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Abstract— We consider the problem of separating error mes-
sages generated in large distributed data center networks into
error events. In such networks, each error event leads to a stream
of messages generated by hardware and software components
affected by the event. These messages are stored in a giant
message log. We consider the unsupervised learning problem of
identifying the signatures of events that generated these messages;
here, the signature of an error event refers to the mixture of mes-
sages generated by the event. One of the main contributions of the
paper is a novel mapping of our problem which transforms it into
a problem of topic discovery in documents. Events in our problem
correspond to topics and messages in our problem correspond
to words in the topic discovery problem. However, there is no
direct analog of documents. Therefore, we use a non-parametric
change-point detection algorithm, which has linear computational
complexity in the number of messages, to divide the message log
into smaller subsets called episodes, which serve as the equiva-
lents of documents. After this mapping has been done, we use a
well-known algorithm for topic discovery, called LDA, to solve
our problem. We theoretically analyze the change-point detection
algorithm, and show that it is consistent and has low sample
complexity. We also demonstrate the scalability of our algorithm
on a real data set consisting of 97 million messages collected over
a period of 15 days, from a distributed data center network which
supports the operations of a large wireless service provider.

Index Terms— Unsupervised learning, data mining, event mes-
sage log, change point detection, Bayesian inference, data center
networks, time series mixture.

I. INTRODUCTION

THE delivery of modern data and web-based services
requires the execution of a chain of network functions

at different elements in distributed data-centers. This is true
for video-based services, gaming services, cellular data/voice
services, etc., each of which requires processing from multiple
coupled networked entities hosting different network func-
tions. For example, modern wireless networks rely on servers
and virtual machines (VM) residing in distributed data centers
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to establish voice calls or data sessions, authenticate users,
check user compliance with monthly voice/data limits, verify
if users have paid their monthly bills, add to users’ bills for
extra services, etc., all of which are done before completing a
call. Efficient management and operations of these services
is of paramount importance as networks grow increasingly
complex with the advent of technologies like virtualization
and 5G. An integral component of network management is
the ability to identify and understand error events, when
failures occur in the hardware and/or software components of
the network. However, the complex interdependence between
coupled networking functions poses a significant challenge in
characterizing an error event due to the fact that error messages
can be generated in network elements beyond the actual source
of error. In this paper, we are interested in the problem of
mining latent error event information from messages generated
by servers, VMs, base stations, routers, and links in large-scale
distributed data center networks. The mined events are useful
for troubleshooting purposes. Also, the correlations captured
through each learned event could be subsequently used for
on-line detection of potential errors. While our methodology
is broadly applicable to any type of data center network,
we validate our algorithms by applying them to a large data set
provided by a major wireless network service provider, so we
will occasionally use terminology specific to this application
to motivate our problem and solution methodology.

In most operational networks, all messages and alarms from
distributed network elements are logged with time stamps into
message logs. The logs from different network elements could
be pooled together in a central database for subsequent analy-
sis. While mining error logs have been studied extensively
in different contexts, (see [1], [2] for excellent surveys; also
see Section I-B), there are some fundamental differences in
our setting. Modern data center and communication networks
consist of components bought from different vendors, and each
component is designed to generate an error message when
it cannot execute a job. This poses a challenge in mining
messages because there is no common model or standard
that dictates the content and format of these error messages.
Another challenge stems from the fact that each end-to-end
service consists of multiple network functions each of which
generates diverse error messages when failures happen. The
following example provides an illustration.

Motivating Example: Suppose Alice makes a cellphone call
to Bob. This call is first routed through a base station which
is attached to a data center verifying the caller credentials.
If Alice is not at her home location, a VM at this data
center must contact a database at her home location to verify
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her credentials. Once the credentials are verified, the caller’s
cellular base station connects to the base station near Bob
through a complicated network spanning many geographical
locations. Consider two potential error scenarios: (i) an error
occurs at a router in the path from Bob to Alice’s base station,
(ii) error at a router connecting the data centers verifying the
caller’s credentials. In either scenario, the call will fail to be
established leading to the generation of error messages not
only at the failed routers but also at network functions (imple-
mented in a cluster of VMs) responsible for call establishment.
Furthermore, if the error leads to additional call failures, then
respective base-stations could send alarms indicating higher
than normal call failures. Additionally, depending on vendor
of a given network element, the timing and content of the error
messages could be different.

Indeed, the source, timing, and message-components of the
error are all latent. In this paper we are interested in extracting
patterns from messages generated by common faults/errors
(also referred to as events). Specifically, our goal of this paper
is to mine event signatures (i.e., distribution of messages for
each event) and event occurrences (i.e., the begin and the
end time of each event) from the message log. Based on the
motivating example, we now note the following fundamental
characteristics which make our error event mining problem
challenging:

• In our setting, the source of an error is usually not known.
There could be error messages due to network-component
level failures or due to network service-level failure.
In case of a service-level failure, error-message could be
generated by a component that is functional by itself.
For example, when the link between an authentication
server and the network core fails, this could lead to
call establishment failures which are logged by network
functions responsible for call establishment. Furthermore,
the same type of error log-message could be generated
due to many different errors. From a data modeling
point of view, each latent) event can be viewed as a
probabilistic-mixture of multiple log-messages at differ-
ent elements and also, the set of log messages generated
by different events could have non-zero intersection.

• Each error event can produce a sequence of messages,
including the same type of message multiple times, and
the temporal order between distinct messages from the
same event could vary based on the latency between
network elements, network-load, co-occurrence of other
uncorrelated events, etc. Thus, the temporal pattern of
messages may also contain useful information for our
purpose. In our model, the message occurrence times are
modeled as a stochastic process.

• These messages could correspond to multiple simulta-
neous events without any further information on the
start-time and end-time of each event.

• An additional challenge arises from the fact that network
topology information is unknown, because modern net-
works are very complicated and are constantly evolv-
ing due to the churn (addition or deletion) of routers
and switches. Third-party vendor software and hardware
have no way of providing information to localize and

understand the errors. Thus, topological information can-
not be used for event mining purposes.

The practical novelty of our work comes from modeling for
all of the above factors and proposing scalable algorithms that
learn the latent event signatures (the notion of signature will
be made precise later) along with their occurrence times.

Remark 1: In different works on event mining (see
Section I-B), the concept of event is different depending on
the problem-context. In our work, an event simply refers to a
real-world occurrence of a fault/incident somewhere in the
distributed/networking system such that each event leads to a
generation of error messages at multiple network elements.

A. Contributions

We model each event as a probabilistic mixture of mes-
sages from different sources.1 In other words, the probability
distribution over messages characterizes an event, and thus
acts as the signature of the event. Each occurrence of an
event also has a start/end time and several messages can be
generated during the occurrence of an event. We only observe
the messages and their time-stamps while the event signatures
and duration window is unknown; also there could be multiple
simultaneous events occurring in the network. Given this
setting, we study the following unsupervised learning problem:
given collection of time-stamped log-messages, learn the latent
event signatures and event start/end times.

The main contributions of the paper are as follows:
• Novel algorithmic framework: We present a novel way

of decomposing the problem into simpler sub-problems.
Our method, which we will call CD-LDA, decomposes
the problem into two parts: the first part consists of a
change-point detection algorithm which identifies time
instants at which either a new event starts in the network
or an existing event comes to an end, and, the second
part of the algorithm uses Latent Dirichlet Allocation
(LDA) (see [3]) to classify messages into events. This
observation that one can use change-point detection,
followed by LDA, for event classification is one of the
novel ideas in the paper.

• Scalable change-point detection: While the details of
the LDA algorithm itself are standard, non-parametric
change-point detection as we have used in this paper is
not as well studied. We adapt an idea from [4] to design
an O(n) algorithm where n is the number of messages in
the message log. Our change detection algorithm uses an
easy to compute total-variation (TV) distance. We analyze
the sample complexity of (i.e, the number of samples
required to detect change points with a high-degree of
accuracy) of our change-point detection algorithm using
the method of types and Pinsker’s inequality from infor-
mation theory. To the best of our knowledge, no such
sample complexity results exist for the algorithm in [4].

1It is more precise to use the terminology event-class to refer to a specific
fault-type; each occurrence can be referred to as an instance of some event
class. However, for simplicity, we simply refer to event-class as event and we
just say occurrence of the event to mean instance of this class.
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• Experimental validation: We use two different real-world
data sets from a large operational network to perform the
following validation of our approach. First, we compare
our algorithm to two existing approaches adapted to
our setting: a Bayesian inference-based algorithm and
Graph-based clustering algorithm. We show the benefits
of our approach compared to these methods in terms
of scalability and performance, by applying it to small
samples extracted from a large data set consisting of
97 million messages. Second, we validate our method
against two real world events by comparing the event
signature learned by our method with domain expert
validated event signature for a smaller data set consisting
of 700K messages.2 Finally, we also show results to
indicate scalability of our method by applying to the
entire 97 million message data set.

We note that this paper is an extended version of [5].

B. Context and Related Work

Data-driven techniques have been shown to be very useful
in extracting meaningful information out of system-logs and
alarms for large and complex systems. The primary goal of
this “knowledge” extraction is to assist in diagnosing the
underlying problems responsible for log-messages and events.
Two excellent resources for the large body of work done in the
area are [1], [2]. Next, we outline some of the key challenges
in this knowledge extraction, associated research in the area,
and our problem in the context of existing work.

Mining and Clustering Unstructured Logs: Log-messages
are unstructured textual data without any annotation for
the underlying fault. A significant amount of research has
focused on converting unstructured logs to common semantic
events [2]. Note that the notion of semantic events is different
from the actual real-world events responsible for generat-
ing the messages, nevertheless, such a conversion helps in
providing a canonical description of the log-messages that
enables subsequent correlation analysis. These works exploit
the structural similarity among different messages to either
compute an intelligent log-parser or cluster the messages
based on message texts [2], [6]–[8]. Each cluster can be
viewed as an semantic event which can help in diagnosing
the underlying root-cause. One work closely related to ours
is [9], in which the authors mine network log messages to
first extract templates and then learn pairwise implication
rules between template-pairs. Our setting and objective are
somewhat different, we model events as message-distributions
from different elements with each event occurrence having
certain start and end times; the messages belonging to an
event and the associated occurrence time-windows are hidden
(to be learned). A more recent work [10] develops algorithms
to mine underlying structural-event as a work-flow graph.
The main differences are that, each transaction is a fixed
sequence of messages unlike our setting where each message
could be generated multiple times based on some hidden

2Note that manual inference of event signatures is not scalable; we did this
for the purpose of validation.

stochastic process, and furthermore, in our setting, there could
be multiple events manifested in the centralized log-server.

Mining Temporal Patterns: Log-messages are time-series
data and thus the temporal patterns contain useful informa-
tion. Considerable amount of research has gone into learning
latent patterns, trends and relationship between events based
on timing information in the messages [11]–[13]. We refer
to [2], [14], [15] for survey of these approaches. Extracted
event-patterns could be used to construct event correlation
graphs that could be mined using techniques such as graph-
clustering. Specifically, these approaches are useful when
event-streams are available as time-series. We are interested
in scenarios where each event is manifested in terms of
time-series of unstructured messages and furthermore, same
message could arise from multiple events. Nevertheless, cer-
tain techniques developed for temporal event mining could
be adapted to our setting as we describe in Section IV-A2;
our results indicate that such an adaptation works well under
certain conditions. Note that, our goal is to also learn the
event-occurrence times.

Event-Summarization: In large dynamic systems, messages
could be generated from multiple components due to rea-
sons ranging from software bugs, system faults, operational
activities, security alerts etc. Thus it is very useful to have
a global summarized snapshot of messages based on logs.
Most works in this area exploit the inter-arrival distribution and
co-occurrence of events [2], [16]–[19] to produce summarized
correlation between events. These methods are useful when the
event-stream is available and possible event-types are known in
advance. This limits the applicability to large-systems like ours
where event types are unknown along with their generation
time-window.

The body of work closest to out work are the works
on event-summarization. However, there are some funda-
mental differences in our system: (i) we do not have a
readily available event-stream, instead, our observables are
log-messages, (ii) the event-types are latent variables not
known in advance and all we observe are message streams,
(iii) the time-boundaries of different latent-events is a learning
objective, and (iv) since we are dealing with large system with
multiple components where different fault-types are correlated,
the same message could be generated for different root-causes
(real-world events).

Apart from the above, a recent paper [20] which uses deep
learning models for anomaly detection in message logs by
modelling logs as a natural language sequence is also worth
a mention.

II. PROBLEM STATEMENT AND PRELIMINARIES

Before we describe our problem statement, we first explain
the notion of messages in the context of our work.

Message: In our work, messages generated by different
network elements are one of two types: syslog texts in the
form of raw-texts, and alarms.

1) Syslog texts: These are raw-textual messages sent
by software components from different elements to
a logging server. Raw syslog data fields include
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timestamp, source, and message text. Since the
number of distinct messages are very large and
many of them have common patterns, it is often
useful [2], [6]–[8] to decompose the message text
into two parts: an invariant part called template, and
parameters associated with template. For example,
a syslog message “service wqffv failed due
to connection failure to IP address
a.b.c.d using port 8231” would reduce to
template “service wqffv failed due to
connection failure to IP address *
using port *.” There are many existing methods to
extract such templates [1], [2], ranging from tree-based
methods to NLP based methods. In our work, we have a
template-extraction pre-processing step before applying
our methods. We also say message to simply mean the
extracted templates.

2) Alarms: Network alarms are indication of faults and each
alarm type refers to the specific fault condition in a
network element. Each alarm has a unique name and
the occurrences are also tagged with timestamps. In this
work, we view each alarm as a message. Note that,
since each alarm has a unique name/id associated with it,
we do not pre-process alarms before applying our meth-
ods. Example of alarms are mmscRunTImeError,
mmscEAIFUnavailable sent from a network service
named MMSC.

Problem Statement: We are given a data set D consisting
of messages generated by error events in a large distributed
data-center network. We assume that the messages are gen-
erated in the time interval [0, T ]. The set of messages in the
data set come from discrete and finite set M.

We use the term message to mean either a template extracted
from a message or an alarm-id. Each message has a timestamp
associated with it, which indicates when the message was
generated. Suppose that an event e started occurring at time
Se and finished at time Fe. In the interval of time [Se, Fe],
event e will generate a mixture of messages from a subset
of M, which we will denote by Me. In general, an event
can occur multiple times in the data set. If an event e
occurs multiple times in the data set, then each occurrence
of the event will have start and finish times associated with
it.

As noted before, for simplicity, we will say event to mean
an event-class and occurrence of an event to mean an instance
from the class. An event e is characterized by its message
set Me and the probability distribution with which messages
are chosen from Me, which we will denote by p(e), i.e., p

(e)
m

denotes the probability that event e will generate a message
m ∈Me. For compactness of notation, one can simply think
of p(e) as being defined over the entire set of messages M,

with p
(e)
m = 0 if m /∈ Me. Thus, p(e) fully characterizes

the event e and can be viewed as the signature of the event.
We assume that the support set of messages for two different
events are not identical.

It is important to note that the data set simply consists of
messages from the set M; there is no explicit information

Fig. 1. Figure showing the machine-learning pipeline. Our main contribution
is in “Latent Event Learner” module, specifically proposing the CD-LDA
algorithm.

about the events in the data set, i.e., the event information
is latent. The goal of the paper is to solve the following
inference problem: from the given data set D, identify the set
of events that generated the messages in the data set, and for
each instance of event, identify when it started and finished.
In other words, the output of the inference algorithm should
contain the following information:

• The number of E events which generated the data set.
• The signatures of these events: p(1), p(2), . . . , p(E).
• For each event e ∈ {1, 2, . . . , E}, the number of times it

occurred in the data set and, for each occurrence, its start
and finish times.

Notations: We use the notation Xi ∈ M, for the ith

message. Also, let ti be the timestamp associated with the ith

message. Thus the data set D can be characterized by tuples
(X1, t1), (X2, t2), . . . (Xn, tn) of n data points.

Machine-Learning Pipeline: In Figure 1, we show the
machine-learning pipeline for completeness. This paper
focuses on the module “Latent Event Learner” which has
data-processing step followed by the key proposed algorithm
in the paper, namely CD-LDA algorithm which we describe
in Section III. Syslog texts require more pre-processing
while alarms do not. We have shown the two types
of messages in the pipeline figure, but for the purposes
for developing an algorithm, in the rest of the paper,
we only refer to messages without distinguishing between
them.

III. ALGORITHM CD-LDA

We now present our solution to this problem which we
call CD-LDA (Change-point Detection-Latent Dirichlet Allo-
cation). The key novelty in the paper is the connection that
we identify between event identification in our problem and
topic modeling in large document data sets, a problem that
has been widely studied in the natural language processing
literature. In particular, we process our data set into a form
that allows us to use a widely-used algorithm called LDA to
solve our problem. In standard LDA, we are given multiple
documents, with many words in each document. The goal
is to identify the mixture of latent topics that generated the
documents, where each topic is identified with a collection
of words and a probability distribution over the words. Our
data set has similar features: we have events (which are the
equivalents of topics) and messages (which are the equivalents
of words) which are generated by the events. However, we do
not have a concept of documents. A key idea in our paper
is to divide the data set into smaller data sets, each of which
will be called an episode. The episodes will be the equivalents



1732 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 4, AUGUST 2019

of documents in our problem. We do this using a technique
called non-parametric change-point detection.

Now we describe the concept of an episode. An episode is
an interval of time over which the same set of events occur i.e.
there is no event-churn, and at time instants on either side of
the interval, the set of events that occur are different from the
set of events in the episode. Thus, we can divide our data set of
events such that no two consecutive episodes have the same
set of events. We present an example to clarify the concept
of an episode. Suppose the duration of the message data set
T = 10. Suppose event 1 occurred from time 0 to time 5,
event 2 occurred from time 4 to time 8, and event 3 occurred
from time 5 to time 10. Then there are four episodes in this
data set: one in the time interval [0, 4] where only one event
occurs, one in the time interval [4, 5] where events 1, 2 occur,
one in the time interval [5, 8] where events 2, 3 occur and
finally one in [8, 10] where only event 3 occurs. We assume
that between successive episodes, at most one new event starts
or one existing event ends.

We use change-point detection to identify episodes.
To understand how the change-point detection algorithm
works, we first summarize the characteristics of an episode:

• An episode consists of a mixture of events, and each event
consists of a mixture of messages.

• Since neighboring episodes consist of different mix-
tures of events, neighboring episodes also contain dif-
ferent mixtures of messages (due to our assumption
that different events do not generate the same set of
messages).

• Thus, successive episodes contain different message dis-
tributions and therefore, the time instances where these
distributions change are the episode boundaries, which
we will call change points.

• In our data set, the messages contain time stamps. In gen-
eral, the inter-arrival time distributions of messages are
different in successive episodes, due to the fact that the
episodes represent different mixtures of events. This fact
can be further exploited to improve the identification of
change points.

Based on our discussion so far in this section, CD-LDA has
two-phases as follows:
Change-point

1) detection: In this phase, we detect the start and end
time of each episode. In other words, we identify the
time-points where a new event started or an exist-
ing event ended. This phase is described in detail in
Section III-A.

2) Applying LDA: In this phase, we show that, once
episodes are known, LDA based techniques can be used
to solve the problem of computing message distribution
for each event. Subsequently, we can also infer the
occurrence times for each event. This phase along with
the complete algorithm is described in Section III-B.

A. Change-Point Detection

Suppose we have n data points and a known number of
change points k. The data points between two consecutive

change points are drawn i.i.d from the same distribution.3 In
the inference problem, each data point could be a possible
change point. A naive exhaustive search to find the k best
locations would have a computational complexity of O(nk).
Nonparametric approaches to change-point detection aim to
solve this problem with much lower complexity even when
the number of change points is unknown and there are few
assumptions on the family of distributions, [4], [21], [22].

The change point detection algorithm we use is hierarchical
in nature. This is inspired by the work in [4]. Nevertheless
our algorithm has certain key differences as discussed in
section III-C1. It is easier to understand the algorithm in the
setting of only one change point, i.e., two episodes. Suppose
that τ is a candidate change point among the n points. The
idea is to measure the change in distribution between the points
to the left and right of τ . We use the TV distance between
the empirical distributions estimated from the points to the
left and right of the candidate change point τ . In our context
the TV distance between two probability mas functions p and
q is given by one half the L1 distance 0.5||p − q||1. This is
maximized over all values of τ to estimate the location of
the change point. If the distributions are sufficiently different
in the two episodes the TV distance between the empirical
distributions is expected to be highest for the correct location
of the change point in comparison to any other candidate point
τ (we rigorously prove this in the proof Theorem 1, 2).

Further, we also have different inter-arrival times for mes-
sages in different episodes. Hence we use a combination
of TV distance and mean inter-arrival time as the metric
to differentiate the two distributions4 We denote this metric
by �D(l).

�D(l) = ��pL(l)− �pR(l)�1 + |�ESL(l)− �ESR(l)|, (1)

where �pL(l), �pR(l) are empirical estimates of message distrib-
utions to the left and right l and �ESL(l), �ESR(l) are empirical
estimates of the mean inter-arrival time to the left and right of
l, respectively. The empirical distributions �pL(l), �pR(l) have
M components. For each m ∈M, we can write

�pL,m(l) =
�l−1

i=1 1{Xi = m}
l

(2)

�pR,m(l) =
�n

i=l 1{Xi = m}
n− l

. (3)

The mean inter-arrival time �ESL(l) and �ESL(l) are defined as

�ESL(l) =
�l−1

i=1 Δti
l

(4)

�ESR(l) =
�n

i=l Δti
n− l

. (5)

3The i.i.d. assumption is not always true in practice as messages could be
sparser in time in the beginning of an event. Indeed, the algorithms developed
in this work does not rely on the i.i.d. assumption, however, the assumption
allows us to prove useful theoretical guarantees

4One can potentially use a weighted combination of the TV distance and
mean inter-arrival time as a metric with the weight being an hyper parameter.
While the unweighted metric performs well in out real-life datasets, it is an
interesting future direction of research to understand how to optimally choose
a weighted combination in general.
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Fig. 2. Example change point with two episodes.

We sometimes write �D(l) as �D(�γn), where the argument l =
�γn. Symbol �γ denotes the index l as a fraction of n and it
can take n discrete values between 0 to 1. 1{A} takes value
1 only when event A occurs and 0 otherwise.

Algorithm 1 describes the algorithm in the one change point
case. To make the algorithm more robust, we declare a change
point only when the episode length is at least αn and the
maximum value of the metric (1) is at least δ.

Let us consider a simple example to illustrate the idea of
change-point detection with one change-point. Suppose we
have a sequence of messages with unequal inter-arrival times
as shown in Fig. 2. All the messages are the same, but the first
half of the messages arrive at a rate higher than the second
half of the messages. In this scenario, our metric reduces to
the difference in the mean inter-arrival times between the two
episodes. So, �D(l) = |�ESL(l) − �ESR(l)|. The function �D
in terms of data point l for this example is shown in Fig 2.
As we show later in section III-C, the shape of �D will be
close to the following when the number of samples is large:
�D will be increasing to the left of change point τ = γn,
attain its maximum at the change point and decrease to the
right.

Algorithm 1 Change Point Detection With One Change Point
1: Input: parameter δ > 0, α > 0.
2: Output: changept denoting whether a change point exists

and the location of the change point τ .
3: Find τ ∈ arg maxl

�D(l)
4: if �D(τ) > δ and αn < τ < 1− αn then
5: return changept = 1, τ .
6: else
7: return changept = 0.

Next, we consider the case of multiple change points.
When we have multiple change points, we apply Algorithm 1
hierarchically until we cannot find a change point. Algorithm 2
CD(D, α, δ) is presented below.

The above algorithm tries to detect a single change point
first, and if such a change point is found, it divides the data
set into two parts, one consisting of messages to the left of
the change point and the other consisting of messages to the
right of the change point. The single change-point detection
algorithm is now applied to each of the two smaller datasets.
This is repeated recursively till no more change points are
detected.

1) Discussion: What Metric for Change Point Detection?:
We have used the TV distance between two distributions to
estimate the change point in metric 1. One can also use other

Algorithm 2 CD(D, α, δ)
1: Input: data points D, minimum value of TV distance δ,

minimum episode length α.
2: Output: Change points τ1, . . . , τk.
3: Run FINDCHANGEPT(1, n).
4: procedure FINDCHANGEPT(L, H)
5: changept, τ ← ALGORITHM 1

(XL, XL+1, . . . , XH , α, δ).
6: if changept exists then
7: τl ← FINDCHANGEPT(L, τ),
8: τh ← FINDCHANGEPT(τ, H).
9: return {τl, τ, τh}

10: else
11: return

TABLE I

COMPARISON BETWEEN DIFFERENT METRICS FOR CHANGE POINT

distance measures like the l2 distance, the Jensen-Shannon
(J-S) distance, the Hellinger distance, or the metric used in [4].
The metric used in [4] is shown to be an unbiased estimator
of the l2 distance for categorical data in Appendix J of the
supplementary material. We argue that for our data set, all of
the above distances give similar performance. Our data set has
97m points and 39330 types of messages. In the region where
the number of data points is much more than the dimension
of the distribution, estimating a change point through all of
the above metrics give order wise similar error rate. We show
this through synthetic data experiments since we do not know
the ground truth to compute the error in estimating the change
point in the real dataset.

We present one such experiment with a synthetic dataset
here. Consider two distributions p and q whose support set
consists of 10 points. We assume that p is the uniform
distribution, while q[1] = q[2] = . . . = q[5] = 0.09, and
q[6] = q[7] = . . . = q[10] = 0.11. There are n = 25000 data
points. The first half of the data points are independently drawn
from p and the second half of the data points are drawn from q.
Table I shows the absolute error in estimating the change point
at 0.5n to be of the order of 10−2 for all the distance metrics.

We test the l1 distance metric on real data and we show
in section IV-B that it is satisfactory. Since we do not know
the ground truth, we take a small part of the real data set
where we can can visually identify the approximate location
of the major change points. The change point algorithm with
l1 metric correctly estimates these locations.

A graph based change point detection algorithm in [23] can
be adapted to our problem such that the metric computation
is linear in the number of messages. We can do this if
we consider a graph with nodes as the messages and edges
connecting message of the same type. But, one can show that
the metric in [23] is not consistent for this adaptation.
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B. Latent Dirichlet Allocation

In the problem considered in this paper, each episode can
be thought of as a document and each message can be thought
of as a word. Like in the LDA model where each topic
is latent, in our problem, each event is latent and can be
thought of as a distribution over messages. Unlike LDA-based
document modeling, we have time-stamps associated with
messages, which we have already used to extract episodes
from our data set. Additionally, this temporal information can
also be used in a Bayesian inference formulation to extract
events and their signatures. However, to make the algorithm
simple and computationally tractable, as in the original LDA
model, we assume that there is no temporal ordering to the
episodes or messages within the episodes. Our experiments
suggest that this choice is reasonable and leads to very good
practical results. However, one can potentially use the temporal
information too as in [24], [25], and this is left for future work.

If we apply the LDA algorithm to our episodes, the output
will be the event signatures p(e) and episode signatures θ(E),
where an episode signature is a probability distribution of the
events in the episode. In other words, LDA assumes that each
message in an episode is generated by first picking an event
within an episode from the episode signature and then picking
a message from the event based on the event signature.

For our event mining problem, we are interested in event
signatures and finding the start and finish times of each
occurrence of an event. Therefore, the final step (which we
describe next) is to extract the start and finish times from the
episode signatures.

Putting it All Together: In order to detect all the episodes in
which the event e occurs prominently, we proceed as follows.
We collect all episodes E for which the event occurrence
probability θ

(E)
e is greater than a certain threshold η > 0.

We declare the start and finish times of the collected episodes
as the start and finish times of the various occurrences of the
event e. If an event spans many contiguous episodes, then the
start time of the first episode and the end time of the last
contiguous episode can be used as the start and finish time
of this occurrence of the event. However, for simplicity, this
straightforward step in not presented in the detailed description
of the algorithm in ALGORITHM 3.

Algorithm 3 CD-LDA(D, α, δ, η)
1: Input: data points D, threshold of occurrence of an event

in an episode η, the minimum value of TV distance δ,
minimum episode length α.

2: Output: Event signatures p(1), p(2), . . . , p(E), Start and
finish time Se, Fe for each event e.

3: Change points τ1, . . . , τk ← CD(D, α, δ). Episode Ei ←
{Xτi−1, . . . , Xτi} for i = 1 to k + 1.

4: p(1), . . . , p(E); θ(E1), . . . , θ(Ek+1) ←LDA(E1, . . . , Ek+1)
5: Consider event e. Ge ← Set of all episodes E such that

θ
(E)
e > η. Se, Fe ← start and finish times of all episodes

in set Ge.

Remark 2: We use the Gibbs sampling based inference
from [26] on the LDA model. For a discussion on the

comparison between different inference methods ([3], [26]–
[30]) for the LDA model, see Appendix A in the supplementary
material.

Note that the LDA algorithm requires an input for the
number of events E. However, one can run LDA for different
values of E and choose the one with maximum likelihood [3].
Hence E need not be assumed to be an input to CD-LDA.
One can also use the Hierarchical Dirichlet Process (HDP)
algorithm [31] which is an extension of LDA and figure out
the number of topics from the data. In our experiments, we use
the maximum likelihood approach to estimate the number of
events. This is explained in section IV-C1.

C. Analysis of CD

As mentioned earlier, the novelty in the CD-LDA algorithm
lies in the connection we make to topic modeling in document
analysis. In this context, our key contribution is an efficient
algorithm to divide the data set of messages into episodes
(documents). Once this is done, the application of the LDA of
episodes (documents), consisting of messages (words) gener-
ated by events (topics) is standard. Therefore, the correctness
and efficiency of the CD part of the algorithm will deter-
mine the correctness and efficiency of CD-LDA as a whole.
We focus on analyzing the CD part of the algorithm in this
section. Due to space limitations, we only present the main
results here, and the proofs can be found in the supplementary
material.

Section III-C1 shows that the computational complexity
of CD algorithm is linear in the number of data points.
Section III-C2 contains the asymptotic analysis of the CD
algorithm while section III-C3 has the finite sample results.

1) Computational Complexity of CD: In this section we
discuss the computational complexities of Algorithm 1 and
Algorithm 2. We will first discuss the computational com-
plexity of detecting a change point in case of one change
point. Algorithm 1 requires us to compute argmaxl

�D(l) for
1 ≤ l ≤ n. From the definition of �D(l) in (1), we only need to
compute the empirical probability estimates �pL(l), �pR(l), and
the empirical mean of the inter arrival time �ESL(l), �ESR(l)
for every value of l between 1 to n.

We focus on the computation of �pL(l), �pR(l). Consider
any message m in the distribution. For each m, we can
compute �pL,m(l), �pR,m(l) in O(n) for every value of l by
using neighbouring values of �pL,m(l − 1), �pR,m(l − 1).

�pL,m(l) =
(l − 1)�pL,m(l − 1) + 1{Xl−1 = m}

l
,

�pR,m(l) =
(n− l + 1)�pR,m(l − 1)− 1{Xl−1 = m}

n− l
(6)

The computation of �ESL(l), �ESR(l) for every value of l from
1 to n is similar.

Performing the above computations for all M messages,
results in a computational complexity of O(nM). In the
case of k change points, it is straightforward to see that we
require O(nMk) computations. In much of our discussion,
we assume M and k are constants and therefore, we present
the computational complexity results in terms of n only.
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Fig. 3. Consistency with two change points.

Related Work: Algorithm 2 executes the process of deter-
mining change points hierarchically. This idea was inspired
by the work in [4]. However, the metric �D we use to detect
change points is different from that of [4]. The change in
metric necessitates a new analysis of the consistency of the
CD algorithm which we present in the next subsection. Further,
for our metric, we are also able to derive sample complexity
results which are presented in a later subsection.

2) The Consistency of Change-Point Detection: In this
section we discuss the consistency of the change-point detec-
tion algorithm, i.e., when the number of data points n goes to
infinity one can accurately detect the location of the change
points. In both this subsection and the next, we assume that the
inter-arrival times of messages within each episode are i.i.d.,
and are independent (with possibly different distributions)
across episodes.

Theorem 1: For �γ ∈ (0, 1), D(�γ) = limn→∞ �D(�γn) is
well-defined and D(�γ) attains its maximum at one of the
change points if there is at least one change point.

Proof: We only provide a proof for the single change point
case here and refer the interested reader to Appendix B in the
supplemental material for the proof of the multiple change
point case. Let the change point be at index τ . The location
of the change point is determined by the point where �D(l)
maximizes over 1 < l < n. We will show that when n is large
the argument where �D(l) maximizes converges to the change
point τ .

Suppose all the points X to the left of the change point τ are
chosen i.i.d from a distribution F and all the points from the
right of τ are chosen from a distribution G, where F �= G.
Also, say the inter-arrival times Δti’s are chosen i.i.d from
distribution Ft and Gt to the left and right of change point τ ,
respectively. Let l = �γn, 0 < �γ < 1 be the index of any data
point and τ = γn, the index of the change point.

Case 1 �γ ≤ γ: Suppose we consider the value of �D(l) =
�D(γn) to the left of the actual change point, i.e, l < τ or
�γ < γ. The distribution to the left of �γn, �pL(�γn), has all
the data points chosen from the distribution F . So �pL(�γn)
is the empirical estimate for F . On the other hand, the data
points to the right of �γn come from a mixture of distribution
F and G. �pR(�γn) has γ−�γ

1−�γ fraction of samples from F and
1−γ
1−�γ fraction of samples from G. Figure 3 below explains it
pictorially.

So �pL(l) and �pR defined in (3) converges to

�pL(l)→ F, �pR(l)→ γ − �γ

1− �γ
F +

1− γ

1− �γ
G. (7)

Similarly, we can say that the empirical mean estimates
�ESL(l) and �ESR(l) converge to

�ESL(l)→ EFt, �ESR(l)→ γ − �γ

1− �γ
EFt +

1− γ

1− �γ
EGt. (8)

We can combine (7) and (8) to say that �D(�γn) → D(�γ)
where

�D(�γn) = ��pL(�γn)− �pR(�γn)�+ |ESL(�γn)− ESR(�γn)|
→ D(�γ) :=

1− γ

1− �γ
(�F −G�1 + |EFt − EGt|). (9)

Note that from the definition of D, D(γ) = �F − G�1 +
|EFt − EGt|.

Case 2 �γ > γ: Proceeding in a similar way to Case 1,
we can show

�D(�γn)→ D(�γ) :=
γ

�γ
(�F −G�1 + |EFt − EGt|). (10)

From Case 1 and Case 2, we have

�γ ≤ γ, �D(�γn)→ D(�γ) =
1− γ

1− �γ
D(γ)

�γ > γ, �D(�γn)→ D(�γ) =
γ

�γ
D(γ). (11)

Equation (11) shows that the maximum of D(�γ) is obtained
at �γ = γ. �

3) The Sample Complexity of Change-Point Detection:
In the previous subsection, we studied the CD algorithm
in the limit as n → ∞. In this section, we analyze the
algorithm when there are only a finite number of samples.
For this purpose, we assume that the inter-arrival distribution
of messages have sub-Gaussian tails.

We say that Algorithm CD is correct if the following
conditions are satisfied. Let � > 0 be a desired accuracy in
estimation of the change point.

Definition 1: Given � > 0, Algorithm CD is correct if

• there are change points 0 < τ1
n = γ1, . . . ,

τk

n = γk < 1
and the algorithm gives �γ1, . . . , �γk such that maxi |�γi −
γi| < �.

• there is no change point and �D(γn) < δ, ∀γ ∈
{γ1, . . . , γk}.

Now we can state the correctness theorem for Algorithm 2.
The sample complexity is shown to scale logarithmically with
the number of change points.

Theorem 2: Algorithm 2 is correct in the sense of Defini-
tion 1 with probability (1− β) if

n = Ω

⎛

⎝max

⎛

⎝

log
�

2k+1
β

�

�2
,

M1+c

�2(1+c)

⎞

⎠

⎞

⎠,

for sufficiently small α, δ, � and for any c > 0.
Remark 3: The proof of this theorem uses the method of

types and Pinsker’s inequality. We present here the proof
for the single change point case. Due to space constraints,
we move the proof for multiple change points to Appendix D
in the supplementary material.

Proof: We first characterize the single change point case
in finite sample setting. In order to get the sample complexity,
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we prove the correctness for Algorithm 1 as per Definition 1
with high probability. Before we go into the proof, we state
the assumptions on α, δ, � under which the proof is valid.

• Suppose a change point exists at index γn and the metric
�D(γn) converges to D(γ) at the change point. Then � can
only be chosen in following region: � has to be less than
the value of the metric at the change point, � < D(γ);
� has to be less than the minimum episode length, � <
min(γ, 1− γ).

• If a change point exists at index γn, α has to chosen
less than the minimum episode length minus �, α <
min(γ, 1− γ)− �.

• The threshold δ < D(γ)− �.

Under the above assumptions we show that Algorithm 1 is
correct as per the Definition 1 with probability at least

1− (6n + 4) exp
�

−min(δ, 1)2�2α2

512 max(σ2, 1)
n + M log(n)

�

.

Suppose

�γn = arg max
�γn

�D(�γn).

The idea is to upper bound the probability when Algorithm 1
is not correct. From Definition 1 this happens when,

• Given a change point exists at γ ∈ (0, 1),

( �D(�γn) > δ, |γ − �γ| < �, α < �γ < 1− α)c

occurs. Say the event E1 denotes E1 = { �D(�γ) > δ, |γ −
�γ| < �, α < �γ < 1− α}.

• Given a change point does not exist,

�D(�γ) > δ, α < �γ < 1− α.

When a change point does not exist we write γ = 0. Say
the event E2 denotes E2 = {γ = 0, α < �γ < 1− α}

So

P (Algorithm 1 is NOT correct)
≤ P (Ec

1|0 < γ < 1) + P ( �D(�γ) > δ|E2). (12)

We analyze each part in (12) separately.
Case 1: Suppose no change point exists and say all the data

points are drawn from the same mutinomial distribution F and
all inter-arrival times are generated i.i.d from a distribution Ft.
Given event E2, if ��pL(�γn)−F�, ��pR(�γn)−F�, |�ESL(�γn)−
EFt|, |�ESR(�γn)−EFt| are all less than δ/4, then �D(�γ) < δ.
So P ( �D(�γ) > δ|E2) ≤ P (��pL(�γn) − F� > δ/4|E2) +
P (��pR(�γn) − F� > δ/4|E2) + P (|�ESL(�γn) − EFt| >
δ/4|E2) + P (|�ESR(�γn) − EFt| > δ/4|E2). Now, we can
use Sanov’s theorem followed by Pinsker’s inequality to upper
bound each of the above terms as

P ( �D(�γ) > δ|E2)
≤ (n�γ + 1)M exp(−nδ2/16)

+ ((1−�γ)n+1)M exp(−nδ2/16)+2 exp(−αnδ2/32σ2)
+ 2 exp(−αnδ2/32σ2)

≤ 4(n + 2)M exp
�

−n
αδ2

32 max(σ2, 1)

�

. (13)

Case 2: Next, we look at the case when a change point
exists at γn. Say the messages are drawn from a distribution
F to the left of the change point and G to the right of the
change point. Also, suppose the inter-arrival time distribution
to the left of the change point is Ft and the inter-arrival time
distribution to the right is Gt. According to our assumptions,
α is chosen such that α + � < γ < 1− (α + �). Hence

P (Ec
1|0 < γ < 1)

≤ P ( �D(�γn) < δ|0 < γ < 1)

+ P (|�γ − γ| > �| �D(γ) > δ, 0 < γ < 1)
+ P (α < �γ < 1− α| �D(γ) > δ, |�γ − γ| < �, 0 < γ < 1).

(14)

Given the assumption on α, P (α < �γ < 1−α| �D(γ) > δ, |�γ−
γ| < �, 0 < γ < 1) = 0. The rest of the proof deals with
upper bounding P ( �D(�γn) < δ|0 < γ < 1) and P (|�γ − γ| >
�| �D(γ) > δ, 0 < γ < 1).

In lemma 1-3 we develop the characteristics of �γ and
D(�γ) when a change point exists at γn. Lemma 1-3 are
proved in Appendix E, F of the supplementary material. First,
we analyze the concentration of �D(�γn) for any value of �γ in
the Lemma 1.

Lemma 1: | �D(�γn) − D(�γ)| ≤ � w.p. at least 1 −
3n exp

�

− �2α2

128σ2 n + M log(n)
�

for all values of �γ when
�D(�γn) is defined.

Lemma 1 shows that the empirical estimate �D(�γn) is very
close to the asymptotic value D(�γ) with high probability.
Recall that the argument at which �D maximizes is �γn. we next
show in Lemma 3 that the value of metric D at �γ is very close
to the value of the D at the change point γ.

Lemma 2: |D(γ) − D(�γ)| < 2� w.p. 1 −
3n exp

�

− �2α2

128σ2 n + M log(n)
�

Finally, in Lemma 3 we show that �γ is close to the change
point γ with high probability.

Lemma 3: |�γ − γ| < � w.p. 1 −
3n exp

�

− �2D2(γ)α2

512σ2 n + M log(n)
�

.
Also, using lemma 2 and assuming that δ is chosen such

that δ < D(γ)− �,

P ( �D(�γn) < δ|0 < γ < 1)

≤ P ( �D(�γn) < δ|0 < γ < 1, | �D(�γn)−D(γ)| < �)
+ P (| �D(�γn)−D(γ)| > �)

≤ 0 + 3n exp
�

− �2α2

128σ2
n + M log(n)

�

(15)

Lemma 3 gives a bound on P (|�γ−γ| > �| �D(γ) > δ, 0 < γ <
1). Using this along with (15) in (14) we have

P (Ec
1|0 < γ < 1)

≤ 3n exp
�

− �2α2

128σ2
n + M log(n)

�

+ 3n exp
�

− �2D2(γ)α2

512σ2
n + M log(n)

�

. (16)
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Finally, putting together (13) and (16) into (12), we have

P (Algorithm 1 is NOT correct)

≤ (6n + 4) exp(−min(δ, 1)2�2α2

512 max(σ2, 1)
+ M log(n + 2)) (17)

Ignoring the constants in (17), we can derive the sample
complexity result for the one change point case. �

IV. EVALUATION WITH REAL DATASETS

We now present our experimental results with real data sets
from large operational network. The purpose of experiments is
three-fold. First, we wish to compare our proposed CD-LDA
algorithm with other techniques proposed (adapted to our
setting) in the literature. Second, we want to validate our
results against manual expert-derived event signature for a
prominent event. Third, we want to understand the scalability
of our method with respect to very large data sets.

Datasets Used: We use two data sets: one from a legacy
network of physical elements like routers, switches etc.,
and another from a recently deployed virtual network func-
tion (VNF). The VNF dataset is used to validate our algorithm
by comparing with expert knowledge. The other one is used
to show that our algorithm is scalable, i.e., it can handle large
data sets and it is less sensitive to the hyper parameters.

• Dataset-1: This data set consists of around 97 million raw
syslog messages collected from 3500 distinct physical
network elements (mostly routers) from a nationwide
operational network over a 15-day period in 2017. There
are 39330 types of messages.

• Dataset-2: The second data set consists of around
728, 000 messages collected from 285 distinct physi-
cal/virtual network elements over a 3 month period from
a newly deployed virtual network function (VNF) which
is implemented on a data-center using multiple VMs.

We implemented the machine-learning pipeline as shown
in Figure 1. The main algorithmic component in the fig-
ure shows CD-LDA algrothm; however, for the purpose of
comparison, we also implemented two additional algorithms
described shortly. Before the data is applied to any of the
algorithms, there are two-steps, namely, Template-extraction
(in case of textual syslog data) and pre-processing (for both
syslog and alarms). These steps are described in Appendix I
in the supplementary material.

A. Benchmark Algorithms

We compare CD-LDA with the following algorithms.
1) Algorithm B: A Bayesian Inference Based Algorithm:

We consider a fully Bayesian inference algorithm to solve
the problem. A Bayesian inference algorithm requires some
assumptions on the statistical generative model by which the
messages are generated. Our model here is inspired by topic
modelling across documents generated over multiple eras [24].
Suppose that there are E events which generated our data set,
and event e has a signature p(e) as mentioned earlier. The
generative model for generating each message is assumed to
be as follows.

• To generate a message, we first assume that an event
e ∈ [1, 2, . . . , E] is chosen with probability Pe.

• Next, a message m is chosen with probability p
(e)
m .

• Finally, a timestamp is associated with the message which
is chosen according to a beta distribution β(ae, be), where
the parameters of the beta distribution are distinct for
different events.

The parameters of the generative model Pe, p
(e)
m , ae, be are

unknown. As in standard in such models, we assume a prior
on some of these parameters. Here, as in [24], we assume
that there is a prior distribution on q over the space of all
possible P and a prior r over the space of all possible p(e).
The prior r is assumed to be independent of e. Given these
priors, the Bayesian inference problem becomes a maximum
likelihood estimation problem, i.e.,

max
ae,be,p(e)

e,P
Pq,r(D|P, {p(e)}e).

We use Gibbs sampling to solve the above maximization prob-
lem. There are two key differences between Algorithm B and
proposed CD-LDA. CD-LDA first breaks up the datasets into
smaller episodes whereas Algrothm-B uses prior distributions
(the beta distributions) to model the fact that different events
happen at different times. We show that, such an algorithm
works, but the inference procedure is dramatically slow due
to additional parameters to infer {ae, be}e.

2) Algorithm C: A Graph-Clustering Based Algorithm:
For the purposes of comparison, we will also consider a
very simple graph-based clustering-based algorithm to identify
events. This algorithm is inspired from graph based clustering
used in event log data in [32]. The basic idea behind the
algorithm is as follows: we construct a graph whose nodes
are the messages in the set M. We divide the continuous
time interval [0, T ] into T/w timeslots, where each timeslot
is of duration w. For simplicity, we will assume that T
is divisible by w. We draw an edge between a pair of
nodes (messages) and label the edge by a distance metric
between the messages, which roughly indicates the likelihood
with which two messages are generated by the same event.
Then, any standard distance-based clustering algorithm on the
graphs will cluster the messages into clusters, and one can
interpret each cluster as an event. Clearly, the algorithm has
the following major limitation: it can detect Me for an event
e and not p(e). In some applications, this may be sufficient.
Therefore, we consider this simple algorithm as a possible
candidate algorithm for our real data set.

We now describe how the similarity metric is computed
for two nodes i and j. Let Ni be the number of timeslots
during which a message i occurs and let Nij be the number
of timeslots during which both i and j appear in the same
timeslot. Then, the distance metric between nodes i and j is
defined as

ρij = 1− Nij

Ni + Nj −Nij
.

Thus, a smaller ρij indicates that i and j co-occur frequently.
The idea behind choosing this metric is as follows: messages
generated by the same event are likely to occur closer together
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Fig. 4. (a) Top panel shows scatter plot of different message-ids over the
period of comparison and (b) bottom panel shows the episodes detected by
CD phase of Algorithm CD-LDA.

in time. Thus, ρij being small indicates that the messages are
more likely to have been generated by the same event, and
thus are closer together in distance.

B. Results: Comparison With Benchmark Algorithms

For the purposes of this section only, we consider a smaller
slice of data from Dataset-1. Instead of considering all the
97 million messages, we take a small slice of 10,000 messages
over a 3 hour duration from 135 distinct routers. Let us call this
data set Ds. There are two reasons for considering this smaller
slice. Firstly, it is easier to visually observe the ground truth
in this small data set and verify visually if CD-LDA is giving
us the ground truth. We can also compare the results from
different methods with this smaller data set. Secondly, as we
show later in this section, the Bayesian inference Algorithm-B
is dramatically slow and so running it over the full dataset
is not feasible. Nevertheless, the smaller dataset allows us
to validate the key premise behind our main algorithm,
i.e., the decomposition of the algorithm into the CD and
LDA parts.

Applying CD-LDA on This Dataset Slice: Figure 4a shows
the data points in x-axis and the message-ids on y-axis.
Figure 4b shows the 5 episodes after the CD part of CD-LDA,
where we chose α = 0.1 and δ = 0.5. For the LDA part,
instead of specifying the number of events, we use maximum

Fig. 5. Time performance: CD-LDA vs Algrithm B.

likelihood to find the optimal number of events and based on
this, the number of events was found to be 2.

We next compare event signatures produced by CD-LDA
with Algorithm B and Algorithm C.

CD-LDA Versus Algorithm B: For all unknown distributions,
we assume a uniform prior in Algorithm B. Algorithm B is
run with input number of events as 2, 3, 4, 5. It turns out
that, with 3 events the algorithm converges to a solution
which has maximum likelihood. However, upon clustering the
event signatures p(e) based on TV-distance between the event
signatures, we find only two events. The maximum TV-distance
between the events signatures found from the two algorithms
is 0.068. Hence, we can conclude that the event signatures
found by both the algorithms are very similar.

Despite the fact that Algorithm B using fewer hyper-
parameters, it is not fast enough to run on large data sets.
Figure 5a shows the time taken by CD-LDA and Algorithm B
as we increase the size of the data set from 10, 000 to
40, 000 points. With 40, 000 data points and 12 events as
input Algorithm B takes 3 hours whereas CD-LDA only takes
26.57 seconds. Clearly, we cannot practically run Algorithm B
on large data sets with millions of points.

CD-LDA Versus Algorithm C: In this section we compare
CD-LDA versus algorithm C on data set Ds. Algorithm C
can produce the major event clusters as CD-LDA, but does
not provide the start and end time for the events. We form
the co-occurrence graph for Algorithm C with edge weight
as described in section IV-A2 and nodes as messages which
occur more than at least 5 times in the data set Ds. All the
edges with weight more than 0.6 are discarded and we run a
clique detection algorithm in the resulting graph.

We quantitatively compare the event signature Me of the
top two cliques found by Algorithm C with those found
by CD-LDA. Suppose that message sets identified by Algo-
rithm C for the two events are Me1 and Me2 respectively.
Message sets (messages with probability more than 0.007)
identified by CD-LDA for the two events are denoted by Se1

and Se2. We can now compute the Jaccard Index between the
two sets.

|Me1 ∩ Se1|
|Me1 ∪ Se1| = 0.73

|Me2 ∩ Se2|
|Me2 ∪ Se2| = 0.68.

Since the full Bayesian inference (Algorithm B) agrees with
CD-LDA closely, we can conclude that Algorithm C gets
a large fraction of the messages associated with the event
correctly. However, it also misses a significant fraction of the
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TABLE II

EVENTS GENERATED BY CD-LDA AND THE CONSTITUENT MESSAGES
IN DECREASING ORDER OF PROBABILITY. EVENT 8 MATCHES WITH

EXPERT PROVIDED EVENT SIGNATURE

messages, and additionally Algorithm C does not provide any
information about start and end times of the events. Also,
the events found are sensitive to the threshold for choosing
the graph edges, something we have carefully chosen for this
small data set.

C. Results: Comparison With Expert Knowledge and
Scalability

Validation by Comparing With Manual Event Signature:
The intended use-case of our methodology is for learning
events where the scale of data and system does not allow for
manual identification of event signatures. However, we still
wanted to validate our output against a handful of event
signatures inferred manually by domain experts. For the pur-
pose of this section, we ran CD-LDA for Dataset-2 which
is for an operational VNF. For this data set, an expert
had identified that a known service issue had occurred on
two dates: 11-Oct and 26-Nov, 2017. This event gener-
ated messages with Ids Ping_vm, SNMP_AgentCheck,
SNMP_ntpd, SNMP_sshd, SNMP_crond, SNMP_Swap,
SNMP_CPU, SNMP_Mem, SNMP_Filespace.

We ran CD-LDA on this data set with parameters α = 0.01
and δ = 0.1. We chose 10 events for the LDA phase by
looking at the likelihood computed using cross validation for
different number of topics. See section IV-C1 for details of
the maximium likelihood approach. Table II shows the events
detected by CD-LDA in decreasing order of probability. Also,
top 9 messages are listed for each event. Indeed, we note that
Event 8 resembles the expert provided event. CD-LDA detected
this event as having occurred from 2017-10-08 17:35 to 2017-
10-17 15:55 and 2017-11-25 13:45 to 2017-11-26 03:10. The
longer than usual detection window for 11-Oct is due to the
fact that there were other events occurring simultaneously in
the network and the Event 8 contributed to small fraction of
messages generated during this time window. Finally, as shown
in Table II, our method also discovered several event signatures
not previously known.

Scalability and Sensitivity: To understand the scalability of
CD-LDA with data size, we ran it on Dataset-1 with about
97 million data points. CD-LDA was run with the following
input: α = 0.01, δ = 0.1, and the number of events equal to
20. The CD part of the algorithm detects 57 change points.
The sensitivity of this output with respect to α, δ is discussed
next. The event signatures are quite robust to these parameter
choice, but as expected, the accuracy of the start and finish

Fig. 6. Comparison of Event signatures for first two events with
α1, β1(E1,E2) vs α2, β2(E’1,E’2).

TABLE III

COMPARING RESULTS OF CD-LDA FOR DIFFERENT VALUES OF α, β

TABLE IV

RESULTS OF CD-LDA ON DATASET-2 WITH α2 = 10%, β2 = 0.5

time estimates of the events will be poorer for large values
of α and δ. Overall, CD-LDA takes about 6 hours to run,
which is quite reasonable for a dataset of this size. Reducing
the running time by using other methods for implementing
LDA, such as variational inference, is a topic for future
work.

Parameter α specifies the minimum duration of episode that
can be detected in the change detection. By increasing δ we
can control to detect the more sharp change points (change
points across which the change in distribution is large), and
decreasing δ helps us detect the soft change points as well.
So α, δ control the granularity of the change point detection
algorithm. Parameter η is a user defined parameter to detect the
episodes in which a particular event occurs. We demonstrate
the sensitivity of CDLDA to α and δ. We run CDLDA with
α2 = 10%, δ2 = 0.5 on Dataset-2 and compare it with results
when run with parameters α1 = 1%, δ1 = 0.1. Table IV
and V shows the first two events for parameters α1, δ1 when
compared to first two events for parameter α2, δ2. CDLDA
detects 57 change points with α1, δ1 whereas it only detects 19
change points with α2, δ2. Despite this, Figure 6 and Table III
shows that the event signatures for the first two events are
almost the same. But, since the episodes are larger in duration
with α2, δ2, the start and end times of the first two events are
less accurate than α1, δ1. In particular, event 2 is shown to
occur from 2-10 05:00 to 2-14 00:00 with α2, δ2 in Table V
whereas it broken into two episodes, 2-10 05:00 to 2-10
13:33 and 2-10 15:27 to 2-14 00:00, with α1, δ1 in Table IV.
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TABLE V

RESULTS OF CD-LDA ON DATASET-2 WITH α1 = 1%, β1 = 0.1

Fig. 7. Likelihood vs number of topics in Dataset-1

Fig. 8. Likelihood vs number of topics in Dataset-2

1) Selection of the Number of Topics in LDA: For Dataset-
1, we do 10-fold cross validation. We group the 58 documents
found by change detection into 10 sets randomly. We compute
the likelihood on one group with a model trained using
documents in the remaining 9 groups. We plot the average
likelihood in Figure 7 vs the number of topics. There is a
decrease in likelihood around 20 and hence, we choose the
number of topics as 20.

For Dataset-2, we do 10-fold cross validation and choose
the number of topics as 10 from the Figure 8 below. In this
case, we create the 10 groups of documents in the following
way. Out of 58 documents, group 1 has document num-
ber 1, 11, 21 . . ., group 2 has documents 2, 22, 32, . . ., etc.
Sub sampling in this fashion respects the ordering in the
documents.

V. CONCLUSIONS AND FUTURE WORK

In this paper we look at the problem of detecting events in
an error log generated by a distributed data center network.

The error log consists of error messages with time stamps.
Our goal is to detect latent events which generate these
messages and find the distribution of messages for each event.
We solve this problem by relating it to the topic modelling
problem in documents. We introduce a notion of episodes
in the time series data which serves as the equivalent of
documents. Also we propose a linear time change detection
algorithm to detect these episodes. We present consistency and
sample complexity results for this change detection algorithm.
Further we demonstrate the performance of our algorithm on
a real dataset by comparing it with two benchmark algorithms
existing in the literature. We believe, our approach is generic
enough to be applied to other problem settings where the data
has similar characteristics as network logs.
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