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ABSTRACT
Determining anomalies in data streams that are collected
and transformed from various types of networks has recently
attracted significant research interest. Principal Compo-
nent Analysis (PCA) has been extensively applied to de-
tecting anomalies in network data streams. However, none
of existing PCA based approaches addresses the problem of
identifying the sources that contribute most to the observed
anomaly, or anomaly localization. In this paper, we propose
novel sparse PCA methods to perform anomaly detection
and localization for network data streams. Our key observa-
tion is that we can localize anomalies by identifying a sparse
low dimensional space that captures the abnormal events in
data streams. To better capture the sources of anomalies, we
incorporate the structure information of the network stream
data in our anomaly localization framework. We have per-
formed comprehensive experimental studies of the proposed
methods, and have compared our methods with the state-of-
the-art using three real-world data sets from different appli-
cation domains. Our experimental studies demonstrate the
utility of the proposed methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining

General Terms
Algorithms, Experimentation

Keywords
Network Data Streams, Anomaly Localization, PCA, Sparse
Learning

1. INTRODUCTION
Determining anomalies in data streams that are collected

and transformed from various types of networks has recently
attracted significant research interest in the data mining
community [4, 15, 29, 32]. Applications of the work could be
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found in network traffic data [32], sensor network streams
[4], social networks [29], and finance networks [15] among
others.

The common limitation of aforementioned methods is that
they are incapable of identifying the sources that contribute
most to the observed anomalies, or anomaly localization.
With fast-accumulating stream data, an outstanding data
analysis issue is anomaly localization, where we aim to dis-
cover the specific sources that contribute most to the ob-
served anomalies. Anomaly localization in network data
streams is apparently critical to many applications, includ-
ing monitoring the state of buildings [31], or locating the
sites for flooding and forest fires [9]. In the stock market,
pinpointing the change points in a set of stock price time
series is critical for making intelligent trading decisions [25].
For network security, localizing the sources of the most se-
rious threats in computer networks helps ensure security in
networks [21].

Principal Component Analysis (PCA) is arguably the most
widely applied unsupervised anomaly detection technique
for network data streams [12, 21, 22]. However, a fundamen-
tal problem of PCA, as claimed in [28], is that the current
PCA based anomaly detection methods can not be applied
to anomaly localization. Our key observation is that the
major obstacle for extending the PCA technique to anomaly
localization lies in the high dimensionality of the abnormal
space. If we manage to identify a low dimensional approxi-
mation of the high dimensional abnormal subspace using a
few sources, we “localize” the abnormal sources. The start-
ing point of our investigation hence is the recently studied
sparse PCA framework [33] where PCA is formalized in a
sparse regression problem where each principle component
(PC) is a sparse linear combination of the original sources.
However, sparse PCA does not fit directly into our problems
in that sparse PCA enforces sparsity randomly in the nor-
mal and abnormal subspaces. In this paper, we explore two
directions in improving sparse PCA for anomaly detection
and localization.

First, we develop a new regularization scheme to simul-
taneously calculate the normal subspace and the sparse ab-
normal subspace. In the normal subspace, we do not add
any regularization but use the same normal subspace as or-
dinary PCA for anomaly detection. In the abnormal sub-
space, we enforce that different PCs share the same sparse
structure hence it is able to do anomaly localization. We
call this method joint space PCA (JSPCA). Second, we ob-
serve that abnormal streams are usually correlated to each
other. For example in stock market, index changes in differ-
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Figure 1: Illustration of time-evolving stock indices data

ent countries are often correlated. For incorporating stream
correlation in anomaly localization we design a graph guided
sparse PCA (GJSPCA) technique. Our experimental stud-
ies demonstrate the effectiveness of the proposed approaches
on three real-world data sets from financial markets, wireless
sensor networks, and machinery operating condition studies.

As an example of anomaly detection and anomaly local-
ization in network data streams, we show the normalized
stock index streams of eight countries over a period of three
months in Figure 1. We notice an anomaly in the marked
window between time stamps 25 and 42. In that window
sources 1, 4, 5, 6, 8 (denoted by dotted lines) are normal
sources. Sources 2, 3, 7 (denoted by solid lines) are abnor-
mal ones since they have a different trend from that of the
other sources. In the marked window, the three abnormal
sources clearly share the same increasing trend while the rest
share a decreasing trend.

The remainder of the paper is organized as follows. In
section 2 we present related work of anomaly localization.
In section 3, we discuss the challenge of applying PCA to
anomaly localization. In section 4 we introduce the formu-
lation of JSPCA and GJSPCA and the related optimization
algorithm. We present our experimental study in section 5
and conclude in section 6.

2. RELATED WORK
Existing work on anomaly localization from network data

streams could be roughly divided into two categories: those
at the source level and those at the network level. The source
level anomaly localization approaches embed detection algo-
rithm at each stream source, resulting in a fully distributed
anomaly detection system [10, 23]. The major problem of
these approaches is that source level anomalies may not be
indicative of network level anomalies due to the ignorance
of the rest of the network [12].

To improve source level anomaly localization methods,
several algorithms have been recently proposed to localize
anomaly at the network level. Brauckhoff [3] applied associ-
ation rule mining to network traffic data to extract abnormal
flows from the large set of candidate flows. Their work is
based on the assumption that anomalies often result in many
flows with similar characteristics. Such an assumption holds
in network traffic data streams but may not be true in other
data streams such as finance data. Keogh et al. [20] pro-
posed a nearest neighbor based approach to identify abnor-
mal subsequences within univariate time series data by slid-
ing windows. They extracted all possible subsequences and
located the one with the largest Euclidean distance from its
closest non-overlapping subsequences. However, the method
only works for univariate time series generated from a single

source. In addition, if the data is distributed on a non-
Euclidean manifold, two subsequences may appear decep-
tively close as measured by their Euclidean distance [30].
L. Fong et al. developed a nonparametric change-point test
based on U-statistics to detect and localize change-points in
high-dimensional network traffic data [26]. The limitation
is that the method is specifically designed for the Denial of
Service (DOS) attack in communication networks and can-
not be generalized to other types of network data streams
easily.

Most related to our work, Ide et al. [13, 14] measured
the change of neighborhood graph for each source to per-
form anomaly localization and developed a method called
Stochastic Nearest Neighbor (SNN). Hirose et al. [11] de-
signed an algorithm named Eigen Equation Compression
(EEC) to localize anomalies by measuring the deviation of
covariance matrix of neighborhood sources. In these two
studies, we have to build a neighborhood graph for each
source for each time interval, which is unlikely to scale to a
large number of sources. In [18], we proposed a two step ap-
proach that first computed normal subspace from ordinary
PCA and then derived a sparse abnormal subspace on the
residual data subtracted from the original data.

In this paper, we design a unified approach to jointly
learn normal subspace for anomaly detection and sparse ab-
normal subspace for anomaly localization, in which we de-
rive a low dimensional approximation of the abnormal sub-
space by enforcing the loadings of normal sources to van-
ish across the PCs that span the abnormal subspace. Using
three real world data sets across several domains, our experi-
mental studies demonstrate the effectiveness of the proposed
method over the state-of-the-art.

3. PRELIMINARIES
We introduce the notations used in this paper and back-

ground information regarding PCA and sparse PCA.

3.1 Notation
We use capital letters such as X to denote a matrix and

bold lowercase letters such as x to denote a vector. Greek
letters such as λ1, λ2 are Lagrangian multipliers. 〈A,B〉 rep-
resents the matrix inner product defined as 〈A,B〉=tr(ATB)
where tr represents the matrix trace. Given a matrix X we
use xij to denote the entry of X at the ith row and jth
column. We use x(i) to represent the ith entry of a vector

x. ||x||p = (
∑n

i=1 |xi|p)
1
p denotes the lp norm of the vector

x ∈ R
n. Given a matrix A ∈ R

p×k, ‖A‖1,q =
∑p

i=1 ‖ãi‖q =
is the l1/lq norm of the matrix A, where ãi is the ith row of
A. Unless stated otherwise, all vectors are column vectors.
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3.2 Network Data Streams
Our work focuses on data streams that are collected from

multiple sources. We call the set of data stream sources
together as a network since we often have information re-
garding the structure of the sources.

Following [7], Network Data Streams are multi-variate time
series Z from p sources where Z = {Zi(t)} and i ∈ [1, p]. p is
the dimensionality of the network data streams. Each func-
tion Zi : R → R is a source. A source is also called a “node”
in the communication network community and a “feature”
in the data mining and machine learning community.

Typically we focus on time series sampled at (synchro-
nized) discrete time stamps {t1, t2, . . . , tn}. In such cases,
the network data streams are represented as a matrix X =
(xi,j) where i ∈ [1, n], j ∈ [1, p] and xi,j is the reading of the
stream source j at the time sample ti.

3.3 Applying PCA for Anomaly Localization
Our goal is to explore a Principal Component Analysis

(PCA) based method for performing anomaly detection and
localization simultaneously. PCA based anomaly detection
technique has been widely investigated in [12, 21, 22]. In ap-
plying PCA to anomaly detection, one first constructs the
normal subspace V1 by the top k PCs and the abnormal
subspace V2 by the remaining PCs, then projects the origi-
nal data on V1 and V2 as:

X = XV1V
T
1 +XV2V

T
2 = Xn +Xa (1)

where X ∈ R
n×p is the data matrix with n time stamps

from p data sources, Xn and Xa are the projections of X on
normal subspace and abnormal subspace respectively. The
underlying assumption of PCA based anomaly detection is
that Xn corresponds to the regular trends and Xa captures
the abnormal behaviors in the data streams. By performing
statistical testing on the squared prediction error SPE =
tr(XT

a Xa), one determines whether an anomaly happens [12,
21]. The larger SPE is, the more likely an anomaly exists.

Although PCA has been widely studied for anomaly de-
tection, it is not applicable for anomaly localization. The
fundamental problem, as claimed in [28], lies in the fact that
there is no direct mapping between two subspaces V1, V2

and the data sources. Specifically, let V2 = [vk+1, · · · ,vp]
be the abnormal subspace spanned by the last p−k PCs, Xa

is essentially an aggregated operation that performs linear
combination of all the data sources, as follows:

Xa = XV2V
T
2

=

[
p∑

j=1

xjṽj ṽ
T
1 , · · · ,

p∑
j=1

xj ṽjṽ
T
i , · · · ,

p∑
j=1

xj ṽjṽ
T
p−k

]
(2)

where xj is the data from the jth source and ṽj is the jth
row of V2. Considering the ith column of Xa with the value∑p

j=1 xjṽjṽ
T
i , there is no correspondence between the orig-

inal ith column of X and ith column of Xa. Such an aggre-
gation makes PCA difficult to identify the particular sources
that are responsible for the observed anomalies.

Although all the previous works claim PCA based anomaly
detection methods cannot do localization, we solve the prob-
lem of anomaly localization in a reverse way. Instead of
locating the anomalies directly, we filter normal sources to
identify anomalies by employing the fact that normal sub-
space captures the general trend of data and normal sources
have little or no projection on abnormal subspace. The

following theorem provides a necessary condition for data
sources to have no projection on abnormal subspace.

Theorem 3.1. Suppose Z = {i|ṽi = 0T } is the set that
contains all the indices for the zero rows of V2, then ∀t ∈ Z,
xt has no projection on the abnormal subspace. In other
words, these sources have no contribution to the abnormal
behavior.

Proof. Consider the squared prediction error SPE =
tr(XT

a Xa) and plug equation 2 in:

tr(XT
a Xa) = tr(XaX

T
a )

= tr(VT
2 X

TXV2)
= tr((

∑p
j=1 xj ṽj)

T (
∑p

j=1 xjṽj))

=

p∑
i=1

p∑
j=1

tr(ṽT
i x

T
i xj ṽj)

=
∑
i/∈Z

∑
j /∈Z

(xT
i xjṽjṽ

T
i )

(3)

From equation (3), it is clear that ∀i ∈ Z, the data xi from
source i has no projection on abnormal subspace and hence
would be excluded from the statistics used for anomaly de-
tection. We call such a pattern with an entire row with zeros
“joint sparsity”.

Unfortunately ordinary PCA does not guarantee any spar-
sity in PCs. Sparse PCA is a recently developed algorithms
where each PC is a sparse linear combination of the original
sources [33]. However existing sparse PCA method has no
guarantee that different PCs share the same sparse repre-
sentation and hence has no guarantee for the joint sparsity.
To illustrate the point, we plotted the entries of each PC
for ordinary PCA (figure 2(a)) and for sparse PCA (figure
2(b)) for the stock data set shown in figure 1. White blocks
indicate zero entries and the darker color indicates a larger
absolute loading. Sparse PCA produces sparse entries but
that alone does not indicate sources that contribute most to
the observed anomaly.

Below we present our extensions of PCA that enable us
to perform anomaly localization efficiently.
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Figure 2: Comparing PCA and Sparse PCA.

4. METHODOLOGY
In this section, we propose a novel regularization frame-

work called joint sparse PCA (JSPCA) to enforce joint spar-
sity in PCs in the abnormal space while preserving the PCs
in the normal subspace so that we can perform simultane-
ous anomaly detection and anomaly localization. Then we
consider the network topology in the original data and incor-
porate such topology into JSPCA and develop an approach
named Graph JSPCA (GJSPCA).
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4.1 Joint Sparse PCA
Our objective here is to derive a set of PCs V = [V1,V3]

such that V1 is exactly the ordinary normal subspace and
V3 is a sparse approximation of the ordinary abnormal sub-
space with the joint sparsity. The following regularization
framework guarantees the two properties simultaneously.

min
V1,V3

1

2
||X−XV1V

T
1 −XV3V

T
3 ||2F + λ||V3||1,2

s.t. VTV = Ip×p

(4)

Equation (4) can be simplified with one variable V:

min
V

1

2
||X −XVVT ||2F + λ||W ◦V||1,2

s.t. VTV = Ip×p

(5)

Here ◦ is the Hadamard product operator (entry-wise prod-
uct), λ is a scalar controlling the balance between sparse and
fitness, W = [w̃1, · · · , w̃p]

T with jth row vector:

w̃j = [0, · · · , 0︸ ︷︷ ︸
k

, 1, · · · , 1︸ ︷︷ ︸
p−k

]T , j = 1, · · · , p (6)

The regularization term ‖W ◦V ‖1,2 is a L1/L2 penalty which
enforces joint sparsity for each source across in the abnormal
subspace spanned by the remaining p − k principal compo-
nents.

The major disadvantage of equation (5) is that it poses a
difficult optimization problem since the first term (the trace
norm) is concave and the second term (the L1/L2 norm) is
convex. Motivated by the formalization of sparse PCA using
two variables and an alternative optimization algorithm in
[33], we consider a relaxed version:

min
A,B

1

2
||X −XBAT ||2F + λ||W ◦B||1,2

s.t. ATA = Ip×p

(7)

and with the vector form:

min
A,B

1

2

n∑
i=1

||x̃i −ABT x̃i||22 + λ

p∑
j=1

||w̃j ◦ b̃j ||2

s.t. ATA = Ip×p

(8)

where x̃i is the ith row of X, A,B ∈ R
p×p and b̃j is the

jth row of B. The advantage of the new formalization is two
folds: first, equation (8) is convex to each subproblem when
fixing one variable and optimizing the other. As asserted
in [33] disregarding the Lasso penalty, the solution of equa-
tion (8) corresponds to exact PCA; second, we only impose
penalty on the remaining p− k PCs and preserve the top k
PCs representing the normal subspace from ordinary PCA.
Such a formalization will guarantee that we have the ordi-
nary normal subspace for anomaly detection and the sparse
abnormal subspace for anomaly localization. Note that Je-
natton et al. recently proposed a structured sparse PCA
[16], which is similar to our formalization. But their struc-
ture is defined on groups and cannot be directly applied for
anomaly localization.

Figure 4(a) demonstrates the principal components gener-
ated from JSPCA for the stock market data shown in figure
1. Joint sparsity across the PCs in abnormal subspace pin-
points the abnormal sources 2,3,7 by filtering out normal
sources 1, 4, 5, 6, 8. Such result matches the truth in figure
1.

4.2 Graph Guided Joint Sparse PCA
In many real-world applications, the sources generating

the data streams may have structure, which may or may
not change with time. As the example mentioned in figure
1, stock indices from source 2, 3 and 7 are closely correlated
over a long time interval. If source 2 and 3 are anomalies
as demonstrated in Figure 4(a), it is very likely that source
7 is an anomaly as well. This observation motivates us to
develop a regularization framework that enforce smoothness
across features. In particular, we model the structure among
sources with an undirected graph, where each node repre-
sents a source and each edge encodes a possible structure
relationship. We hypothesize that by incorporating struc-
ture information of sources we can build a more accurate
and reliable anomaly localization model. Below, we intro-
duce the graph guided joint sparse PCA, which effectively
encodes the structure information in the anomaly localiza-
tion framework.

To achieve the goal of smoothness of features, we add an
extended l2 (Tikhonov) regularization factor on the graph
laplacian regularized matrix norm of the p− k PCs. This is
an extension of the l2 norm regularized Laplacian on a single
vector in [8]. With this addition, we obtain the following
optimization problem:

min
A,B

1

2

n∑
i=1

||x̃i −ABT x̃i||22 + λ1

p∑
j=1

||w̃j ◦ b̃j ||2+

1
2
λ2

p∑
i=k+1

bT
i Lbi

s.t. ATA = Ip×p

(9)

where bi is the ith column of matrix B, w̃j is defined in
(6) and L is the Laplacian of a graph that captures the
correlation structure of sources [8].

By introducing W matrix defined in (6), we simplify the
second regularization term with a matrix format:

min
A,B

1

2

n∑
i=1

||x̃i −ABT x̃i||22 + λ1

p∑
j=1

||w̃j ◦ b̃j ||2+
1
2
λ2tr((W ◦ B)TL(W ◦B))

s.t. ATA = Ip×p

(10)

In figure 4 we show the comparison of applying JSPCA
and GJSPCA on the data shown in figure 1. Both JSPCA
and GJSPCA correctly localize the abnormal sources 2,3,7.
Comparing JSPCA and GJSPCA, we observe that in GJSPCA
the entry values corresponding to the three abnormal sources
2,3,7 are closer (a.k.a. smoothness in the feature space).
In the raw data, we observe that sources 2,3,7 share an
increasing trend. The smoothness is the reflection of the
shared trend and helps highlight the abnormal source 7. As
evaluated in our experimental study, GJSPCA outperforms
JSPCA. We believe that the additional structure informa-
tion utilized in GJSPCA helps.

4.3 Anomaly Scoring
To quantitatively measure the degree of anomalies for each

source, we define anomaly score and normalized anomaly
score as following.

Definition 4.1. Given p sources, the normal subspace
V1 = [v1, · · · ,vk] and the abnormal subspace V3 = [vk+1, · · · ,vn],
the anomaly score for source i, i = 1 · · · p is defined on the
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Figure 3: Comparing different anomaly localization methods. From left to right: PCA, sparse PCA, JSPCA, and

GJSPCA.

L1 norm of the ith row of V3, divided by the size of the row:

ζi =
||ṽi||1
p− k

(11)

where ṽi is the ith row of V3. For each input data matrix X,
(11) results in a vector ζ = [ζ1, · · · , ζp]T of anomaly scores.
The normalized score for source i is defined as:

ζ̃i = ζi/max{ζi, i = 1, · · · p}
A higher score indicates a higher probability that a source

is abnormal. We show the anomaly scores obtained from
PCA, SPCA, JSPCA and GJSPCA for the stock data in
figure 3. JSPCA and GJSPCA both succeed to localize
three anomalies by assigning nonzero scores to anomalous
sources and zero to normal ones, while PCA and SPCA
both fail. Comparing JSPCA and GJSPCA we find that
JSPCA assigns higher anomaly scores to source 2 and 3 but
a lower score to source 7, and GJSPCA has smooth effect
on the abnormal scores. It assigns similar scores for the
three sources. The similar scores demonstrate the effect of
smooth regularization term induced by the graph Laplacian.
The smoothness also sheds light on the reason why GJSPCA
outperforms JSPCA a little in anomaly localization in our
detailed experimental evaluation.
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Figure 4: Comparing joint sparse PCA (JSPCA) and

graph joint sparse PCA (GJSPCA).

4.4 Optimization Algorithms
We present our optimization technique to solve equations

(8) and (10) based on accelerated gradient descent [27] and
projected gradient scheme [2]. Although equations (8) and
(10) are not joint convex for A and B, they are convex for
A and B individually. The algorithm solves A, B iteratively
and achieves a local optimum.

A given B: If B is fixed, we obtain the optimal A ana-
lytically. Ignoring the regularization part, equation (8) and
equation (10) degenerate to

min
A

1
2
||X −XBAT ||2F

s.t. ATA = Ip×p

(12)

The solution is obtained by a reduced rank form of the Pro-
crustes Rotation. We compute the SVD of GB to obtain
the solution where G = XTX is the gram matrix.

GB = UDV T

Â = UV T (13)

Solution in the form of Procrustes Rotation is widely dis-
cussed, see [33] for example for a detailed discussion.

B given A: If A is fixed, we consider equation (10) only
since equation (8) is a special case of equation (10) when
λ2 = 0, Now the optimization problem becomes:

min
A,B

1

2

n∑
i=1

||x̃i −ABT x̃i||22 + λ1

p∑
j=1

||w̃j ◦ b̃j ||2+
1
2
λ2tr((W ◦ B)TL(W ◦B))

(14)

Equation (14) can be rewritten as min
B

F (B)
def
= f(B) +

R(B) , where f(B) takes the smooth part of equation(14)

f(B) =
1

2

n∑
i=1

||x̃i −ABT x̃i||22 + 1

2
λ2tr((W ◦B)TL(W ◦B))

(15)
and R(B) takes the nonsmooth part, R(B) = λ1

∑p
j=1 ||w̃j ◦

b̃j ||2 . It is easy to verify that (15) is a convex and smooth
function over B with Lipschitz continuous gradient and the
gradient of f is: ∇f(B) = G(B −A) + λ2L(W ◦B).

Considering the minimization problem of the smooth func-
tion f(B) using the first order gradient descent method, it is
well known that the gradient step has the following update
at step i+ 1 with step size 1/Li:

Bi+1 = Bi − 1

Li
∇f(Bi) (16)

In [1, 27], it has shown that the gradient step equation (16)
can be reformulated as a linear approximation of the func-
tion f at point Bi regularized by a quadratic proximal term
as Bi = argmin

B
fLi(B,Bi), where

fLi(B,Bi) = f(Bi)+〈B−Bi,∇f(Bi)〉+Li

2
‖B−Bi‖2F (17)

Based on the relationship, we combine equations (17) and
R(B) together to formalize the generalized gradient update
step:

QLi(B,Bi) = fLi(B,Bi) + λ1||W ◦B||1,2
qLi(Bi) = argmin

B
QLi(B,Bi) (18)

The insight of such a formalization is that by exploring the
structure of regularization R(.) we can easily solve the opti-
mization in equation (18), then the convergence rate is the
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same as that of gradient decent method. Rewriting the op-
timization problem in equation(18) and ignoring terms that
do not depend on B, the objective can be expressed as:

qLi(Bi) = argmin
B∈M

(
1

2
‖B−(Bi− 1

Li
∇f(Bi))‖2F+λ1

Li
||W◦B||1,2)

(19)
With ordinary first order gradient method for smooth

problems, the convergence rate is O(1/
√
ε) [27] where ε is the

desired accuracy. In order to have a better convergence rate,
we apply the Nestrerov accelerated gradient descent method
[27] with O(1/

√
ε) convergence rate, and solve the general-

ized gradient update step in equation (18) for each gradient
update step. Such a procedure has demonstrated scalabil-
ity and fast convergence in solving various sparse learning
formulations [6, 17, 24]. Below we present the accelerated
projected gradient algorithm. The stopping criterion is that
the change of the objective values in two successive steps is
less than a predefined threshold (e.g. 10−5).

Algorithm 1 Accelerated Projected Gradient Descent

1: Input: B0,W ∈ R
p×p, L1 > 0, F (.), QL(., .) and max-

iter.
2: Output: B.
3: Initialize B1 := B0, t−1 := 0, t0 := 1;
4: for i = 1 to max-iter do
5: αi := (ti−2 − 1)/ti−1;
6: S := Bi + αi(Bi −Bi−1);
7: while (true) do
8: Compute qLi(S) in Eq. (19);
9: if F (qLi(S)) > QLi(qLi(S), S) then
10: Li := 2× Li;
11: else
12: break;
13: end if
14: end while
15: Bi+1 := qLi(S), Li+1 := Li;

16: ti :=
1
2
(1 +

√
1 + 4t2i−1);

17: if (Convergence) then
18: B := Bi+1, break;
19: end if
20: end for
21: return B;

Now we focus on how to solve the generalized gradient
update in equation (19). Let C = Bi − 1

Li
∇f(Bi) and λ̃ =

λ1/Li, equation (19) can be represented as:

qLi(Bi) = argmin
B

( 1
2
||B −C||2F + λ̃||W ◦B||1,2)

= argmin
b̃1,··· ,b̃p

∑p
j=1(

1
2
||b̃j − c̃j ||22 + λ̃||w̃j ◦ b̃j ||2)

(20)

where b̃T
j , c̃

T
j and w̃T

j ∈ R
p are row vectors denoting the jth

row of matrices B, C and W . By the additivity of equation
(20), we decompose equation (20) into p subproblems. For
each subproblem, we ignore the row index j:

min
b

1

2
||b − c||22 + λ̃||w ◦ b||2 (21)

For simplicity, we assume b, c and w are row vectors here.
The following theorem provides the analytical solution of
equation (21).

Theorem 4.1. Given λ̃,w = [01×k,11×(p−k)] and c =
[c1, c2] where c1 = [c1, · · · , ck], c2 = [ck+1, · · · , cp] and k
is the number of PCs representing the normal subspace, the
optimal solution for (21) b∗ = [b∗

1 ,b
∗
2] is given by:

b∗
1 = c1

and

b∗
2 =

{
(1− λ̃

||c2||2 )c2 ||c2||2 > λ̃

0 otherwise
(22)

Proof. By the definition of the l2 norm, the equation
(21) can be rewritten as:

min
b1,b2

1

2
||b1 − c1||22 + 1

2
||b2 − c2||22 + λ̃||b2||2 (23)

where b = [b1,b2]. The solution can be found by decom-
posing (23) into two subproblems and solving one ordinary
least square problem and one least square problem with l2
norm regularization. Since there is no regularization on b1

and the two subproblems are independent, the optimal solu-
tion of the ordinary least square problem is b∗

1 = c1. With
optimal b∗

1, (23) degenerates to

min
b2

1

2
||b2 − c2||22 + λ̃||b2||2 (24)

The analytical solution of equation (24) is given in equa-
tion (22) and can be found by forming Lagrangian dual. A
detailed proof can be found in [24].

We summarize what is briefly discussed previously for
GJSPCA in the algorithm below. Note that JSPCA is a
special case of GJSPCA, we obtain the algorithm for JSPCA
by setting λ2 = 0. Given data matrix X ∈ R

n×p and the
number of PCs representing normal subspace k and regu-
larization parameters λ1, λ2, GJSPCA optimizes two matrix
variables alternatively and returns the matrix B composed of
ordinary PCs representing normal subspace and joint sparse
PCs representing the abnormal subspace.

Algorithm 2 Graph Joint Sparse PCA (GJSPCA)

1: Input: X, k, λ1, λ2 and max iter.
2: Output: B.
3: A := Ip×p, G := XTX;
4: for iter = 1 to max iter do
5: Compute B given A using Algorithm 1;
6: Compute A given B via (13);
7: if (Converge) then
8: break;
9: end if
10: end for
11: return B;

5. EXPERIMENTAL STUDIES
We have conducted extensive experiments with three real-

world data sets to evaluate the performances of JSPCA
and GJSPCA on anomaly localization. We implemented
our version of two anomaly localization methods at the net-
work level: stochastic nearest neighbor (SNN) [14] and eigen
equation compression (EEC) [11] since no executables were
provided by the original authors. We implemented all four
methods with Matlab and performed all experiments on a
desktop machine with 6 GB memory and a Intel core i7 2.66
GHz CPU.
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5.1 Data Sets
We used three real-world data sets from different appli-

cation domains. For each data set, we singled out several
intervals with anomalies. The anomalies are either labeled
by the original data provided or manually labeled by our-
selves when no labeling is provided. Note that we are only
interested in the intervals where anomalies really exist since
we focus on localizing anomalies. We used a sliding window
with fixed size L and offset L/2 to create multiple data win-
dows from the given intervals. The sliding window moves
forward with the offset L/2 until it reaches the end of the
intervals. We run all four methods on each data window to
evaluate and compare their performances.

To run GJSPCA we calculated the pair-wise correlation
between any two sources within the window. We produced
a correlation graph for the data streams with a correlation
threshold δ in that if the correlation between two sources
is greater than δ, we connect the two sources with an edge.
This construction is meaningful because for highly corre-
lated data, streams influence each other and such influence
has been shown critical for better anomaly localization, as
evaluated in our experimental studies.

Below we briefly discuss the data collection and data pre-
processing procedures for the three data sets. In Table 1,
we list the intervals that we selected, the dimensionality of
the network data streams, the sliding window size L, and
the total number of data windows W for each data set.

Table 1: Characteristics of Data Sets. D: Data sets. D1:

Stock Indices, D2: Sensor, D3: MotorCurrent. T : total

number of time stamps, p: dimensionality of the net-

work data streams, I: total number of intervals, Indices:

starting point and ending point of the intervals, W : total

number of data windows, L: sliding window size.

D T p I Indices W L
D1 2396 8 4 [261-300], [361- 400] 12 20

[761-800], [1631-1670]
D2 11000 7 4 [2371-2530],[3346-3550] 37 20

[7191-7215], [8841-8870]
D3 1500 20 1 [1-1500] 29 50

The Stock Indices Data Set: The stock indices data
set includes 8 stock market index streams from 8 countries:
Brazil (Brazil Bovespa), Mexico (Bolsa IPC), Argentina (MER-
VAL), USA (S&P 500 Composite), Canada (S&P TSX Com-
posite), HK (Heng Seng), China (SSE Composite), and Japan
(NIKKEI 225). Each stock market index stream contains
2396 stamps recording the daily stock price indices from
January 1st 2001 to March 5th 2010.

Since this data set has no ground truth, we manually la-
beled all the daily indices for the selected intervals. In our
labeling we followed the criteria list in [5] where small tur-
bulence and co-movements of most markets are considered
as normal, dramatic price changes or significance deviation
from the co-movements (e.g. one index goes up while the
others in the market drop down) are considered as abnor-
mal.

The Sun Spot Sensor Data Set: We collected a sensor
data set in a car trial for transport chain security validation
using seven wireless Sun Small Programmable Object Tech-
nologies (SPOTs). Each SPOT contains a 3-axis accelerom-
eter sensor. In our data collection, seven Sun SPOTs were

fixed in the separated boxes and were loaded on the back seat
of a car. Each Sun SPOTs recorded the magnitude of accel-
erations along x, y, z axis with a sample rate of 390ms. We
simulated a few abnormal events including box removal and
replacement, rotation and flipping. The overall acceleration√

(x2 + y2 + z2) was used to detect the designed anomalous
events.

The Motor Current Data Set: The Motor Current
Data is the current observation generated by the state space
simulations available at UCR Time Series Archive [19]. The
anomalies are the simulated machinery failure in different
components of a machine. The current value was observed
from 21 different motor operating conditions, including one
healthy operating mode and 20 faulty modes. For each mo-
tor operating condition, 20 time series were recorded with
a length of 1,500 samples. Therefore, there are 20 normal
time series and 400 abnormal time series altogether.

In our evaluation, we randomly extracted 20 time series
out of 420 with the length 1500. 10 time series are from
normal series and the rest are from abnormal series.

5.2 Model Evaluation
For evaluation, since our focus is anomaly localization, we

did not evaluate anomaly detection although our methods
are able to do both. We used the standard ROC curves
and area under ROC curve (AUC) to evaluate the anomaly
localization performance. Below we introduce the details
regarding the construction of ROC curves.

As defined in equation 11, a higher abnormal score indi-
cates a higher probability the source is abnormal, which is
the same as that of the baseline methods [11, 14] for com-
parison. To have a fair comparison, we compared the nor-
malized abnormal score among each method. The reason for
normalization is that the anomaly scores generated by the
baseline methods have different orders of magnitude. We
used the term “anomaly score“ to refer to the normalized
abnormal score in the following analysis.

For each data window, the abnormal score vector ζ̃ =
[ζ̃1, · · · , ζ̃p]T was generated and compared with a cut-off
threshold between [0, 1] to separate abnormal sources and
innocent sources. We performed the same procedure for all
the data windows and finally we obtained a prediction ma-
trix with size w by p, such that w is the number of data
window and p is the number of sources. Each entry in the
prediction matrix is 0 or 1 to indicate whether the source
is normal or abnormal. Comparing the prediction matrix
with the ground truth resulted in a pair of true positive rate
(TPR) and false positive rate (FPR), where TPR is the to-
tal number of true detected abnormal sources over the total
number of abnormal sources, and FPR is the total number of
incorrect detected abnormal sources over the total number of
normal sources in W windows. By changing the threshold,
we obtained the ROC curve and the AUC value.

5.3 Anomaly Localization Performance
We have two parameters to tune in JSPCA: λ1: control-

ling the sparsity, and k: the dimension of normal subspace.
GJSPCA has two more parameters: λ2: controlling the
smoothness, and δ, the correlation threshold to construct
the correlation graph. For the other two methods, we need
to select the number of neighbors k for SSN and the number
of clusters c for EEC. We first performed a grid search for
each method to identify the optimal parameters and then
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Figure 5: ROC curves and AUC for different methods on three data sets. From left to right: ROC for the stock

indices data, ROC for the sensor data, ROC curve for MotorCurrent data, AUC for the three ROC plots
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Figure 6: From left to right, sensitivity analysis on λ1, λ2, δ, and the dimension of the normal subspace.

compared the performances. The performances of different
methods depend on the parameter selection. We evaluated
the sensitivity of our results in the next selection.

For each data set, we tuned λ1, λ2 within {2−8, 2−7,
· · · , 28} and δ from 0.1 to 0.9. k was tuned from 1 to 4 for
the stock market and sensor data, and from 2 to 7 for the
motor current data. All the ranges were set by empirical
knowledge. Our empirical study showed that the perfor-
mances did not change significantly as the parameters vary
in a wide range, which reduced the parameter search space
significantly.

Table 2 lists the best parameter combination for JSPCA
and GJSPCA. For SNN, we tuned the number of neighbors
k in the range 2 ∼ 6 (for stock index data set and sensor
data) and in the range 2 ∼ 10 (for motorcurrent data) re-
spectively. For EEC method, the number of clusters c was
tuned between 2 ∼ 4.

In Figure 5, we show the performances for the four meth-
ods on three different data sets. JSPCA and GJSPCA clearly
outperform the other two methods. The AUC value of JSPCA
and GJSPCA are both above 0.85 on three data sets, while
that of EEC and SNN are around [0.5 ∼ 0.6]. Compared
with JSPCA, GJSPCA is slightly better, which supports our
hypothesis on the importance of incorporating the structure
information of network data streams into anomaly localiza-
tion. SNN clearly outperforms EEC on Sensor data, and is
comparable with EEC for the other two data sets.

5.4 Parameter Selection
In this section, we evaluated the sensitivity of our meth-

ods to different modeling parameters. In order to do so, we
selected one parameter at a time, systematically changed
its value while fixing the others at their optimal values.
Although our approaches have more parameters than the
other two methods, the sensitivity analysis shows that per-
formances of our methods are remarkably stable over a wide
range of parameters. Next we show the sensitivity study on
the stock indices data set for the parameters λ1 and λ2, δ,
k. Similar results are observed on the other two data sets.

Table 2: Optimal parameters combinations on three

data sets. J*:JSPCA, GJ*: GJSPCA.

λ1 k λ2 δ
Data set J* GJ* J* GJ* GJ* GJ*

Stock Indices 2−3 2−4 1 1 2−4 0.6
Sensor 2−7 2−5 1 1 2−6 0.6

MotorCurrent 2−2 2−2 5 5 2−8 0.5

In Figure 6, we show the stability by changing λ1. We
observe that AUC is quite stable over a wide range of λ1. A
similar phenomenon is also observed when changing λ2. In
the middle part of figure 6, we performed sensitivity analysis
on parameter δ. We observe that AUC remains stable for
δ ∈ [0.15, 0.6]. When δ = 0, the graph is a complete graph
and the smoothness regularization will penalize the loadings
of each source across the PCs to be similar to each other.
Hence very low δ leads to a worse performance. On the
other hand, when δ = 1, the graph is just a set of isolated
sources. The structure information is missing, therefore the
performance is not optimal.

An important parameter in PCA based anomaly detec-
tion is k, the number of PCs spanning the normal subspace.
In [28], Ringberg et al. claimed that the anomaly detec-
tion performance was very sensitive to k. We demonstrate
in the right part of figure 6 that our methods achieve a
relatively stable performance as the dimension of normal
subspace changes from 1 to 4. More specifically, the over-
all AUC gradually decreases from 0.96 to 0.72 as k changes
from 1 to 3 and then increases to 0.77 at k = 4. However
even in the worst case k = 3 it still has a good performance
with AUC= 0.73. This study demonstrates that our model
is not sensitive to k.

6. CONCLUSIONS AND FUTURE WORK
Previous work on PCA based anomaly detection claimed

that PCA cannot be used for anomaly localization. We pro-
pose two novel approaches, joint sparse PCA (JSPCA) and
graph joint sparse PCA (GJSPCA), for anomaly detection
and localization in network data streams. By enforcing joint
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sparsity on the PCs representing the abnormal subspace and
incorporating the structure information of network via reg-
ularization, we significantly extend the applicability of PCA
based technique for localization. Our experimental studies
on three real world data sets demonstrate the effectiveness
of our approach. Our future works will focus on three direc-
tions: (a) how to select the number of principal components
that best interpret the normal subspace, and (b) how to ex-
tend our approach to kernel PCA, and (c) how to develop
alternative optimization techniques to improve the scalabil-
ity.
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