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Abstract. Driven by the emerging business models (e.g., digital sales)
and IT technologies (e.g., DevOps and Cloud computing), the archi-
tecture of software is shifting from monolithic to microservice rapidly.
Benefit from microservice, software development, and delivery processes
are accelerated significantly. However, along with many micro services
running in the dynamic cloud environment with complex interactions,
identifying and locating the abnormal services are extraordinarily diffi-
cult. This paper presents a novel system named “Microscope” to identify
and locate the abnormal services with a ranked list of possible root causes
in Micro-service environments. Without instrumenting the source code of
micro services, Microscope can efficiently construct a service causal graph
and infer the causes of performance problems in real time. Experimental
evaluations in a micro-service benchmark environment show that Micro-
scope achieves a good diagnosis result, i.e., 8% in precision and 80% in
recall, which is higher than several state-of-the-art methods. Meanwhile,
it has a good scalability to adapt to large-scale micro-service systems.
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1 Introduction

Nowadays, driven by the emerging business models (e.g., digital sales) and IT
technologies (e.g., DevOps and Cloud computing), the architecture of software is
shifting from monolithic to microservice [20] architecture rapidly. With microser-
vice architecture, an application is decoupled into many loosely distributed fine-
grained services with complex interactions. Usually, these services are connected
by some light-weight network protocols such as REST and RPC protocols. But
each of them has simple and independent functions following the SRP (Single
Responsibility Principle) [20]. The microservice architecture has enabled soft-
ware systems with new properties such as strong scalability, agile development,
fast delivery, and so on. Even though, performance problems are not uncommon
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in microservice systems due to external (e.g., configuration changes) and inter-
nal (e.g., software bugs) impairments [7], which brings significant impacts on
enterprise revenues. According to [14], Amazon experiences 1% decrease in sales
for additional 100 ms delay in response time per request while Google reports a
20% drop in traffic due to 500 ms delay in response time.

To keep microservices running continuously and reliably, it is necessary to
detect undesirable performance problems and pinpoint potential root causes.
However, it is notoriously difficult to achieve that in microservice environments
due to the following challenges:

e Complex network dependencies. With a microservice architecture, an
application is decoupled into many fine-grained components with an extraor-
dinarily complex network topology. Moreover, to connect different micro ser-
vices wrapped in a container, an overlay network such as flannel is always
adopted, which further increases the complexity of performance diagnosis.

e Continuous integration and delivery. A microservice system is evolving
all the time with continuous integration and delivery technologies. According
to a DevOps report from Puppet [1], an enterprise may have 1600 updates a
year. That means the anomaly detection and root cause diagnosis procedure
should adapt to these changes in order to achieve better results.

e Dynamic run-time environment. A microservice system often runs in a
containerized environment where the states of containers change frequently.
The highly dynamic environment exacerbates the difficulty of performance
diagnosis.

e A large volume of monitoring metrics. Since so many services co-exist
in micro-service systems, the volume of monitoring metrics (e.g., response
time) of these services is very large. The paper [23] states that Netflix, Uber
and OpenStack has 2,000,000 metrics, 500,000,000 metrics, and 17608 metrics
respectively to monitor. How to pinpoint the root causes = from these data
is a challenging problem.

Extensive studies have been done to resolve performance diagnosis prob-
lems in distributed systems. However, they either (e.g., X-Trace [12], Roots [15])
require to modify the source code of applications or platforms to obtain the ser-
vice dependencies or cannot adapt to the dynamics of microservice environments
(e.g., Causelnfer [7]). In order to address the aforementioned challenges and
shortages of previous work, we propose Microscope, a novel system to identify
performance problems and infer root causes with causal graphs towards microser-
vice systems. It basically comprises three procedures, namely data collection,
causality graph building, and cause inference. Once an anomaly is detected in
front-end services, a causality graph which denotes the anomaly propagation
paths is constructed automatically. Then the cause inference procedure is trig-
gered to pinpoint root cause with the causal graph. The causality graph is built
with no need domain knowledge and instrumenting the application. Microscope
leverages a conditioned graph traversing algorithm to locate the root causes
rather than a brute-force search, which significantly reduces the volume of per-
formance metrics to process. Moreover, Microscope works in real-time mode
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to adapt to the dynamics of microservice environments. We developed a proto-
type system and validated its effectiveness in a microservices benchmark, namely
Sock-shop [2], managed by Kubernetes. The results show Microscope achieves an
average 88% precision for root cause identification outperforming several state-
of-the-art methods. Meanwhile, it can be applied in a large distributed system
without a significant accuracy lose.

The contributions made by this paper are threefold:

e We propose a novel service dependency discovery method through capturing
and parsing the network-related system calls, which works automatically to
capture the real service instances dependency in real time.

e We provide a parallelized service causality graph building method based
on the service dependency and service impact graph co-located in a single
machine. We can precisely pinpoint the root causes at service instance level
with this causality graph.

e We design and implement a prototype of Microscope to infer the root causes
of performance problems without domain knowledge and application instru-
mentation, and achieve a high precision and recall with a low cost.

The rest of this paper is organized as follows. Section2 presents the sys-
tem overview and formulation. Section 3 elaborates the details of Microscope.
In Sect. 4, we will evaluate Microscope in the controlled environment. And in
Sect. 5 we will compare our work with previous work. We discuss the advantages
of Microscope and Sect. 6 concludes this paper.

Data | | oMonitoring N e Causality Graph | | Cause e Ranking

Collection Building Inference
1. Network Connection Monitoring front end Causality Graph | ‘ An Unordered List of A Ordered List of
1 2. SLO metrics o e ! Cause Candidates | i Cause Candidates !

Fig. 1. Workflow of Microscope

2 System Overview and Formulation

Figure1 shows an overview of Microscope. For data collection, Microscope
mainly collects two types of data: network connection information between two
service instances and SLO (Service Level Objective) metrics of each service
instance. To diagnose system anomalies, Microscope continually monitors the
SLO metrics of the front end within a sliding time window. When an SLO vio-
lation is detected, the root cause analysis is triggered. In service causality graph
building phase, Microscope uses the network connection information and SLO
metrics to build a causality graph. Then the cause inference engine starts from
the front end and traverses the entire causality graph along with the directed
edges. After that, Microscope gets a list of possible root cause candidates. Finally,
Microscope calculates a score for each candidate and ranks the candidates with
the score.
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3 System Design

3.1 Data Collection

In the data collection part, Microscope mainly collects two types of data, namely
network connection information between two service instances and SLO metrics
of each service instance.

Intercept system call Raw Network S Parsed Network
° - network socket o Parser e Connection o Mapping Connection

sockel(.) | semantic analysis} 127.0.0.1: Port—172.18.20.98: Port | | Docker Info || (service-A, instance-1)—» (service-B, instance-1) |
: {127.0.0.1: Port—127.00.1: Port || Kubenetes Info | (service-B, instance-1)—» (service-C, instance-1) |
{127.0.0.1: Port—172.1820.2: Port |} ... {1 (service-A, instance-1)—> (service-C, instance-2) |

Fig. 2. Workflow of capturing network connection information

Network Connection Information. This type of data is used for causality
graph building. Network connection is an important information to represent
the real service dependencies. However, most of time, the transmission between
client and server is bidirectional. Hence, we will get an opposite connection
direction when we observe in different hosts. For example, when we observe in
host (192.168.1.2) which sends a request network package, we get a connection
(192.168.1.2)—(192.168.1.3). But in host (192.168.1.3) which sends a response
network packet, we will get (192.168.1.3)—(192.168.1.2).

In order to address this issue, we introduce a novel method to capture the net-
work connection information by monitoring and intercepting system calls related
to network socket, such as socket(), connect(), send() and recv(). A network
socket is an internal endpoint for sending or receiving data within a computer
network. Each socket function relates to a socket variable. When we intercept a
socket system call, it parses the socket variable and parameters of this function
to get a client IP and a server IP according to the semantic meaning of function
name. For instance, if a connect() function is intercepted, the local address of
socket will be parsed as client IP and the peer address will be parsed as server IP.
Another situation is that if a accept() function is intercepted, the local address
will be parsed as server IP and the peer address will be parsed as server IP. So
we can get the direction of network connection and the real dependency between
two services.

The complete workflow of capturing network connection information shows
in Fig.2. After the socket parsing, we get the raw network connection whose
ends are host IPs rather than service IPs. To know the corresponding service of
a host IP, we extract some information from infrastructures such as Docker and
Kubernetes. Combining with this information, we map the raw network connec-
tion(IP:Port) to parsed network connection ((service name, service instance)).
Finally, we get a bunch of records which describe the network connection infor-
mation from a service instance to another service instance.
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SLO (Service Level Objective) Metrics. This type of data is used for detect-
ing whether a service instance is abnormal and ranking root cause candidates.
According to our observations, most cloud-native applications that internally
generates performance metrics such as throughput for monitoring and mainte-
nance. If these data are not internally available, we can also crawl the service logs
to that end. For example, the spring boot framework provides a plug-in of service
log for monitoring. Therefore, we can easily get SLO metrics from cloud-native
applications in microservice environments. In this paper, we will use a unified
SLO metric, namely service request latency which is the service calling time,
which exposed by the services themselves. In the future work, we will explore
more SLO metrics in microscope for improving the effectiveness. Although it is
simple, it works well in Microscope.

3.2 Service Causality Graph Building

In this section, we describe the details of the service causality graph building.
The definition of the causality is that given two variables X and Y, we say X
is a cause of Y if the changes of X can affect the distribution of Y but not
vice versa, denoted by X—Y. In other words, X is a parent of Y, denoted by
X € pa(Y). In a collective variable, if all the parents of Y have been determined,
the distribution of Y will be determined and not affected by other variables. In
this paper, X and Y represent the SLO metrics of each microservice. Note that
in the causality graph, it is not allowed two variables cause each other. So the
causality graph can be represented as a DAG (Directed Acyclic Graph).

@ @ @ [ Single Physical Machine
O Service Instance
Communicating Service Instance Dependency
@ @ @ Non-communicating Service Instance Dependency

Fig. 3. An example of service causality graph, where S1-S6 and M1-M2 represent
unrelated applications with several service instances.

Microscope constructs a causality graph based on the communicating service
instance dependencies and non-communicating service instance dependencies.
Each node in the causality graph represents a service instance, and the directed
edge between two nodes represents a direct “cause-effect” relation between two
service instances. Figure3 shows an example of causality graph generated by
Microscope.

Communicating Service Dependency. The first type of dependency repre-
sents a dependency relation between two communicating service instances via
network. In previous studies, [7,23], they also use the network connection infor-
mation to construct causality graph. But the direction of dependency between
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two service instances are determined by some statistical methods such as Granger
Causality [13] and PC-algorithm [16]. So their results strongly depend on the
quality of data. Compared with these work, Microscope captures the directed
connection information to represent the communicating service instance depen-
dency relation without any statistical error.

To construct communicating service dependency, Microscope uses the parsed
network connection data directly which already contains two service instances
and the direction of dependency in each record. For example, (service-A,
instance-1)—(service-B, instance-1) represents (service-A, instance-1) is a cause
of (service-B, instance-1). Microscope uses the data collected in the last 10 min,
so the causality graph can be updated dynamically, which can exclude some inac-
tive service instances and improve the precision of root cause inference. However,
Microscope can also use data for longer periods of time and save static commu-
nicating service dependencies, which reduces the cost of building this type of
dependencies repeatedly.

Non-communicating Service Dependency. Due to local resource sharing,
the service may interfere with other services running in the same node, which
is called “non-communication service dependency”. For example, if a service
instance occupies all the CPU resource of a physical machine, the response time
of the other service instances in the same node, especially for computation-
intensive ones, is likely affected. Therefore, the SLO metrics changes of other
co-located services are also responsible for changes in the SLO metrics of the
current concerned services. We construct such relations by a statistical approach.

In one physical machine, the anomalies of Service A and Service B may
be caused by a common anomaly of Service C. To model these relations, we
adopt causal statistics [22] rather than the pair-wise correlation. Considering
the large volume of SLO metrics in microservice environments and the light-
weight requirement, we design our algorithm on the basis of PC-algorithm [16],
which is more computationally efficient than Bayesian network approaches [11].
To obtain such a DAG, we first construct a skeleton of the DAG, namely an
undirected graph. Then we orientate the skeleton with D-separation [16] rules.
A causal Markov condition [22] is used to produce a set of independent relations
amongst more than two variables and to construct the skeleton of a causality
graph. It is defined as

Definition 1. Given a DAG, G = (V, E), for every v € V, v is independent of
the non-descendant of v given its direct pa(v).

In this paper, we leverage a conditional cross-entropy based metric G2 [22] to
qualitatively test whether X is dependent on Y given Z, where X, Y and Z are
disjoint set of variables in V', X and Y are single variables, but Z can be a set of
variables. We choose G2 instead of other methods like Gaussian independence
test [16] as it does not need any assumption on the distribution of each variable.
G? is defined as
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G? =2mCE(X,Y|Z)

:ZP Zszmzlog (|(§y|z) ), (1)

(y]2)

where m is the sample size, CE(X,Y|Z) is the conditional cross entropy of X
and Y given Z. As stated in [22], under independence hypothesis, the metric G?
follows a x? distribution with a degree of freedom equals to

(Nx = 1)(Ny = 1) T] Ny, (2)
Z'ez

where Nx, Ny and N, represent the number of values of variable X, Y and
A respectively. Hence, via a x? test, we can decide whether the independence
hypothesis is accepted. If the p-value exceeds the significance level &, namely
p-value > & (£ = 0.02 in this paper), the independence hypothesis is accepted
otherwise rejected. If X is independent of Y given Z, then I(X,Y|Z) = 1.

PC-algorithm begins with a completely connected undirected graph, then
facilitates G2 to capture all the independence relationships within all variables
in pair-wise manner. The following work is to determine the causal directions
using D-separation [16] rules, which is demonstrated in our previous work [7] in
detail. Due to the limited space of this paper, we cannot show the details of this
PC-algorithm. Please refer to the paper [16] for the details of PC-algorithm. On
the basis of PC-algorithm, we construct a parallelized algorithm to construct
non-communicating service dependencies in micro-service environments more
efficiently. When the cardinality of Z equals 0, namely |Z| = 0, each pair of X and
Y is completely independent. Therefore, we leverage “MapReduce” [10] approach
to test their independence relations in parallel. Then, we get another undirected
graph with significantly reduced edges. If |Z| > 0, the independence tests of
X and Y given Z are independent any more as they share the intermediate
results. Under such a condition, we implement a multi-core parallel algorithm
in one node. That means we conduct one independence test per core. After the
parallelization of PC-algorithm, Microscope can construct the causal relations
in real time.

Once an anomaly is detected in the front-end services, the construction pro-
cedure of non-communicating service dependency is triggered. We first group
all the micro services based on physical machines. Let (S1,S2, -+ ,5,) denote
n services, N1, Na,-- -, N, denote m machines, (S;, N;) denote service ¢ locates
on machine Nj, so all services are separated into m groups. For each group, we
leverage parallelized PC-algorithm to construct service dependency relations.
The inputs are time series of SLO metrics of micro services. In this paper, we
leverage the mean response time as the SLO metric. Other SLO metrics are also
adoptable. 200 data points starting from the abnormal moment are adopted to
construct the service dependency graph. The reason why we choose 200 is stated
in the sensibility analysis of Sect. 4. One point we observed from our experiments
is that some causal directions calculated by PC-algorithm are not consistent with
the service dependencies obtained by network analysis. In this scenario, we trust
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Algorithm 1. The parallelized PC-algorithm

Input: The significance level € used to test the conditional independence; the response time metrics
of micro services, R={R1, R2, R3, - , Ry}, set the maximal cardinality of Z as 3; the number
of CPU cores c;

Output: non- communlcatlng service dependencies DAG, G

1: / * x Construct the skeleton of G * * /
2: Form the complete undirected graph G* based on R
3: i=-1
4: repeat
5: i=i+1
6: if i+ == 0 then
7 / % = Map process * x /
8: Select one pair of (X,Y’) from all the combinations
9: if I(X,Y) ==1 then
10: Record (X,Y)
11: end if
12: / * x Reduce process x x /
13: Collect all pairs of (X,Y) calculated by each Map process
14: Remove the edges X — Y recorded by (X,Y) from G*
15: Update G*
16: / = x Calculate service dependencies by multiple process on one machine * * /
17: else
18: for each ¢; € (1,2,--+ ,¢) do
19: Fork one process on one machine to conduct in independence tests
20: for each X € X do
21: for each Y € adj(G“, X) do
22: /** adj(G", X) represents the set of metrics which are adjacent to X in G". xx /
23: repeat
24: Choose Z C adj(G*, X))\ {Y'} with |Z| =1
25: if I(X,Y|Z) == 1 then
26: Remove X — Y from G*
27: Update G*
28: Make the separate set S(X,Y) =Z
29: end if
30: until edge X — Y is removed or all Z with |Z| = ¢ have been chosen.
31: end for
32: end for
33: end for
34: end if

35: until |adj(G", X)| <i,VX ori==3

36: The skeleton,G° = G*

37: /% * Orient the directions in G° with D-Separation ruless * /

38: for all pairs of nonadjacent variables X,Y with common neighbor Z do
39: if Z ¢ S(X,Y) then

40: Replace X — Z — Y in G° with X — Z « Y
41: end if
42: end for

43: Orient Y — Z as Y — Z whenever there is an arrow X — Y

44: Orient X — Y as X — Y whenever there is chain X — Z — Y

45: Orient X —Y as X — Y whenever there are two chains X —Z - Y and X — L - Y
46: Finally, output G

the result obtained by the latter as it is the ground truth. Therefore, to avoid this
scenario, we preset the connections and directions of edges that can be obtained
by network analysis in the undirected graph.

For the sake of clarity, we show the pseudo code of our algorithm in Algorithm
1. The computational complexity of Algorithm 1 is dominated by the DAG
skeleton construction procedure. The worst case is bounded by O(nmax{p?, p*})
[17], where n is the data length of each metric, p is the number of metrics, ¢
is maximal size of the adjacent sets, i.e., the cardinality of Z, |Z|. When ¢ is
large, the complexity increases exponentially. However, from the real data, we
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observe that ¢ always stays at a low level ¢ < 5. Hence this complexity is
affordable. We set ¢ = 3 in this paper. The constructed non-communicating
service dependencies will be merged with communicating service dependencies
to form the final service causal graphs.

3.3 Cause Inference

We summarize the process of cause inference in Algorithm 2. Microscope con-
tinually monitors the SLO metrics of the front end. When an SLO metric is
detected as abnormal, the cause inference is triggered. Then the cause infer-
ence engine starts from this abnormal node in the causality graph and traverses
the causality graph along the opposite direction of edges, which represents the
dependency between two service instances. When a node is abnormal, the cause
inference engine will check its neighbors. If all the neighbors are normal, the
current node will be added to the set of root cause candidates and the engine
stops traversing its children. If there exist one or more abnormal children, the

Algorithm 2. The cause inference algorithm

Input: An original abnormal service instance, rootNode; A causality graph DAG, G;
Output: A ordered list of root cause candidates
1: // Find root cause candidates
stack «— Stack(); candidates «— List()
stack.push(rootNode)
while stack is not empty do
node «— stack.pop()
// adj(G, X) represents the neighbors which are adjacent to X in G.
if adj(G,node) is empty then
candidates.append(node)
9: continue
10:  end if
11:  children «— List()
12:  for each neighbor € adj(G,node) do

13: if neighbor is abnormal then
14: children.append(neighbor)
15: stack.push(neighbor)

16: end if

17:  end for

18:  if children is empty then

19: candidates.push(node)

20:  end if

21: end while

22: // Scoring for each candidates

23: candidatesScore «— Dict()

24: for each candidate € candidates do

25:  candidatesScore[candidate] «— scoring(rootNode, candidate)
26: end for

27: return keys of candidatesScore sorted by value
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cause inference engine will continue to traverse these abnormal children. When
the traversal is finished, the engine gets a set of root cause candidates. Then
the engine calculates a ranking score for each root cause candidates. Finally, the
engine gets an ordered list of root cause with ranking score and the top one in
the list is considered to be the real root cause. In this paper, we use three-sigma
rule of thumb to detect if a service instance is abnormal and use the correlation
between the front end and the abnormal service instances as the ranking score.

To detect anomalies, we use a three-sigma rule of thumb. The so-called three
sigma rule of thumb expresses a conventional heuristic, that is, almost all values
are considered to be within the three standard deviations of the mean. Therefore,
it is empirically useful to treat the possibility of 99.7% as near certainty. In
mathematical notation, this fact can be expressed as Pr(u—30 <z < u+30) =
0.9973. If a value of SLO metric is not within the three-sigma interval of the
last 10 min, we think this service instance is abnormal. Although it is simple, it
works in this paper and can adapt to system changes in real time.

To sort the root cause candidates and get the most possible real root cause,
we calculate the pearson correlation coefficient of SLO metrics between the front
end and each candidate as the ranking score. According to our observations, if
two service instances have a strong dependency relationship, the curves of service
request latency of them are very similar. With this method, Microscope has the
ability to diagnose real root causes even when several system faults happen at
the same time.

4 Experimental Evaluation

Experiment Settings. Microscope is evaluated in a self-constructed distributed
system. The controlled system contains four client physical servers that host the
benchmark. Fach physical server machine has a 12-core 2.40GHz CPU, 64GB of
memory and runs with Ubuntu 16.04 OS. We evaluate Microscope in Kubernetes
platform. Kubernetes is an open-source system for automating deployment, scal-
ing, and management of containerized applications, which is one of best platform
for developing and running micro services.

Data Collection. To capture the network connection information, we develop
several tools from scratch. The captured network connection information is
recorded to a local log file. For forwarding and centralize log files, we use Filebeat
which offers a lightweight way to forward and centralize logs and files. Meanwhile,
we use elasticsearch to save all the network connection information harvested by
Filebeat from each physical nodes. To collect service request latency metrics,
we use Prometheus, an open-source systems monitoring and alerting toolkit, to
monitor the services instances. The sample interval in service request latency
metrics is 1s.

Benchmark. Sock-shop [2] is a microservices demo that simulates the sale of
socks of an e-commerce website which is a widely used micro-service benchmark
designed to help demonstrate and test microservices and cloud-native technolo-
gies. It provides some key properties (e.g. Polymorphism) that a micro-service
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system should have. It contains 13 services in the form of microservices. In each
services instance, we configure the CPU resource limited to 1 GHz and the mem-
ory resources limited to 1GB. The replicas of service instances are set to 1-3.
The total service instances are 36. Furthermore, sock-shop contains a load gen-
erator, which defines user behavior, to simulate the query per second(QPS) on
a website with simultaneous users, so we adopt this load generator to generate
the workload and configure the load to keep the QPS about 5000.

Fault Injection. Our work focuses on locating the root cause service instances.
The service instance in Kubernetes is a Pod which contains one or more con-
tainers. To mimic the real performance problems, we inject faults to containers
in Pods. We inject the following faults: (1) CPU exhausting: we use stress [3],
a deliberately simple workload generator for POSIX systems, to exhaust CPU
resources in injected containers; (2) NetworkJam: we use “tc”, a traffic control
tool in Linux, to delay the network packets; (3) ContainerPause: for simulating
the status of hangup of a service instance, we pause the container with “PAUSE”
command of Docker. We do not kill containers because Kubernetes will recreate a
new replicated Pod immediately. For evaluating the effectiveness of Mircoscope,
each fault mentioned above will be injected in each service instances more than
5 times and last 1 min. The total number of fault injections is 240.

Evaluation Metric. We use the following metrics to evaluate the effectiveness.

e Precision at top K(PRQK) indicates the probability that the root cause
appears in the top K of ranking list if the cause inference is triggered. It
is important to capture the root cause at a small value of K, thereby result-
ing in lesser number of service instances to investigate. Here we use K=1,2,3.

e Recall at top K (Recall@K) is the fraction of real cause that has been retrieved
at top K of the ranking list over the total amount of fault injections. Here we
use K=1,23.

4.1 Effectiveness Evaluation

Microscope strongly relies on the causality graph, Fig. 4 illustrates a causality
graph obtained by Microscope in about 10min when running a load genera-
tor. Different colors represent different applications. Via comparison with the
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Fig. 4. The sample causality graph generated by Mircoscope in our system
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ground truth, we find that all the relations shown in Fig. 4 are indeed the service
call relations without any exception, which demonstrates that Microscope can
build a reasonable causality graph in real time without domain knowledge and
instrumenting the application.
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Fig. 5. A view of service latency and causality graph of Sock-Shop

Figure 5 shows the curves of service request latency of four service instances
when 4 faults are injected respectively and the dependent relations between ser-
vice instances of sock-shop. To simplify the description, we keep only one replica
of each service. The curve of front-end and catalogue services in Fig. 5 show that
if a service is abnormal, it does affect other services which it depends on. But it
is not the case for the injected faults in payment service. The orders which the
payment depends on is strongly affected. However, it has a very subtle effect on
the front end. This is because Kubernetes has a load balancing mechanism. So
the cause inference may not be triggered and the precision and recall are low on
these types of services.

Figure 6 demonstrates the results of PR@Q1 and recall on several services of
Sock-shop. From Fig.6, we observe that most of the PR@1 fall in the range
70%-100% in different services and faults, except the shipping and payment
service. One of the exceptions is we lack the results of shipping and payment
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Fig. 6. The results of PR@Q1 and Recall@1
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with respect to network and container pause. This is because (i) the service
latency is collected by the process in the Docker container, (ii) these services
don’t request any other services, so the service latency is returned immediately
from the process without passing through the container network, (iii) we inject
the network delay to block the network in container rather than the process. So
the fault injection doesn’t work on these services. The other one of exceptions is
the results of CPU exhausting on shipping and payment. This is because (i) the
cause inference may not be triggered which mentioned above, (ii) both shipping
and payment are not computation-intensive, which the usage of CPU in these
service instances is the only 5 mHz. So even though we use stress tool to exhaust
the resources of CPU, these service instances still have a good response time.
Significantly, we get 100% at the fault of container pause, because it causes the
service latency missing and it’s a strong feature to diagnose.

Table 1. Performance

Catalogue | Front-end ‘ Carts ‘ Orders ‘ User ‘ Shipping | Payment
CPU exhausting

PR@Q1 86.7 100 66.7 190.0 90.0 | 57.1 33.3
PR@2 93.3 100 66.7 |90.0 100 |57.1 33.3
Recall@1 | 86.7 100 66.7 |90.0 90.0 | 40.0 6.7
Recall@2 | 93.3 100 66.7 |90.0 100 |40.0 6.7
Network jam

PR@1 100 100 86.7 |60.0 100 |- -
PR@2 100 100 86.7 |60.0 100 |- -
Recall@1 | 100 100 86.7 |60.0 100 |- -
Recall@2 | 100 100 86.7 1 60.0 100 |- -
Container pause

PR@1 100 100 100 | 100 100 |- -
PR@2 100 100 100 | 100 100 |- -
Recall@1 | 100 100 100 | 100 100 |- -
Recall@2 | 100 100 100 | 100 100 |- -

Table 1 demonstrate the performance of Microscope in Sock-shop on differ-
ent service and fault. It shows that Microscope can achieve an average 80%—
95% precision and recall for those computation-intensive and network-sensitive
services.

4.2 Comparisons

To validate the effectiveness of Microscope thoroughly, we compare it with sev-
eral state-of-the-art methods including TAN [9], NetMedic [18], Sieve [23], Roots
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Fig. 7. The comparison results in PR@Q1 and Recall@1
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[15], Causelnfer [7], MonitorRank [19], and CloudRanger [24]. To compare with
TAN, we replace our service dependency construction approach with Tree Aug-
mented Bayesian Network approach; To compare with NetMedic, we leverage
NetMedic’s state correlation approach to estimate service dependencies; To com-
pare with Sieve, we adopt sysdig to obtain the static service call graph, a bi-
directed graph then leverage Granger Causality to obtain the dynamic service
dependencies with response time metrics; To compare with Roots, we imple-
ment the four root cause identification approaches mentioned in Roots. But
since Microscope cannot track each request, we leverage the aggregated response
time of requests instead of the response time of one single request to identify
root, causes; To compare with Causelnfer, we capture the network packets and
leverage lag correlation to find service dependencies; To compare MonitorRank,
we use a random walk approach to find the root causes which has been imple-
mented in our previous work [24]; To compare with CloudRanger, we leverage
PC-algorithm to construct service dependencies with response time metrics of
micro services. Figure7. shows the comparison result in PR@1 and Recall@1.
From this figure, we observe that Microscope achieves a significantly better
result, 3% higher than Causelnfer, 13% higher than CloudRanger, 35% higher
than Roots, in PR@1. Roots identifies the service which contributes the most
variance of the abnormal service as the root cause. However, in our experiments,
we observe that Roots always finds the first upstream service as the culprit rather
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than real root causes. That is why its result is not very good. Similarly, Mon-
itorRank also puts the first upstream service in the first rank. Compared with
Causelnfer, CloudRanger, and Sieve, Microscope constructs the service depen-
dencies by analyzing the network connection events rather than calculating the
statistical correlations, which is closer to the ground truth. From the perspective
of the rank of correct causes, Fig. 8 shows the comparison result between differ-
ent approaches when rank <= 10. From Fig. 8, we observe that Microscope can
find 88% of injected faults at Rank 1, which outperforms other approaches.

4.3 Discussion

Overhead. Table 2 shows the overhead of Microscope. Data Collection module
takes about 8% CPU utilization as we collect the network connection information
and service latency. Overall, Microscope is a light-weight tool for monitoring and
pinpointing the abnormal service instances.

Table 2. The overhead of Microscope

System module CPU Cost

Data collection(Network connection) | 8% + 2% CPU utilization(Single cpu core)
Data collection(SLO metrics) 4% £+ 1% CPU utilization(Single cpu core)
Causality graph building 10 s(Single physical node)

Cause inference 2 s(Single physical node)

Sensibility. To evaluate the sensibility to the data length in constructing non-
communicating service instances dependency, we conduct several experiments.
Figure9 illustrates the changes in the data length increasing. From this figure,
we observe that Precision and Recall stay at a low level when the length of data
is lower than 200. Because the service causal graphs calculated by PC-algorithm
are not precise enough. However, after “the knee point”, the service causal graphs
keep constant and the diagnosis results do not change anymore.

Scalability. Microscope is easy to scale up whether we add new service instances
or machines in a large distributed system. In order to test the scalability of the
system, we deployed more replicas of services instances with Sock-shop. From
Fig. 10, we can see that Microscope has only 7% accuracy degradation from 36
service instances to 120 service instances, showing good scalability.

Indeed, the micro-service system provides some fault-tolerance mechanisms
such as circuit-breaker, which aim to avoid cascading errors. Also some real
microservice infrastructures in kubernetes provide features such as scalability,
restart or load balance policies. Considering these, Microscope will resolve these
problem in the future work.
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5 Related Work

RCA(Root cause analysis) in large distributed systems with many services is a
frustrating task. To pinpoint the root causes of performance problems, a large
number of researchers are dedicated to this area. In the following, we present
the relative work briefly.

Trace Based Work. Many famous tools fall into this category such as Magpie
[4], X-trace [12], Pinpoint [6] and The Mystery Machine [8]. These tools can accu-
rately record the execution path of the program and locate the error by detecting
source code or binary code. It’s helpful to debug distributed applications. How-
ever, deploying these tools is a daunting task and requires administrators to
understand the code well. Compared to them, Microscope doesn’t need instru-
menting the source code and domain knowledge. So it can be easily deployed and
used. Although Microscope does not detect true software bugs, it does provide
some hints. Roots [15] is a near real-time monitoring and diagnostics framework
for web applications deployed in a PaaS cloud without instrumenting the appli-
cation code. However, Roots only consider web applications and must modify
the front-end request server(typically a software load balancer) by instrumenting
the request identifier to an HTTP request, which hinders it to be widely used.

Signature Based Work. These methods employ a supervised learning
algorithm to classify performance anomalies under several typical scenarios.
CloudPD [21] uses a layered online learning approach to deal with the higher
occurrence of faults in clouds; Fingerprint [5] provides the basis for automatic
classification and identification of performance crises in a data center; All of
these methods require labeled data or problem tickets and have limited general-
ization on new anomalies. While Microscope is an unsupervised method, so it’s
able to capture new anomalies and have a good generalization.

Dependency Graph Based Work. In recent years, performance diagnosis
based on dependency graphs has become a surge. Using graph models, we can
not only understand the problem propagation path but also infer the root cause.
Sieve [23] infers metrics dependencies between distributed components of the sys-
tem by using Granger Causality tests. Causelnfer [7] automatically builds a two-
layered hierarchical causality graph and the dependency direction is determined
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by a lag correlation. This method strongly depends on data and the dependent
direction is generated by some statistical method. Compared to them, Micro-
scope uses the network connection information, which is real dependencies, to
build the causality graph. TAN [9] is used to infer performance issues at a metric
level, but it is not effective enough due to a lack of causality.

Finally, compared to much excellent performance monitoring and analysis
tools such as Splunk, CaleCd, and IBM Tivoli Gardens, Microscope provides
more advanced analysis capabilities, such as causality graph building and root
cause inference techniques, without the need for human intervention.

6 Conclusion and Future Work

This paper designs and implements Microscope, a novel system for helping oper-
ators and developers with pinpointing the root causes in microservices envi-
ronments. Microscope automatically builds a causality graph without domain
knowledge and instrumenting the application and infers the root causes along
the directed edges in the graph. The experimental evaluation shows that Micro-
scope not only can achieve a high precision and recall for performance diagnosis
but also is lightweight and can scale up readily in large distributed systems.

As part of future work, we plan to explore using more types of SLO metrics
and methods of ranking candidates to improve the effectiveness and general-
ization ability of Microscope to adapt more different types of services. We will
make Microscope more lightweight in order to work in real-time and validate
Microscope in some real microservice systems with more kinds of faults.
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