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ABSTRACT Detection and analysis of traffic anomalies are important for the development of intelligent
transportation systems. In particular, the root causes of traffic anomalies in road networks as well as their
propagation and influence to the surrounding areas are highly meaningful. The root cause analysis of traffic
anomalies aims to identify those road segments, where the traffic anomalies are detected by the traffic statuses
significantly deviating from the usual condition and are originated due to incidents occurring in those roads
such as traffic accidents or social events. The existing methods for traffic anomaly root cause analysis detect
all traffic anomalies first and then apply, implicitly or explicitly, specified causal propagation rules to infer
the root cause. However, these methods require reliable detection techniques to accurately identify all traffic
anomalies and extensive domain knowledge of city traffic to specify plausible causal propagation rules in
road networks. In contrast, this paper proposes an innovative and integrated root cause analysis method.
The proposed method is featured by 1) defining a visible outlier index as the probabilistic indicator of traffic
anomalies/disturbances and 2) automatically learning spatiotemporal causal relationship from historical data
to build an uneven diffusion model for root cause analysis. The accuracy and effectiveness of the proposed
method have been demonstrated by experiments conducted on a trajectory dataset with 2.5 billion location
records of 27 266 taxies in Shenzhen city.

INDEX TERMS Root cause analysis, traffic anomalies, spatiotemporal causal relationship, visible outlier
index, uneven diffusion model.

I. INTRODUCTION
Detection and analysis of traffic anomalies / disturbances are
important for the development of intelligent transportation
systems. In particular, the analysis of root cause is of great
significance. It carries information about propagation of traf-
fic disturbance in the surrounding parts of road networks,
which can provide in-depth understanding of the traffic
dynamics to the decision makers of transport department, and
assist them to sharply grasp the key point, control situations,
and benefit long-term planning for the further development.
Recently, this problem has been studied in [1]–[5].

Most existing approaches are based on the analysis of
detected anomalous links or regions. They typically com-
prise two steps. First, a certain method is used to detect
traffic anomalies. Then the spatiotemporal interrelationships
between the detected traffic anomalies are analyzed follow-
ing implicitly or explicitly defined causal propagation rules
to trace back to the road segment where the very original
traffic anomaly occurs due to local incidents, such as traffic

accidents or social events. However, there are shortcomings
in both of the two steps which together undermine the effec-
tiveness of root causal analysis.

The first step is to detect traffic anomalies. Unfortunately,
no method can accurately detect all traffic anomalies since
traffic anomaly detection is a probabilistic problem. The
traffic situation in a road segment (or in a region) is con-
sidered anomalous if a traffic indicator, such as traffic flow
(i.e., the number of vehicles passing per time unit) or aver-
age traffic speed, deviates from the normal value in history.
A threshold is required to determine whether the deviation is
significant or not. In the second step, existingmethods require
implicit or explicit rules of causal propagation between traffic
anomalies in road networks. However, no universal rule can
be applied in all situations due to the inhomogeneity of traffic
on different road segments and time periods. For example,
some road segments have a large amount of traffic flow while
other road segments have a small amount of traffic flow; a
traffic anomaly may influence one nearby road much more
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significant than other nearby road segments in the morning
but not in the afternoon. To understand the differences, exten-
sive domain knowledge of both road networks and traffic on
them across the entire city is required.

To overcome these shortcomings, we propose an innova-
tive and integrated root cause analysis of traffic anomalies
method. First, we define a Visible Outlier Index (VOI) which
represents the possibility of the traffic anomaly occurring in
a road segment (or in a region) at a certain time bin. And then
the expected VOI in each region at the current time bin is
estimated using theVOIs of its neighborhoods and itself in the
past time bin using an Uneven Diffusion Model, which learns
the causal propagation of traffic anomalies in road networks
from historical data. By comparing the expected VOI and
the true VOI observed, if the difference is notable, the traffic
anomaly originated by local incidents such as traffic accidents
or social events can be identified. The original traffic anomaly
may propagate to surrounding parts of road networks and
cause more traffic anomalies such that they are called root
cause. The contribution of this paper is three-folds:
• We propose an innovative and integrated solution of
root cause analysis of traffic anomalies in road networks
which overcomes the shortcomings of current state-of-
the-art methods. The effectiveness of proposed solu-
tion has been verified by experiments using a trajectory
dataset with 2.5 billions location records of 27,266 taxis.

• We measure the traffic anomaly using a new probabilis-
tic metric, VOI, instead of detecting all traffic anomalies
as the first step of causal analysis. It reduces the uncer-
tainty introduced during traffic anomaly detection.

• We use the deep learning architecture model with
Stacked AutoEncoder (SAE) to automatically learn spa-
tiotemporal causal relationship, based on which an
uneven diffusion model is built for analysis of traffic
anomalies in different regions at different time periods.
As a result, the requirement of extensive domain knowl-
edge of road networks can be minimized.

The rest of the paper is organized as follows. In Section II,
we present the related work. The probabilistic indicator of
traffic anomaly is defined in Section III, the UnevenDiffusion
Model is proposed in Section IV, and the root cause identifi-
cation is discussed in V. Then, Section VI demonstrates the
effectiveness of the proposedmethod by experimental results.
Finally, this paper is concluded in Section VII.

II. RELATED WORK
Mining causal relationship of traffic anomalies has attracted
widespread attention. The existing studies identify the traffic
anomalies first, and then infer the root cause following the
implicitly or explicitly specified causal propagation rules.

A. SPATIOTEMPORAL CAUSAL RELATIONSHIP
Xing et al. [4] construct directed acyclic graph (DAG) which
explores spatial-temporal density to reveal the outlier causal
relationship of traffic anomalies. Liu et al. [3] propose out-
lier causality trees with attempt to capture the relationships

between spatiotemporal outliers detected. Pang et al. [5] have
proved that Likelihood Ratio Text based solution is effective
in spatiotemporal outlier detection. But it requires complex
parameter determination process which is tailored to different
types of traffic anomalies and highly depend on informed
dataset. In [3]–[5], the prerequisite is that the traffic anoma-
lies have been detected by identifying behaviors deviating
from regular patterns; and the propagation rules of traffic
anomalies have been well defined based on domain knowl-
edge of traffic across the city. In particular, the propagation
rules must be spatiotemporally continuous, otherwise, these
methods fail to infer the root cause.

Chawla et al. [1] infer the origin-destination routes which
cause the anomalous links observed between regions. Here,
a route consists of a sequence of links while links connect
regions directly. In the first step, the principle component
analysis (PCA) has been applied to detect anomalous links
connecting regions based on their historical pattern. Then,
a link-route matrix is created, where the detected anoma-
lous links haven been represented, finally the optimized L1
technique is used to infer the routes causing the link anoma-
lies. Note that this problem is very different from our prob-
lem of identifying the links/regions where the root cause of
the detected anomalies occurs, other than origin-destination
routes. Subsequently, the methods developed in [1] cannot
resolve our problem.

B. HEAT DIFFUSION MODEL
The work most related to this study finds the major anomaly
causes based on heat diffusion model [2]. Traffic anomalies
are assumed to be like heat sources, which propagate energy
to surrounding parts in road networks. Initially, the traffic
anomalies are detected. It assumes that the traffic flow distri-
bution of any road segment is normal. Given a road segment,
the mean of traffic flows is obtained using historical data and
an anomaly is detected if the observed traffic flow at a time
bin deviates from the mean significantly. Then, the traffic
anomalies as the heat sources spread energy to nearby road
segments and decay progressively.

By capturing how a road segment is influenced by the
spreading energy from all neighboring road segments and
itself in the current time period, a model has been proposed
to predict the expected traffic flow of the road segment in
the next time period. If the observed traffic flow in the next
time period deviates a lot from the expected, there is a major
anomaly cause in this road segment; otherwise, no major
anomaly cause is reported even though the observed traf-
fic flow deviates from its mean significantly. This method
borrows the idea of heat diffusion in thermal physics to
model the causal propagation of traffic anomalies in road
networks.

However, the heat diffusion model assumes the uniform
diffusion of energy to the periphery. In fact, the distribution
of the traffic flow in road networks is uneven. This can be
explained by a large amount of traffic flow on some road
segments and a small amount of traffic flow on other road
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segments. Also, a traffic anomaly can influence one nearby
road segment much more significant than other nearby road
segments. Therefore, simply using the heat diffusion model
to infer the root cause of traffic anomalies is theoretically
inaccurate. Not to mention the uncertainty introduced by the
results obtained from anomaly detection stages.

C. DISCUSSIONS
For the first step in the existing methods, the traffic anoma-
lies are detected. However, no method can accurately detect
all traffic anomalies since it is a probabilistic problem. For
the second step in existing methods, the causal propagation
rules are specified, implicitly or explicitly. However, no uni-
versal rule can be applied in all situations due to the inho-
mogeneity of traffic on different road segments. Even though
domain knowledge of traffic in city road networks helps solve
the problem, it is hard to completely obtain and maintain such
domain knowledge due to the scale and dynamic nature of city
road networks.

In this paper, we have the following improvement. First,
we introduce the probability-based traffic anomaly indica-
tor called visible outlier index (VOI) for each road seg-
ment to measure traffic anomaly at a specifical time bin
instead of detecting all traffic anomalies directly. Second,
an uneven diffusionmodel based on spatiotemporal neighbor-
hoods are applied to automatically learn causal propagation
rules from historical data instead of manually defined by
domain experts. The proposed method takes into account the
comprehensive effect of both spatial and temporal domain
on the observed region, and minimizes errors introduced by
detection methods or human factors. In theory, it has the
ability to dig into the root causes of traffic anomalies more
accurately.

III. PROBABILITY-BASED TRAFFIC ANOMALY
INDICATORS
The trajectory of a vehicle is a sequence of location records
continuously captured by the GPS devices equipped on the
vehicle. A location record is represented as <lon, lat, times-
tamp, speed >, where (lon, lat) and speed are longitude,
latitude and speed of the vehicle at time timestamp. In order
to gain insight into the traffic dynamics of the whole city,
we partition the road networks by dividing the city area
into small and uniform regions. For example, if we select
lon=0.005 and lat=0.004 as a criterion to divide, each region
represents an approximate 500m× 500m region. In temporal
dimension, each hour is divided into uniform time bins where
each bin spans δ mins (e.g., 5 mins or 20 mins). For each
spatiotemporal partition, the traffic condition can be extracted
using the trajectory data falling in the partition.

There are different ways of partition in the context of
specific applications, for example, partition by road links [2],
or by dividing city areas using main road segments [5],
or using road network Voronoi diagram [6]. Note the city
area partition method and the time bin span are independent
of the root cause analysis proposed in this study. That is,

the proposed solution works no matter how the road networks
are partitioned.

The traffic situation can be measured using different
indices such as traffic flow or average traffic speed. In a
region at a time bin, if the value of traffic indicator signifi-
cantly deviates from the regular value in the same region at the
same time bin, a traffic anomaly is reported [1]–[5]. However,
these indices are not considered to depict traffic situation
accurately since traffic flow and average traffic speed are
aggregated information.We need a more accurate indicator in
this study to describe the nuances of traffic situations. To this
end, we measure the traffic speed distribution, i.e., the dis-
tribution of individual vehicles in different speed ranges. For
example, 30% vehicles are in the speed range of 40-50km/h,
40% vehicles in the range of 50-60km/h, and 30% vehicles
are in the range of 60-70km/h. Given a region at a time bin,
the speed distribution in different days should be similar if
the traffic situation is normal. If the speed distribution in a
particular day differs from the distribution in most other days,
it indicates traffic anomaly.

To measure traffic situation based on speed distribu-
tion, the two-sample Kolmogorov-Smirnov test (KS-test) is
applied in this study. In statistics, KS-test is a nonparametric
test of the similarity of continuous, one dimensional proba-
bility distributions. KS-test can be used to compare a sam-
ple with a reference probability distribution. The distance
between the empirical distribution function of the sample
and the cumulative distribution function of the reference is
quantified by the KS statistic, which determines whether the
sample is from the reference distribution. This feature of
KS-test can help us quantify the extent of a traffic anomaly
that happens in a specified spatiotemporal space. Specifically,
given the speed distribution extracted from trajectory data
across all days as the reference distribution and the speed
distribution extracted from trajectory data in a particular day
as the empirical distribution, their mismatch of KS-test is
calculated.

In KS statistics, the empirical distribution function Fn for n
samples and identically distributed observations Xi is defined
as:

Fn(x) =
1
n

n∑
i=1

I[−∞,x](Xi) (1)

where I[−∞,x](Xi) is the indicator function, equal to 1 if
Xi ≤ x and equal to 0 otherwise. When the two-sample
KS-test is used in the latter case, the KS-statistic is:

Dn,m = max
∣∣Fe,n(x)− Fr,m(x)∣∣ (2)

where Fe,n and Fr,m are the empirical distribution functions
of the sample in a particular day and the reference distribution
of the data across all days respectively, n andm are the sizes of
the sample and the data across all days respectively. The null
hypothesis is that the sample is drawn from the reference
distribution. The null hypothesis is rejected at significance
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level α if

Dn,m > c(α)

√
n+ m
nm

. (3)

where the value of c(α) is given by table of critical values for
the two-sample test.1

In context of this paper, in a region A at time bin t of a
particular day d , the traffic data are extracted from trajectories
of taxis and they are viewed as a sample. For the same
spatiotemporal partition in all different days, the speeds of
all vehicles together form the reference distribution in the
partition. If the null hypothesis is rejected, it means traffic
anomaly happens in a region A at time bin t of a particular
day d ; otherwise, traffic is in the normal situation.
According to KS-test, the hypothesis test calculates

value-asymptotic pvalue, the probability of observing a test
statistic as extreme as, or more extreme than, the observed
value under the null hypothesis. Comparing pvalue with a
significance level α, if pvalue is less than the significance level
α, we can reject the null hypothesis; otherwise, accept it.
Instead of specifying the significance level α, we define a
new concept known as visible outlier index to indicate how
likely a traffic anomaly happens.
Definition 1 (Visible Outlier Index (VOI)):

VOI = |log(pvalue)| . (4)

Note that VOI is the rescaled pvalue. The value of pvalue
is in the range of [0,1] and the value of VOI is in the range
of [0,∞]. Changing the scale is for the following reason.
Only when pvalue is very close to 0 (typically [0, 0.05]), it is
regarded as an unusual situation. So, the difference between
pvalues when they are very closer to 0 is particularly important
and will be used in the following processing. After rescaling,
VOI can properly capture any change in this range.

IV. UNEVEN DIFFUSION MODEL
In this section, we propose an uneven diffusion model which
can be trained in advance using historical data to learn the
propagation relationship of traffic disturbances between the
target region and the surrounding parts in road networks.
Then, the model can be used to predict the traffic situation
of the target region at the next time bins.

A. TRAFFIC SPATIOTEMPORAL NEIGHBORHOODS
Through road networks in a city, it takes time for a vehicle
to move from a region to a neighboring region. Likewise,
a traffic disturbance in one region propagates progressively
and eventually causes other traffic disturbances in nearby
regions after a period of time. So, a concept called traffic
spatiotemporal neighborhoods is introduced to represent the
regions covered.
Definition 2 (Traffic Spatiotemporal Neighborhoods):

Given a road segment A in road networks, A’s traffic spa-
tiotemporal neighborhoods at time bin t are all regions from

1http://sparky.rice.edu/astr360/kstest.pdf

FIGURE 1. An example of traffic spatiotemporal neighborhoods.

FIGURE 2. The matrix of spatiotemporal neighborhoods as the input of
the uneven diffusion model.

which vehicles in one time bin can reach A by driving through
road networks in time bin t − 1.

Note the traffic spatiotemporal neighborhoods of region A
include region A itself. An example of traffic spatiotemporal
neighborhoods is illustrated in the Fig. 1. For region A at time
bin t , its traffic spatiotemporal neighborhoods are marked in
blue. For region B at time bin t , its spatiotemporal neighbor-
hoods is marked in green. If the traffic situations in region
A’s traffic spatiotemporal neighborhoods in the past time bin
t − 1 are known, the traffic situation of region A in time bin
t should be able to be predicted accurately if no incident like
traffic accident happens in region A in time bin t , so does
region B.
For the same region, the propagation pattern of traffic dis-

turbances from traffic spatiotemporal neighborhoods is con-
sidered relatively stable. So, training the Uneven Diffusion
Model using historical data is possible to learn the propaga-
tion pattern from spatiotemporal neighborhoods. An example
is illustrated in Fig. 2. Given a regionA at a time bin t , the traf-
fic disturbances of A’s traffic spatiotemporal neighborhoods
at time bin t − 1 are represented as VOIs(RA, t − 1). The
value of VOI in one neighboring region is greater, the greater
the traffic disturbances and thus more impact to region A. Let
the traffic disturbance of region A at time bin t be VOI (A, t).
TheUnevenDiffusionModel can be used to predictVOI (A, t)
using VOIs(RA, t − 1).

VOI (A, t) = D(VOIs(RA, t − 1)) (5)
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FIGURE 3. Training uneven diffusion model for region A.

Clearly, for different regions, the propagation patterns of
traffic disturbances from their traffic spatiotemporal neigh-
borhoods are intrinsically different because the underlying
road networks in different regions have different topology.
For region B as shown Fig. 1, the traffic disturbance of region
B at time bin t is represented by VOI (B, t) which can be
estimated by traffic disturbances of its traffic spatiotemporal
neighborhoods, i.e., VOIs(RB, t − 1). Note that it requires to
train a different Uneven diffusion Model for region B.

B. DEEP LEARNING ARCHITECTURE
For region A, we learn the traffic disturbance propagation
pattern in road networks using the Uneven Diffusion
Model so as to predict VOI of region A at the next
time bin. A deep learning network is adopted. Actually,
there are varieties of traffic prediction approaches that
have been proposed, including traffic status prediction (e.g.
traffic flow [7]–[9], traffic speed [10], [11]), anomaly rele-
vant information prediction [12], [13] and anomalous level
prediction [17]. In these studies, the advantage of Neural
Network and Deep Learning have been acknowledged in
prediction performance.

Deep learning is a multilayer neural network and abstracts
the input data into a series of feature data (hidden layers)
and then maps to the specified output. It typically uses
unsupervised or semi-supervised feature learning and hier-
archical feature extraction algorithm to obtain the relation-
ship between input and corresponding output. The major
improvement of the deep network comprises the follow-
ing stages. Hinton et al. [14] proposed a greedy learn-
ing algorithm for Deep Belief Networks (DBN) in 2006.
A classical DBN consists of several RBM (Restricted Boltz-
mann Machines) layer and a BP (Back Propagation) layer.

Bengio et al. [15] developed an unsupervised pre-training
algorithm and Stacked Auto-Encoder (SAE) model which
uses auto-encoder instead of RBM as a layer building block
for deep networks. They have also proved its effectiveness.
In this paper, we use the deep learning architecture with SAE
to build the Uneven Diffusion Model illustrated in Fig. 3.
Inputs of the model are the VOIs of traffic spatiotemporal
neighborhoods at the previous time bin, and outputs of the
model are the VIO of the target region at current time bin.

1) STACKED AUTO-ENCODER (SAE)
SAE is a stack of autoencoders and it is the important com-
ponents of the model. An autoencoder is a network structure
which usually has one input layer, one hidden layer and one
output layer as shown in Fig. 3 (marked in red). For example,
there is a sample X = x1, x2, x3, · · · , xn. First, X as input
maps to a hidden representation H according to Eq. (6). This
process is known as encoder procedure.

H = f (W1X + b1) (6)

whereW1 is a weight matrix and b1 is an encoding bias vector.
We consider function f (x) as logistic sigmoid function (i.e.,

1
1+exp(−x) ). And then, H is used to reconstruct X ′ according
to Eq. (7),

X ′ = g(W2H + b2) (7)

where W2 is decoding weight matrix and b2 is decoding bias
vector. This process is called decoder procedure. The model
parameters can be obtained by minimizing reconstruction
error between X and X ′ (such as sum of squared errors).
In fact, only some of the parameters of autocoders are used in
the SAEmodel (marked in red rectangle in Fig. 3), i.e.,W1, b1
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and b2. That is, the output of the previous layer of autoencoder
is used as the input of the next layer of autoencoder.

2) TRAINING ALGORITHM
As shown in Fig. 3, the training process of the model is
essential. The implicit relationship between the target region
and its spatiotemporal neighborhoods can be captured. The
VOIs of spatiotemporal neighborhoods at the previous time
bin is the input while the VOI of the corresponding region
at the current time bin is the output. At the output of the
deep learning architecture, Back Propagation (BP) is adapted
to adjust the error in order to optimize training. BP is a
multi-layer perceptron proposed by Rumelhart et al. [16]
and can learn any complex function. The greedy learning
algorithm proposed by Hinton et al. [14], and the unsuper-
vised pre-training algorithm and the SAE mode developed
by Bengio et al. [15] make deep networks more efficient
after pre-training the network layer in a bottom-up way. The
training procedure is as follows:

(1) Train the first layer in SAE as an autoencoder
according to Eq. (6) and Eq. (7) by minimizing the
reconstruction error using the input data;

(2) Train each of the following layers in SAE as an
autoencoder in order, where the output of the pre-
vious layer is the input of the next layer;

(3) Feed the output of the last layer in SAE as the input
of a predictor;

(4) Initialize the deep network using the weights
obtained by training each layer separately, and then
fine-tune the parameters of the entire network in a
supervised way.

V. ROOT CAUSE ANALYSIS
Given region A at time bin t , the root cause analysis aims
to report whether there are traffic anomalies due to occur-
rence of significant traffic disturbance in region A at time
bin t . Note that the originated traffic disturbance can be the
consequence of any irruptive city incidents like traffic acci-
dent or social events. Identifying the types and characters of
such city incidents behind traffic disturbance is an interesting
topic which requires analyzing additional information such
as social media and local news. But this is out of the scope of
this study.

For each region, its Uneven Diffusion Model has been
trained before being used for prediction. The VOI at time
bin t can be estimated by using VOIs of its spatiotemporal
neighborhoods at time bin t − 1 as inputs of the uneven
diffusion model. If the predicted VOI in A is similar to the
truly observed VOI in A at time bin t , there is no root cause
of traffic anomaly in region A at time bin t . It indicates one
of the two situations: (i) the traffic situation of A is normal,
or (ii) the traffic disturbance happens in A but it is caused
by the traffic disturbances of spatiotemporal neighborhoods.
On the other hand, if the predicated VOI in A is significantly
less than the truly observed VOI in A at time bin t , it indicates

Algorithm 1 Finding Root Causes of Traffic Anomalies
for Region r During (Tmin,Tmax)
Input: significant threshold α, region r .
Output: A set of root causes RC .
Initial RC ;
1t → 5 mins ;
t ← Tmin +1t ;
STN r → r’s spatiotemporal neighborhoods ;
if D (r) is not trained then

training D (r) ;
else

while t < Tmax do
RVOIr,t → VOI (r, t);
PVOIr,t → D(VOIs(STN r , t −1t)) Eq. (5);
if (RVOIr,t − PVOIr,t ) > α then

RC → RC ∪ (r, t);
end
t = t +1t;

end
end

that traffic disturbance of noticeable level is originated in
A at time bin t . The detail is shown in Algorithm 1. The
significant threshold α can be defined by users according
to different aims. Such originated traffic disturbance may
propagate to surrounding regions in the following time bins
and thus it is the root cause of traffic disturbances. The root
cause analysis sorts regions in descending order in terms
of the difference between the predicated VOI and the truly
observed VOI. The regions with higher difference deserve
more attention. Using the output of the root cause analysis,
further analysis tasks can be performed such as the frequent
patterns detection, the relation between the time of a day
and the occurrence of originated traffic disturbance, and the
propagation direction and path of traffic disturbance in road
networks.

An example is shown in Fig. 4 and Fig. 5, where the
regions are marked in different colors to represent the VOIs
in corresponding regions. In Fig. 4, the predicted VOIs of
regions at time bin t are shown using the trained Uneven
Diffusion Model based on the VOIs of their traffic spatiotem-
poral neighborhoods. In Fig. 5, the truly observed VOIs of
regions at time bin t are presented.

Note that the truly observed VOIs of both region A and B
are high as shown in Fig. 5. It means regionA has a significant
traffic disturbance, so does regionB. Comparing the predicted
VOI and the truly observed VOI in region A, the difference
is trivial, it means the disturbance of region A is mainly
due to the traffic disturbances from traffic spatiotemporal
neighborhoods at time bin t − 1. In contrast, comparing
the predicted VOI and the truly observed VOI in region B,
the difference is significant. It means the traffic disturbance
is mainly originated in region B at time bin t . Compared with
region B, the predicted VOI and the truly observed VOI in
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FIGURE 4. Predicted VOIs at time bin t .

FIGURE 5. Truly observed VOIs at time bin t .

region C differs much more significantly. It reveals that more
significant traffic disturbance is originated in regionC at time
bin t .
In addition to the distribution of VOIs in city, the contour of

traffic disturbance is generated as shown in Fig. 4 and Fig. 5

by connecting neighboring regions with the equal value. The
contours give a better understanding how traffic disturbances
diffuse to surrounding regions smoothly.

It is worthy to point out that, to understand what have
happened in the road segments in region C and region B, it is
straightforward to partition road networks by road segments
instead of regions. Also, the time bin can be split into finer
granularity. The same methodology can be applied without
any adaption to detect the road segment and the time bin
where traffic disturbance is originated.

VI. EXPERIMENTAL STUDY
All experiments have been conducted on a PC with 64-bit
Windows 7, 8GB RAM and Intel CPU i7−4790@ 3.60GHz.
The algorithms are implemented by Matlab and Python.
We use a real-world trajectory data set with total of 2.5 bil-
lion data points from 27, 266 taxis during 1/12/2014 −
31/12/2014 in Shenzhen City, China. Each trajectory data
point is sampled every 15 − 30 seconds. In the experiment,
the time is partitioned uniformly into 12 time bins per hour
with 5 mins each. The geographical area of Shenzhen City
studied in this paper is [113.75′E−114.64′E] and [22.44′N−
22.85′N ]. We divide the city area into 42 × 90 regions of
equal size where each region spans 0.01 in latitude and 0.01 in
longitude. For every region at every time bin, the location
records are extracted from trajectory data and the VOI is
computed according to Eq. (4). Among all regions and time
bins, 80% are selected as the training data set of Uneven
Diffusion Model, and remaining 20% as the testing data set.

A. PERFORMANCE EVALUATION
In this section, we test the performance of the proposed
Uneven Diffusion Model, i.e., SAE+BP. by comparing with
other three models: (i) SdAEmodel which is proposed in [17]
using Stack denoise Autoencoder to form a deep architecture,
(ii) Back-propagation Neural Network (BP NN) which is
a classic neural network model and is developed in [16],
and (iii) SAE+LR model which is a SAE network with
a logistic regression layer on top of the network [18]. The
performance metrics are mean absolute error (MAE), mean
relative error (MRE) and root mean square error (RMSE)
which are defined below:

MAE =
1
n

n∑
i=1

|yi − ŷi| (8)

MRE =
1
n

n∑
i=1

|yi − ŷi|
yi

(9)

RMSE = (
1
n

n∑
i=1

|yi − ŷi|2

yi
)
1
2 (10)

1) VOI PREDICTION
The test results are presented in Table 1. It is clear that
SAE+BP outperforms other models in all three metrics.
Although BP NN is generally an effective learning model,
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FIGURE 6. Predicted VOIs in one area of Shenzheng city. a) SAE+BP (proposed). b) SdAE model. c) SAE+LR. d) BP NN.

FIGURE 7. Predicted VOIs in another area of Shenzhen city. a) SAE+BP (proposed). b) SdAE model. c) SAE+LR. d) BP NN.

there is a relatively high prediction error. Compared to other
models, BP NN has the worst performance. SAE+LR uses
SAE network plus a logistic regression layer. It is slightly
better than BP NN, but not as good as SdAE which uses
stacked denoise autoencoder to form deep networks. Denoise

autoencoder is characterized by filtering values of some lay-
ers by a certain probability.

In Fig. 6 and 7, the contour contrastive diagram of VOI
predicted using different models (SdAE, BP NN, SAE+LR
and SAE+BP) for a small region in Shenzheng City and
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TABLE 1. Predicted values.

FIGURE 8. Comparison with heat diffusion model [2].

the ground truth are illustrated respectively. We can observe
that the predicted VOIs using SAE+BP model are almost the
same as the ground truth. It is followed by SdAEwhere minor
errors occur. While many disturbances can be predicted by
SAE+LR, there are many false reports. BP NN has the worst
performance.

2) COMPARE HEAT DIFFUSION MODEL
We compare our Uneven DiffusionModel with the heat diffu-
sion model [2] which is the most relevant study to this work.
To be fair in comparison, the traffic anomaly detection in [2]
is skipped over since parameter settings in the detection may
lead to different set of traffic anomalies (see Section II-B).
That is, both Uneven Diffusion Model and the heat diffusion
model use VOIs observed a time bin to predict the VOI at
the next time bin; and compare the predicted VOI against the
truly observed VOI to figure out where the originated traffic
disturbances occurs.

For this test, we manually identify 100 regions where orig-
inated traffic disturbances happened as the ground truth. The
evaluation metrics include precision, recall, accuracy and
F1-score. The test results are shown in Fig. 8. It is unsurprised
that Uneven Diffusion Model dominates the heat diffusion
model. While Uneven Diffusion Model learns traffic distur-
bance propagation from historical data to fit the situations in
different locations and orientations in road network, the heat
diffusion model directly applies uniform propagation pattern
everywhere across the city.

B. CASE STUDY
Three scenarios have been closely investigated on
07/12/2014 in Shenzheng City which is the day of Shenzhen
International Marathon. Shenzhen International Marathon is
held at Shennan Road in Shenzhen City at 8 : 00 − 14 : 00.
As a massive event, it impacts the city traffic widely and
significantly due to temporal road controls in many parts
of the city. That is, we can observe many significant traffic
disturbances and they are mainly caused due to the road
controls. Using the case studies, the proposed root cause
analysis solution are tested to report where significant traffic
disturbances are originated.

1) SCENARIO ONE
The first scenario is in time bin 08 : 00− 08 : 05 of the day.
As shown in Fig. 9, the red dots indicate the starting/ending
locations of the Marathon, i.e., Shenzhen City Civic Center.
The red line with arrows indicates the Marathon route and
direction to the Return point, i.e., Nantou Middle School.
Fig. 9 shows two regions with traffic disturbances originated
in time bin 08 : 00 − 08 : 05 which are marked with two
white circles and denoted asCause. The discovery can bewell
justified.

The two regions are next to the starting location of the
Marathon. The traffic control around this area begins before
08 : 00 and remains after 08 : 00. This naturally causes
unexpected traffic disturbances. Meanwhile, we can observe
other areas along the Marathon route mainly do not have

FIGURE 9. Scenario 1: Causality analysis for traffic disturbance at 8:05 a.m. on 07/12/2014.
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FIGURE 10. Scenario 2: Causality analysis for traffic disturbance at 9:10 a.m. on 07/12/2014.

FIGURE 11. Scenario 3: Causality analysis for traffic disturbance at 11:00 a.m. on 07/12/2014.

traffic disturbance originated locally. This situation can be
justified by the sectional traffic control, i.e., the roads are
closed only when the runners are close.

2) SCENARIO TWO
The second scenario is in time bin 09 : 05−09 : 10 of the day.
As shown in Fig. 10, two regions with traffic disturbances
originated by local incidents have been identified in the time
bin. Similarly, they aremarkedwithwhite circles. At the same
time, we notice that there are more other traffic disturbances
compared to the situation in time bin 08 : 00 − 08 : 05
as shown in Fig. 9, but they are not originated by local
incidents in time bin 09 : 05 − 09 : 10. Instead, they are the
consequence of traffic disturbances of spatiotemporal neigh-
borhoods in the past time bin. This can be well justified by the
actual situation where most marathoners in 09 : 05− 09 : 10
were close to the Return point after running one hour. Around
these areas, traffic control applied and audiences aggregated
originate new traffic disturbances.

3) SCENARIO THREE
The third scenario is in time bin 10 : 55 − 11 : 00 of the
day. Fig. 11 shows few traffic disturbance has been identified

and no new traffic disturbance originated by local incidents.
If we look closely, in the half of the Marathon in time bin
10 : 55 − 11 : 00, most traffic controls have been released.
In particular, the day 07/12/2014 is Sunday. The traffic in
almost all areas comes back to regular situations. Only few
traffic disturbances can be observed around the ending point,
but they are not new.

VII. CONCLUSIONS AND FUTURE WORK
Understanding root cause of traffic disturbance in a city is
a significant problem because it provides the knowledge of
traffic dynamics to the decision makers of transport depart-
ment, and assist them to sharply grasp the key point, control
situations, and benefit long-term planning for the further
development. By getting over the shortcomings of the state-
of-the-arts, this study has provided innovative solutions to
represent the traffic disturbance instead of identifying traffic
anomalies and propose Uneven Diffusion Model to learn
traffic disturbance propagation rules from historical data. The
robustness of the solutions have been verified by extensive
testing on a large real-world dataset and case studies.

Along this line of study, more analysis tasks can be per-
formed using the output of the root cause analysis, such as
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the frequent pattern detection, the relation between the time
of a day and the occurrence of originated traffic disturbance,
and the propagation direction and path of traffic disturbance
in road networks. More interesting, the originated traffic
disturbance can be the consequence of any irruptive city
incidents like traffic accidents or social events. Identifying
the types and characters of such city incidents behind traffic
disturbances is an interesting topic, which requires analyzing
additional information such as social media and local news.
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