
Metric Ranking of Invariant Networks with
Belief Propagation

Changxia Tao1, Yong Ge2, Qinbao Song1, Yuan Ge3, Olufemi A. Omitaomu4
1Xi’an JiaoTong University, {taoxixi413@stu, qbsong@mail}.xjtu.edu.cn

2The University of North Carolina at Charlotte, yong.ge@uncc.edu
4Oak Ridge National Laboratory, omitaomuoa@ornl.gov

3Corresponding Author, Anhui Polytechnic University, ygetoby@mail.ustc.edu.cn

Abstract—The management of large-scale distributed informa-
tion systems relies on the effective use and modeling of monitoring
data collected at various points in the distributed information
systems. A promising approach is to discover invariant rela-
tionships among the monitoring data and generate invariant
networks, where a node is a monitoring data source (metric) and
a link indicates an invariant relationship between two monitoring
data. Such an invariant network representation can help system
experts to localize and diagnose the system faults by examining
those broken invariant relationships and their related metrics,
because system faults usually propagate among the monitoring
data and eventually lead to some broken invariant relationships.
However, at one time, there are usually a lot of broken links
(invariant relationships) within an invariant network. Without
proper guidance, it is difficult for system experts to manually
inspect this large number of broken links. Thus, a critical
challenge is how to effectively and efficiently rank metrics (nodes)
of invariant networks according to the anomaly levels of metrics.
The ranked list of metrics will provide system experts with useful
guidance for them to localize and diagnose the system faults. To
this end, we propose to model the nodes and the broken links as a
Markov Random Field (MRF), and develop an iteration algorithm
to infer the anomaly of each node based on belief propagation
(BP). Finally, we validate the proposed algorithm on both real-
world and synthetic data sets to illustrate its effectiveness.

Keywords— Invariant; ARX Model; Invariant Networks; Belief
Propogation

I. INTRODUCTION

Recent advances in information infrastructure have enabled
the development of networked information systems. These
large-scale information systems usually consist of thousands of
components, such as servers, networking devices, and storage
equipment. The connectivity of these devices and hence the
complexity of the information systems they are embedded
in correlates well with their functional essentiality. Also,
the dynamics and heterogeneity of such information systems
introduces another dimension of complexity. Therefore, it has
been a great challenge to maintain and manage these large-
scale, dynamic and complex information systems.

In previous work [1], [2], [3], Jiang et al. have proposed
a System Invariant Analysis Technique (SIAT) to model the
system dynamics and detect system faults. They used the
AutoRegressive models with eXogenous inputs (ARX) [1], [4]
to model the relationships between each pair of monitoring
data, such as the number of SQL Queries and the average
memory usage. Specifically, the ARX model between two

Bright-pink links: broken

Bright-turquoise links: non-broken

Fig. 1. An Example of Invariant Networks

monitoring data x and y is y(t)+a1y(t−1)+· · ·+any(t−n) =
b0x(t−k)+· · ·+bmx(t−k−m). If such a relationship between
x and y holds all the time when there is no fault, they regarded
it as an invariant of the underlying information systems. For
example, one relationship based on the ARX model may be
yejb(t) = 0.08yejb(t−1)−0.39xjvm(t), where yejb and xjvm

represent the intensity of ’EJB created’ and ’JVM processing
time’. And this relationship (equation) is considered as an
invariant if it holds all the time. Given all monitoring data of
an information system, it is possible to generate an invariant
network as shown in Figure 1, where each node represents
a monitoring data (metric) and one edge between two nodes
denotes an invariant (relationship) between these two metrics.
A system fault often causes some monitoring data to change
unusually and such change then causes some invariants to be
broken. At any future timestamp, we can get all broken links
(invariants) in an invariant network. System experts can then
follow the broken links and related metrics to narrow down
possible problems and faults. In this paper, we propose to
rank the metrics based on the anomaly level of each metric.
The ranking of metrics can provide a guidance for system
experts to follow the broken links and localize the fault more
effectively.

Nonetheless, it is a nontrivial task to rank the metric
anomaly in invariant networks. For example, in Figure 1, we
show an example of invariant networks, where bright-pink
links (lines) are broken and bright-turquoise ones are held at
this timestamp. In the figure, we can observe the complexity of
connectivity in invariant networks. Such complexity can vary
among different invariant networks of different information
systems. When we try to determine if one node is abnormal

2014 IEEE International Conference on Data Mining

1550-4786/14 $31.00 © 2014 IEEE

DOI 10.1109/ICDM.2014.74

1001

or not in such complex invariant networks, we cannot only
consider all associated links with this node, since the broken
links among these associated links are also connected with
other nodes. In other words, system faults can propagate from
one node to another node, and thus all nodes associated with
broken links are naturally tied together. As a result, it is not
easy to decide which nodes (metrics) are abnormal and cause
the broken links. Indeed, one fundamental challenge under-
lying this metric ranking problem is that one node (metric)
with a certain degree of anomaly has a certain possibility to
cause some of its related links to be broken. In this paper, we
name this challenge as uncertainty for short. All uncertainty
associated with each broken-link-related node together makes
this metric ranking problem quite difficult.

To address the uncertainty challenge, in this paper, we
propose to use Markov Random Fields (MRFs) to model the
nodes and broken links. Each node can be in two states: normal
and abnormal. With the modeling of MRFs, our goal is to
infer the states of all nodes by considering all nodes and the
connections among them together. To this end, we develop one
algorithm based on the loopy belief propagation (LBP), which
has been shown to be a very effective method for inferring the
conditional marginal probability of MRFs. Finally, we examine
the performances of the proposed algorithm on both real-world
and synthetic data sets.

II. PRELIMINARIES

A. Invariant Modeling and Extraction

In [1], [2], [3], Jiang et al. used AutoRegressive models
with eXogenous inputs (ARX) [4] to learn the relationship
between monitoring data. Following the notation in [2], at time
t, we denote two monitoring data by x(t) and y(t). The ARX
model describes the following relationship between them:

y(t) + a1y(t− 1) + · · ·+ any(t− n)

= b0x(t− k) + · · ·+ bmx(t− k −m), (1)

where [n,m, k] is the order of the model. ai and bj are the
coefficient parameters. Let us denote

ϕ(t) = [− y(t− 1), · · · ,−y(t− n), x(t− k), · · · , x(t− k −m)]T .

(2)

Then, Equation 1 can be rewritten as y(t) = ϕ(t)T θ.
Assuming that we have observed x(t) and y(t) over a time
interval 1 ≤ t ≤ N , let us denote this observation by
ON = {x(1), y(1), · · · , x(N), y(N). With a given θ and the
observations, we can calculate the simulated ŷ(t/θ) according
to Equation 1. Thus, we can get the estimation error as

EN (θ,ON) =
1

N

N∑
t=1

(y(t)−ŷ(t/θ))2 =
1

N

N∑
t=1

(y(t)−ϕ(t)T θ)2.
(3)

The Least Squares Method (LSM) can find the θ̂ that mini-
mizes the estimation error EN (θ,ON). Then, the normalized
fitness score F (θ) [2] is used to evaluate how well the learned
model fits the real observations as

F (θ) = 1−
√∑N

t=1 |y(t)− ŷ(t/θ)|2∑
t=1 N |y(t)− ȳ|2 , (4)

Component

y * = f(x)

R = |y - y*|

x y: real monitoring data

y*: model-simulated data

monitoring

 data

x

y

x

y

If R> Є M

Learned Model

Online tracking for an invariant between metric x and metric y

Fig. 2. An Invariant Online Tracking Example

where ȳ is the mean of the real output y(t). For one pair of
metrics (monitoring data), if the highest fitness score among
all model candidates is higher than a certain threshold τ , we
treat the corresponding model with highest fitness score as an
invariant.

B. Tracking of Invariant Networks

Given all monitoring data of an information system, in-
variant search is performed among all pairs of metrics with
the observations of each metric. Then, a set of invariants can
be obtained for this information system. If we represent each
metric as a node and each invariant as a link between two
metrics, we are able to generate a graph as shown in Figure 1,
which is called an invariant network. At each timestamp t in
the future, for each invariant we compare the real observation
y(t) and its simulated one ŷ(t) calculated with θ̂ to get the
absolute difference as

Rt = |y(t)− ŷ(t)|. (5)

In the normal situation without fault, we should have the
residual Rt ≤ εM , where εM is a threshold of model error. If
a system fault occurs inside the information system, it usually
affects the metric relationship, and the invariants are likely
to be violated. Thus we can observe such a fault in the real
time by tracking whether the real output stays in the same
trajectory as the invariant model expects, that is at time t,
check whether Rt ≤ εM . In Figure 2 we illustrate the invariant
tracking for FDI, where the link between x and y is broken if
R > εM . Note that εM is different for each invariant. Actually,
εM of each invariant is automatically decided with the residual
distribution associated with each link. Specifically, we select
a threshold εM = 1.1 · argR̂{prob(|R(t)| < R̂) = 0.995},
i.e., choose a value R̂ that is larger than 99.5 percent of the
observed residuals (after a long time period T) and the selected
threshold is 1.1 times R̂.

III. PROBLEM FORMULATION

A. Metric Anomaly Ranking

By the online tracking of each invariant, the state (broken
or not) of every invariant can be decided at a certain timestamp.
After the states of all the links in an invariant network at
a certain timestamp have been decided, the metric anomaly
ranking problem can be formulated as follows.

Given an invariant network I with N nodes (metrics),
denoted as Vi, 1 ≤ i ≤ N , and M links (invariants), denoted
as Ej , 1 ≤ j ≤ M , there are a learned parameter θ̂j , a set
of residuals Rj , and a fitness score Fj associated with each

link Ej . Furthermore, we can calculate a threshold εjM from

1002

Rj , where εjM is used to check if invariant Ej is violated or
not. Then, at a certain timestamp T , we can obtain an overall
state S for these M links, which shows the states of all the
invariants at T . The objective is to rank all metrics from most
abnormal to least abnormal. Such metric anomaly ranking
can provide a guidance for system experts to effectively and
efficiently examine metrics and localize the system fault.
Based on the above description and notations, we formally
state the metric anomaly ranking problem as follows.

The Metric Anomaly Ranking Problem
Given: An invariant network I with N nodes Vi (1 ≤
i ≤ N) and M links Ej (1 ≤ j ≤ M), additional

information [θ̂j ,Rj , Fj] associate with each link Ej , and
the state of M links at a certain timestamp T , when the
state of each link is either broken or not.
Objective: Ranking all N nodes from the most abnormal
to the least abnormal

Note that the given invariant network I in the above Metric
Anomaly Ranking Problem is a connected graph, which means
there is a path between any two nodes. Given all metrics, it
is possible that we may generate two or more completely-
separated invariant networks with methods described in sec-
tion II, but there will be no influence between the metric
rankings on the separate invariant networks.

IV. ANOMALY RANKING ALGORITHM

After the states of all the links in an invariant network at a
certain timestamp have been decided, we then model the nodes
and the broken links as a Markov Random Field (MRF) and
employ the Loopy Belief Propagation (LBP) method to infer
whether a node (i.e., a metric) being abnormal or not.

A. Modeling Invariant Network with MRF

Markov Random Fields (MRFs) are a class of probabilistic
graphical models particularly suitable for solving inference
problems with uncertainty in observed data. There are two
types of nodes in MRF: observed nodes and hidden nodes.
Observed nodes correspond to values that are actually observed
in the data. For each observed node, there is a hidden node
which represents the true state underlying the observed value.
The state of a hidden node depends on the value of its
corresponding observed node as well as the states of its
neighboring hidden nodes. Such dependency is captured via an
edge compatibility function Ψ(λ, λ′) and a node compatibility
function Φ(λ, ω). Ψ(λ, λ′) gives the probability of a hidden
node being in state λ′ given that it has a neighboring hidden
node in state λ. Φ(λ, ω) gives the probability of a node being in
state λ given that its corresponding observation was ω. There
is a belief vector bi associated with each hidden node i, and
|bi| denotes the number of states which the hidden node can
be in. bi(λ) is the probability of node i being in state λ (i.e.,
the belief of node i in state λ).

The invariant network can naturally be modeled as a
MRF. Specifically, to make the MRF adapted to our invariant
network, we extract all nodes with at least one broken link
and treat those nodes as hidden nodes of MRF. And all broken
links are extracted as the links between those hidden nodes.
For each hidden node, there are two possible states, which are

abnormal and normal, denoted as S. Moreover, each hidden
node is associated with an observed node, which corresponds
to our initial (and possibly noisy) observation of its state in the
data. Therefore, we may treat all broken links and all nodes
connected to at least one of these broken links as a MRF.

To completely adapt the MRF to the invariant network, we
need to instantiate the compatibility functions Ψ and Φ. When
there is no prior or domain knowledge, we may choose Φ such
that Φ(λ, ω) = 1/|S|, ∀λ, ω. The edge compatibility function
Ψ can be considered as a matrix (which is called Propagation
Matrix) of dimension |S| × |S|. Table I shows a sample
instantiation. Entry (i, j) gives the conditional probability that
the destination node is in state j given the source node is at
state i. Such an instantiation is actually based on the following
natural intuition: due to the fact that a broken link is caused by
at least one of nodes it links, a normal node tends to link to an
abnormal node but not to other normal nodes via a broken link.
Thus we may set ε0 to be a small value (e.g., 0.05) instead
of zero because the numerical problems with multiplications.
This reflects the fact that it is very unlikely that two nodes of
a broken link are both normal. And since the possibility that
two nodes of a broken link are abnormal simultaneously is
also small, an abnormal node is more likely to connect with a
normal node. Thus ε can be set as a value under 0.5. Ideally,
we should “learn” the values of ε0 and ε, as well as the form
of the propagation matrix itself, if we had a large training set.
However, in reality we may need to empirically specify both
values instead.

TABLE I. AN EXAMPLE PROPAGATION MATRIX

normal abnormal

normal ε0 1− ε0
abnormal 1− ε ε

B. Ranking Algorithm based on Loopy BP

In the MRF, nodes influence each other and cyclic de-
pendency exists between nodes. Traditional methods compute
the probability of event occurrence through integration. But
as the number of nodes becomes large, the relationship be-
tween nodes becomes complex. This would make it difficult
to determine the states of nodes with traditional methods.
Although Monte Carlo methods have been proposed, they
could not fundamentally solve the problem. This difficulty
had hindered the development of statistical inference until the
raising of belief propagation which is a very effective method
for inferring the conditional marginal probability. The main
idea of BP is to localize and distribute the inference, i.e.
transforming global integration to local message passing. BP
takes a network of nodes as an input, each of which can be in a
finite number of states. Some information about how the state
of a node influences its neighbors is also known beforehand.
Then the BP algorithm infers the posterior probability of states
of all nodes in the network given the observation of the
network nodes. Loopy belief propagation (LBP) is an extension
of BP which is appropriate for the network with loops like
MRF. The inference process can be summarized as follows.

The algorithm functions via iterative message passing be-
tween the different nodes in the network. Let mij denote the
message vector that node i passes to node j, and its dimension
is the same as the number of states each node can be in. In

1003

this paper, the message mij is a vector with two dimensions
because there are two states (i.e., normal and abnormal) for
node of the invariant network. mij(λ) represents node i’s
belief about that node j will be in the corresponding state λ.
At every iteration, each node i computes its beliefs based on
messages received from its neighbors, and uses the propagation
matrix to transform its beliefs as messages to its neighbors.

In many cases, there is no extra information about the
states of nodes except the structure of the network and the
propagation matrix based on intuition of problem. In these
cases, each node is initialized with an unbiased state. The belief
about a state of a node is proportional to the product of all the
messages coming into the node as:

bi(λ) = k
∏

j∈N(i)

mji(λ), (6)

where k is a normalization term because the beliefs must sum
to 1. And N(i) denotes the set of its neighboring nodes. As
can be seen from equation IV-B, there is no prior or local
observation used for calculating the belief at a node.

The message mij from node i to node j is proportional
to the product of all the messages from node i’s neighboring
nodes except node j:

mij(λ) =
∑
λ′

Ψ(λ, λ′)
∏

n∈N(i)\j
mni(λ

′), (7)

Usually the initial message of all nodes is set as (1, · · · , 1),
which means a node believes that any of its neighboring nodes
is in any of the possible states with equal probability. Then
messages flow iteratively through the graph until the beliefs
converge or a maximum number of iterations is reached. By
the end of iteration, the state of each node is to reach a fixed
point (equilibrium), that is states of all nodes are compatible
with their neighbors as much as possible.

However, original LBP is known to produce poor models
due to the lack of the prior information and local observation
about the states of nodes. To this end, we introduce a pior
to each hidden node of invariant networks. Also we define
and combine the local observation at each node in our work.
Specifically, based on the domain knowledge of information
system faults and their influence pattern in invariant networks,
we identify the following two important features to character-
ize the behavior of abnormal nodes and use them as the prior
and the local observation for each node respectively.

Definition 1: Ratio of Broken links (RB). According to the
cause of broken links we may have an intuition that a node is
likely to be abnormal if most links of this node are broken.
Along this line, we define the RB of a node Vi as:

RBVi =
number of broken links of Vi

number of all links of Vi
. (8)

Generally speaking, an abnormal node should have a higher
RB than that of a normal node.

Definition 2: Ratio of Unbroken links of BINNs (RUB).
It is also possible that the broken links of a node are caused
by its neighbors. Therefore, we need to consider the links
related to the broken-invariant-neighboring-nodes (BINNs).

The BINNs of a node are nodes each of which connects to
this node with a broken link. If most links of BINNs of a
node are not broken, this node is more likely to be abnormal.
Specifically we define the RUB of a node as:

RUBVi = 1−number of broken links related to BINNs

number of all links related to BINNs
.

(9)

We use RB as the state prior for each node because
we think that this is a more reliable indicator than RUB,
which is used as the local observation of the state of each
node. We believe that such a combination would yield the
following benefits: (a) using a strong prior (i.e., RB) and a
local observation (i.e., RUB) will help the belief propagation
to converge to a more accurate solution with less time; (b)
Although RUB may be a noisy observation of the real state
of a node, we expect that incorrect inference of the local
observation will be corrected by the mutual influence among
all nodes of an invariant network through the iterative process
of LBP.

To integrate the prior and local observation into the be-
lief propagation, we need to modify the previously stated
instantiation of the node compatibility function Φ. For sim-
plicity, we directly use ωi as Φ(abnormal, ωi) and 1− ωi as
Φ(normal, ωi), where ωi is either initialized to RB or set to
RUB. Accordingly, the belief at a node i is proportional to the
product of the local observation at that node Φ(λ, ωi) and all
the messages coming into node i:

bi(λ) = kΦ(λ, ωi)
∏

j∈N(i)

mji(λ), (10)

And the message updating rule is changed as:

mij(λ) =
∑
λ′

Φ(λ, ωi)Ψ(λ, λ′)
∏

n∈N(i)\j
mni(λ

′), (11)

V. EXPERIMENTAL RESULTS

A. The Experimental Setup

Experimental Data. We test the algorithm on both syn-
thetic and real-world data sets. First, we randomly generate a
group of time series, each of which contains 1323 points. We
generated invariant networks by using the first 1300 points of
all time series. Then we tracked the invariant networks with
the remaining 23 observations. We performed metric anomaly
ranking at a certain timestamp these 23 observations. To test
the scalability of algorithm, we randomly generated 7 groups
of time series with different sizes. Specifically, the numbers of
time series are 500, 1000, 1500, 2000, 3000, 4000 and 5000.
For each group of time series, we will conduct the experimental
test and comparison separately.

The real-world monitoring data were collected from a real
small bank information system. In total, there are 11 categories,
and each category includes different numbers of measure-
ments. This monitoring data is used to calculate various flow
intensities with a sampling unit equal to 6 seconds. We have
1273 monitoring (time series or metrics), which will be used in
the following experiments. In the experiment, we first collected
a set of training data which were collected at the normal state

1004

of the system. Each monitoring data within the training set
contains 168 points. We used this training set to search all
invariants and generated the invariant network as described in
section II. Also, we collected another set of data for these 1273
monitoring data, which were collected during the abnormal
state of the system. We have 140 observed points for each
monitoring data. We use this set of data as the test set. We track
the invariant network with this test set by using the method
described in section II. Then, we perform the metric anomaly
ranking at different timestamps. In addition, for both real-world
and synthetic data, we specify the range for the order [n,m, k]
as 0 ≤ n,m, k ≤ 2. Also the threshold of fitness score is set
as 0.7.

Baseline Method. We compare our algorithm with a base-
line method proposed in [1]. It simply used the RB defined
in equation 8 to measure the anomaly degree of each node
and rank all nodes based the measured degree. To present all
comparisons easily, we denote our method and baseline method
as lbp and b respectively.

Experimental Platform All algorithms are implemented
in Matlab2011a. All the experiments were conducted on a
Windows 7(64bit) with Intel Core2 Quad Q6600 and 4.00GB
RAM.

B. Benchmark Generation

One fundamental difficulty of this anomaly ranking is that
it is extremely difficult to get the benchmark of anomaly from
the real-world distributed systems [3], [5]. A lot of system
faults may happen in a distributed systems. Though system
experts may be able to manually diagnose the system, identify
the root causes and resolve the problems, it is almost impos-
sible to ask them to rank all metrics according to anomaly.
Furthermore, for a lot of cases, system experts may just reboot
the system or machines to solve the problem without any
awareness of possible root causes. Thus system experts do
want to know the metric anomaly ranking when a fault happens
in a distributed system, but they can not provide the ground
truth or benchmark for the anomaly ranking.

To this end, in the paper, we propose one method to
artificially generate the benchmark with the synthetic data and
provide a standard for us to evaluate different anomaly ranking
algorithms. Specifically the anomaly of a time series (metric)
usually indicates the non-normal change. Based on this intu-
ition, we generate the benchmark of anomaly via measuring
the changing ratio of amplitude of time series. If the one
observation of one time series is y1, after randomly changing
the observation from y1 to y2 we measure manually-injected

degree of anomaly as: di =
|y2−y1|
|y1| . We denote this benchmark

generation method as amplitude-based benchmark. Given
all metrics within the invariant network we select to study,
we randomly select a small portion of metrics and manually
inject certain degree of anomaly to each one metric and record
all anomaly degree of all selected metrics. Then we rank all
selected metrics according to this artificial anomaly degree
(from high degree to low degree) and treat such as rank as
our first benchmark.

For the real-world data used in this paper, we was told
about the root cause of system faults. Specifically, the system
domain experts have specified that the root cause is related to

“DB16”, which indicates a particular machine component in
the system. Also, this root cause leads to some faults at the
observation 120th in the test data. Thus, in the experiment,
we would like to leverage this information to evaluate the
ranking algorithm. Basically, we will demonstrate how the top
abnormal metrics ranked by our algorithm are related to this
known root cause.

C. Validation Metrics

Given the benchmark of anomaly ranking, we use Preci-
sion, Recall and nDCG [6] to validate the effectiveness of
anomaly ranking algorithm. All of these three measurements
are widely used in ranking-related works [7], [7], [8]. For

nDCG, it is defined as nDCGp =
DCGp

IDCGp
. Here, DCGp is

compute as DCGp =

p∑
i=1

2reli − 1

log2(1 + i)
, where reli represents

the anomaly degree (benchmark) of the metric at position i of
the ranking list. And IDCGp is the ideal DCG at position
p of the ideal ranking list, which can be done by sorting all
metrics (all nodes of the examinzed invariant network) by the
anomaly degree (benchmark). Typically, we have p ≤ K if we
examine the quality of top-K metrics in the ranking list.

D. Ranking Performances on Synthetic Data

Before the network tracking, for every synthetic data set
and a benchmark generation method, we randomly select 15%
of invariant network nodes (metrics) to inject the anomaly.
And we measure the anomaly degree for the selected nodes
with amplitude-based or residual-based method. Thus for each
synthetic data set, we have two types of benchmark ranking
of anomaly. Then with each benchmark ranking, we compute
the average Precision, Recall and nDCG of the sets of same
size data sets.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Data Size

Pr
ec

is
io

n

b
lbp

Fig. 3. Precision Comparisons on Different Data Sets with Amplitude-based
Benchmark

In Figure 3, we compare algorithms on the Precision of top-
K metrics with the amplitude-based benchmark. Note that the
computation is based on top-K metrics and we set K as twice
as the number of the selected nodes for each benchmark. As we
can see in Figure 3, the algorithm developed in this paper can
outperform the baseline methods on all data sets with different
sizes. In Figure 4, We show the comparison of Recall of top-K
metrics based on the amplitude-based benchmark.

1005

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Data Size

Re
ca

ll

b
lbp

Fig. 4. Recall Comparisons on Different Data Sets with Amplitude-based
Benchmark

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Data Size

nD
C

G

b
lbp

Fig. 5. nDCG Comparisons on Different Data Sets with Amplitude-based
Benchmark

In Figure 5, we show the nDCG@p on different data sets
with the amplitude-based benchmark. Our algorithm leads to
better performance (higher nDCG) than the baseline algorithm.

E. Ranking Performances on Real-world Data

In this subsection, we compare the ranking performances
of different algorithms on the real-world data.

In the real-world data, there is a root cause related to the
“DB16” at the 120th observation in the test data. It is difficult
to ask system operators to provide the rank of abnormal metrics
because there is huge dependency among various metrics. But
we have a unique semantic label associated with each metric.
For example, some semantic labels may be “DB15 DISK hdaw
Block” and “WEB26 PAGEOUT RATE”. Our goal here is to
demonstrate how the top metrics in the ranking list are related
to the “DB16”-related root cause. Thus we perform online
tracking in invariant networks and do metric ranking at the
120th observation in the test data. Table II shows the label
of top-32 metrics generated by different ranking methods. For
example, in the ranking list of the baseline algorithm, there are
5 metrics related to “DB16”. And the lbplp algorithm produces
the most number (i.e., 10) of metrics related to “DB16” in
the top-32 metrics. However, it is possible that other metrics,
which are not labeled with “AP11”, can become abnormal
after the root cause happens, because there is much underlying
dependent relationship between different components of the

information system and such dependency will help to spread
the influence of root cause in the information system.

TABLE II. TOP METRICS BY DIFFERENT METHODS

AP11-Related Metrics b lbp
AP11 PACKET Output DB17 DISK hdm Request AP13 DISK hd30 Request

AP11 DISK hd0 Request DB18 DISK hdk Busy AP11 DISK hd45 Request

AP11 CPU User DB18 DISK hday Busy DB16 CPU User

AP11 DISK hd45 Request DB16 DISK hday Busy AP11 DISK hd0 Request

AP11 DISK hd45 Busy DB17 DISK hdm Block DB18 DISK hdw Request

AP11 DISK hd1 Request DB16 DISK hdk Busy AP11 DISK hd45 Block

AP11 CPU System DB15 DISK hdk Busy AP11 PACKET Input

AP11 CPU Waitio DB16 DISK hdm Block DB16 DISK hday Busy

AP11 DISK hd45 Block DB15 DISK hday Busy DB16 DISK hdk Busy

AP11 PACKET Input DB18 DISK hdbu Request DB17 DISK hdm Block

AP11 DISK hd0 Busy AP11 PACKET Input DB15 DISK hday Busy

AP11 DISK hd30 Busy AP13 DISK hd30 Request DB16 DISK hdm Block

VI. CONCLUDING REMARKS

In this paper, we have presented a study of exploiting
monitoring data, collected at different points in distributed
information systems, for system fault detection and diagnosis.
Specifically, we proposed a metric anomaly ranking problem,
which is motivated by the complexity arising from the tradi-
tional invariant-based modeling of system dynamics. Indeed,
based on the domain understanding of system faults, their
influence patterns in invariant networks, and link analysis in
networks, we developed a metric anomaly ranking algorithm
based on belief propagation. This algorithm which integrates
local observation well into the message passing process was
demonstrated to be able to outperform the baseline method
with both real-world and synthetic data.

VII. ACKNOWLEDGEMENTS

This research was supported in part by National Natural
Science Foundation of China under Grant 61203034 and Grant
61373046.

REFERENCES

[1] G. Jiang, H. Chen, and K. Yoshihira, “Discovering likely invariants of
distributed transaction systems for autonomic system management,” in
proceedings of the 3rd International Conference on Autonomic Comput-
ing, 2006, pp. 199–208.

[2] G. Jiang, H. Chen, and K. Yeshihira, “Efficient and scalable algorithms
for inferring likely invariants in distributed systems,” Transactions on
Knowledge and Data Engineering, vol. 19, no. 11, pp. 1508–1523, 2007.

[3] G. Jiang, H. Chen, and K. Yoshehira, “Modeling and tracking of
transaction flow dynamics for fault detection in complex systems,” IEEE
Transactions on Dependable and Secure Computing, vol. 3(4), pp. 312–
326, 2006.

[4] L. Ljung, System Identification: Theory for the User, 2nd ed. Prentice
Hall PTR, 1998.

[5] S. Ghanbari and C. Amza, “Semantic-driven model composition for
accurate anomaly diagnosis,” in proceedings of the 24th International
Conference on Software Engineering, 2002, pp. 291–301.

[6] K. Jarvelin and J. Kekalainen, “Cumulated gain-based evaluation of ir
techniques,” ACM Transactions on Information Systems, vol. 20, no. 4,
pp. 422–446, 2002.

[7] H. Valizadegan, R. Jin, R. Zhang, and J. Mao, “Learning to rank by
optimizing ndcg measure,” in proceedings of the 23rd Annual Conference
on Neural Information Processing Systems, 2009.

[8] S. Wei, Y. Zhao, Z. Zhu, and N. Liu, “Multimodal fusion for video search
reranking,” Transactions on Knowledge and Data Engineering, vol. 22,
no. 8, pp. 1191–1199, 2010.

1006

