
Ranking Causal Anomalies via Temporal and Dynamical
Analysis on Vanishing Correlations

Wei Cheng1, Kai Zhang1, Haifeng Chen1, Guofei Jiang1, Zhengzhang Chen1, Wei Wang2

1NEC Laboratories America
2Department of Computer Science, University of California, Los Angeles

1{weicheng, kzhang, haifeng, gfj, zchen}@nec-labs.com, 2weiwang@cs.ucla.edu

ABSTRACT
Modern world has witnessed a dramatic increase in our abil-
ity to collect, transmit and distribute real-time monitoring
and surveillance data from large-scale information system-
s and cyber-physical systems. Detecting system anomalies
thus attracts significant amount of interest in many field-
s such as security, fault management, and industrial opti-
mization. Recently, invariant network has shown to be a
powerful way in characterizing complex system behaviours.
In the invariant network, a node represents a system compo-
nent and an edge indicates a stable, significant interaction
between two components. Structures and evolutions of the
invariance network, in particular the vanishing correlation-
s, can shed important light on locating causal anomalies
and performing diagnosis. However, existing approaches to
detect causal anomalies with the invariant network often
use the percentage of vanishing correlations to rank possi-
ble casual components, which have several limitations: 1)
fault propagation in the network is ignored; 2) the root ca-
sual anomalies may not always be the nodes with a high-
percentage of vanishing correlations; 3) temporal patterns
of vanishing correlations are not exploited for robust detec-
tion. To address these limitations, in this paper we propose
a network diffusion based framework to identify significan-
t causal anomalies and rank them. Our approach can ef-
fectively model fault propagation over the entire invariant
network, and can perform joint inference on both the struc-
tural, and the time-evolving broken invariance patterns. As
a result, it can locate high-confidence anomalies that are tru-
ly responsible for the vanishing correlations, and can com-
pensate for unstructured measurement noise in the system.
Extensive experiments on synthetic datasets, bank informa-
tion system datasets, and coal plant cyber-physical system
datasets demonstrate the effectiveness of our approach.

Keywords
causal anomalies ranking, label propagation, nonnegative
matrix factorization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16, August 13-17, 2016, San Francisco, CA, USA
c⃝ 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939765

1. INTRODUCTION
With the rapid advances in networking, computers, and

hardware, we are facing an explosive growth of complexity
in networked applications and information services. These
large-scale, often distributed, information systems usually
consist of a great variety of components that work together
in a highly complex and coordinated manner. One example
is the Cyber-Physical System (CPS) which is typically e-
quipped with a large number of networked sensors that keep
recording the running status of the local components; anoth-
er example is the large scale Information Systems such as the
cloud computing facilities in Google, Yahoo! and Amazon,
whose composition includes thousands of components that
vary from operating systems, application softwares, servers,
to storage, networking devices, etc.

A central task in running these large scale distributed sys-
tems is to automatically monitor the system status, detect
anomalies, and diagnose system fault, so as to guarantee sta-
ble and high-quality services or outputs. Significant research
efforts have been devoted to this topic in the literatures. For
instance, Gertler et al. [9] proposed to detect anomalies by
examining monitoring data of individual component with
a thresholding scheme. However, it can be quite difficult
to learn a universal and reliable threshold in practice, due
to the dynamic and complex nature of information system-
s. More effective and recent approaches typically start with
building system profiles, and then detect anomalies via ana-
lyzing patterns in these profiles [5, 13]. The system profile is
usually extracted from historical time series data collected
by monitoring different system components, such as the flow
intensity of software log files, the system audit events and
the network traffic statistics, and sometimes sensory mea-
surements in physical systems.

The invariant model is a successful example [13, 14] for
large-scale system management. It focuses on discovering
stable, significant dependencies between pairs of system com-
ponents that are monitored through time series recordings,
so as to profile the system status and perform subsequent
reasoning. A strong dependency between a pair of compo-
nents is called invariant (correlation) relationship. By com-
bining the invariants learned from all monitoring compo-
nents, a global system dependency profile can be obtained.
The significant practical value of such an invariant profile is
that it provides important clues on abnormal system behav-
iors and in particular the source of anomalies, by checking
whether existing invariants are broken. Figure 1 illustrates
one example of the invariant network and two snapshots
of broken invariants at time t1 and t2, respectively. Each

805

(a) t1 (b) t2

Figure 1: Invariant network and vanishing correla-
tions(red edges).

node in the figure represents the observation from a moni-
toring component. The green line signifies an invariant link
between two components, and a red line denotes broken in-
variant (i.e., vanishing correlation). The network including
all the broken invariants at given time point is referred to
as the broken network.
Although the broken invariants provide valuable informa-

tion of the system status, how to locate true, causal anoma-
lies can still be a challenging task due to the following rea-
sons. First, system faults are seldom isolated. Instead, start-
ing from the root location/component, anomalous behavior
will propagate to neighboring components [13], and different
types of system faults can trigger diverse propagation pat-
terns. Second, monitoring data often contains a lot of noises
due to the fluctuation of complex operation environments.
Recently, several ranking algorithms were developed to di-

agnose the system failure based on the percentage of broken
invariant edges associated with the nodes, such as the egonet
based method proposed by Ge et al. [8], and the loopy be-
lief propagation (LBP) based method proposed by Tao et
al. [22]. Despite the success in practical applications, ex-
isting methods still have certain limitations. First, they do
not take into account the global structure of the invariant
network, neither how the root anomaly/fault propagates in
such a network. Second, the ranking strategies rely heavily
on the percentage of broken edges connected to a node. For
example, the mRank algorithm [8] calculated the anomaly
score of a given node using the ratio of broken edges within
the egonet 1 of the node. The LBP-based method [22] used
the ratio of broken edges as the prior probability of abnormal
state for each node. We argue that, the percentage of broken
edges may not serve as a good evidence of the causal anoma-
ly. This is because, although one broken edge can indicate
that one (or both) of related nodes is abnormal, lack of a
broken edge does not necessary indicate that related nodes
are problem free. Instead, it is possible that the correlation
is still there when two nodes become abnormal simultane-
ously [13]. Therefore the percentage of broken edges could
give false evidences. For example, in Figure 1, the causal
anomaly is node i⃝. The percentage of broken edges for n-
ode i⃝ is 2/3, which is smaller than that of node h⃝ (which
is equal to 1). Since there exists a clear evidence of fault
propagation on node i⃝, an ideal algorithm should rank i⃝
higher than h⃝. Third, existing methods usually consider

1An egonet is the induced 1-step subgraph for each node.

static broken network instead of multiple broken networks
at successive time points together. While we believe that,
jointly analyzing temporal broken networks can help resolve
ambiguity and achieve a denoising effect. This is because,
the root casual anomalies usually remain unchanged within
a short time period, even though the fault may keep proro-
gating in the invariant network. As an example shown in
Figure 1, it would be easier to detect the causal anomaly
if we jointly consider the broken networks at two successive
time points together.

To address the limitations of existing methods, we propose
several network diffusion based algorithms for ranking causal
anomalies. Our contributions are summarized as follows.

1. We employ the network diffusion process to model
propagation of causal anomalies and use propagated
anomaly scores to reconstruct the vanishing correla-
tions. By minimizing the reconstruction error, the pro-
posed methods simultaneously consider the whole in-
variant network structure and the potential fault prop-
agation. We also provide rigid theoretical analysis on
the properties of the proposed methods.

2. We further develop efficient algorithms which reduce
the time complexity from O(n3) to O(n2), where n is
the number of nodes in the invariant network. This
makes it feasible to quickly localize root cause anoma-
lies in large-scale systems.

3. We employ effective normalization strategy on the rank-
ing scores, which can reduce the influence of extreme
values or outliers without having to explicitly remove
them from the data.

4. We develop a smoothing algorithm that enables users
to jointly consider dynamic and time-evolving broken
network, and thus obtain better ranking results.

5. We evaluate the proposed methods on both synthet-
ic datasets and two real datasets, including the bank
information system and the coal plant cyber-physical
system datasets. Experimental results demonstrate
the effectiveness of our methods.

2. BACKGROUND AND PROBLEM DEFI-
NITION

In this section, we first introduce the technique of the
invariant model [13] and then define our problem.

2.1 System Invariant and Vanishing Correla-
tions

The invariant model is used to uncover significant pair-
wise relations among massive set of time series. It is based
on the AutoRegressive eXogenous (ARX) model [10] with
time delay. Let x(t) and y(t) be a pair of time series under
consideration, where t is the time index, and let n and m
be the degrees of the ARX model, with a delay factor k.
Let ŷ(t;θ) be the prediction of y(t) using the ARX model
parametarized by θ, which can then be written as

ŷ(t;θ) = a1y(t− 1) + · · ·+ any(t− n) (1)

+ b0x(t− k) + · · ·+ bmx(t− k −m) + d

=φ(t)⊤θ, (2)

806

Table 1: Summary of notations
Symbol Definition

n the number of nodes in the invariant network
c, λ, τ the parameters 0 < c < 1, τ > 0, λ > 0
σ(·) the softmax function
Gl the invariant network
Gb the broken network for Gl

A (Ã) ∈ Rn×n the (normalized) adjacency matrix of Gl
P (P̃) ∈ Rn×n the (normalized) adjacency matrix of Gb
M ∈ Rn×n the logical matrix of Gl

d(i) the degree of the ith node in network Gl
D ∈ Rn×n the degree matrix: D = diag(d(i), ..., d(n))

r ∈ Rn×1 the prorogated anomaly score vector

e ∈ Rn×1 the ranking vector of causal anomalies
RCA the basic ranking causal anomalies algorithm

R-RCA the relaxed RCA algorithm
RCA-SOFT the RCA with softmax normalization

R-RCA-SOFT the relaxed RCA with softmax normalization
T-RCA the RCA with temporal smoothing

T-R-RCA the R-RCA with temporal smoothing
T-RCA-SOFT the RCA-SOFT with temporal smoothing

T-R-RCA-SOFT the R-RCA-SOFT with temporal smoothing

where θ = [a1, . . . , an, b0, . . . , bm, d]⊤ ∈ Rn+m+2, φ(t) =
[y(t−1), . . . , y(t−n), x(t−k), . . . , x(t−k−m), 1]⊤ ∈ Rn+m+2.
For a given setting of (n,m, k), the parameter θ can be esti-
mated with observed time points t = 1, . . . , N in the training
data, via least-square fitting. In real-world applications such
as anomaly detection in physical systems, 0 ≤ n,m, k ≤ 2 is
a popular choice [6, 13]. We can define the “goodness of fit”
(or fitness score) of an ARX model as

F (θ) = 1−

√∑N
t=1 |y(t)− ŷ(t; θ)|2∑N

t=1 |y(t)− ȳ|2
, (3)

where ȳ is the mean of the time series y(t). A higher value
of F (θ) indicates a better fitting of the model. An invariant
(correlation) is declared on a pair of time series x and y if the
fitness score of the ARX model is larger than a pre-defined
threshold. A network including all the invariant links is
referred to as the invariant network. Construction of the
invariant network is referred to as the model training. The
model θ will then be applied on the time series x and y in
the testing phase to track vanishing correlations.
To track vanishing correlations, we can use the techniques

developed in [6, 15]. At each time point, we compute the
(normalized) residual R(t) between the measurement y(t)
and its estimate ŷ(t;θ) by

R(t) =
|y(t)− ŷ(t;θ)|

εmax
, (4)

where εmax is the maximum training error εmax = max1≤t≤N

|y(t)− ŷ(t;θ)|. If the residual exceeds a prefixed threshold,
then we declare the invariant as “broken”, i.e., the corre-
lation between the two time series vanishes. The network
including all broken edges at given time point and all nodes
in the invariant network is referred to as the broken network.

2.2 Problem Definition
Let Gl be the invariant network with n nodes. Let Gb be

the broken network for Gl. We use two symmetric matrices
A ∈ Rn×n, P ∈ Rn×n to denote the adjacency matrix of
network Gl and Gb, respectively. These two matrices can be
obtained as discussed in Section 2.1. The two matrices can
be binary or continuous. For binary case of A, 1 is used to
denote that the correlation exists between two time series,
and 0 denotes the lack of correlation; while for P, 1 is used

to denote that the correlation is broken (vanishing), and 0
otherwise. For the continuous case, the fitness score F (θ)
(3) and the residual R(t) (4) can be used to fill the two
matrices, respectively.

Our main goal is to detect the abnormal nodes in Gl that
are most responsible for causing the broken edges in Gb. In
this sense, we call such nodes “causal anomalies”. Accurate
detection of causal anomalous nodes will be extremely useful
for examination, debugging and repair of system failures.

3. RANKING CAUSAL ANOMALIES
In this section, we present the algorithm of Ranking Causal

Anomalies (RCA), which takes into account both the fault
propagation and fitting of broken invariants simultaneously.

3.1 Fault Propagation
We consider a very practical scenario of fault propagation,

namely anomalous system status can always be traced back
to a set of root cause anomaly nodes, or causal anomalies,
as initial seeds. As the time passes, these root cause anoma-
lies will then propagate along the invariant network, most
probably towards their neighbors via paths identified by the
invariant links in Gl. To explicitly model this spreading pro-
cess on the network, we have employed the label propaga-
tion technique [16, 24, 26]. Suppose that the (unknown)
root cause anomalies are denoted by the indicator vector e,
whose entries ei’s (1 ≤ i ≤ n) indicate whether the ith node
is the casual anomaly (ei = 1) or not (ei = 0). At the end of
propagation, the system status is represented by the anoma-
ly score vector r, whose entries tell us how severe each node
of the network has been impaired. The propagation from e
to r can be modeled by the following optimization problem

min
r≥0

c

n∑
i,j=1

Aij ||
1√
Dii

ri −
1√
Djj

rj ||2 + (1− c)

n∑
i=1

||ri − ei||2,

where D ∈ Rn×n is the degree matrix of A, c ∈ (0, 1) is the
regularization parameter, r is the anomaly score vector after
the propagation of the initial faults in e. We can re-write
the above problem as

min
r≥0

cr⊤(In − Ã)r+ (1− c)||r− e||2F , (5)

where In is the identity matrix, Ã = D−1/2AD−1/2 is the
degree-normalized version of A. Similarly we will use P̃ as
the degree-normalized P in the sequel. The first term in
Eq. (5) is the smoothness constraint [26], meaning that a
good ranking function should assign similar values to nearby
nodes in the network. The second term is the fitting con-
straint, which means that the final status should be close to
the initial configuration. The trade-off between these two
competing constraints is controlled by a positive parameter
c: a small c encourages a sufficient propagation, and a big c
actually suppresses the propagation. The optimal solution
of problem (5) is [26]

r = (1− c)(In − cÃ)−1e, (6)

which establishes an explicit and closed-form solution be-
tween the initial configuration e and the final status r through
fault propagation.

To encode the information of the broken network, we pro-
pose to use r to reconstruct the broken network Gb. The
intuition is illustrated in Figure 2. If there exists a broken

807

Figure 2: Reconstruction of the broken invariant
network using anomaly score vector r.

link in Gb, e.g., P̃ij is large, then ideally at least one of the
nodes i and j should be abnormal, or equivalently, either ri
or rj should be large. Thus, we can use the product of ri
and rj to reconstruct the value of P̃ij . In Section 5, we’ll
further discuss how to normalize them to avoid extreme val-
ues. Then, the loss of reconstructing the broken link P̃ij can

be calculated by (ri · rj − P̃ij)
2. The reconstruction error of

the whole broken network is then ||(rr⊤) ◦M− P̃||2F . Here,
◦ is element-wise operator, and M is the logical matrix of
the invariant network Gl (1 with edge, 0 without edge). Let

B = (1 − c)(In − cÃ)−1, by substituting r we obtain the
following objective function.

min
ei∈{0,1},1≤i≤n

||(Bee⊤B⊤) ◦M− P̃||2F (7)

Considering that the integer programming in problem (7)
is NP-hard, we relax it by using the ℓ1 penalty on e with
parameter τ to control the number of non-zero entries in e
[23]. Then we reach the following objective function.

min
e≥0
||(Bee⊤B⊤) ◦M− P̃||2F + τ ||e||1 (8)

3.2 Learning Algorithm
In this section, we present an iterative multiplicative up-

dating algorithm to optimize the objective function in (8).
The objective function is invariant under these updates if
and only if e are at a stationary point [17]. The solution is
presented in the following theorem, which is derived from the
Karush-Kuhn-Tucker (KKT) complementarity condition [3].
Detailed theoretical analysis of the optimization procedure
will be presented in the next section.

Theorem 1. Updating e according to Eq. (9) will mono-
tonically decrease the objective function in Eq. (8) until con-
vergence.

e← e ◦

 4
[
(B⊤P̃) ◦M

]
Be

4 [(B⊤Bee⊤B⊤) ◦M]Be+ τ1n

1
4

, (9)

where ◦, [·]
[·] and (·)

1
4 are element-wise operators.

Based on Theorem 1, we develop the iterative multiplica-
tive updating algorithm for optimization and summarize it
in Algorithm 1. We refer to this ranking algorithm as RCA.

Algorithm 1: Ranking Causal Anomalies (RCA)

Input: Network Gl denoting the invariant network with n
nodes, and is represented by an adjacency matrix A, c is
the network propagation parameter, τ is the parameter
to control the sparsity of e, P̃ is the normalized
adjacency matrix of the broken network, M is the logical
matrix of Gl (1 with edge, 0 without edge)

Output: Ranking vector e

1 begin
2 for i← 1to n do
3 Dii ←

∑n
j=1 Aij ;

4 end
5 D← diag(D11, ...,Dii);

6 Ã← D−1/2AD−1/2;
7 Initialize e with random values between (0,1];

8 B← (1− c)(In − cÃ)−1;
9 repeat

10 Update e by Eq. (9);
11 until convergence;

12 end

3.3 Theoretical Analysis

3.3.1 Derivation
We derive the solution to problem (9) following the con-

strained optimization theory [3]. Since the objective func-
tion is not jointly convex, we adopt an effective multiplica-
tive updating algorithm to find a local optimal solution. We
prove Theorem 1 in the following.

We formulate the Lagrange function for optimization L =
||(Bee⊤B⊤) ◦M − P̃||2F + τ1⊤

n e. Obviously, B, M and P̃
are symmetric matrix. Let F = (Bee⊤B⊤) ◦M, then

∂

∂em
(F− P̃)2ij = 2(Fij − P̃ij)

∂Fij

em

= 4(Fij − P̃ij)Mij(B
⊤
miBj:e) (by symmetry)

= 4B⊤
mi(Fij − P̃ij)Mij(Be)j:

(10)
It follows that

∂||F− P̃||2F
∂em

= 4B⊤
m:[(F− P̃) ◦M](Be), (11)

and thereby

∂||F− P̃||2F
∂e

= 4B⊤[(F− P̃) ◦M](Be). (12)

Thus, the partial derivative of Lagrange function with re-
spect to e is:

∇eL = 4B⊤
[
(Bee⊤B⊤ − P̃) ◦M

]
Be+ τ1n, (13)

where 1n is the n× 1 vector of all ones. Using the Karush-
Kuhn-Tucker (KKT) complementarity condition [3] for the
non-negative constraint on e, we have

∇eL ◦ e = 0 (14)

The above formula leads to the updating rule for e that is
shown in Eq. (9).

3.3.2 Convergence
We use the auxiliary function approach [17] to prove the

convergence of Eq. (9) in Theorem 1. We first introduce the
definition of auxiliary function as follows.

808

Definition 3.1. Z(h, ĥ) is an auxiliary function for L(h)
if the conditions

Z(h, ĥ) ≥ L(h) and Z(h, h) = L(h), (15)

are satisfied for any given h, ĥ [17].

Lemma 3.1. If Z is an auxiliary function for L, then L
is non-increasing under the update [17].

h(t+1) = argmin
h

Z(h, h(t)) (16)

Theorem 2. Let L(e) denote the sum of all terms in L
containing e. The following function

Z(e, ê) = −2
∑
ij

êi

{[
(B⊤P̃) ◦M

]
B
}

ij
êj

(
1 + log

eiej

êiêj

)

+
∑
i

{[
(B⊤Bêê⊤B⊤) ◦M

]
Bê

}
i

e4
i

ê3
i

+
τ

4

∑
i

e4
i + 3ê4

i

ê3
i

(17)
is an auxiliary function for L(e). Furthermore, it is a convex
function in e and has a global minimum.

Theorem 2 can be proven in a similar way as in [7] by vali-
dating Z(e, ê) ≥ L(e), Z(e, e) = L(e), and the Hessian matrix
∇∇eZ(e, ê) ≽ 0. Due to space limitation, the detail of the
proof is omitted.
Based on Theorem 2, we can minimize Z(e, ê) with respect

to e with ê fixed. We set ∇eZ(e, ê) = 0, and get the following
updating formula

e← ê ◦

 4
[
(B⊤P̃) ◦M

]
Bê

4 [(B⊤Bêê⊤B⊤) ◦M]Bê+ τ1n

1
4

, (18)

which is consistent with the updating formula derived from
the KKT condition aforementioned.
From Lemma 3.1 and Theorem 2, for each subsequent iter-

ation of updating e, we have L(e0) = Z(e0, e0) ≥ Z(e1, e0) ≥
Z(e1, e1) = L(e1) ≥ ... ≥ L(eIter). Thus L(e) monotonical-
ly decreases. Since the objective function Eq. (8) is lower
bounded by 0, the correctness of Theorem 1 is proven.

3.3.3 Complexity Analysis
In Algorithm 1, we need to calculate the inverse of an n×n

matrix, which takes O(n3) time. In each iteration, the mul-
tiplication between two n×n matrices is inevitable, thus the
overall time complexity of Algorithm 1 is O(Iter ·n3), where
Iter is the number of iterations needed for convergence. In
the following section, we will propose an efficient algorithm
that reduces the time complexity to O(Iter · n2).

4. COMPUTATIONAL SPEED UP
In this section, we will propose an efficient algorithm that

avoids the matrix inverse calculations as well as the multi-
plication between two n× n matrices. The time complexity
can be reduced to O(Iter · n2).
We achieve the computational speed up by relaxing the

objective function in (8) to jointly optimize r and e. The
objective function is shown in the following.

min
e≥0,r≥0

cr⊤(In − Ã)r+ (1− c)||r− e||2F

+ λ||(rr⊤) ◦M− P̃||2F + τ ||e||1
(19)

To optimize this objective function, we can use an alter-
nating scheme. That is, we optimize the objective with re-
spect to r while fixing e, and vise versa. This procedure
continues until convergence. The objective function is in-
variant under these updates if and only if r, e are at a sta-
tionary point [17]. Specifically, the solution to the optimiza-
tion problem in Eq. (19) is based on the following theorem,
which is derived from the Karush-Kuhn-Tucker (KKT) com-
plementarity condition [3]. The derivation of it and the proof
of Theorem 3 is similar to that of Theorem 1.

Theorem 3. Alternatively updating e and r according to
Eq. (20) and Eq. (21) will monotonically decrease the ob-
jective function in Eq. (19) until convergence.

r← r ◦

{
Ãr+ 2λ(P̃ ◦M)r+ (1− c)e

r+ 2λ [(rr⊤) ◦M] r

} 1
4

(20)

e← e ◦
[

2(1− c)r

τ1n + 2(1− c)e

] 1
2

(21)

Based on Theorem 3, we can develop the iterative mul-
tiplicative updating algorithm for optimization similar to
Algorithm 1. Due to page limit we skip the details. We re-
fer to this ranking algorithm as R-RCA. From Eq. (20) and
Eq. (21), we observe that the calculation of the inverse of
the n× n matrix and the multiplication between two n× n
matrices in Algorithm 1 are not necessary. As we will see in
Section 7.4, the relaxed versions of our algorithm can greatly
improve the computational efficiency.

5. SOFTMAX NORMALIZATION
In Section 3, we use the product ri · rj as the strength

of evidence that the correlation between node i and j is
vanishing (broken). However, it suffers from the extreme
values in the ranking values r. To reduce the influence of
the extreme values or outliers, we employ the softmax nor-
malization on the ranking values r. The ranking values are
nonlinearly transformed using the sigmoidal function before
the multiplication is performed. Thus, the reconstruction
error is expressed by ||(σ(r)σ⊤(r))◦M− P̃||2F , where σ(·) is
the softmax function with:

σ(r)i =
eri∑n

k=1 e
rk

, (i = 1, ..., n). (22)

The corresponding objective function in Algorithm 1 is mod-
ified to the following

min
e≥0
||(σ(Be)σ⊤(Be)) ◦M− P̃||2F + τ ||e||1. (23)

Similarly, the objective function for Eq. (19) is modified
to the following

min
e≥0,r≥0

cr⊤(In − Ã)r+ (1− c)||r− e||2F

+ λ||(σ(r)σ⊤(r)) ◦M− P̃||2F + τ ||e||1.
(24)

The optimization of these two objective functions are based
on the following two theorems.

809

Theorem 4. Updating e according to Eq. (25) will mono-
tonically decrease the objective function in Eq. (23) until
convergence.

e← e ◦

 4
[
(B⊤ΨP̃) ◦M

]
σ(Be)

4 [(B⊤Ψσ(Be)σ⊤(Be)) ◦M]σ(Be) + τ1n

1
4

,

(25)
where Ψ =

{
diag [σ(Be)]− σ(Be)σ⊤(Be)

}
.

Theorem 5. Updating r according to Eq. (26) will mono-
tonically decrease the objective function in Eq. (24) until
convergence.

r← r ◦

 Ãr + 2λ
[(

(σ(r)1⊤
n) ◦ P̃ + ρΛ

)
◦M

]
σ(r) + (1− c)e

r + 2λ
[(

(σ(r) ◦ σ(r))σ⊤(r) + σ(r)(σ⊤(r)P̃)
)
◦M

]
σ(r)

1
4

,

(26)

where Λ = σ(r)σ⊤(r) and ρ = σ⊤(r)σ(r).

Theorem 4 and Theorem 5 can be proven with a similar
strategy to that of Theorem 1. We refer to the ranking
algorithms with softmax normalization (Eq. (23) and Eq.
(24)) as RCA-SOFT and R-RCA-SOFT respectively.

6. TEMPORAL SMOOTHING ON MULTI-
PLE BROKEN NETWORKS

As discussed in Section 1, although the number of anoma-
ly nodes could increase due to fault propagation in the net-
work, the root cause anomalies will be stable within a short
time period T [14]. Based on this intuition, we further devel-
op a smoothing strategy by jointly considering the temporal
broken networks. Specifically, we add a smoothing term
||e(t) − e(t−1)||22 to the objective functions. Here, e(t−1) and

e(t) are causal anomaly ranking vectors for two successive
time points. For example, the objective function of algorith-
m RCA with temporal broken networks smoothing is shown
in Eq. (27).

min
e(t)≥0,1≤t≤T

T∑
t=1

[
||(Be(t)(e(t))⊤B⊤) ◦M− P̃(t)||2F + τ ||e(t)||1

]
+ α||e(t) − e(t−1)||22

(27)

Here, P̃(t) is the degree-normalized adjacency matrix of bro-
ken network at time point t. Similar to the discussion in
Section 3.3, we can derive the updating formula of Eq. (27)
in the following.

e
(t) ← e

(t) ◦

 4
[
(B⊤P̃(t)) ◦M

]
Be(t) + 2αe(t−1)

4
[
(B⊤Be(t)(e(t))⊤B⊤) ◦M

]
Be(t) + τ1n + 2αe(t)

1
4

(28)

The updating formula for R-RCA, RCA-SOFT, and R-
RCA-SOFT with temporal broken networks smoothing is
similar. Due to space limit, we skip the details. We refer
to the algorithms with temporal smoothing as T-RCA, T-
R-RCA, T-RCA-SOFT and T-R-RCA-SOFT respectively.

7. EMPIRICAL STUDY
In this section, we perform extensive experiments to e-

valuate the performance of the proposed methods (summa-
rized in Table 1). We use both simulated data and real-
world monitoring datasets for validation. For comparison,

we select several state-of-the-art methods, including mRank
and gRank in [8, 13], and LBP [22]. For all the method-
s, the tuning parameters were tuned using cross validation.
We use several evaluation metrics including precision, recal-
l, and nDCG [12] to measure the performance. The preci-
sion and recall are computed on the top-K ranking result,
where K is typically chosen as twice the actual number of
ground-truth causal anomalies [12, 22]. The nDCG of the

top-p ranking result is defined as nDCGp =
DCGp

IDCGp
, where

DCGp =
∑p

i=1
2reli−1

log2(1+i)
. Here, IDCGp is the DCGp value

on the ground-truth, and p is smaller than or equal to the
actual number of ground-truth anomalies. The reli repre-
sents the anomaly score of the ith item in the ranking list
of the ground-truth.

7.1 Simulation Study
We first evaluate the performance of the proposed meth-

ods using simulations. We have followed [8, 22] in generating
the simulation data.

7.1.1 Data Generation
We first generate 5000 synthetic time series data to sim-

ulate the monitoring records2. Each time series contains
1,050 time points. Based on the invariant model introduced
in Section 2.1, we build the invariant network by using the
first 1,000 time points in the time series. This generates an
invariant network containing 1,551 nodes and 157,371 edges.
To generate invariant network of different sizes, we random-
ly sample 200, 500, and 1000 nodes from the whole invariant
network and evaluate the algorithms on these sub-networks.

To generate the root cause anomaly, we randomly select 10
nodes from the network, and assign each of them an anomaly
score between 1 and 10. The ranking of these scores is used
as the ground-truth. To simulate the anomaly prorogation,
we further use these scores as the vector e in Eq. (6) and
calculate r (c = 0.9). The values of the top-30 time series
with largest values in r are then modified by changing their
amplitude value with the ratio 1+ri. That is, if the observed
values of one time series is y1, after changing it from y1 to

y2, the manually-injected degree of anomaly |y2−y1|
|y1|

is equal

to 1 + ri. We denote this anomaly generation scheme as
amplitude-based anomaly generation.

7.1.2 Performance Evaluation
Using the simulated data, we compare the performance

of different algorithms. In this example, we only consider
the training time series as one snapshot; multiple snapshot
cases involving temporal smoothing will be examined in the
real datasets. Due to the page limit, we report the preci-
sion, recall and nDCG for only the top-10 items considering
that the ground-truth contains 10 anomalies. Similar results
can be observed with other settings of K and p. For each
algorithm, reported result is averaged over 100 randomly
selected subsets of the training data.

From Figure 3, we have several key observations. First,
the proposed algorithms significantly outperform other com-
peting methods, which demonstrates the advantage of taking
into account fault prorogation in ranking casual anomalies.
We also notice that performance of all ranking algorithms
will decline on larger invariant networks with more nodes, in-
dicating that anomaly ranking becomes more challenging on

2http://cs.unc.edu/∼weicheng/synthetics5000.csv

810

precision recall nDCG
0.4

0.5

0.6

0.7

#Time Series=1000

RCA−SOFT R−RCA−SOFT RCA R−RCA gRank mRank LBP

precision recall nDCG
0.4

0.5

0.6

0.7

#Time Series=200

precision recall nDCG
0.4

0.5

0.6

0.7

#Time Series=500

Figure 3: Comparison on synthetic data(K, p = 10).

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

noise ratio

pr
ec

is
io

n

precision

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

noise ratio

nD
C

G

nDCG

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

noise ratio

re
ca

ll

recall

RCA−SOFT R−RCA−SOFT RCA R−RCA gRank mRank LBP

Figure 4: Performance with different noise
ratio(K, p = 10).

networks with more complex behaviour. However, the rank-
ing result with softmax is less sensitive to the size of the in-
variant network, suggesting that the softmax normalization
can effectively improve the robustness of the algorithm. This
is quite beneficial in real-life applications, especially when
data are noisy. Finally, we observe that RCA and RCA-
SOFT outperform R-RCA and R-RCA-SOFT, respectively.
This implies that the relaxed versions of the algorithms are
less accurate. Nevertheless, their accuracies are still very
comparable to those of the RCA and RCA-SOFT method-
s. In addition, the efficiency of the relaxed algorithms is
greatly improved, as discussed in Section 4 and Section 7.4.

7.1.3 Robustness Evaluation
Practical invariant network and broken edges can be quite

noisy. In this section, we further examine the performance
of the proposed algorithms w.r.t. different noise levels. To
do this, we randomly perturb a portion of non-broken edges
in the invariant network. Results are shown in Figure 4. We
observe that, even when the noise ratio approaches 50%, the
precision, recall and nDCG of the proposed approaches still
attain 0.5. This indicates the robustness of the proposed
algorithms. We also observe that, when the noise ratio is
very large, RCA-SOFT and R-RCA-SOFT work better than
RCA and R-RCA, respectively. This is similar to those ob-
servations made in Section 7.1.2. As has been discussed in
Section 5, the softmax normalization can greatly suppress
the impact of extreme values and outliers in r, thus improves
the robustness.

7.2 Ranking Causal Anomalies on Bank In-
formation System Data

In this section, we apply the proposed methods to detect
causal abnormal components on a Bank Information System
(BIS) data set [8, 22]. The monitoring data are collected
from a real-world bank information system logs, which con-
tain 11 categories. Each category has a varying number of

Categories Samples of Measurements

CPU utilization, user usage time, IO wait time

DISK # of write operations, write time, weighted IO time

MEM run queue, collision rate, UsageRate

NET error rate, packet rate

SYS UTIL, MODE UTIL

Table 2: Examples of categories and monitors.

100 120 140 160
0

20

40

60
DB16:DISK hday Request

100 120 140 160
0

100

200

300
DB16:DISK hday Block

time

am
pl

itu
de

Figure 5: Two example monitoring data of BIS.

Data Set #Monitors#invariant links#broken edges at given time point
BIS 1273 39116 18052

Coal Plant 1625 9451 56

Table 3: Data set description.

0 80 160
0

0.1

0.2

0.3

0.4

0.5

0.6

K

P
re

ci
si

on
 @

To
p−

K

0 80 160
0

0.1

0.2

0.3

0.4

0.5

0.6

K

R
ec

al
l @

To
p−

K

0 40 80
0

0.1

0.2

0.3

0.4

0.5

0.6

p

nD
C

G
p

RCA−SOFT R−RCA−SOFT RCA R−RCA gRank mRank LBP

(c) nDCG(a) precision (b) recall

Figure 6: Comparison on BIS data.

time series, and Table 2 gives five categories as examples.
The data set contains the flow intensities collected every
6 seconds. In total, we have 1,273 flow intensity time se-
ries. The training data is collected at normal system states,
where each time series has 168 time points. The invariant
network is then generated on the training data as described
in Section 2.1. The testing data of the 1,273 flow intensi-
ty time series are collected during abnormal system states,
where each time series contain 169 time points. We track the
changes of the invariant network with the testing data using
the method described in Section 2.1. Once we obtain the
broken networks at different time points, we perform causal
anomaly ranking in these temporal slots jointly. Properties
of the networks constructed are summarized in Table 3.

Based on the knowledge from system experts, the root
cause anomaly at t = 120 in the testing data is related to
“DB16”. An illustration of two “DB16” related monitoring
data are shown in Figure 5. We highlight t : 120 with red
square. Obviously, their behaviour looks anomalous from
that time point on. Due to the complex dependency among
different monitoring time series, it is impractical to obtain a
full ranking of abnormal measurement. Fortunately, we have
a unique semantic label associated with each measurement.
For example, some semantic labels read “DB16:DISK hdx
Request” and “WEB26 PAGEOUT RATE”. Thus, we can
extract all measurements whose titles have the prefix “D-
B16” as the ground-truth anomalies. The ranking score is

811

mRank gRank LBP RCA RCA-SOFT R-RCA R-RCA-SOFT

WEB16:NET eth1 BYNETIF HUB18:MEM UsageRate WEB22:SYS MODE UTIL HUB17:DISK hda Request DB17:DISK hdm Block HUB17:DISK hda Request DB17:DISK hdm Block
HUB17:DISK hda Request HUB17:DISK hda Request DB15:DISK hdaz Block DB17:DISK hday Block DB17:DISK hdba Block DB15:PACKET Output DB17:DISK hdba Block
AP12:DISK hd45 Block AP12:DISK hd45 Block WEB12:NET eth1 BYNETIF HUB17:DISK hda Busy DB16:DISK hdm Block HUB17:DISK hda Busy DB16:DISK hdm Block
AP12:DISK hd1 Block AP12:DISK hd1 Block WEB17:DISK BYDSK DB18:DISK hdba Block DB18:DISK hdm Block DB17:DISK hdm Block DB16:DISK hdj Request
WEB19:DISK BYDSK AP11:DISK hd45 Block DB18:DISK hdt Busy DB18:DISK hdm Block DB16:DISK hdj Request DB17:DISK hdba Block DB16:DISK hdax Request
AP11:DISK hd45 Block AP11:DISK hd1 Block DB15:DISK hdl Request DB16:DISK hdm Block DB18:DISK hdba Block DB18:DISK hdm Block DB18:DISK hdag Request
AP11:DISK hd1 Block DB17:DISK hday Block WEB21:DISK BYDSK DB17:DISK hdba Block DB16:DISK hdax Request DB16:DISK hdm Block DB18:DISK hdm Block
DB16:DISK hdm Block DB15:PACKET Input WEB27:FREE UTIL DB17:DISK hdm Block DB18:DISK hdag Request DB18:DISK hdba Block DB18:DISK hdbu Request
DB17:DISK hdm Block DB17:DISK hdm Block WEB19:NET eth0 DB16:DISK hdba Block DB18:DISK hdbu Request DB17:DISK hday Block DB18:DISK hdx Request
DB18:DISK hdm Block DB16:DISK hdm Block WEB25:PAGEOUT RATE DB16:DISK hdj Request DB16:DISK hdba Block DB16:DISK hdba Block DB18:DISK hdax Request
DB17:DISK hdba Block DB17:DISK hdba Block DB16:DISK hdy Block DB18:DISK hdag Request DB18:DISK hdx Request DB16:DISK hdj Request DB18:DISK hdba Block
DB18:DISK hdba Block DB18:DISK hdm Block AP13:DISK hd30 Block DB16:DISK hdax Request DB18:DISK hdax Request DB18:DISK hdag Request DB16:DISK hdx Request

Table 4: Top 12 anomalies detected by different methods on BIS data(t:120).

mRankgRankLBPRCARCA-SOFTR-RCAR-RCA-SOFT
10 7 4 14 16 13 17

Table 5: Number of “DB16” related monitors in top
32 results on BIS data(t:120).

determined by the number of broken edges associated with
each measurement. Here our goal is to demonstrate how
the top-ranked measurements selected by our method are
related to the “DB16” root cause. Altogether, there are 80
measurements related to “DB16” in the invariant network,
so we report the precision, recall with K ranging from 1 to
160 and the nDCG with p ranging from 1 to 80, respectively.
The results are shown in Figure 6. The relative perfor-

mance of different approaches is consistent with the obser-
vations in the simulation study. Again, the proposed algo-
rithms outperform baseline methods by a large margin. To
examine the top-ranked items more clearly, we list the top-
12 results of different approaches in Table 4 and report the
number of “DB16”-related monitors in Table 5. From Table
4, we observe that the three baseline methods only report
one “DB16” related measurement in the top-12 results, and
the actual rank of the “DB16”-related measurement appear
lower (worse) than that of the proposed methods. We also
notice that the ranking algorithms with softmax normaliza-
tion outperform others. From Tables 4 and 5, we can see
that top ranked items reported by RCA-SOFT and R-RCA-
SOFT are more relevant than those reported by RCA and
R-RCA, respectively. This clearly illustrates the effective-
ness of the softmax normalization in reducing the influence
of extreme values or outliers in the data.
As discussed in Section 1, the root anomalies could fur-

ther propagate from one component to related ones over
time, which may or may not necessarily relate to “DB16”.
Such anomaly propagation makes anomaly detection even
harder. To study how the performance varies at differen-
t time points, we compare the performance at t = 120 and
t = 122, respectively in Figure 7 (p,K=80). Clearly, the per-
formance declines for all methods. However, the proposed
methods are less sensitive to anomaly propagation than oth-
ers, suggesting that our approaches can better handle the
fault propagation problem. We believe this is attributed to
the network diffusion model that explicitly captures the fault
propagation processes. We also list the top-12 abnormal at
t = 122 in Table 6. Due to page limit, we only show the re-
sults of mRank, gRank, RCA-SOFT and R-RCA-SOFT. By
comparing the results in Tables 4 and 6, we can observe that
RCA-SOFT and R-RCA-SOFT significantly outperform m-
Rank and gRank, the latter two methods which are based
on the percentage of broken edges are more sensitive to the
anomaly prorogation.

mRank gRank RCA-SOFT R-RCA-SOFT

WEB21:NET eth1 BYNETIFWEB21:NET eth0 BYNETIF DB17:DISK hdm Block DB17:DISK hdm Block
WEB21:NET eth0 BYNETIFWEB21:NET eth1 BYNETIF DB17:DISK hdba Block DB17:DISK hdba Block

WEB21:FREE UTIL HUB18:MEM UsageRate DB16:DISK hdm Block DB16:DISK hdm Block
AP12:DISK hd45 Block WEB21:FREE UTIL DB18:DISK hdm Block DB16:DISK hdj Request
AP12:DISK hd1 Block WEB26:PAGEOUT RATE DB16:DISK hdj Request DB16:DISK hdax Request
DB18:DISK hday Block AP12:DISK hd45 Block DB18:DISK hdba Block DB18:DISK hdm Block
DB18:DISK hdk Block AP12:DISK hd1 Block DB16:DISK hdax Request DB18:DISK hdx Request

DB18:DISK hday Request DB18:DISK hday Block DB16:DISK hdba Block DB18:DISK hdba Block
DB18:DISK hdk Request DB18:DISK hdk Block DB18:DISK hdx Request DB16:DISK hdba Block
WEB26:PAGEOUT RATE DB18:DISK hday Request DB18:DISK hdbl Request DB18:DISK hdax Request
DB17:DISK hdm Block DB18:DISK hdk Request DB16:DISK hdx Busy DB16:PACKET Inputx
DB16:DISK hdm Block AP11:DISK hd45 Block DB16:DISK hdx Request DB18:DISK hdbl Request

Table 6: Top 12 anomalies on BIS data(t:122).

T-RCA T-RCA-SOFT T-R-RCA T-R-RCA-SOFT

WEB14:NET eth0 BYNETIF DB17:DISK hdm Block WEB14:NET eth0 BYNETIF DB17:DISK hdm Block

WEB16:DISK BYDSK DB17:DISK hdba Block WEB21:NET eth0 BYNETIF DB17:DISK hdba Block

DB18:DISK hdba Block DB16:DISK hdm Block WEB16:DISK BYDSK PHYS DB16:DISK hdm Block

DB18:DISK hdm Block DB18:DISK hdm Block WEB21:FREE UTIL DB18:DISK hdm Block

DB17:DISK hdba Block DB16:DISK hdj Request DB15:PACKET Output DB16:DISK hdj Request

DB16:DISK hdm Block DB18:DISK hdba Block DB16:DISK hdj Request DB18:DISK hdba Block

DB17:DISK hdm Block DB16:DISK hdax Request DB17:DISK hdm Block DB16:DISK hdax Request

DB16:DISK hdba Block DB16:DISK hdba Block DB16:DISK hdba Block DB18:DISK hdx Request

DB16:DISK hdj Request DB18:DISK hdx Request DB17:DISK hday Block DB16:DISK hdba Block

DB16:DISK hdax Request DB18:DISK hdbl Request DB16:DISK hdm Block DB18:DISK hdbl Request

DB16:DISK hdx Busy DB16:DISK hdx Busy DB16:DISK hdax Request DB16:DISK hdx Request

DB16:DISK hdbl Busy DB16:DISK hdx Request DB18:DISK hdba Block DB16:DISK hdx Busy

Table 7: Top 12 anomalies reported by methods with
temporal smoothing on BIS data(t:120-121).

RCARCA-SOFTR-RCAR-RCA-SOFT
Without temporal smoothing 4 4 3 4
With temporal smoothing 6 6 4 6

Table 8: Comparison on the number of “DB16” re-
lated anomalies in top-12 results on BIS data.

mRank gRank LBP RCA RCA-SOFT R-RCA R-RCA-SOFT

Y0039 Y0256 Y0256 X0146 X0146 X0146 X0146

X0128 Y0045 X0146 Y0045 Y0256 X0128 X0166

Y0256 Y0028 F0454 X0128 F0454 F0454 X0144

H0021 X0146 X0128 Y0030 J0079 Y0256 X0165

X0146 X0057 Y0039 X0057 Y0308 Y0039 X0142

X0149 X0061 X0166 X0158 X0166 Y0246 J0079

H0022 X0068 X0144 X0068 X0144 Y0045 X0164

F0454 X0143 X0149 X0061 X0128 Y0028 X0145

H0020 X0158 J0085 X0139 X0165 X0056 X0143

X0184 X0164 X0061 X0143 X0142 J0079 X0163

X0166 J0164 Y0030 H0021 H0022 X0149 J0164

J0164 H0021 J0079 F0454 X0143 X0145 X0149

Table 9: Top anomalies on coal plant data.

We further validate the effectiveness of proposed method-
s with temporal smoothing. We report the top-12 results
of different methods with smoothing at two successive time
points t = 120 and t = 121 in Table 7. The number of
“DB16”-related monitors in the top-12 results is summarized
in Table 8. From Tables 7 and 8, we observe a significan-
t performance improvement of our methods with temporal
broken networks smoothing compared with those without
smoothing. As discussed in Section 6, since causal anoma-
lies of a system usually do not change within a short period
of time, utilizing such smoothness can effectively suppress
noise and thus give better ranking accuracy.

7.3 Fault Diagnosis on Coal Plant Data
In this section, we test the proposed methods in the ap-

plication of fault diagnosis on a coal plant cyber-physical

812

mRank gRank LBP RCA RCA−SOFT R−RCA R−RCA−SOFT
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

algorithm
pr

ec
is

io
n@

80

t:120
t:122

(a) precision

mRank gRank LBP RCA RCA−SOFT R−RCA R−RCA−SOFT
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

algorithm

re
ca

ll@
80

t:120
t:122

(b) recall

mRank gRank LBP RCA RCA−SOFT R−RCA R−RCA−SOFT
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

algorithm

nD
C

G
80

t:120
t:122

(c) nDCG

Figure 7: Performance at t:120 v.s. t:122 on BIS data(p,K=80).

(a) Egonet of node
“X0146”

(b) Egonet of node
“Y0256”

Figure 8: Egonet of node “X0146” and “Y0256”
in invariant network and vanishing correlations(red
edges) on coal plant data.

system data. The data set contains time series collected
through 1625 electric sensors installed on different compo-
nents of the coal plant system. Using the invariant model
described in Section 2.1, we generate the invariant network
that contains 9451 invariant links. For privacy reasons, we
remove sensitive descriptions of the data.
Based on knowledge from domain experts, in the abnormal

stage, the root cause is associated with component “X0146”.
We report the top-12 results of different ranking algorithms
in Table 9. We observe that our algorithms all rank compo-
nent “X0146” the highest, while the baseline methods could
give higher ranks to other components. In Figure 8(a), we
visualize the egonet of the node“X0146” in the invariant net-
work, which is defined as the 1-step neighborhood around n-
ode “X0146”, including the node itself, direct neighbors, and
all connections among these nodes in the invariant network.
Here, green lines denote the invariant link, and red lines de-
note vanishing correlations (broken links). Since the node
“Y0256” is top-ranked by the baseline methods, we also vi-
sualize its egonet in Figure 8(b) for a comparison. There are
80 links related to “X0146” in the invariant network, and 14
of them are broken. Namely the percentage of broken edges
is only 17.5% for a truly anomalous component. In con-
trast, the percentage of broken edges for the node “Y0256”
is 100%, namely a false-positive node can have a very high
percentage of broken edges in practice. This explains why
baseline approaches using the percentage of broken edges
could fail, because the percentage of broken edges does not
serve as a reliable evidence of the degree of causal anomalies.
In comparison, our approach takes into account the global
structures of the invariant network via network propagation,
thus the resultant ranking is more meaningful.

7.4 Time Performance Evaluation
In this section, we study the efficiency of proposed meth-

ods using the following metrics: 1) the number of iterations

10 20 30 40
1

2

3

4

5

6

7

8
x 104

#iteration

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

BIS Data

10 20 30
200

300

400

500

600

700

800

#iteration

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

Coal Plant Data

0 5000 10000
10−2

100

102

104

#nodes in invariant network

tim
e

co
st

 (s
ec

on
ds

)

RCA RCA−SOFT R−RCA R−RCA−SOFT

(b) Time costs comparison(a) Number of iterations to converge

Figure 9: Number of iterations to converge and time
cost comparison.

Coal Plant Data BIS Data
0

50

100

150

200

250

data set

ru
nn

in
g

tim
e(

se
co

nd
)

mRank
gRank
LBP
RCA
RCA−SOFT
R−RCA
R−RCA−SOFT
T−RCA
T−RCA−SOFT
T−R−RCA
T−R−RCA−SOFT

Figure 10: Running time on real data sets.

for convergence; 2) the running time (in seconds) ; and 3)
the scalability of the proposed algorithms. Figure 9(a) shows
the value of the objective function with respect to the num-
ber of iterations on different data sets. We can observe that,
the objective value decreases steadily with the number of it-
erations. Typically less than 100 iterations are needed for
convergence. We also observe that our method with soft-
max normalization takes fewer iterations to converge. This
is because the normalization is able to reduce the influence of
extreme values [21]. We also report the running time of each
algorithm on the two real data sets in Figure 10. We can
see that the proposed methods can detect causal anomalies
very efficiently, even with the temporal smoothing module.

To evaluate the computational scalability, we randomly
generate invariant networks with different number of nodes
(with network density=10) and examine the computational
cost. Here 10% edges are randomly selected as broken links.
Using simulated data, we compare the running time of RCA,
R-RCA, RCA-SOFT, and R-RCA-SOFT. Figure 9(b) plots
the running time of different algorithms w.r.t. the number of
nodes in the invariant network. We can see that the relaxed
versions of our algorithm are computationally more efficient
than the original RCA and RCA-SOFT. These results are
consistent with the complexity analysis in Section 4.

813

8. RELATED WORK
In this section, we review the related work on anomaly

detection and system diagnosis. In particular, we focus on
the following two categories: 1) fault detection in distributed
systems; and 2) graph-based methods.
For the first category, Yemini et al. [25] proposed to mod-

el event correlation and locate system faults using known
dependency relationships between faults and symptoms. In
real applications, however, it is usually hard to obtain such
relationships precisely. To alleviate this limitation, Jiang et
al. [13] developed several model-based approaches to detect
the faults in complex distributed systems. They further pro-
posed several Jaccard Coefficient based approaches to locate
the faulty components [14, 15]. These approaches generally
focus on locating the faulty components, they are not capa-
ble of spotting or ranking the causal anomalies.
Recently, graph-based methods have drawn a lot of in-

terest in system anomaly detections [2, 5], either in static
graphs or dynamic graphs [2]. In static graphs, the main
task is to spot anomalous network entities given the graph
structure [4, 11]. For example, Akoglu et al. [1] proposed
OddBall to detect anomalous nodes in weighted graphs. Li-
u et al. [18] proposed to use frequent subgraph mining to
detect non-crashing bugs in software flow graphs. Howev-
er, these approaches only focus on a single graph; in com-
parison, we take into account both the invariant graph and
the broken correlations, which provides a more dynamic and
complete picture for anomaly ranking. In dynamic graphs,
anomaly detection aims at detecting abnormal events [19].
Most approaches along this direction are designed to detect
anomaly time-stamps in which suspicious events take place,
but not to perform ranking on a large number of system
components. Sun et al. proposed to use temporal graph-
s for anomaly detection [20]. In their approach, a set of
initial suspects need to be provided; then internal relation-
ship among these initial suspects is characterized for better
understanding of the root cause of these anomalies.
In using the invariant graph and the broken invariance

graph for anomaly detection, Jiang et al. [14] used the ra-
tio of broken edges in the invariant network as the anomaly
score for ranking; Ge et al. [8] proposed mRank and gRank
to rank causal anomalies; Tao et al. [22] used the loopy
belief propagation method to rank anomalies. As has been
discussed, these algorithms rely heavily on the percentage
of broken edges in egonet of a node. Such local approaches
do not take into account the global network structures, nei-
ther the global fault propagation spreading on the network.
Therefore the resultant rankings can be sub-optimal.

9. CONCLUSIONS
Detecting causal anomalies on monitoring data of dis-

tributed systems is an important problem in data mining
research. Robust and scalable approaches that can model
the potential fault propagation are highly desirable. We de-
velop a network diffusion based framework, which simultane-
ously takes into account fault propagation on the network as
well as reconstructing anomaly signatures using propagated
anomalies. Our approach can locate causal anomalies more
accurately than existing approaches; in the meantime, it is
robust to noise and computationally efficient. Using both
synthetic and real-life data sets, we show that the proposed
methods outperform other competitors by a large margin.

10. ACKNOWLEDGMENTS
Wei Wang is supported by the National Science Foun-

dation grants IIS-1313606, DBI-1565137, by National Insti-
tutes of Health under the grant number R01GM115833-01.

11. REFERENCES
[1] L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting

anomalies in weighted graphs. PAKDD, pages 410–421.

[2] L. Akoglu, H. Tong, and D. Koutra. Graph-based anomaly
detection and description: A survey. CoRR, 2014.

[3] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[4] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof:
Identifying density-based local outliers. SIGMOD, pages
93–104, 2000.

[5] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection:
A survey. ACM Computing Surveys, 41(3):1–58, 2009.

[6] H. Chen, H. Cheng, G. Jiang, and K. Yoshihira. Global
invariants for the management of large scale information
systems. In ICDM, 2008.

[7] C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative
matrix t-factorizations for clustering. In KDD, pages 126–135,
2006.

[8] Y. Ge, G. Jiang, M. Ding, and H. Xiong. Ranking metric
anomaly in invariant networks. TKDD, 8(2), Jun. 2014.

[9] J. Gertler. Fault Detection and Diagnosis in Engineering
Systems. Marcel Dekker, 1998.

[10] Gertler:1998. System Identification (2nd Ed.): Theory for the
User. 1999.

[11] K. Henderson, T. Eliassi-Rad, C. Faloutsos, L. Akoglu, L. Li,
K. Maruhashi, B. A. Prakash, and H. Tong. Metric forensics: a
multi-level approach for mining volatile graphs. In KDD, pages
163–172, 2010.

[12] Jarvelin, Kalervo and Kekalainen, Jaana. Cumulated gain-based
evaluation of IR techniques. TIS, 20(4):422–446, 2002.

[13] G. Jiang, H. Chen, and K. Yoshihira. Discovering likely
invariants of distributed transaction systems for autonomic
system management. Cluster Computing, 9(4):385–399, 2006.

[14] G. Jiang, H. Chen, and K. Yoshihira. Modeling and tracking of
transaction flow dynamics for fault detection in complex
systems. TDSC, 3(4):312–326, 2006.

[15] G. Jiang, H. Chen, and K. Yoshihira. Efficient and scalable
algorithms for inferring invariants in distributed systems.
TKDE, 19(11):1508–1523, 2007.

[16] T. H. Kim, K. M. Lee, and S. U. Lee. Generative image
segmentation using random walks with restart. In ECCV, pages
264–275, 2008.

[17] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix
factorization. In NIPS, pages 556–562, 2000.

[18] C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu. Mining behavior
graphs for ”backtrace” of noncrashing bugs. In SDM, pages
286–297, 2005.

[19] R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson.
Modeling dynamic behavior in large evolving graphs. WSDM,
pages 667–676, 2013.

[20] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs:
Dynamic tensor analysis. KDD ’06, pages 374–383, 2006.

[21] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, Cambridge, MA, 1998.

[22] C. Tao, Y. Ge, Q. Song, Y. Ge, and F. Omitaomu. Metric
ranking of invariant networks with belief propagation. In
ICDM, 2014.

[23] R. J. Tibshirani. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society, Series B,
58(1):267–288, 1996.

[24] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with
restart and its applications. In ICDM, pages 613–622, 2006.

[25] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie.
High speed and robust event correlation. IEEE
Communications Magazine, 34:82–90, 1996.

[26] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf.
Learning with local and global consistency. In NIPS, pages
321–328, 2003.

814

