
Generic and Robust Localization
of Multi-Dimensional Root Causes
Zeyan Li†‖, Chengyang Luo†, Yiwei Zhao†, Yongqian Sun‡∗, Kaixin Sui§

Xiping Wang†, Dapeng Liu§, Xing Jin¶, Qi Wang¶, Dan Pei†‖
†Tsinghua University, ‡Nankai University, §BizSeer, ¶China Construction Bank

‖Beijing National Research Center for Information Science and Technology (BNRist)

Abstract—Operators of online software services periodically
collect various measures with many attributes. When a measure
becomes abnormal, indicating service problems such as reliability
degrade, operators would like to rapidly and accurately localize
the root cause attribute combinations within a huge multi-
dimensional search space. Unfortunately, previous approaches
are not generic or robust in that they all suffer from impractical
root cause assumptions, handling only directly collected measures
but not derived ones, handling only anomalies with significant
magnitudes but not those insignificant but important ones,
requiring manual parameter fine-tuning, or being too slow.

This paper proposes a generic and robust multi-dimensional
root cause localization approach, Squeeze, that overcomes all
above limitations, the first in the literature. Through our novel
“bottom-up then top-down” searching strategy and the tech-
niques based on our proposed generalized ripple effect and
generalized potential score, Squeeze is able to reach a good trade-
off between search speed and accuracy in a generic and robust
manner. Case studies in several banks and an Internet company
show that Squeeze can localize root causes much more rapidly and
accurately than the traditional manual analysis. Furthermore,
our extensive experiments on semi-synthetic datasets show that
the F1-score of Squeeze outperforms previous approaches by 0.4
on average, while its localization time is only about 10 seconds.

Index Terms—multi-dimensional, root cause localization, gen-
eralized ripple effect, generalized potential score

I. INTRODUCTION

Operators of online software services (e.g., online shopping
and Internet company) periodically (e.g., every minute) col-
lect various measures to monitor and troubleshoot service’s
performance and reliability problems [1], [2]. Some measures
are directly collected from raw logs (e.g., total dollar mount
of orders in Table I), and are called fundamental measures [3].
Other measures derived from fundamental measures by some
functions (e.g., the average dollar amount per order in Table II)
are called derived measures [3]. Measures are usually collected
with many attributes (e.g., Province, ISP) whose values are
categorical (e.g., Beijing or Shanghai for attribute ISP). The
measure can be calculated for each attribute combination (i.e.,
a conjunction of attribute and attribute value pairs). e.g., in
the third row of Table I, the measure for attribute combination
(Province=Shanghai∧ISP=China Unicom) is 30.

When a measure’s real value deviates from its expected
(forecast) value, this measure encounters anomalies (see the

Yongqian Sun∗ is the corresponding author.

TABLE I: Fundamental measure example: total dollar amount
of orders. The bold lines are abnormal. The root cause is
(Province=Beijing).

Province ISP real value forecast value
Beijing China Mobile 5 10
Beijing China Unicom 10 20
Shanghai China Unicom 30 31
Guangdong China Mobile 10 9.8
Zhejiang China Unicom 2 2
Guangdong China Unicom 200 210
Shanxi China Unicom 20 22
Jiangsu China Unicom 200 203
Tianjin China Mobile 41 43

Total 518 550.8

TABLE II: Derived measure example: the average dollar
amount per order (total dollar amount of orders

the number of orders). The bold lines are
abnormal. The root cause is (Province=Beijing).

Province ISP real value forecast value
Beijing China Mobile 50/20 10/10
Beijing China Unicom 120/60 24/30
Shanghai China Unicom 30/30 31/30
Guangdong China Mobile 10/21 9.8/20
Zhejiang China Unicom 2/2 2/2

Total 212/133 76.8/92

bold lines in Table I and Table II). In such case, operators
would like to rapidly and accurately localize the root cause at-
tribute combinations, e.g., (Province=Beijing) for both Table I
and Table II. Localization of multi-dimensional root causes
is thus critical to troubleshooting and mitigating the software
service performance and reliability anomalies.

The fundamental challenge of multi-dimensional root cause
localization is its huge search space due to the large number
of attribute combinations and that in theory the root cause
can be a set of any number of attribute combinations. Thus,
even for the toy examples in Table I and Table II, there exists
27+2+9− 1 and 24+2+5− 1 potential root causes respectively.
Suppose there are d attributes and each attribute has l distinct
values, then there can be

∑d
i=1

(
d
i

)
li = (l + 1)d − 1 valid

attribute combinations and the number of potential root cause
can be 2(l+1)d−1−1. According to the experiences of operators
that we worked with, typically d is less than or about ten, l
is several tens. When d = 5 and l = 10, then there will be
2161050 − 1 potential root causes.

Previous multi-dimensional root cause localization ap-
proaches [3]–[7] proposed various techniques to reduce the

1

TABLE III: Qualitative comparison of related works. Detailed reviews are in Section VII.

Algorithms Root Cause Assumption Measure Change
Magnitude

Parameter
Fine Tuning Time Cost Method

Adtributor [3] single attribute (in one
first-layer cuboid)

fundamental & derived
(quotient)

significant no very short top-down

R-Adtributor
[4] none fundamental & derived

(quotient)
significant yes short top-down

iDice [5] one or two attribute
combinations

fundamental only significant no very short top-down

Apriori [6] none fundamental & derived any yes always too long bottom-up
HotSpot [7] all attribute combinations of

the root cause in one cuboid
fundamental only significant no sometimes long top-down

Squeeze those which cause the same
changes are in one cuboid

fundamental & derived
(quotient, product)

any no short bottom-up
then top-down

search space, but they all suffer some limitations (summarized
in Table III) and are not generic or robust. Adtributor [3]
and iDice [5] have assumptions on root causes that are too
strong and impractical. HotSpot [7] and iDice can only handle
fundamental measures, and Adtributor and R-Adtributor [4]’s
approaches for derived measures are very different from the
ones for fundamental measures. iDice, HotSpot, Adtributor
and R-Adtributor all ignore attribute combinations whose
anomaly magnitudes are insignificant. (e.g., in Table I, where
the abnormal lines change by 15, which is insignificant relative
to the total amount 518). However, such anomalies are impor-
tant in some cases (e.g., bank transactions failure of a small
number of users). Apriori and R-Adtributor stop searching
with arbitrary and hard-to-tune conditions with no clear physi-
cal meanings in the context of root cause localization (e.g., the
minimum support threshold), thus require manual parameter
fine-tuning for different services or the same service over time,
thus are impractical. Apriori [6] is too time-consuming.

Our design goals for multi-dimensional root cause localiza-
tion are generic and robust: 1) consistently handle fundamental
and derived measures; 2) handle both significant and insignif-
icant anomaly magnitudes; 3) do not require parameter fine-
tuning; 4) be consistently fast, and 5) have no impractical root
cause assumptions. The core ideas and major contributions of
our proposed approach, Squeeze, are the following.

First, for the first time in the literature, we propose gener-
alized ripple effect (GRE) for both fundamental and derived
measures, which captures magnitude relationship between the
root cause attribute combinations and its “descendant” attribute
combinations. GRE has two major differences from the the
ripple effect observed by [7]: 1) ripple effect was considered by
[7] to hold only for fundamental measures. We mathematically
prove that GRE holds for a derived measure as long as the
ripple effect holds for its underlying fundamental measures 2)
the ripple effect in [7] does not work for zero forecast values
(not uncommon in practice), but we make improvements so
that GRE works for zero forecast values. Furthermore, we
show that GRE holds true in the real world through case
studies on an Internet company and several large banks. GRE
and its confirmation in reality are our first contribution.

Second, we attribute previous approaches’ limitations to
the fact that, to reduce the search space, they all use either
top-down method [3]–[5], [7] or bottom-up method [6], but

not both. In contrast, Squeeze first searches bottom-up to
narrow down the search space, within which Squeeze then
does top-down search to localize the root cause attribute
combinations. In the bottom-up step, Squeeze filters out most
normal attribute combinations and groups potential abnormal
attribute combinations into clusters according to GRE. In the
top-down step, Squeeze uses a heuristic method (with only
one robust parameter) to efficiently search for the root causes
within those clusters output by the bottom-up step. Our novel
“bottom-up&top-down” method (hence the name Squeeze)
enables Squeeze to become the first generic and robust
approach in the literature for multi-dimensional root cause
localization, which is our second contribution.

We extensively evaluate Squeeze by comparing with previ-
ous works on several semi-synthetic datasets. The experiments
show that the F1-score of Squeeze significantly outperforms
the others by about 0.4. Squeeze is also efficient and consis-
tently costs only about 10 seconds in all cases. Case studies in
several banks and an Internet company show that Squeeze can
localize root causes much more rapidly and accurately than
traditional manual analysis. This is our third contribution.

II. BACKGROUND

TABLE IV: Raw Transaction Log Example for Table I
Order ID Timestamp Dollar Amount Province ISP

Table V lists the the definitions, notations, and examples
of the important terms used in the paper. Measure is the
value of interest, e.g., total dollar amount of orders in Table I,
average dollar amount per order in Table II, and success
rate in the case studies in Section V-A and Section V-B.
Measures are calculated periodically with many attributes
(e.g., ISP) based on raw logs of transactions (e.g., Table IV).
Each attribute will have several discrete potential values (e.g.,
ChinaUnicom, ChinaMobile for attribute ISP). A conjunction
of several (attribute, attribute value) pairs where an attribute
can appear in at most one pair is called attribute combination.

A leaf attribute combination (also referred to as leaf for
simplicity) is an attribute combination which includes all
attributes. From raw logs like Table IV, given a time window,
we sum the dollar amount of all transactions with the same
leaf attribute combination to obtain its measure. e.g., each
line except for the last one in Table I corresponds to a
leaf attribute combination and its dollar amount measure

2

TABLE V: Summary of Terms
Term Definition Notation Example

Measure The measure of interest M total dollar amount of orders, average dollar amount per order
Fundamental

Measure Additive measures - total dollar amount of orders, the number of orders, the number of
successful transactions, total search response time (SRT)

Derived
Measure Measure derived from fundamental measures - average dollar amount per order (total dollar amount of orders

the number of orders), success
rate (#success transactions

#total transactions), average SRT (total SRT
#page views)

Attribute All categories A Province, ISP in Table I
Attribute

Value Potential values for each attribute a Beijing, Shanghai, Guangdong for attribute Province

Attribute
Combination A conjunction of (attribute, attribute value)

pairs
e (Province=Beijing) and (Province=Shanghai∧ISP=China Mobile)

are both valid. (Province=Shanghai∧Province=Beijing) is not valid.
Leaf Attribute
Combination An attribute combination such that all potential

attributes are specified a value
e (Province = Beijing ∧ ISP = China Unicom),

(Province=Beijing∧ISP=China Mobile) in Table I
Cuboid Set of attribute combinations whose

corresponding attribute combinations have the
same keys

C CISP = {(ISP = China Mobile), (ISP = China Unicom)},
CProvince,ISP={(Province=Beijing,ISP=China Mobile),

(Province=Beijing,ISP=China Unicom), (Province=Shanghai,China
Unicom), (Province=Guangdong, ISP=China Mobile)...}

Descent e1is descended from e2 means the attribute
combination of e1 contains that of e2

- (Province = Beijing ∧ ISP = China Unicom) is descended from
(Province = Beijing), but is not descended from

(Province=Shanghai)
Real Value The measure values that are collected from

real world.
v(·) In Table I, v(Province = Beijing ∧ ISP = China Unicom) = 10,

Forecast Value Measures’ expected values. f(·) In Table I, f(Province = Beijing ∧ ISP = China Unicom) = 20

for the given time window. Such additive measures, which
are collected directly from raw logs, are called fundamental
measures. They can be sliced along different attributes. For
example, in Table I, the dollar amount of attribute combi-
nation (Province=Beijing) (not shown in the table) is the
sum over of those of (Province=Beijing∧ISP=China Mobile)
and (Province=Beijing∧ISP=China Unicom), while the total
amount (last line in Table I) is the sum over those of all
leaves. There are also derived measures which are functions
of fundamental measures. They are typically non-additive. For
example, from raw logs like Table IV, given a time window,
we count the number of transactions (orders) for each leaf to
obtain the number of orders for the given time window. Then
the average dollar amount per order in Table II is the total
dollar amount of orders divided by the number of orders.

A B C
AB AC BC

ABC

Layer 1
Layer 2
Layer 3

Fig. 1: A cuboid graph with
3 attributes: A,B,C.

All the attribute combinations
with the same set of attributes
(regardless of the attribute val-
ues) form a set of attribute com-
binations called cuboid [8] (see
4th last row in Table V for ex-
amples). If there are d attributes
in total, there would be 2d − 1 cuboids. Cuboids can form
a multi-layer graph, as Fig. 1 shows. A cuboid’s layer is
the number of attributes it uses. If there are d̂ attributes in
a cuboid and each has l distinct values, there would be ld̂

attribute combinations in it. We say an attribute combination
e1 is descent from e2 if e1’s conjunction contains all those of
e2 (see 3rd last row in Table V for examples).

The real value of an attribute combination is the measure
values directly collected/calculated based on the raw transac-
tion logs, and the forecast value is its expected value based on
some forecasting algorithms. The last two columns in Table I
and Table II are real and forecast values, respectively. An

attribute combination is considered abnormal for a given time
window if its real value deviates significantly enough from its
expected value. Note that although value forecasting interacts
with root cause localization, it is not in our studied scope of
root cause localization. There are lots of time series forecasting
algorithms that handles value forecasting, from simple statis-
tical algorithms [9]–[12] to advanced algorithms [13]–[15], or
forecasting for multi-dimensional attributes [6]. The choice of
appropriate forecasting algorithm sometimes needs be based
on the specific data [16]. To prevent fine-tuning forecasting
algorithm from hurting the robustness of localization, in this
paper, we simply use MA (moving average) for all scenarios.
Our experiments in Section VI-E show that our proposed lo-
calization approach is robust against MA’s various forecasting
errors on different datasets.

Real values and forecast values are denoted by v(·) and
f(·) respectively. Without loss of generality, we assume both
v and f are non-negative, since in practice measures are non-
negative. We only extract real and forecast values for all leaves
from raw logs directly. For a fundamental measure, a non-
leaf attribute combination’s real (forecast) value is the sum
over all leaves that descended from this non-leaf attribute
combination. In other words, v(e) =

∑
e′∈descent(e) v(e′), f(e) =∑

e′∈descent(e) f(e′). For a derived measure, a non-leaf attribute
combination’s real (forecast) value is the function of its
corresponding fundamental measures’ values for this attribute
combination, i.e., if v=h(v1, ..., vn), then v(e)=h(v1(e), ..., vn(e)),
where v is a derived measure from fundamental measures
{v1, v2, ..., vn} and h(·) is the function that produces v. For
convenience, we slightly extend the definition of operator v
and f . If S is a set of attribute combinations which are in
the same cuboid, and the measure is a fundamental measure,
v(S)=

∑
e∈S v(e) and f(S)=

∑
e∈S f(e). If it is a derived mea-

sure, v(S)=h(v1(S), ..., vn(S)) and f(S)=h(f1(S), ..., fn(S)).

3

III. GENERALIZED RIPPLE EFFECT

We propose generalized ripple effect (GRE), which cap-
tures the relationship of attribute combinations’ abnormal
magnitudes caused by the same root cause. GRE holds for
both fundamental and derived measures and can handle zero
forecast values. GRE is a key enabler of Squeeze’s genericness
and robustness, and in Section V we will show that it holds
true in the real world through industrial case studies.

A. Background of Ripple Effect
Ripple effect, first observed by [7] for fundamental mea-

sures only, captures the relationship of attribute combinations’
abnormal magnitudes caused by the same root cause. The
intuition of ripple effect is that all attribute combinations
affected by the same root cause will change by the same
proportion. It says that, given a root cause S, which is a
subset of cuboid C, the abnormal magnitude of any affected
attribute combination e (in S or descended from any attribute
combination in S) satisfies the following equation:

f(e)− v(e)

f(e)
=
f(S)− v(S)

f(S)
, (1)

where f(S) (v(S)) denotes the total forecast (real) value of
all leaf attribute combinations in S. For example, in Table I,
the root cause is S={(Province=Beijing)} in cuboid Cprovince.
Therefore, if e1=(Province=Beijing∧ISP=China Unicom),
then f(S)−v(S)

f(S)
=

∑
e′∈S(f(e′)−v(e′))∑

e′∈S f(e′) = 0.5 =
f(e1)−v(e1)

f(e1)

B. Generalizing Ripple Effect for Derived Measures
Ripple effect was considered by [7] to hold for only funda-

mental measures. In this section, we mathematically prove that
GRE holds for a derived measure as long as the ripple effect
holds for its underlying fundamental measures. Since most
common derived measures are the quotient of two fundamental
measures, without much loss of generality, we provide proof
of GRE for such derived measures.

Consider three measures, M1,M2,M3, where M1 and M2

are fundamental measures and M3 = M1

M2
. Since M1 and

M2 are fundamental measures, M1 and M2 satisfies ripple
effect (1). It can be proved the M3 also satisfies ripple effect:
Note that the real value and forecast value of a derived
measures are defined by its component fundamental measures:
fM3

(S)=
fM1

(S)

fM2
(S)
6=

∑
e′∈S fM3

(e′). Therefore,

∆M3
(e)=

fM1 (e)

fM2
(e)
−
vM1

(e)

vM2
(e)

=
∆M1

(e)vM2
(e)−∆M2

(e)vM1
(e)

vM2
(e)fM2

(e)

similarly, ∆M3
(S)=

∆M1
(S)vM2

(S)−∆M2
(S)vM1

(S)

vM2
(S)fM2

(S)

∵ ripple effect, ∴ ∆Mi
(e)=

fMi
(e)

fMi
(S)

∆Mi
(S), i=1, 2

∴ ∆M3

fM3
(e)

fM3
(S)

=
∆M1

(S)vM2
(S)−∆M2

(S)vM1
(S)

vM2
(S)fM2

(S)

fM2
(S)

fM1
(S)

fM1
(e)

fM2
(e)

=
∆M1

(e)−∆M2
(S)

vM2
(S)

vM1
(e)

fM2
(e)

=
∆M1

(e)−∆M2
(e)

vM2
(e)

vM1
(e)

fM2
(e)

=∆M3 (e)

Therefore, for each root cause, there is also a con-
stant k such that for any attribute combination un-
der affection vM3

(e)

fM3
(e)=k. We call it as generalized rip-

ple effect (GRE). Take Table II as an example, the

true root cause is S={(Province=Beijing)}. Then for
e1=(Province=Beijing∧ISP=Mobile), vM3

(e1)

fM3
(e1)

= 50
20
/ 10

10
=

vM3
(S)

fM3
(S)

= 50+120
20+60

/ 10+24
10+30

= 5
2
.

GRE also holds for products (M3=M1·M2), which can be
proved similarly. We prove GRE for quotients and productions
because they are the most common cases. The core idea of the
our proof is finite difference [17]. A similar method can be
applied when dealing with other types of derived measures.

Our results of GRE can cover fundamental measures (e.g.,
total dollar amount of orders, page views, issue counts, total
traffic) and most common derived measures (e.g., average
latency, average dollar amount per order, success rate).

C. Generalizing Ripple Effect for Zero Forecast Values
The ripple effect in [7] does not work for zero forecast

values (i.e., f(S) = 0. To avoid this problem, we replace f
with f+v

2 . That is to say, GRE’s formulation becomes
f(e)− v(e)

f(e) + v(e)
=
f(S)− v(S)

f(S) + v(S)
(2)

where the symbols have the same meaning as (1). If (1)
holds, then it is obvious that (2) holds as well; if f(S) = 0,
then any affected attribute combination e should have infinitely
large abnormal magnitudes or f(e) = 0.

IV. Squeeze APPROACH

We propose an approach, Squeeze, for multi-dimensional
root cause localization, whose design goals are listed in
Section I and scope/architecture shown in Fig. 2.

A. Scope of this Paper

Measures Database

Clustering: Sec IV.C

Locating in Each Cluster: Sec IV.D

Forecast

Squeeze

Root Cause: A Set of Attribute Combinations

Anomaly Happens

TimestampRelated System

Bottom-Up

Top-Down

Fig. 2: Squeeze’s scope and architecture.

The double
dashed box in
Fig. 2 highlights
the scope of
Squeeze, which
is called on
demand when
some anomaly (e.g., success rate drops significantly) happens
to a service at a particular time window, indicated by some
calls, tickets, or alerts. Then operators query the measure’s
real values for leaf attribute combinations from the measure
database, and call a forecasting algorithm (i.e., Moving
Average) on demand to obtain the measure’s forecast values
for all leaves for the given time window. In other words,
Squeeze is called on demand with the input of a measure’s
real and forecast values of all leaves.

The output of Squeeze is a set of attribute combinations
that explain all anomalies and are as succinct as possible
(Occam’s razor principle). For example, in Table I, both
(Province=Beijing) and {(Province=Beijing∧ISP=China Mo-
bile), (Province=Beijing∧ISP=China Unicom)} explain the
anomaly, but we prefer (Province=Beijing) as the root case
since it is more succinct.

The selection of the time series forecasting algorithm is out
of the scope of Squeeze as mentioned in Section II. Similar to
other multi-dimensional root cause localization approaches [3],
[5], [7], casual inference is also out of scope.

4

B. Core Ideas

Different from all previous works [3]–[7], Squeeze employs
a novel “bottom-up then top-down” searching strategy to
achieve a good trade-off between speed and accuracy in a
generic and robust manner. Squeeze first searches bottom-up
to narrow down the search space, within which Squeeze then
does top-down search to localize the root cause. In the bottom-
up step, Squeeze filters out most normal attribute combinations
and groups potential abnormal attribute combinations into
clusters according to GRE. In the top-down step, Squeeze uses
a heuristic method based on our proposed generalized potential
score (GPS) to efficiently search for the root causes within
those clusters output by the bottom-up step.

C. Bottom-Up Searching through Clustering

Squeeze first searches bottom-up to narrow down the search
space. More specifically, Squeeze filters out most normal at-
tribute combinations and then groups the remaining potentially
abnormal ones into clusters according to GRE.

0 5 10
log(|v f| + 1)

0

50

CD
F Knee Point

Fig. 3: Cumulative distribu-
tion of leaf attribute combi-
nations’ deviations, and knee
point threshold selection.

1) Deviation Based Fil-
tering: Given the large num-
ber of leaf attribute com-
binations, when a service
anomaly occurs, usually the
number of “abnormal” leaf
attribute combinations (with
large deviations) is much
less than those “normal”
ones (with little deviations).
The goal of this step is to filter out those normal leaf attribute
combinations in order to reduce the number of leaf attribute
combinations for the next step (clustering). One key challenge
is how to automatically determine whether a leaf attribute
combination is abnormal or not. Similar to those anomaly
detection algorithms [13], [16], we use the forecast residuals
(or deviation) to indicate the extent of changes, and apply
a threshold to decide whether the change is an anomaly or
not. Fig. 3 shows the cumulative distribution of leaf attribute
combinations’ deviations in an example service anomaly. The
skewed distribution naturally allows us to apply the knee-
point method [18] to automatically pick the knee-point as the
anomaly threshold, on demand for each service anomaly. For
example, the vertical dashed line in Fig. 3 marks the threshold
given by knee method for this example.

2) Deviation Score Based Clustering: The deviation based
filtering outputs a list of potentially abnormal leaf attribute
combinations which Squeeze groups into clusters, each of
which is a potential root cause.

Deviation score is defined as d(e):=2 f(e)−v(e)
f(e)+v(e) . All leaves

of the same root cause will have similar deviation scores
according to GRE. Therefore, we can find which (potentially
abnormal) leaf attribute combinations are affected by the same
root cause by grouping leaf attribute combinations with similar
deviation scores into the same cluster.

0.5 0.0 0.5 1.0
deviation score

0

5

10

pd
f relmax

relmin
density

Fig. 4: Illustration of Algo-
rithm 1 by Case II in Sec-
tion V-A

We use a simple den-
sity based clustering algo-
rithm, as shown in Al-
gorithm 1. First we get
the histogram of the devi-
ation scores. Then the rela-
tive maximums of the his-
togram are considered as
the cluster centroids, and
the closest relative minimums are considered as the cluster
boundaries.

Algorithm 1 Deviation Score Based Clustering by Density

1: procedure DENSITYCLUSTER(arr)
2: bins, hists← histogram(arr)
3: centers← argrelmax(hists)
4: boundaries← argrelmin(hists)
5: clusters← []
6: for center in centers do
7: l ← last attribute combination in boundaries s.t.
bins[l] < bins[center]

8: r ← first attribute combination in boundaries s.t.
bins[r] > bins[center]

9: clusters← clusters+ {x ∈ arr|l ≤ x ≤ r}
return clusters

Algorithm 2 Localization in Cluster

1: procedure INCLUSTERLOCALIZATION(cluster)
2: root causes← []
3: for cuboid in all cuboids from top to bottom do
4: n ele← the number of leaf attribute combinations

descended from each attribute combination of cuboid in
cluster

5: n descents ← the number of all leaf attribute
combinations descended from each attribute combination
of cuboid

6: sort attribute combinations in cuboid by n ele
n descents

in descending order
7: for split in all valid splits do
8: score[split]← GPS(split)
9: index← argmaxsplitscore

10: root cause← attribute combinations[index]
11: root causes← root causes+ [root cause]
12: if root cause’s score ≥ δ then
13: Stop search next layer
14: sort root causes with score ∗ C − n ele ∗

cuboid layer in descending order
15: return root causes[0]

D. Top-Down Localization within Each Cluster
The output of the bottom-up search is a list of leaf attribute

combination clusters, each of which is a potential root cause
with a different range of deviation scores. This output is the
input of the top-down localization. Within each cluster, we
use a top-down heuristic algorithm (shown in Algorithm 2) to
efficiently search for the root cause attribute combinations.

5

1) Root Cause Assumption: Squeeze does have one as-
sumption about root causes: we assume that the root cause
attribute combination is always a subset of only one cuboid
in each cluster outputted by Section IV-C. However, unlike
the impractical root cause assumptions in [3] and [5], our
assumption above about root causes is practical because: 1)
one physical root cause brings the same abnormal magnitudes
according to GRE, and it is almost impossible in practice
there are several physical root causes which cause the same
abnormal magnitudes at the same time; 2) in practice it is
very rare that root cause attribute combinations which cause
the same abnormal magnitudes require more than one cuboid.

2) Top-Down Localization Heuristics: In every cuboid,
there is a set of attribute combinations that can cover all
abnormal leaf attribute combinations in the cluster, and there is
a subset of the leaf cuboid that can exactly match all abnormal
leaf attribute combinations. Therefore, determining the right
cuboid is important for localizing the root cause. The number
of attributes is denoted by d, then there will be only 2d − 1
cuboids. Since d is usually less than 10 or about 10, so it is
acceptable to enumerate all cuboids if it does not take too long
to find the best solution in each cuboid.

Squeeze uses a heuristic method to find best subset of
each cuboid. The key idea is that, if an attribute combination
e in the current cuboid belongs to the root cause, all of
its descent leaf attribute combinations should be abnormal
and in the same cluster because of GRE. In other words, a
necessary condition for an attribute combination belonging
to the root cause is that most of its descent leaf attribute
combinations are in the cluster. We denote the ratio of descent
leaf attribute combinations in the cluster by descent score. We
sort the attribute combinations of the cuboid by descent score
in descending order, then the root cause should be the left part
of the sorted attribute combinations with appropriate partition.
For example, in the cuboid of attribute province of Table I,
(Province = Beijing)’s descent score is 1 and those of all
other attribute combinations are 0.

Now we only need to compare all potential partitions. Given
a partition, the part with larger descent score are classified as
abnormal and the other one as normal. A good partition should
make the abnormal part contain most anomalies and the nor-
mal part contain few. Then, the abnormal leaf attribute combi-
nations should follow GRE. Actually, according to GRE, the
real value of an abnormal leaf attribute combination e under
root cause S is expected to be aS(e)=f(e)− f(e)

f(S)
(f(S)−v(S)) =

f(e)
v(S)
f(S)

. Thus, the difference between the expected value and
real value |v(e)−aS(e)| can be used to evaluate how well the
root cause S follows GRE. Therefore, we propose generalized
potential score (GPS), defined as follows:

GPS = 1−
avg(|v(S1)− a(S1)|) + avg(|v(S2)− f(S2)|)
avg(|v(S1)− f(S1)|) + avg(|v(S2)− f(S2)|)

(3)

where S1 is the set of abnormal (i.e., descent of the root cause)
leaf attribute combinations of this cluster; S2 is the set of
all normal leaf attribute combinations; v,f ,a are respectively
vectors of real, forecast and expected values of all affected

leaf attribute combinations, i.e., v(S)=(v(e1), v(e2), ..., v(en));
and avg(·) means average over the vector.

The most important difference between GPS (3) and poten-
tial score (ps= max(0, 1− ||(v(S1),v(S2))−(a(S1),f(S2))||2

||(v(S1),v(S2))−(f(S1),f(S2))||2
)) in [7] is

that we use the sum of normalized L1-norm of the positive
and negative parts, while potential score uses L2-norm of all
leaf attribute combinations. We make this modification because
the forecast residuals of normal part would cumulate as the
number of normal leaf attribute combinations increases.

An example is given in Table I. The two bold lines are ab-
normal. The other normal lines may have small forecast errors
compared to the normal values. Thus, potential score gives a
very low score for the root cause (Province=Beijing), while
GPS gives a high score. This demonstrate GPS’ advantage
over potential score.

ps = 1−
||(0, 0, 1, 0.2, 0, 10, 2, 3, 2)||2
||(5, 10, 1, 0.2, 0, 10, 2, 3, 2)||2

= 0.30

GPS = 1−
avg(0, 0) + avg(1, 0.2, 0, 10, 2, 3, 2)

avg(5, 10) + avg(1, 0.2, 0, 10, 2, 3, 2)
= 0.74

Therefore, when the magnitude of anomaly is not signifi-
cant, potential score will fail to indicate the root cause because
it cumulates forecast errors of all leaf attribute combinations.

In each cuboid, we would get a root cause candidate. If its
corresponding GPS is larger than a threshold δ, Squeeze would
not search deeper layer. Note that δ is the only parameter in
Squeeze that has to manually configured, and in Section VI-E
we show Squeeze is very robust against different δ values.

Finally all the root cause candidates will be sorted by their
GPS and succinctness. Succinctness is defined as the number
of attributes of all root cause attribute combinations. We use
a constant C to trade off between GPS and succinctness. We
use an empirical formula for C, which avoids manual tuning:

−
log(#clusters · #abnormal leaves

#leaves
)

log(#attribute values)
· (#attribute values)

V. SUCCESS STORIES IN INDUSTRIAL PRACTICE

We have successfully applied Squeeze to several large
commercial banks and a top Internet company. The results
show that Squeeze can localize root causes much more rapidly
and accurately than traditional manual analysis. In this section,
we present three success stories. We omit and anonymize some
confidential details.

A. Case I: Intra-System localization

In 26 Nov 2018 9:00 to 11:00, the operators of a bank
received many tickets and alerts and noticed that the API call
success rate of a system suffered a severe drop. The search
space is large, and the attributes and the number of distinct
values are listed as follows: province (38), agency (815), server
group (16), channel (4), server (339), code (4), status (2),
service type (3). After two hours of fruitless manual root
cause localization, the operators decided to just roll back the
entire system to the last version, which happened to actually
fix the issue. After the roll-back, it took another 2 hours for
an inexperienced operator on duty to eventually find the root
cause (there was a bug in the newly deployed version of the

6

software for ServiceType 0200020) based on the 2-hour logs
during the service anomaly.

Upon the request of the operators, we ran Squeeze over
this system’s logs at the beginning of the service anomaly.
Squeeze took a few seconds to report the root cause (Ser-
viceType=020020), which indicates exactly the software that
has a buggy version update. Had Squeeze be actually used
immediately after the anomaly happened, operators could have
localized the root cause much faster.

0.00 0.25 0.50 0.75 1.00

deviation score

0

500
P

D
F ServiceType=020020

Normal

Fig. 5: The histogram of de-
viation scores of leaf attribute
combinations in Case I.

Fig. 5 shows this case’s
results of deviation-based
clustering. We can see that
the deviation scores of all
leaf attribute combinations
of the root cause (Ser-
viceType=020020) are very
close to each other. This to
some extent confirms the generalized ripple effect.

B. Case II: Inter-System localization

In 23 Mar 2019, there was a burst of failures in another
bank’s transaction system. There are many subsystems which
communicate with each other by API calls. The search space is
also large, and the attributes and the number of distinct values
are listed as follows: source (13), source ip (66), destination
(7), destination ip (10), interface (135). The operators manu-
ally located one root cause (destination=ic in Fig. 6) in ten
minutes by tracing all the abnormal transactions’ API calls.

Again, upon the request of the operators, we ran Squeeze
over this system’s API call logs at the beginning of the service
anomaly. Squeeze localized the root causes in Fig. 6 in just sev-
eral seconds, which also confirms the generalized ripple effect
because deviation scores of leaf attribute combinations that
are descended from the same root cause attribute combination
are close to each other. Note that Squeeze reported more root
cause attribute combinations than what the operators found.
The operators confirmed that these additional root causes are
indeed valid: they were abnormal and were actually affected
by ic system. Had Squeeze be actually used immediately after
the issue, operators could have localized the root cause much
faster (seconds vs minutes) and more accurately. We also run
some other algorithms on Case II (see Table VI).

TABLE VI: Qualitative comparison on industrial cases:
whether the algorithm can find the true root cause. Some cases
and some baseline algorithms are missing due to deployment
issues. Details about the algorithms are in Section VII.

RC? Squeeze HotSpot Apriori Adtributor R-Adtributor
Case II Yes Yes Yes No No
Case III Yes No No No No

C. Case III: Anomaly with Insignificant Magnitude

One day night, a top Internet company suffered an anomaly.
The HTTP error counts bursted suddenly as shown in Fig. 7.
The attributes and the number of distinct values are listed as
follows: datacenter (11), province (7), ISP (6), useragent(22).
The operators manually found a potential root cause which

1.0 0.5 0.0 0.5 1.0
deviation score

0100

101
102

PD
F

interface=fect&so...
interface=5pecash...
destination=ic
interface=cwzb;in...
normal

Fig. 6: Root causes reported by Squeeze and the histogram of
deviation scores of their descent leaves in Case II.

consists of only one attribute combination (AC1 in Fig. 7),
which took them one hour.

We ran Squeeze over this system’s logs at the beginning of
the service anomaly and in several seconds found more root
causes: AC1 and AC2 as shown in Fig. 7. It is obvious that
AC2 also has severe error bursts. The operators mistakenly
ignored it because the error count of AC2 only represented
a very small fraction of the total error counts. Manual anal-
ysis apparently has difficulties in localizing root causes of
anomalies with insignificant magnitudes. Squeeze would help
the operators to notice such root causes efficiently.

Fig. 7: Measure values along time of Case III. AC1
is (useragent=uc∧idc=ih∧province=other), and AC2 is
(useragent=uc∧idc=is∧province=other). Note that the Y-axis
scales are different.

VI. EXPERIMENTS

In this section, we use the results on the semi-synthetic
datasets to answer these three questions:

• RQ1: How effective is Squeeze in localizing root causes?
Is it effective for both fundamental and derived measures?
Is it effective for anomalies with any magnitudes?

• RQ2: How efficient is Squeeze in localizing root causes?
It is efficient consistently for all cases?

• RQ3: How well does Squeeze perform in different con-
figurations? Is Squeeze sensitive to parameters?

We compare Squeeze with the following previous works,
which will be introduced with more details in Section VII:
HotSpot [7] (we revise it to handle derived measures ac-
cording to GRE in Section III), iDice [5], Adtributor [3], R-
Adtributor [4], Apriori [6].

A. Evaluation Metrics

F1-score is used in this paper to evaluate multi-dimensional
root cause localization tasks. It is calculated based on attribute
combinations, i.e., if an attribution combination is reported by
the algorithm and it is in the root cause, it is a true positive
(TP); if a reported attribute combination is not in the root
cause, it is a false positive (FP); if an attribute combination in
root cause is not reported, it is a false negative (FN). Then F1-
score is calculated as follows: F1-Score= 2∗#TP

2∗#TP+#FP+#FN
.

Another evaluation metric is time cost. In the following
experiments, we present the average running time of all cases
in the corresponding setting.

7

B. Datasets

We have two real-world datasets from two companies,
which are collected from real systems. One of them is an
online shopping platform, and the other one is an Internet
company. They are denoted by I1, I2 respectively. The mea-
sure of I1 is the number of transactions every five minutes,
and the measure of I2 is the number of page views per minute.
There are 5 attributes in I1 and 4 in I2. Although these
are real data, it is very hard to get lots of anomalies and
corresponding root causes verified by operators manually as
the ground truth. As a result, we inject synthetic anomalies
onto these real data to evaluate the algorithm. We get 7 semi-
synthetic datasets with different anomaly injection methods
based on I1 and I21. The basic statistics of them are shown
in Table VII, where d means the number of attributes, #AC
means the number of leaf attribute combinations, and n means
the number of injected anomalies for each setting. In each
setting, a root cause contains the same number of root cause
attribute combinations in cuboids of the same layer.

TABLE VII: Summary of Datasets
Name n d #AC Source Measure Residual
A 400 5 15324 I1 Fundamental 13.0%
B0 100 4 21600 I2 Fundamental 0.80%
B1 100 4 21600 I2 Fundamental 3.19%
B2 100 4 21600 I2 Fundamental 6.37%
B3 100 4 21600 I2 Fundamental 9.54%
B4 100 4 21600 I2 Fundamental 13.0%
D 100 4 21600 I2 Derived 3.99%

For fundamental measures, we randomly choose some
cuboids and root causes in them, change the values of the
abnormal leaf attribute combinations by GRE with random
amounts, finally add Gaussian noises to all leaf attribute com-
binations. We use the Gaussian noises with different standard
deviations to emulate different forecast residuals.

For derived measures (D), we assume normal success rates
follow unif(0.9, 1.0), pick some attribute combinations, then
make their success rate decrease according to GRE, then
randomly generate the total transaction number and successful
transaction number, finally add Gaussian noises with standard
deviation 5% to all attribute combinations.

In all datasets, we inject anomalies with random magni-
tudes, i.e., we do not guarantee the anomalies are significant.

We apply MA (moving average) for all scenarios. We
present the time usage for single leaf attribute combination
of several algorithms used by previous works (Period is used
by [7], ARIMA is used by [3]) in Table VIII. MA is one of
the simplest forecast algorithms and it costs little time.
TABLE VIII: Time Usage Comparison of Forecast Methods

Algorithm MA Period [19] ARIMA
Time Usage (µs) 6.11(±1.91) 29.8(±3.94) 38575(±32447)

C. RQ1: Effectiveness

We conduct experiments to evaluate Squeeze with datasets
described in Section VI-B. We present the F1-score compari-
son of fundamental measures in Table IX, and present that of

1Datasets and code are available at https://github.com/lizeyan/Squeeze

(1,1)
(1,2)

(1,3)
(2,1)

(2,2)
(2,3)

(3,1)
(3,2)

(3,3)

(n_elements, cuboid_layer)

0.0

0.5

1.0

F1
-S

co
re

Squeeze
HotSpot+GRE
Adtributor
R-Adtributor
Apriori

Fig. 8: F1-score comparison over dataset D.

Squeeze HotSpot Adtributor
R-Adtributor iDice Apriori

0.0
0.2
0.4
0.6
0.8

F1
-S

co
re

[0%, 0.4%)
[0.4%, 12%)
[12%, 100%)
Total

Fig. 9: F1-scores of all cases in {Bi, i = 0, 1, ..., 4} with
different abnormal magnitudes.

D (derived measure) in Fig. 8, where cuboid layer means the
layer of the cuboid contains the root causes and n elements
means the number of attribute combinations in the root causes.
We present the total F1-score of each setting in Table IX
and Fig. 8. We set δ = 0.9 for all cases. Other algorithms’
parameters are set following the original papers’ suggestions.

For all cases, Squeeze is able to achieve relatively good
results. In most cases, Squeeze achieves the best F1-scores.
iDice does not work on our data mainly because it is de-
signed for detecting anomalies and localizing root causes
for a duration, rather than a single time point. Adtributor
only localizes root causes of the first-layer cuboids, and the
explanation power makes it only able to handle anomalies
with significant magnitudes. Although R-Adtributor is able to
localize root causes in other cuboids, it is hard for R-Adtributor
to decide when the recursion should terminate. HotSpot has the
problem in localizing root causes which are in deep cuboids
or containing many attribute combinations. HotSpot relies on
potential scores along the whole search path to lead it to the
true root cause, but for root causes which are in deep cuboids
or containing many attribute combinations, the potential scores
can be quite small at the beginning of the search path. As a
result, on the one hand, the hierarchical pruning strategy may
wrongly prune the right search path. On the other hand, for the
sake of efficiency, HotSpot cannot search too many steps and
therefore the mistakes at the beginning of search can be fatal
for HotSpot. Furthermore, we revise HotSpot with GRE to
obtain HotSpot+GRE so that it can handle derived measures.

Squeeze performs well for anomalies with any magnitudes.
We present the total F1-score of B0,B1, ...,B4 of different
levels of magnitudes in Fig. 9. Squeeze’s F1-score outperforms
others by about 0.4 in {Bi, i = 0, 1, ..., 4} in total, as shown
in Fig. 9. [0%, 0.4%) means the magnitudes of anomalies are
less than 0.4% of the sum of all leaf attribute combinations,
and so do the other two. We choose 0.4% and 12% because
they are 25-percentile and 75-percentile respectively. There
is almost nothing different for Squeeze whether the anomaly
magnitude is significant or not. Only Squeeze achieves the
same good performance in all cases. Hotspot and Adtributor
are almost not able to localize root causes for insignificant

8

TABLE IX: F1-score comparison of fundamental measures

F1-score (n elements, cuboid ayer)
Dataset Algorithm (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3,1) (3,2) (3, 3)

A

Squeeze 0.8632 0.7827 0.4932 0.7584 0.6361 0.4097 0.6441 0.5145 0.3618
HotSpot 0.6856 0.4389 0.2158 0.5085 0.3433 0.2043 0.3988 0.2916 0.1768

Adtributor 0.3892 0.0000 0.0000 0.4010 0.0000 0.0000 0.3857 0.0000 0.0000
R-Adtributor 0.0180 0.0020 0.0016 0.0075 0.0049 0.0294 0.0081 0.0067 0.0410

iDice 0.0000 0.0036 0.0425 0.0000 0.0065 0.0437 0.0000 0.0007 0.0172
Apriori 0.1036 0.0580 0.0001 0.1427 0.0926 0.0019 0.1537 0.0882 0.0062

B0

Squeeze 0.9041 0.9327 0.9231 0.9604 0.9799 0.9333 0.9631 0.9371 0.9228
HotSpot 0.9950 0.4928 0.1215 0.7588 0.3934 0.0577 0.5961 0.3043 0.0775

Adtributor 0.3044 0.0000 0.0000 0.4226 0.0000 0.0000 0.4654 0.0000 0.0000
R-Adtributor 0.0639 0.0000 0.0000 0.0114 0.0000 0.0000 0.0177 0.0000 0.0000

iDice 0.0000 0.0517 0.0488 0.0000 0.0409 0.0618 0.0000 0.0228 0.0959
Apriori 0.4430 0.5116 0.7523 0.8490 0.6853 0.7351 0.8743 0.8087 0.7368

B1

Squeeze 0.8900 0.8889 0.8350 0.9624 0.9479 0.9192 0.8912 0.9019 0.9060
HotSpot 0.9804 0.3767 0.0175 0.6882 0.4207 0.0549 0.6030 0.3261 0.0471

Adtributor 0.2874 0.0000 0.0000 0.4286 0.0000 0.0000 0.5000 0.0000 0.0000
R-Adtributor 0.0538 0.0000 0.0081 0.0114 0.0000 0.0000 0.0100 0.0000 0.0000

iDice 0.0000 0.0040 0.0065 0.0000 0.0125 0.0099 0.0000 0.0245 0.0092
Apriori 0.6965 0.6582 0.6316 0.8492 0.8351 0.8161 0.8885 0.7986 0.0000

B2

Squeeze 0.8155 0.8208 0.9171 0.9641 0.8021 0.8615 0.7081 0.7731 0.8396
HotSpot 0.9167 0.3930 0.0254 0.6648 0.3486 0.0601 0.5839 0.3349 0.0563

Adtributor 0.2915 0.0000 0.0000 0.4590 0.0000 0.0000 0.4848 0.0000 0.0000
R-Adtributor 0.0100 0.0000 0.0000 0.0201 0.0000 0.0041 0.0177 0.0000 0.0034

iDice 0.0000 0.0063 0.0030 0.0000 0.0119 0.0123 0.0000 0.0125 0.0108
Apriori 0.3844 0.3208 0.1537 0.8184 0.7556 0.2636 0.8885 0.8345 0.3339

B3

Squeeze 0.8835 0.7611 0.6920 0.8667 0.7809 0.7494 0.6753 0.7068 0.7586
HotSpot 0.9167 0.3810 0.0339 0.6744 0.3988 0.0299 0.5369 0.4072 0.0625

Adtributor 0.2770 0.0000 0.0000 0.4182 0.0000 0.0000 0.4610 0.0000 0.0000
R-Adtributor 0.0000 0.0000 0.0052 0.0086 0.0000 0.0188 0.0177 0.0000 0.0226

iDice 0.0000 0.0061 0.0025 0.0000 0.0180 0.0129 0.0000 0.0189 0.0175
Apriori 0.0000 0.5000 0.2792 0.0000 0.7324 0.4605 0.8825 0.8330 0.5314

B4

Squeeze 0.8173 0.7207 0.6167 0.8528 0.6863 0.7015 0.5470 0.6489 0.6543
HotSpot 0.9346 0.3362 0.0084 0.6535 0.3642 0.0301 0.5282 0.3431 0.0321

Adtributor 0.2740 0.0000 0.0000 0.3853 0.0000 0.0000 0.4517 0.0000 0.0000
R-Adtributor 0.0000 0.0000 0.0037 0.0143 0.0000 0.0092 0.0301 0.0000 0.0233

iDice 0.0000 0.0092 0.0049 0.0000 0.0069 0.0164 0.0000 0.0229 0.0108
Apriori 0.0467 0.0064 0.0000 0.1290 0.0042 0.0016 0.2023 0.0093 0.0009

Fig. 10: Running time comparison of A,B0,D. Mean and standard deviation of each setting are presented.

cases, mainly because of their potential score and explanation
power mechanisms. Apriori is able to localize root causes for
anomalies with insignificant magnitudes, but it may prune such
anomalies because of its sensitive support threshold. Therefore
its performance on such cases is not so good.

D. RQ2: Efficiency
Squeeze is efficient enough in all cases. In Fig. 10 we

present the running times of A,B0,D. We do not present
results of all datasets because all of {Bi, i = 0, 1, 2, 3, 4}
have similar results. Squeeze costs only about ten seconds
even in the worst cases. It is efficient enough since measures
are usually collected every one minute or every five minutes.
HotSpot sometimes is as efficient as Squeeze, but sometimes
it would cost more time. Apriori costs hundreds of seconds,
which is too slow. Others can be fast, but they do not
effectively localize root causes. We run every experiment

on a server with 24 × Intel(R) Xeon(R) CPU E5-2620 v3
@ 2.40GHz (2 sockets) and 64G RAM. All algorithms are
implemented with Python but iDice is with C++. Experiments
of all algorithms are conducted under the same condition.

E. RQ3: Performance under Different Configurations

0.
25 0.

5
0.

7
0.

75
0.

85 0.
9

0.
92

5
0.

95
0.

97
5δ

0.5

1.0

F
1-

S
co

re

Fig. 11: F1-Scores
over different δ of B1
with cuboid layer =
3, n elements = 3.

All the parameters in Section IV
are automatically configured ex-
cept δ, the GPS threshold. We
present Squeeze’s effectiveness un-
der different δ in Fig. 11 with
cuboid layer = 3, n elements =
3 in B1. Squeeze’s performance
does not change a lot as δ changes.
We only choose this setting because it is the hardest setting,
and actually results in Table IX and Fig. 8 also show that
δ = 0.9 leads to a good enough results. Since δ is the threshold

9

of GPS for early stopping, it is reasonable to set δ near 0.9
regardless of the specific dataset.

Fig. 12: F1-score comparison of different residuals.

Squeeze, as well as many other algorithms, relies on forecast
values. In Fig. 12, we plot the F1-scores under different
forecast residuals. We select these two representative settings
because Squeeze’s performance changes relatively small in (a)
and large in (b) along different datasets. Residuals do affect the
performance of algorithms that rely on forecasting including
Squeeze. But Squeeze still outperforms other algorithms when
the residuals are relatively large.

F. Thread to Validity

The experiments in this section are based on semi-synthetic
datasets, which might not perfectly represent real world ones.

VII. RELATED WORKS

There are many previous works in root cause localization
in various contexts. Most works are different from ours [20]–
[31]. On the one hand, we focus on root cause localization on
general multi-dimensional systems. On the other hand, most of
these works use intuitive domain-knowledge based empirical
methods, while we propose a generic algorithm. Some works
are closely related to ours. We compared them in Table III.

Adtributor [3] assumes that the root cause can be local-
ized by only one attribute. It uses different approaches for
fundamental and derived measures. Adtributor relies on fore-
casting for attribute combinations in all one-attribute cuboids
to calculate explanation power and surprise. R-Adtributor [4]
recursively calls Adtributor to provide multi-dimensional root
causes. But it has a hard-to-tune termination condition.

iDice [5] only works for fundamental measures and anoma-
lies with significant magnitudes. Isolation power measures how
well the attribute combination isolates abnormal and normal
values, but if there are more than one attribute combination
related to anomalies, a single attribute combination actually
cannot isolate abnormal and normal values.

HotSpot [7] uses MCTS (Metro Carlo tree search) to solve
the problem of huge search space. It focuses on fundamental
measures since they consider ripple effect to hold only for
fundamental measures. HotSpot relies on forecasting for all
leaf attribute combinations to calculate potential score. As
shown in Section IV-D, potential score does not work well
when anomaly magnitudes are not very significant.

End2End [6] uses forecast value and real value to dis-
tinguish all abnormal leaf attribute combinations. Then the
Apriori algorithm is applied to find the max frequent pat-
terns related to anomalies with high confidence. [6] mainly
focuses on accurately and efficiently forecasting for all leaf

attribute combinations. The appropriate thresholds of support,
confidence and distinguishing normal and abnormal leaf at-
tribute combinations are different for different services or the
service over time. Apriori’s performance is sensitive to these
thresholds. So its performance varies in different settings, as
Section VI shows.

VIII. LIMITATIONS AND FUTURE WORKS

Squeeze assumes that attribute combinations of the root
cause which cause the same abnormal magnitudes (in the same
cluster in Section IV-C2) are in one cuboid. This assumption
is very weak since in practice it is very rare that root
cause attribute combinations which cause the same abnormal
magnitudes are in more than one cuboid.

Squeeze focuses on categorical attributes, and Squeeze can-
not leverage numerical attributes. We observe that numerical
attributes are much less prevalent in practice (e.g. in the four
companies that we studied in this paper). According to our
interviews with some engineers, they choose not to record
them because they weren’t sure how to use them for diagnosis.

In Section III, we only give proof of quotients. We have
also proven GRE for products. It is omitted due to space
limitations, and it is similar to that of quotients. They are the
most common two cases. More types of derived measures’
GRE can be proved when we encounter them. In most cases,
the idea of finite difference would help. But for those which are
not continuous (e.g., 95-percentile of search response time), it
is more challenging. We will work on it in the future.

We apply a relatively simple clustering algorithm in Sec-
tion IV-C2, and we use the deviation based filtering to make
the clustering perform better. Since it is simple, an advanced
clustering algorithm may make Squeeze work better.

IX. CONCLUSION

Given the importance of multi-dimensional root cause lo-
calization, many approaches are proposed, but they are not
generic or robust enough and suffer from some limitations.
Through a novel “bottom-up then top-down” searching strat-
egy and the techniques based on our proposed generalized rip-
ple effect and generalized potential score, our proposed algo-
rithm, Squeeze, overcomes these limitations. Squeeze achieves
a good trade-off between speed and accuracy in a generic and
robust manner. Case studies in several large commercial banks
and an Internet company show that Squeeze can localize root
causes much more rapidly and accurately than traditional man-
ual analysis. Furthermore, we conduct extensive experiments
on several semi-synthetic datasets. The results show that the
F1-score of Squeeze outperforms previous approaches by 0.4
on average, and consistently costs only about 10s.

X. ACKNOWLEDGMENT

The authors gratefully thank Suning.com Co., Ltd. for
providing parts of the data used in this paper’s evaluation. We
thank Juexing Liao and Chuanxi Zheng for proofreading this
paper. This work has been supported by the Beijing National
Research Center for Information Science and Technology
(BNRist) key projects.

10

REFERENCES

[1] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, and Z. Zang, “Rapid
and robust impact assessment of software changes in large internet-
based services,” in International Conference on emerging Networking
EXperiments and Technologies (CoNEXT), 2015, pp. 1–13.

[2] M. Ma, S. Zhang, D. Pei, X. Huang, and H. Dai, “Robust and rapid
adaption for concept drift in software system anomaly detection,”
in 2018 IEEE 29th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2018, pp. 13–24.

[3] R. Bhagwan, R. Kumar, R. Ramjee, G. Varghese, S. Mohapatra,
H. Manoharan, and P. Shah, “Adtributor: Revenue debugging in ad-
vertising systems,” in 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), 2014, pp. 43–55.

[4] M. Persson and L. Rudenius, “Anomaly detection and fault localization
an automated process for advertising systems,” Master’s thesis, 2018,
göteborg : Chalmers University of Technology.

[5] Q. Lin, J.-G. Lou, H. Zhang, and D. Zhang, “idice: problem identi-
fication for emerging issues,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). IEEE, 2016, pp. 214–
224.

[6] F. Ahmed, J. Erman, Z. Ge, A. X. Liu, J. Wang, and H. Yan, “Detecting
and localizing end-to-end performance degradation for cellular data
services based on tcp loss ratio and round trip time,” IEEE/ACM
Transactions on Networking (TON), vol. 25, no. 6, pp. 3709–3722, 2017.

[7] Y. Sun, Y. Zhao, Y. Su, D. Liu, X. Nie, Y. Meng, S. Cheng, D. Pei,
S. Zhang, X. Qu et al., “Hotspot: Anomaly localization for additive
kpis with multi-dimensional attributes,” IEEE Access, vol. 6, pp. 10 909–
10 923, 2018.

[8] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques.
Elsevier, 2011.

[9] F. Knorn and D. J. Leith, “Adaptive kalman filtering for anomaly
detection in software appliances,” in INFOCOM Workshops 2008, IEEE.
IEEE, 2008, pp. 1–6.

[10] B. Pincombe, “Anomaly detection in time series of graphs using arma
processes,” Asor Bulletin, vol. 24, no. 4, p. 2, 2005.

[11] Y. Chen, R. Mahajan, B. Sridharan, and Z.-L. Zhang, “A provider-
side view of web search response time,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 243–254.

[12] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, Z. Zang, X. Jing, and
M. Feng, “Funnel: Assessing software changes in web-based services,”
IEEE Transactions on Service Computing, 2016.

[13] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proceedings of the
2018 World Wide Web Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2018, pp. 187–196.

[14] Z. Li, W. Chen, and D. Pei, “Robust and unsupervised kpi anomaly de-
tection based on conditional variational autoencoder,” in 2018 IEEE 37th
International Performance Computing and Communications Conference
(IPCCC). IEEE, 2018, pp. 1–9.

[15] J. Bu, Y. Liu, S. Zhang, W. Meng, Q. Liu, X. Zhu, and D. Pei, “Rapid
deployment of anomaly detection models for large number of emerging
kpi streams,” in 2018 IEEE 37th International Performance Computing
and Communications Conference (IPCCC). IEEE, 2018, pp. 1–8.

[16] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and
M. Feng, “Opprentice: Towards practical and automatic anomaly de-

[20] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” in Proceed-
ings International Conference on Dependable Systems and Networks.
IEEE, 2002, pp. 595–604.

tection through machine learning,” in Proceedings of the 2015 Internet
Measurement Conference. ACM, 2015, pp. 211–224.

[17] L. M. Milne-Thomson, The calculus of finite differences. American
Mathematical Soc., 2000.

[18] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a” kneedle”
in a haystack: Detecting knee points in system behavior,” in 2011 31st
International Conference on Distributed Computing Systems Workshops.
IEEE, 2011, pp. 166–171.

[19] S.-B. Lee, D. Pei, M. Hajiaghayi, I. Pefkianakis, S. Lu, H. Yan, Z. Ge,
J. Yates, and M. Kosseifi, “Threshold compression for 3g scalable
monitoring,” in INFOCOM, 2012 Proceedings IEEE. IEEE, 2012, pp.
1350–1358.

[21] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren, “Detection
and localization of network black holes,” in IEEE INFOCOM 2007-26th
IEEE International Conference on Computer Communications. IEEE,
2007, pp. 2180–2188.

[22] S. Kandula, D. Katabi, and J.-P. Vasseur, “Shrink: A tool for failure
diagnosis in ip networks,” in Proceedings of the 2005 ACM SIGCOMM
workshop on Mining network data. ACM, 2005, pp. 173–178.

[23] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren, “Fault
localization via risk modeling,” IEEE Transactions on Dependable and
Secure Computing, vol. 7, no. 4, pp. 396–409, 2009.

[24] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang, “Towards highly reliable enterprise network services via
inference of multi-level dependencies,” ACM SIGCOMM Computer
Communication Review, vol. 37, no. 4, pp. 13–24, 2007.

[25] H. Yan, A. Flavel, Z. Ge, A. Gerber, D. Massey, C. Papadopoulos,
H. Shah, and J. Yates, “Argus: End-to-end service anomaly detection
and localization from an isp’s point of view,” in 2012 Proceedings IEEE
INFOCOM. IEEE, 2012, pp. 2756–2760.

[26] B. Nguyen, Z. Ge, J. Van der Merwe, H. Yan, and J. Yates, “Absence:
Usage-based failure detection in mobile networks,” in Proceedings of
the 21st Annual International Conference on Mobile Computing and
Networking. ACM, 2015, pp. 464–476.

[27] D. Liu, Y. Zhao, K. Sui, L. Zou, D. Pei, Q. Tao, X. Chen, and D. Tan,
“Focus: Shedding light on the high search response time in the wild,” in
IEEE INFOCOM 2016-The 35th Annual IEEE International Conference
on Computer Communications. IEEE, 2016, pp. 1–9.

[28] S. Zhang, W. Meng, J. Bu, S. Yang, Y. Liu, D. Pei, J. Xu, Y. Chen,
H. Dong, X. Qu et al., “Syslog processing for switch failure diagnosis
and prediction in datacenter networks,” in 2017 IEEE/ACM 25th Inter-
national Symposium on Quality of Service (IWQoS). IEEE, 2017, pp.
1–10.

[29] S. Zhang, Y. Liu, W. Meng, Z. Luo, J. Bu, S. Yang, P. Liang, D. Pei,
J. Xu, Y. Zhang et al., “Prefix: Switch failure prediction in datacenter
networks,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 2, no. 1, p. 2, 2018.

[30] W. Meng, Y. Liu, S. Zhang, D. Pei, H. Dong, L. Song, and X. Luo,
“Device-agnostic log anomaly classification with partial labels,” in
2018 IEEE/ACM 26th International Symposium on Quality of Service
(IWQoS). IEEE, 2018, pp. 1–6.

[31] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun, and R. Zhou, “Loganomaly: Unsupervised detection of
sequential and quantitative anomalies in unstructured logs,” in Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 7 2019, pp. 4739–4745.

11

