left(x, x^{(n}, h_{1}, \ldots h_{D}\right)=\frac{1}{h_{1} \ldots h_{D}} \prod_{d=1}^{D} K_{d}\left(\frac{x_{d}-x_{d}^{(n)}}{h_{d}}\right)
\end{gathered}
$$

- The product kernel consists of the product of one-dimensional kernels
- Typically the same kernel function is used in each dimension $\left(K_{d}(x)=\right.$ $K(x)$), and only the bandwidths are allowed to differ
- Bandwidth selection can then be performed with any of the methods presented for univariate density estimation
- Note that although $K\left(x, x^{(n}, h_{1}, \ldots h_{D}\right)$ uses kernel independence, this does not imply we assume the features are independent
- If we assumed feature independence, the DE would have the expression

$$
p_{F E A T-I N D}(x)=\prod_{d=1}^{D} \frac{1}{N h^{D}} \sum_{i=1}^{N} K_{d}\left(\frac{x_{d}-x_{d}^{(n}}{h_{d}}\right)
$$

- Notice how the order of the summation and product are reversed compared to the product kernel

Example I

- This example shows the product KDE of a bivariate unimodal Gaussian
- 100 data points were drawn from the distribution
- The figures show the true density (left) and the estimates using $h=1.06 \sigma N^{-1 / 5}$ (middle) and $h=0.9 A N^{-1 / 5}$ (right)

Example II

- This example shows the product KDE of a bivariate bimodal Gaussian
- 100 data points were drawn from the distribution
- The figures show the true density (left) and the estimates using $h=1.06 \sigma N^{-1 / 5}$ (middle) and $h=0.9 A N^{-1 / 5}$ (right)

