Accuracy, Cross-Validation, Overfitting, and ROC

Slides adopted from Data Mining for Business Analytics

Stern School of Business New York University Spring 2014

Evaluation

How do we measure generalization performance?

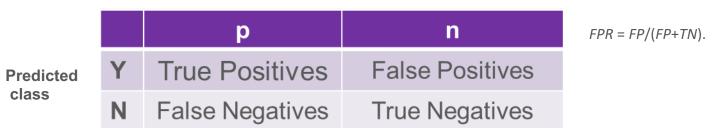
$Accuracy = \frac{Number of correct decisions made}{Total number of decisions made}$

=1-error rate

• Too simplistic..

Evaluating Classifiers: The Confusion Matrix

- A confusion matrix for a problem involving *n* classes is an *n*×*n* matrix,
 - with the columns labeled with actual classes and the rows labeled with predicted classes
- It separates out the decisions made by the classifier,
 - making explicit how one class is being confused for another



The errors of the classifier are the false positives and false negatives

P. Adamopoulos

Actual class

Building a Confusion Matrix

1: Default 0: No Default

Actual Class	Predicted Class			Actual	class	
0	0	Predicted class		Default (1)	No Default(0)	Total
0	1		Default (1)	3	2	5
0 1	0 1		No Default (0)	1	4	5
0 0	0 0		Total	4	6	10
1	1 0					

Other Evaluation Metrics

- Precision = $\frac{TP}{TP+FP}$: out of all *reported* positives, how many percent were true positives.
- FPR = FP/(FP+TN): out of all ground-truth negatives, how many percent were false positives
- Recall = $\frac{TP}{TP+FN}$: out of all ground-truth positives, how many percent were true positives
- TPR = TP/(TP+FN) = Recall
- F_1 -measure (F_1 -score) = $2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$

 F_{eta} [edit]

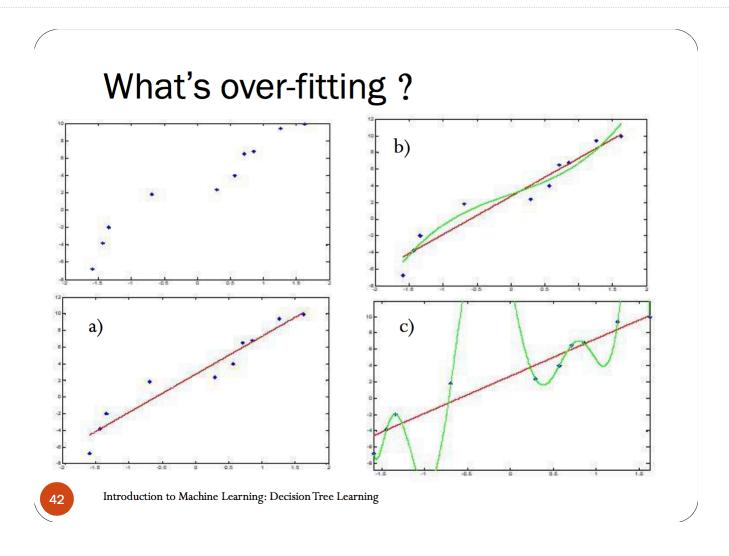
A more general F score, F_{β} , that uses a positive real factor β , where β is chosen such that recall is considered β times as important as precision, is:

 $F_eta = (1+eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}.$

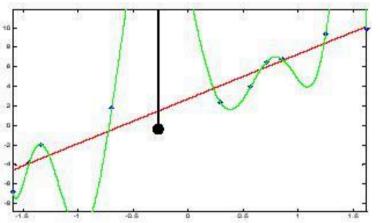
Over-fitting the data

- Finding chance occurrences in data that look like interesting patterns, but which do not generalize, is called over-fitting the data
- We want models to apply not just to the exact training set but to the general population from which the training data came
 - Generalization

- The tendency of DM procedures to tailor models to the training data, *at the expense of generalization* to previously unseen data points.
- All data mining procedures have the tendency to over-fit to some extent
 - Some more than others.
- "If you torture the data long enough, it will confess"
- There is no single choice or procedure that will eliminate over-fitting
 - recognize over-fitting and manage complexity in a principled way.



What's over-fitting ?



 h ∈ H overfits training data if there's an alternative h' ∈ H such that:
 err_{train}(h) < err_{train}(h')

AND

```
err_{test}(h) > err_{test}(h')
```

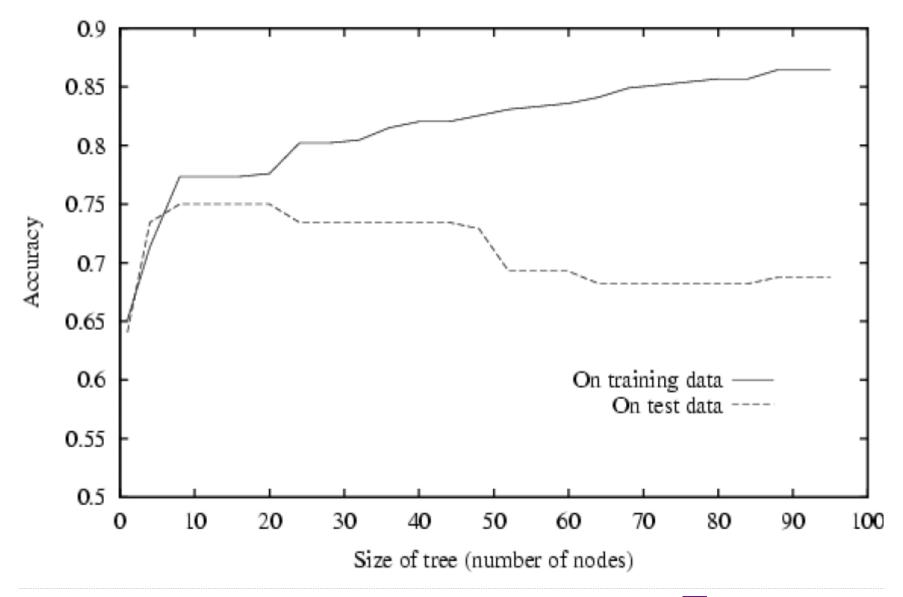
An example of over-fitting in DTree

• Each leaf corresponds to a single training point and the full tree is merely a convenient implementation of a lookup table

Introduction to Machine Learning: Decision Tree Learning

43

Tree Complexity and Over-fitting

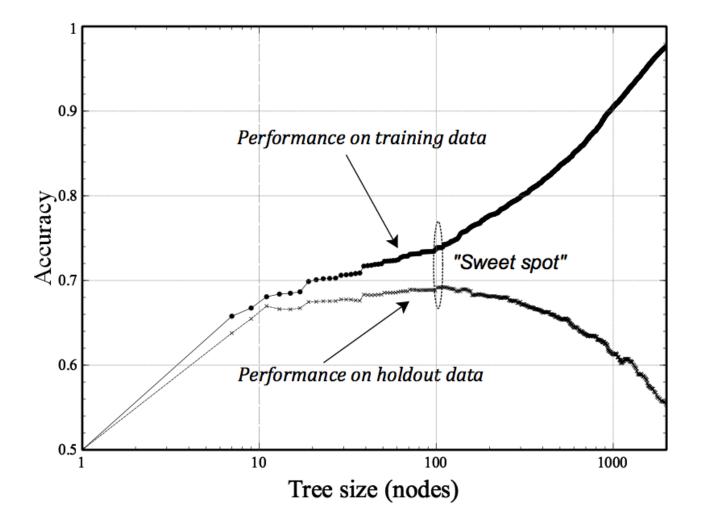


Fitting Graph

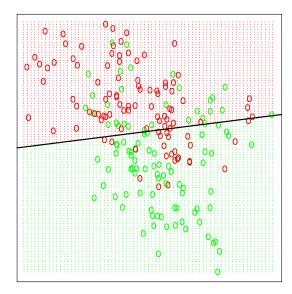


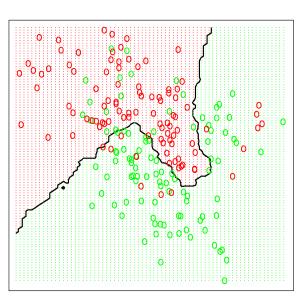
Complexity of model

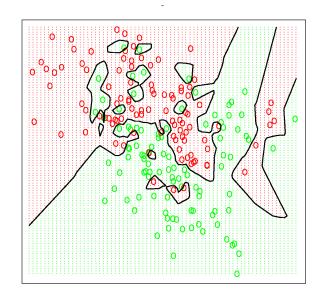
Over-fitting in tree induction



Need for holdout evaluation







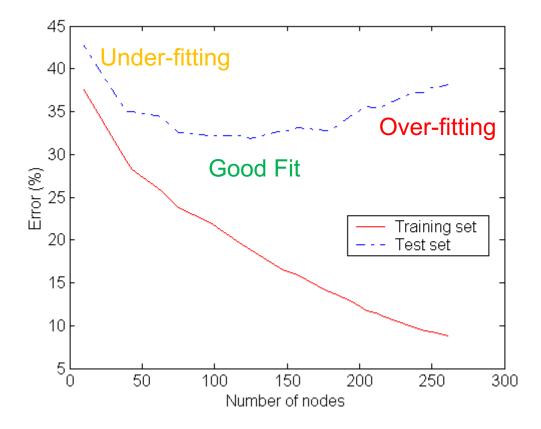
Under-fitting

Good

Over-fitting

- In sample evaluation is in favor or "memorizing"
- On the *training data* the right model would be best
- But on *new data* it would be bad

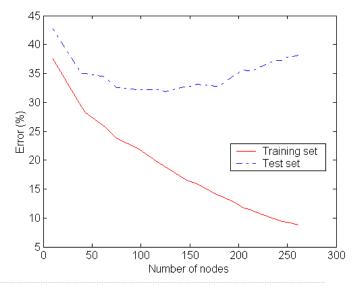
Over-fitting



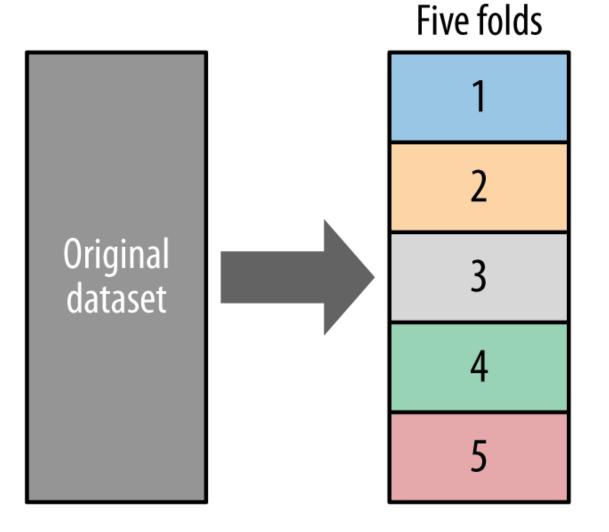
• Over-fitting: Model "memorizes" the properties of the particular training set rather than learning the underlying concept or phenomenon

Holdout validation

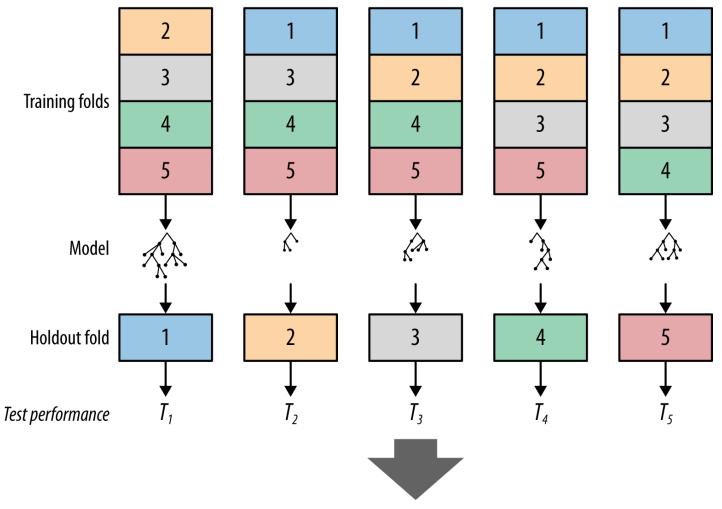
- We are interested in generalization
 - The performance on data not used for training
- Given only one data set, we hold out some data for evaluation
 - · Holdout set for final evaluation is called the test set
- Accuracy on training data is sometimes called "in-sample" accuracy, vs. "out-of-sample" accuracy on test data



Cross-Validation



Cross-Validation



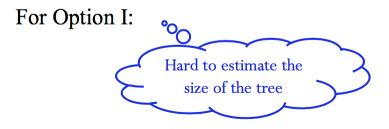
Mean and standard deviation of test sample performance

From Holdout Evaluation to Cross-Validation

- Not only a simple estimate of the generalization performance, but also some statistics on the estimated performance,
 - such as the mean and variance
- Better use of a limited dataset
 - Cross-validation computes its estimates over all the data
- Used for comparing different learning procedure
 - e.g. Decision Trees vs Logistic Regression
- Used for comparing hyper-parameters in a specific procedure
 - e.g. the maximum depth (minimum amount of data in the leaf node) of the decision tree.

Avoid over-fitting

- Two ways of avoid over-fitting for DTree
 - I. Stop growing when data split not statistically significant (pre-pruning)
 - II. Grow full tree, then post-pruning



Introduction to Machine Learning: Decision Tree Learning

Pre-Pruning: When to stop splitting (I) Number of instances

- Frequently, a node is not split further if
 - The number of training instances reaching a node is smaller than a certain percentage of the training set
 - (e.g. 5%)
 - Regardless the impurity or error.
 - Any decision based on too few instances causes variance and thus generalization error.

 $\left(\right)$

Introduction to Machine Learning: Decision Tree Learning

Pre-Pruning: When to stop splitting (2) Threshold of information gain value

- Set a small threshold value, splitting is stopped if $\Delta i(s) \leq \beta$
- Benefits: Use all the training data. Leaf nodes can lie in different levels of the tree.

New York University

Drawback: Difficult to set a good threshold

Introduction to Machine Learning: Decision Tree Learning

Avoid over-fitting

Two ways of avoid over-fitting for D-Tree
 I. Stop growing when data split not statistically significant (pre-pruning)
 II. Grow full tree, then post-pruning

For option II:

- How to select "best" tree?
 - Measure performance over training data (statistical pruning)
 - Confidence level (will be introduced later)
 - Measure performance over separate validation data set
- MDL (Minimize Description Length 最小描述长度):
 minimize (size(tree) + size(misclassifications(tree)))

48

Introduction to Machine Learning: Decision Tree Learning

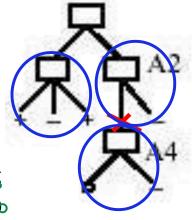
Post-pruning (1). Reduced-Error pruning

- Split data into training set and validation set
 - Validation set:
 - Known label
 - Test performance
 - No model updates during this test!
- Do until further pruning is harmful:
 - Evaluate impact on validation set of pruning each possible node (plus the subtree it roots)
 - Greedily remove the one that most improves@validation set accuracy

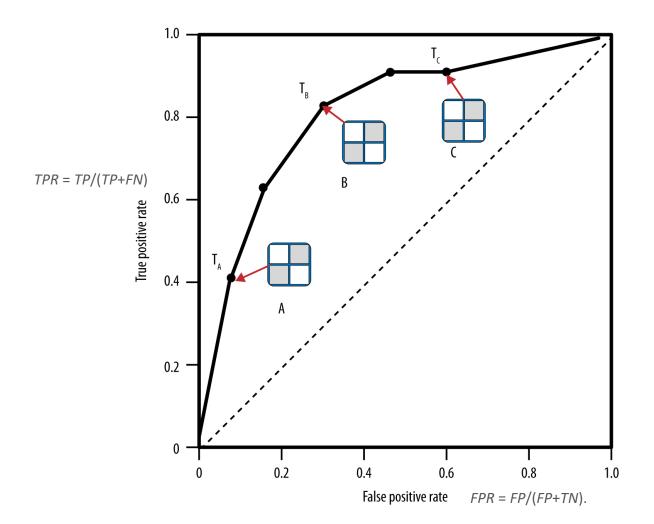
How to assign the label of the new leaf node?

P. Adamopoulos

Introduction to Machine Learning: Decision Tree Learning



ROC Graphs and Curves



Generating ROC curve: Algorithm

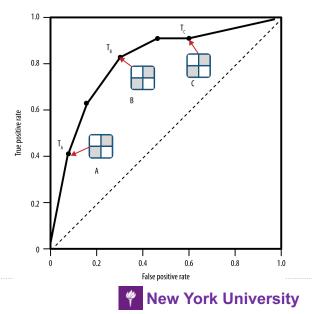
- For each test, count the number of true positives TP (positives with prediction above the cutoff) and false positives FP (negatives above the cutoff)
- Calculate TP rate (TP/P) and FP (FP/N) rate
- Plot current number of TP/P as a function of current FP/N

ROC Graphs and Curves

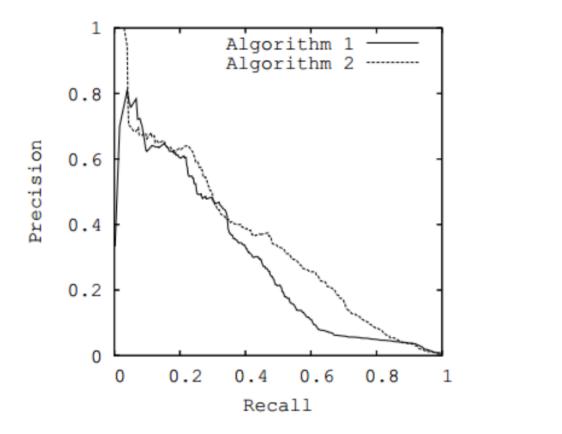
- ROC graphs decouple classifier performance from the conditions under which the classifiers will be used
- Not the most intuitive visualization for many business stakeholders

Area Under the ROC Curve (AUC)

- The area under a classifier's curve expressed as a fraction of the unit square
 - Its value ranges from zero to one
- The AUC is useful when a single number is needed to summarize performance, or when nothing is known about the operating conditions
 - A ROC curve provides more information than its area



P-R Curve: Tradeoff between Precision and Recall



•Precision =
$$\frac{TP}{TP+FP}$$

•Recall = $\frac{TP}{TP+FN}$

AUPRC: Area under P-R Curve

Thanks!

Questions?

