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Abstract

Automated, rapid, and effective fault management is
a central goal of large operational IP networks. Today’s
networks suffer from a wide and volatile set of failure
modes, where the underlying fault proves difficult to de-
tect and localize, thereby delaying repair. One of the
main challenges stems from operational reality: IP rout-
ing and the underlying optical fiber plant are typically
described by disparate data models and housed in dis-
tinct network management systems.

We introduce a fault-localization methodology based
on the use of risk models and an associated troubleshoot-
ing system, SCORE (Spatial Correlation Engine), which
automatically identifies likely root causes across lay-
ers. In particular, we apply SCORE to the problem
of localizing link failures in IP and optical networks.
In experiments conducted on a tier-1 ISP backbone,
SCORE proved remarkably effective at localizing opti-
cal link failures using only IP-layer event logs. More-
over, SCORE was often able to automatically uncover
inconsistencies in the databases that maintain the critical
associations between the IP and optical networks.

1 Introduction
Operational IP networks are intrinsically exposed to a
wide variety of faults and impairments. These net-
works are large, geographically distributed and con-
stantly evolving, with complex hardware and software
artifacts. A typical tier-1 network consists of about
1,000 routers from different vendors, with different fea-
tures, and acting in different roles in the network ar-
chitecture. Such a network is supported by access and
core transport networks, which typically involve at least
two orders of magnitude more network elements (op-
tical amplifiers, Dense Wavelength Division Multiplex-
ing (DWDM) systems, ATM/MPLS/Ethernet switches,
and so forth). These network elements and associated
telemetry generate a large number of management events
relating to performance and potential failure conditions.

The essential problem of IP fault management is to
monitor the event stream to detect, localize, mitigate and
ultimately correct any condition that degrades network

behavior. Unfortunately, operational IP networks today
lack intrinsic robustness; serious faults and outages are
not infrequent. While existing fault management sys-
tems (e.g., [11, 19, 7]) provide great value in automat-
ing routine fault management, serious problems can fly
“under the radar,” or, once detected, cannot be rapidly
localized and diagnosed. To appreciate why this is so, it
may help to imagine a network operator faced with the
task of IP fault management. After much effort, network
hardware has been designed and implemented, the pro-
tocols controlling the network have been designed (often
in compliance with published standards), and the associ-
ated software implemented. In accordance with the net-
work architecture, the network elements have been de-
ployed, connected, and configured. Yet, all these com-
plex endeavors are carried out by multiple teams at rapid
pace, involving a large and distributed software compo-
nent, thus producing operational artifacts far richer in be-
havior than can ever be approximated in a lab. Errors will
be introduced at each stage of network definition and go
undetected despite best practices in design, implementa-
tion, and testing. External factors, including bugs of all
types (memory leaks, inadequate performance separation
between processes, etc.) in router software and environ-
mental factors such as DoS attacks and BGP-related traf-
fic events originating in peer networks significantly raise
the level of difficulty. It is the task of IP fault manage-
ment to cope with the result, continually learning and
dealing with new failure modes in the field.

In this paper, we introduce a risk modeling methodol-
ogy that allows for faster, more accurate automatic local-
ization of IP faults to support both real-time and offline
analysis. By design, we:

• split our solution into generic algorithmic compo-
nents (Section 4.2) and problem domain specific
components (Section 4.5), and

• create risk models that reflect fundamental architec-
tural elements of the problem domain, but not neces-
sarily implementation details.

As a result, our system is robust to churn in operational
networks and is more likely to be extensible to additional
system components.



We apply our methodology to the specific problem of
fault localization across IP and optical network layers,
a difficult problem faced by network operators today.
Currently, when IP operations receives router-interface
alarms, the systems and staff are often faced with time-
intensive manual investigation of what layer the problem
occurred in, where, and why. This task is hampered by
the architecture of the underlying network: IP uses optics
for transport and (in some cases) for self-healing services
(e.g., SONET ring restoration) in an overlay fashion. The
task of managing each of the two network layers is natu-
rally separated into independent software systems.

Joining dynamic fault data across IP and optical sys-
tems is highly challenging—the network elements, sup-
porting standards and information models are totally dif-
ferent. Though there are fields, such as circuit IDs, which
can be used to join databases across these systems, auto-
mated mechanisms to assure the accuracy of these joins
are often limited. Unfortunately, the network elements
and protocols provide little help. Path-trace capabilities
(counterparts of IP traceroute) are not available in the op-
tical layer, or, if available, do not work in a multi-vendor
environment (e.g., where the DWDM systems are pro-
vided by multiple vendors). In optical systems such as
SONET, there is no counterpart to IP utilization statis-
tics, which might be used to correlate traffic at the IP
layer with the optical layer. Both IP and optical net-
work topologies are rapidly changing as equipment is
upgraded, network reach is extended, and capacities are
re-engineered to manage changing demands.

Our key contribution is the novel and successful ap-
plication of risk modeling to localize faults across the
IP and optical layers in operational networks. Roughly
speaking, a physical object such as a fiber span or an op-
tical amplifier represents a shared risk for a group of log-
ical entities (such as IP links) at the IP layer. That is, if
the optical device fails or degrades, all of the IP compo-
nents that had relied upon that object fail or degrade. In
the literature, these associations are referred to as Shared
Risk Link Groups or SRLGs [21]. Using only event data
gathered at the IP layer, and topology data gathered at
both IP and optical layers, we bridge the gap between
what the operational information network managers need
and what is actually reported at IP layer. Our system,
SCORE (Spatial Correlation Engine), relieves operators
of the burden of cross-correlating dynamic fault informa-
tion from two disparate network layers. Once the layer
and the location of the fault has been determined, other
systems and tools at the appropriate layer can be targeted
towards identifying the precise characteristics (for exam-
ple, rule-based or statistical methods [11, 19]).

2 Troubleshooting using shared risks
Monitoring alarms associated with IP network compo-
nent failures are typically generated on an individual link
basis—for example, a router failure will appear as a fail-
ure of all of the links terminating at that router. Best cur-
rent practice requires a manual correlation of the individ-
ual link failure notifications to determine that they are all
a result of a common network element (e.g., router). In
more complicated failure scenarios, however, it is sub-
stantially more challenging to group individual alarms
into common groups, and often difficult to even identify
in which layer the fault occurred (e.g., in the transport
network interconnecting routers, or in the routers them-
selves). By identifying the set of possible components
that could have caused the observed symptoms, shared
risk analysis can serve as the first step of diagnosing a
network problem. For events being investigated by oper-
ations personnel in real time, reducing the time required
for troubleshooting directly decreases down time.

2.1 Shared risk in IP networks
Our challenge is to construct a model of risks that rep-
resent the set of IP links that would likely be impacted
by the failure of each component within the network.
The tremendous complexity of the hardware and soft-
ware upon which an IP network is built implies that con-
structing a model that accounts for every possible fail-
ure mode is impractical. Instead, we identify the key
components of the risk model that represent the preva-
lent network failure modes and those that do not require
deep knowledge of each vendor’s equipment used within
the network. We hasten to add that the better the SRLG
modeling of the network, the more precise the fault diag-
nosis can be. However, as we show later, a solid SRLG
model combined with a flexible spatial correlation al-
gorithm can ensure that fault isolation can be robust to
missing details in the risk model developed.

The basic IP network topology can be represented as
a set of nodes interconnected via links. Inter-domain and
intra-domain routing protocols such as OSPF and BGP
operate with a basic abstraction of a point-to-point link
between routers. Of course, OSPF permits other ab-
stractions such as multi-access and non-broadcast, but
a backbone network typically only consists of point-to-
point links between routers. Figure 1 illustrates a very
simplistic IP network consisting of five nodes connected
via six optical links (circuits). Each inter-office IP link
is carried on an optical circuit (typically using SONET
framing). This optical circuit in turns consists of a se-
ries of one or more fibers, optical amplifiers, SONET
rings, intelligent optical mesh networks and/or DWDM
systems [16]. These systems consist of network elements
that provide O-E-O (optical to electrical) conversion and,
in the case of SONET rings or mesh optical networks,
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Figure 1: Example illustrating the concept of SRLGs.

protection/restoration to recover from optical layer fail-
ures. Multiple optical fibers are then carried in a sin-
gle conduit, commonly known as a fiber span. Typically,
each optical component may carry multiple IP links—the
failure of these components would result in the failure of
all of these IP links. We illustrate this concept in the bot-
tom half of Figure 1, where we show the optical layer
topology over which the IP links are routed. In Figure 1,
these shared risks are denoted as FIBER SPAN 1 to 6,
and DWDM 1 and 2. CKT3 and CKT5 are both routed
over FIBER SPAN 4 and thus would both fail with the
failure of FIBER SPAN 4. Similarly DWDM 1 is shared
between CKT 1, 3, 4 and 5, while CKT 6 and CKT 7
share DWDM 2.

In essence, each network element represents a shared
risk among all the links that traverse through this ele-
ment. Hence, this set of links represents what is known
as the Shared Risk Link Group (SRLG), as defined in
[21]. This concept is well understood in the context of
network planning where backup paths are chosen such
that they do not have any SRLG in common with the pri-
mary path, and sufficient capacity is planned to survive
SRLG failures. However, the application of risk group
models to real-time and offline fault analysis has not been
well explored.

2.2 Network SRLGs
We now present the shared risk group model that we
construct to represent a typical IP network. We divide
the model into hardware-related risks and software risks.
Note that this model is not exhaustive, and can be ex-

panded to incorporate, for example, additional software
protocols.

2.2.1 Hardware-related SRLGs
Fiber: At the lowest level, a single optical fiber car-
ries multiple wavelengths using DWDM. One or more IP
links are carried on a given wavelength. All wavelengths
that propagate through a fiber form an SRLG with the
fiber being the risk element. A single fiber cut can si-
multaneously induce faults on all of the IP links that ride
over that fiber.

Fiber span: In practice, a set of fibers are carried to-
gether through a cable. A set of cables are laid out in
a conduit. A cut (from, e.g., a backhoe) can simultane-
ously fail all links carried through the conduit. These set
of circuits that ride through the conduit form the fiber
span SRLG.

SONET network elements: SONET network ele-
ments such as optical amplifiers, add-drop multiplexors
etc., are often shared across multiple wavelengths (that
represent the circuits). For example, an optical ampli-
fier amplifies all the wavelengths simultaneously – hence
a problem in the optical amplifier can potentially dis-
rupt all associated wavelengths. We collectively group
these elements together into the SONET network ele-
ments group.

Router modules: A router is usually composed of a
set of modules, each of which can terminate one or more
IP links. A module-related SRLG denotes all of the IP
links terminating on the given module, as these would all
be subject to failure should the module die.

Router: A router typically terminates a significant
number of IP links, all of which would likely be impacted
by a router failure (either software or hardware). Hence,
all of the IP links terminating on a given router collec-
tively belong to a given router SRLG.

Ports: An individual link can also fail due to the fail-
ure of a single port on the router (impacting only the one
link), or through other failure modes that impact only the
single link. Thus, we also include Port SRLGs in our
model. Port SRLGs however are singleton sets consist-
ing of only one circuit. However, we add them in our risk
model in order to be able to explain single link failure.

2.2.2 Software-related SRLGs
Autonomous system: An autonomous system (AS) is a
logical grouping of routers within the Internet or a single
enterprise or provider network (typically managed by a
common team and systems). These routers are typically
all running a common instance of an intra-domain rout-
ing protocol. Although extremely rare, a single intra-
domain routing protocol software implementation can
cause an entire AS to fail.

OSPF areas: Similar to an AS, an OSPF area is a log-
ical grouping of a set of links for intra-domain routing



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

C
D

F

SRLG Cardinality (no. of links per group)

Fiber Spans
Fiber

SONET Network Elements
Ports

Router Modules
Routers

Areas
Aggregated Database

Figure 2: CDF of shared risk among real SRLGs

purposes. It is possible for a faulty routing protocol im-
plementation to cause disruptions across the entire area.
Hence, the IP links in a particular area form an OSPF
Area SRLG.

Not all SRLGs have corresponding failure diagnosis
tools associated with them. For example, a fiber span
is a physical piece of conduit that generally cannot indi-
cate to the network operator that it has been cut. Simi-
larly, there is no monitoring at the OSPF area level that
can indicate if the whole area was affected. On the other
hand, some SONET optical devices can indicate failures
in real time. However, these failure indications are usu-
ally at wavelength granularity (i.e circuit or link level
failures) and hence are not representative of that equip-
ment failure. Diagnosis is therefore based on inference
from correlated failures that can be attributed to a partic-
ular SRLG. In the absence of fault notifications directly
from the equipment, this becomes the only approach to
identify the failed component in the network.

2.3 Shared risk in real networks
Spatial correlation is inherently enabled by richness in
sharing of risks between links. In particular, spatial
correlation will typically be most effective in networks
where SRLGs consist of multiple IP links, and each IP
link consists of multiple SRLGs. Figure 2 depicts the cu-
mulative distribution of the SRLG cardinality (the num-
ber of IP links in each SRLG) in a segment of a large tier-
1 IP network backbone (in particular, customer-facing in-
terfaces are not included here). The figure gives an idea
of the SRLG cardinality (number of IP links per SRLG)
in real networks. We can observe from this figure that, as
expected, OSPF areas typically consist of a large num-
ber of links (and, hence, are included in their SRLG),
whereas port SRLGs (by definition) comprise only a sin-
gle circuit. In between, we can see that fiber spans typi-
cally have a significant number of IP links sharing them,

while SONET network elements typically have fewer.
The important observation here is that there is a signifi-
cant degree of sharing of network components that can be
utilized in spatial correlation in real IP networks. Studies
of the number of SRLGs along each IP link show simi-
lar results. Thus, shared risk group analysis holds great
promise for large-scale IP networks.

3 Shared Risk Group analysis
We begin by defining the notation we shall use through-
out the remainder of the paper. Define an observation as
a set of link failures that are potentially correlated, either
temporally or otherwise. In other words, if a given set of
links fail simultaneously or share a similar pattern or sig-
nature of a failure, these events form an observation. A
hypothesis is a candidate set of circuit failures that could
explain the observation. That is, a hypothesis is a set of
risk groups that contain the set of links seen to fail in a
given observation.

The goal, then, of shared risk group analysis is to ob-
tain a hypothesis that best explains a given observation.
The principle of Occam’s razor suggests that the simplest
explanation is the most likely; hence, we consider the
best hypothesis to be the one with the fewest number of
risk groups. We note, however, that there could be other
formulations of the problem where a best hypothesis is
optimizing some other metric.

3.1 Problem formulation
We can define the problem formally as follows. Let
C = {c1, c2, . . . , cn} denote a set of links, and G =
{G1, G2, . . . , Gm} denote a set of risk groups. Each
risk group Gi ∈ G contains a set of links Gi =
{ci1, ci2, . . . , cik} ⊆ C that are likely to fail simulta-
neously. (We use the terms “links” and “circuits” here
to aid intuition, though it will be apparent that the for-
mulation and the algorithm to be described simply deals
with sets, and can be applied to arbitrary problem do-
mains). Note that each circuit here can potentially belong
to many different risk groups. Given an input observa-
tion consisting of events on a subset of circuits, O =
{ce1, ce2, . . . , cem}, the problem is to identify the most
probable hypothesis, H = {Gh1, Gh2, . . . , Ghk} ⊆ G
such that H explains O, i.e., every member of O belongs
to at least one member of H and all the members of a
given group Ghi belong to O. The latter constraint stems
from the fact that if a component fails, all the associated
member links fail and hence should be a part of the ob-
servation. H is a set cover for O; finding a minimum set
cover is known to be NP complete.

The problem can be modeled visually using a bipar-
tite graph as shown in Figure 3. Each circuit, ci, and
group, Gj , is represented by a node in the graph. The
bottom partition consists of nodes corresponding to the
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Figure 3: A bipartite graph formulation of the Shared
Risk Group problem.

risk groups; the top nodes correspond to circuits. An
edge exists between a circuit node and a group node if
that circuit is a member of the risk group. Given this
bipartite graph and a subset of vertices in the top par-
tition (corresponding to an observation), the problem is
to identify the smallest possible set of group nodes that
cover the events.

Before proceeding, we observe that if multiple risk
groups have the same membership—that is, the same set
of circuits may fail for two or more different reasons—it
is impossible to distinguish between the causes. We call
any such risk groups aliases, and collapse all identical
groups into one in our set of risk groups. For example,
in Figure 3, group g5 and g6 have the same membership:
l4. Hence, g5 and g6 are collapsed into a single group as
a pre-processing step.

3.2 Greedy approximation
There are potentially many different ways to solve the
problem as formulated above; we use a greedy approx-
imation to model imperfect fault notifications and other
inconsistencies due to operational realities (as discussed
in Section 3.3). Our greedy approximation also reduces
the computation cost involved in identifying the most
likely hypothesis among all hypotheses (which can po-
tentially be large).

Before presenting the algorithm, however, we must
first introduce two metrics we will use to quantify the
utility of a risk group. Let |Gi| be the total number of
links that belong to the group Gi (known as the cardinal-
ity of Gi). Similarly, |Gi ∩O| is the number of elements
of Gi that also belong to O. We define the hit ratio of the
group Gi as |Gi ∩ O|/|Gi|. In other words, the hit ratio
of a group is the fraction of circuits in the group that are
part of the observation. The coverage ratio of a group Gi

is defined as |GI ∩ O|/|O|. Basically, the coverage ratio
is the portion of the observation explained by a given risk
group.

Intuitively, our greedy algorithm attempts to itera-
tively select the risk group that explains the greatest num-

Algorithm 1 greedyHypothesis(input links,threshold)

1: explained = {}; // EmptySet
2: unexplained = input links;
3: // All groups that contain at least one link
4: groups = getAllGroups(unexplained);
5: while (unexplained 6= {}) do
6: // Compute hit and coverage for all groups
7: hitCoverage(groups, explained, unexplained);
8: // F ind a candidate group for pruning
9: grp = findCandidateGroup(groups, thresh);

10: pruneGrp(grp, explained, unexplained);
11: addGroup(hypothesis, grp);
12: end while
13: return hypothesis;

Algorithm 2 findCandidateGroup(groups,threshold)
1: for all group such that group.hitratio ≥

threshold do
2: maxGroup = updateMaxCoverage(group)
3: end for
4: return maxGroup

ber of faults in the observation with the least error: in
other words, the highest coverage and hit ratios. More
concretely, in every iteration, the algorithm computes the
hit ratio and coverage ratio for all the groups that contain
at least one element of the observation (i.e., the neighbor-
hood of the observation in the bipartite graph). It selects
the risk group with maximum coverage (subject to some
restrictions on the hit ratio which we shall describe later)
and prunes both the group and its member circuits from
the graph. In the next iteration, the algorithm recomputes
the hit and coverage ratio for the remaining set of groups
and circuits. This process repeats, adding the group with
the maximum coverage in each iteration to the hypothe-
sis, until finally terminating when there are no circuits re-
maining in the observation. The pseudocode is presented
in Algorithm 1.

The algorithm maintains two separate lists: explained
and unexplained circuits. When a risk group is selected
for inclusion in the hypothesis, all circuits in the obser-
vation that are explained by this risk group are removed
from the unexplained list and placed in the explained list.
The hit ratio is computed based on the union of the ex-
plained and unexplained list, but coverage ratio is com-
puted based only on the unexplained list. The reason for
this is straightforward: multiple failures of the same cir-
cuit will result in only one failure observation. Hence,
the hit ratio of a risk group should not be reduced sim-
ply because some other risk group also accounts for the
failure observation.



3.3 Modeling imperfections
In our discussion so far, we have skirted the issue of se-
lecting risk groups with hit ratios less than one. What
does it mean to have a hypothesis that explains more cir-
cuit failures than actually occurred? In a straightforward
model, such a result is nonsensical: if the shared com-
ponent generating the risk group failed, all constituent
circuits should have been affected. Operational reality,
however, is seemingly contradictory for a number of rea-
sons, including incomplete or erroneous monitoring data,
and inaccurate modeling of the shared risk groups.

Although operationally-critical alarms are almost al-
ways transmitted using reliable data protocols, some sup-
porting failure-related messages (e.g., syslogs) may be
transmitted using unreliable protocols such as UDP. This
can result in partial failure observations. In such situa-
tions, the accuracy of the diagnosis generated using the
lossy messages can be impacted if the data is erroneous
or incomplete. For example, consider the failure of a
particular optical component, which results in six links
failing out of which only five, say, messages make it to
the monitoring system. The hit ratio for the risk group
representing the shared component is then 5/6. Without
expressly allowing for the selection of this risk group, the
algorithm would output a hypothesis, that, while plausi-
ble, is likely far from reality.

Furthermore, while theoretically it should be possi-
ble to precisely model all risk groups, it is impossible
in practice to exactly capture all possible failure modes.
This difficulty leads to two interesting cases of inaccu-
rate modeling. One is failure to model high-level risk
groups (e.g., all links terminating in a particular point of
presence may share a power grid) while the other is fail-
ure to model low-level risk groups (for example, some
internal risk group within a router). Our algorithm needs
to be robust against imprecise failure groups and, if pos-
sible, learn from real observations. We discuss one real
instance of learning of new risk groups from actual fail-
ure observations in Section 6.

We allow for these operational realities by allowing
risk groups with hit ratios of less than one to be selected
as our hypothesis. Specifically, we achieve this by intro-
ducing an error threshold, and then select the risk group
with greatest coverage out of those with hit ratios above
this threshold. So, even if a particular circuit is omitted
(either due to incorrect modeling or missing data), the
error threshold allows consideration of groups that have
most links but not quite all and cover a large number of
failures.

Note that there could be two different cases once
we include groups with hit ratios above a certain error
threshold. It is possible that there are in reality only a
small number of failures but, as a result of message loss,
the algorithm identifies a hypothesis with a larger num-
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Figure 4: System architecture framework of SCORE.

ber of failures when the error threshold is not used (or
error threshold = 1.0). Relaxing the error threshold (¡
1.0) would account for the message loss, thereby gener-
ating a better (smaller) hypothesis. On the other hand,
there could be genuinely be a larger number of failures
describing our set of observations. In this case, relaxing
the error threshold can result in an incorrect hypothesis
being generated.

It turns out to be extremely difficult to select a sin-
gle error threshold for all observations, as it depends
greatly on the size of individual risk groups involved in
the observation. In practice, we run the algorithm mul-
tiple times and generate hypotheses for decreasing er-
ror thresholds until a plausible hypothesis is generated.
More generally, we can assign a cost function to evalu-
ate the confidence of a particular hypothesis based on the
number of component failures in the hypothesis and the
threshold used and choose the one with lowest cost.

4 System overview
We created SCORE—the prototype implementation of
our system—with generality in mind. Accordingly, key
systems and algorithmic components are factored out so
that they may be reused in multiple problem domains or
in variations for a single problem domain. A stand-alone
spatial correlation module is driven by an extensible set
of problem domain dependent diagnosis processes. Intel-
ligence from the problem domain is built into the SRLG
database, and is reflected in the SCORE queries. Fig-
ure 4 depicts the SCORE system architecture as it is im-
plemented today. The following subsections describe the
various modules in more detail.

4.1 SRLG database
The SRLG database manages relationships between
SRLG groups and corresponding links. For example, in
our application, the database atoms used to form SRLGs
at the SONET layer describe SONET and optical-layer
equipment IDs that particular IP links traverse, extracted



from databases populated by operational optical-element
management systems. Other risk groups such as areas,
routers, modules, etc., are similarly formed from the na-
tive databases extracted from the various network ele-
ments (e.g., router configurations). We note that the un-
derlying databases track the network and therefore ex-
hibit churn. The SCORE software is currently snapshot
driven and copes with churn by reloading multiple times
during the course of the day. As mentioned in Section 3
on alias aggregation, we collapse risk groups with identi-
cal member links prior to performing spatial correlation.

4.2 Spatial correlation engine
The Spatial Correlation Engine (SCORE) forms the core
of the system. This engine periodically loads the spa-
tial database hierarchy and responds to queries for fault
localization. SCORE implements the greedy algorithm
discussed in Section 3. That is, SCORE obtains the
minimum set hypothesis using the SRLG database and
a given set of inputs. Optionally, an error threshold can
be specified, as described in Section 3.

4.3 Data sources
The set of observations upon which spatial correlation
is applied is obtained from network fault notifications
and performance reports (including performance-related
alarms). These, in turn, come from a wide range of
data sources. We discuss below some of the more
popular fault- and performance-related data sources that
have been used within the SCORE architecture to date.
Though we describe certain optical-layer event data
sources (such as SONET PM data) and have experi-
mented with such sources in SCORE, only IP event
sources were used to obtain the results described in this
paper.

4.3.1 IP-layer fault notifications
IP link failures and other faults will be observed by
routers and reported to centralized network operations
systems via SNMP traps sent from the router. These
SNMP traps provide the key event notifications that al-
low network operators to learn of faults as they occur.

Router operating systems, much like Unix operat-
ing systems, log important events as they are observed.
These are known as router syslogs and provide a wealth
of useful information regarding network events. These
logs can be used as additional information to comple-
ment the SNMP traps and the alarms that they generate.
Table 1 shows sample syslog messages for a failure ob-
served on a Cisco router, and another failure observed
on an Avici router. The failures are reported at different
layers—illustrated here for the SONET, PPP and IP lay-
ers (OSPF). Note that there is no standardized format for
these messages as they are usually output for debugging
purposes.

4.3.2 Performance reports
SNMP performance data is generated by the routers on
either a per-interface or per-router basis, as applicable. It
typically contains five-minute aggregate measurements
of statistics such as traffic volumes, router CPU aver-
age utilization, memory utilization of the router, num-
ber of packet errors, packet discards, and so on. Per-
formance metrics are also available on a per-circuit ba-
sis from SONET network elements along an optical path
(as are alarms, although these are not discussed here).
Numerous parameters will be reported in, for example,
15-minute aggregates. These include parameters such as
coding violations, errored seconds, severely errored sec-
onds (indicative of bit-error rates and outages), and pro-
tection switching counts on SONET rings.

4.4 Data translation/normalization
Monitoring data is usually collected from different net-
work elements (routers, SONET DWDM equipment,
etc.) and streamed to one or more centralized databases.
This various data is usually stored in different formats
with independant candidate keys. However, we need to
be able to associate the network events (e.g., failures)
with the topology information (SRLGs) across layers. To
achieve this, we need to use a common key across our
SRLG and event notifications.1

4.5 Fault localization policies
Fault localization is performed on various monitoring
data sources (such as those mentioned in the previous
section) using flexible data-dependent policies. In Fig-
ure 4, fault isolation policies form the bridge between
the various monitoring data sources (translators) and the
main SCORE engine. These policies dictate how a par-
ticular type of fault can be localized. The main functions
include:

• Event clustering. Clustering events that represent
either temporally correlated events or events with
similar failure signatures (e.g., spatially correlated)

• Localization heuristics. Heuristics that aide in iden-
tifing hypotheses that best explain event clusters.

Event clustering: A single failure can result in mul-
tiple observations, all close in time, but not necessarily
fully synchronized. This may be because the failure was
not detected at exactly the same time, the network ele-
ments reporting the events may not be all synchronized
precisely in time, or propagation delays of the associated
messages differ. Thus, data sources that are based on
discrete asynchronous events, (e.g., OSPF, syslog mes-
sages) need to be clustered together so that individual

1We map all the databases into link circuit identifiers since the net-
work database itself is organized based on link circuit identifiers. How-
ever, any unified format would work equally well.



Syslog Message on Cisco/Avici Routers Layer Router
Aug 16 04:01:29.302 EDT: %LINEPROTO-5-UPDOWN: Line protocol on
Interface POS0/0, changed state to down

SONET layer Cisco

Aug 16 04:01:29.305 EDT: %LINK-3-UPDOWN: Interface POS0/0, changed
state to down

PPP layer Cisco

Aug 16 04:01:29.308 EDT: %OSPF-5-ADJCHG: Process 11, Nbr 1.1.1.1
On POS0/0 from FULL to DOWN, Neighbor Down: Interface down or
detached

OSPF/IP layer Cisco

module0036:SUN SEP 12 17:23:29 2004 [030042FF] MINOR:snmp-traps
:Sonet link POS 1/0/0 has new adminStatus up and operStatus up.

Sonet Layer Avici

server0001:SUN SEP 12 17:25:01 2004 [030042FF] MINOR:snmp-traps
:PPP link POS 1/0/0 has new adminStatus up and operStatus up.

PPP layer Avici

server0002:THU AUG 12 07:21:58 2004 [030042FF] MINOR:snmp-traps:OSPF
with routerId 1.1.1.1 had non-virtual neighbor state change with
neighbor 1.1.1.2 (address less 0) (router id 1.1.1.4) to state
Down.

OSPF/IP layer Avici

Table 1: Syslog messages output by Cisco and Avici routers when a link fails at different layers of the stack. When
the link comes back up, the router writes similar messages indicating that each of the layer is back up.

observations (e.g., link down events) become a single ob-
servation (multiple-link outage). This clustering captures
all the events that are close together in time and assumes
that they are potentially related to one or more individual
failures.

There are many different ways to cluster events. A
naive approach to clustering is based on fixed time bins.
For example, we can construct observations (sets of
potentially correlated links) by clustering together all
events in a fixed five-minute bin. The problem with
this approach, however, is the fact that events related to
a particular failure can potentially straddle the time-bin
boundary. In this case, the quantization will create two
different observations for correlated events thus affecting
the accuracy of the diagnosis.

In our system, we cluster events based on the length of
the gaps between them. We consider the longest chain of
events that are spaced apart by less than a set threshold
(called the quiet period) as potentially correlated events.
The intuition here is that events occuring within a time
period less than a given threshold (say 30 seconds) are
potentially correlated and can be attributed to the same
failure. Note, however, that the quiet period needs to be
tuned for the particular problem domain. These clustered
events are then fed to the SCORE system to obtain a hy-
pothesis that represents the failed network components.

Localization heuristics: Fault localization often re-
quires heuristics that are either derived intuitively or
through domain knowledge to make multiple queries to
the system with different parameters in order to obtain
higher-confidence hypotheses. The SCORE architecture
allows for the straightforward implementation of such
troubleshooting policies depending on the problem do-
main. We implemented one such localization heuristic
for handling IP link-down events.

We implemented a simple heuristic that queries
SCORE with multiple error thresholds (reducing from
1.0 to 0.5) to obtain a number of different hypotheses.
We compare the hypotheses obtained using these relax-

Figure 5: SCORE screen shot.

ations (error thresholds) to account for data inconsisten-
cies or database issues. The most likely hypothesis is
selected using a cost function that depends on the error
threshold, number of failures in the hypothesis, and, fi-
nally, the individual types of groups in the hypothesis.
Currently we use the ratio between the number of groups
and the threshold; we would like to identify cases where
a small relaxation in the threshold (say error threshold of
0.9) can reduce the number of groups significantly.

Another heuristic is to query SCORE using clustered
events that have similar signatures. For example, we
can further cluster PM data (e.g., packet loss or bit er-
ror rates) using additional signatures specific to the data.
Links can be grouped together which have similar error
counts; these links are more likely to be experiencing the
same root cause than links that have very different error
counts. This policy is guided by the intuition that corre-
lated events in terms of the actual signature potentially
have the same root cause.

4.6 Implementation issues
The core engine that implements the spatial correlation
uses the SRLG database, read in periodically, and our al-



gorithm above to identify the most likely cause of each
given observation. The main data-structure consists of
two hashtables: one for the set of circuits and one for
the set of risk groups. Each group consists of the cir-
cuit identifiers that can be used to query the circuit’s
hashtable. This particular implementation allows for fast
associations and traversals to implement the spatial cor-
relation algorithm outlined in Section 3. The engine also
implements a server to which various diagnosis agents
(clients) connect. These clients query the SCORE en-
gine with a set of observations (clusters of link failures).
The SCORE engine (server) returns the hypothesis that
best explains the observations with which it was queried.

We chose to implement the main SCORE engine
in C for efficiency reasons. The total implementation
is slightly more than 1000 lines of C code. Obtain-
ing groups from different databases that contain fiber
level, fiber-span level, router-level, and other indepen-
dent views is one of the functions of the SRLG database
module. This module is implemented in Perl and consists
of approximately 1000 lines of code. The other function
of the SRLG database interface is group alias resolution.
The group alias resolution algorithm is not a performance
bottleneck as it is refreshed fairly infrequently (usually
twice a day). This collapsing of risk groups itself is
about 200 lines of Perl code. The client module contains
the intelligence for the trouble shooting and handles the
domain-specific implementations. To achieve flexibility
and rapid prototyping, we chose to implement the client
module in Perl.

We implemented a Web interface for our SCORE sys-
tem to conveniently depict the output of our system for
operational network data. We used a tabular format for
displaying our results, as shown in Figure 5. The Web
site displays both current and historical network events,
and the corresponding hypotheses output by our system.
The first column of the table depicts the observation start
and end times as identified using our clustering algo-
rithms. The second column represents the set of links
that were impacted during the event (represented here
using circuit identifiers). The third and fourth column
provide descriptions of the risk groups and associated
network components that form the diagnosis report for
that observation. The diagnosis report also reports the
hit ratio, coverage ratio and the error threshold used for
the groups involved in the diagnosis.

5 Simulated faults
We evaluate the performance of SCORE using both arti-
ficially generated faults (this section) and real faults (the
following section). The goal of our initial experiments is
to evaluate the accuracy of the greedy approach within a
controlled environment by using emulated faults. We use
an SRLG database constructed from the network topol-
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Figure 6: Percentage of correct hypotheses as a function
of error probability for various algorithm error thresholds
(three simultaneous failures).

ogy and configuration data of a tier-1 service provider’s
backbone. In our simulation, we inject different num-
bers of simultaneous faults into the system and evaluate
the ability of SCORE to produce the correct hypothesis.
We first study the efficacy of the greedy algorithm un-
der ideal operating conditions (no losses in data and no
database inconsistencies) before considering noisy data
by simulating errors in the SRLG database and event ob-
servations.

5.1 Perfect fault notification
To evaluate the accuracy of the SCORE algorithm, we
simulated scenarios consisting of multiple simultaneous
failures and evaluated the accuracy in terms of the num-
ber of correct hypotheses (faults correctly localized by
the algorithm) and the number of incorrect hypotheses
(those which we did not successfully localize to the cor-
rect SRLGs). We randomly generated a given number
of simultaneous failures selected from the set of all net-
work risk groups: the set of all SONET components,
fiber spans, OSPF areas, routers, and router ports and
modules in our SRLG database. Once the faults were se-
lected for a given scenario, we identified the union of all
the links that belong to these failures. These link-level
failures were input to the SCORE system to generate hy-
potheses. The resulting hypotheses were then compared
with the actual injected failures to determine those which
were correctly identified and those which were not.

Figure 6 depicts the fraction of correctly identified hy-
potheses as a function of the number of simultaneously
injected faults, where each data point represents an av-
erage across 100 independent simulations. The figure
illustrates that the accuracy of the algorithm on these
data sets is greater than 99% for ports, modules and
routers, irrespective of the number of simultaneous fail-
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ures generated. In general, the accuracy of the algo-
rithm decreases as the number of simultaneous failures
increases, although the accuracy remains greater than
95% for fewer than five simultaneous failures. In reality,
it is unlikely that more than one simultaneous failure will
occur (and be reported) at a single point in time. Thus,
for failures such as fiber cuts, router failures, and mod-
ule outages (corresponding to a single simultaneous fail-
ure), our results indicate that the accuracy of the system
is near 100%. However, it is entirely possible in a large
network that multiple independent components will si-
multaneously be experiencing minor performance degra-
dations, such as error rates, which are reported and in-
vestigated on a longer time scale. Thus, the results repre-
senting higher number of simultaneous failures are likely
indicative of performance troubleshooting. However, we
can still conclude that for realistic network SRLGs, the
greedy algorithm presented here is highly accurate when
we have perfect knowledge of our SRLGs and failure ob-
servations.

5.2 Imperfect fault notification
The SRLG model provides a solid, but not perfect rep-
resentation of the possible failure modes within a com-
plex operational network. Thus, we expect to find sce-
narios where the set of observations cannot be perfectly
described by any SRLG. Similarly, data loss associated
with event notifications and database errors are inher-
ent operational realities in managing large-scale IP back-
bones. In Section 3, we discussed how to adapt the basic
greedy algorithm to account for these operational real-
ities. In this section, we evaluate the accuracy of the
SCORE algorithm when we have loss in our observa-
tions, which may result, for example, from imperfect
event notifications (where failures are not reported for
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whatever reason). We consider three parameters: the er-
ror threshold used in the SCORE algorithm, the number
of simultaneous failures, and the error probability (which
represents the percentage of IP link-failure notifications
lost for a given failure scenario).

Figures 7 and 8 demonstrate the accuracy of the algo-
rithm under a range of error probabilities and algorithm
error thresholds for a varying number of simultaneous
failures. Specifically, the figures plot the percentage of
correct hypotheses as a function of the error probabil-
ity. In Figure 7, the algorithm error threshold is varied
from 0.6 to 1.0, while the number of simultaneous fail-
ures is set to 3. In Figure 8 the algorithm error threshold
is fixed at 0.6 and the number of simultaneous failures
is varied from 1 to 5. As expected, increasing the error
probability reduces the accuracy of the algorithm. Under
three simultaneous failure events and an error probability
of 0.1, we can observe from Figure 7 that an algorithm
error threshold of between 0.7 and 0.8 restores the accu-
racy of the SCORE algorithm to around 90%. However,
if we mandate perfect matching of failure observations to
SRLGs (i.e., error threshold = 1.0), then fault-isolation
accuracy drops to around 78%. This shows the necessity
and effectiveness of the error thresholds introduced into
the algorithm for fault localization in the face of noisy
event observation data.

5.3 Performance results
The algorithm’s execution time was also evaluated un-
der a range of conditions. In general, the execution time
recorded increased as the number of IP links (observa-
tions) impacted by the failures increased. This is because
all of the SRLGs associated with each of the failed links
must be included as part of the candidate set of SRLGs
for localization, and thus must be evaluated. Thus, the
execution time increased within increasing numbers of



IP link failures, but on average was below 150 ms for up
to ten failures. Similarly, the execution time for scenar-
ios involving router failures was typically higher than for
other failure scenarios, as the routers typically involved
larger numbers of links. Execution times of up to 400 ms
were recorded for events involving large routers. How-
ever, even in these worst case scenarios, the algorithm is
more than fast enough for real-time operational environ-
ments.

6 Experience in a tier-1 backbone
The SCORE prototype implementation was recently de-
ployed in a tier-1 backbone network, and used in an of-
fline fashion to isolate IP link failures reported in the net-
work. The implemented system operated on a range of
fault and performance data, including IP fault notifica-
tions and optical layer performance measures. However,
we limit our discussion here to our experience with link
failure events reported in router syslogs.

6.1 Localization accuracy
Determining whether or not the SCORE prototype cor-
rectly localized a given fault requires identification of
the root cause of the fault via other means. In many
cases, identifying this root cause involved sifting through
large amounts of data and reports—a tedious process at
best. We manually confirmed the root cause of 18 faults;
we present a comparison with the output reported by the
SCORE prototype. We note, however, that our method-
ology has an inherent bias: we cannot exclude the pos-
sibility that there may be a correlation (not necessarily
positive) between our ability to diagnose the fault and
SCORE’s performance. While it would have been prefer-
able to select a subset of the faults at random, we were
not able to easily manually diagnose every fault, nor did
we have the resources to consider all faults experienced
during SCORE’s deployment.

Table 2 denotes the results of our analysis of each of
our 18 faults. For each failure scenario, we report:

• the type of failure that occurred
• a name uniquely identifying the failed component
• the number of SRLG groups localized when the al-

gorithm was run with an error threshold of 1.0
• the threshold used to generate a final conclusion
• the number of SRLGs localized when the algorithm

was run with the final threshold
• the number of SRLGs correctly localized
• the number of SRLGs incorrectly localized
• description of the reason why we had to reduce the

threshold, or why we were unable to identify a single
SRLG as the root cause in certain situations

Overall, we were able to successfully localize all of
the faults studied to the SRLGs in which the failed net-

work elements were classified, except where we encoun-
tered errors in our SRLG database. However, when we
used a threshold of 1.0 (i.e., mandating that an SRLG can
be identified if and only if faults were observed on all IP
links), then we were typically unsuccessful—particularly
for router failures, and for the protocol bug reported. In
the majority of the router failures, even though these
events corresponded to routers being rebooted, the re-
mote ends of the links terminating at these routers did
not always report associated link-level events. This may
be due to a number of possible scenarios: the events may
never have been logged in the syslogs, data may have
been lost from the syslogs, the links may have been op-
erationally shut down and, hence, did not fail at this point
in time, or the links were not impacted by the reboot. In-
dependent of why the link notifications were not always
observed, the router failures were all successfully local-
ized when the threshold was reduced. This improvement
highlights the importance of SCORE’s relaxed approach
to localizing faults in operational networks.

Of course, router failures are typically easy to identify
through spatial correlation, as all of the links impacted
have a common end point (the failed router). However,
optical layer impairments can impact seemingly logically
independent links at the IP layer if these links are all
routed through a common optical component, making
them much more difficult to identify.

We studied four different SONET network element
failures. The first—an optical amplifier failure—induced
faults reported on 13 IP links. Thus, with a threshold
of 1.0 our algorithm identified 8 different SRLGs as be-
ing involved. However, as the threshold was reduced to
0.9, we were able to isolate the fault to only 2 differ-
ent SRLGs. Further reductions in this threshold did not,
however, further reduce the number of SRLGs to which
the fault was localized. Further investigation uncovered
an SRLG database problem—where our SONET net-
work element database did not contain any information
regarding one of the circuits reporting the fault. Thus,
the SCORE algorithm was unable to localize the fault for
this particular IP link to the SRLG containing the failed
optical amplifier, and instead incorrectly concluded that
a router port was also involved (the second SRLG). How-
ever, the SRLG containing the failed amplifier was also
correctly identified for the other 12 IP links—the lower
threshold was required because no fault was observed for
one of the IP links routed through the optical amplifier.

This optical amplifier example highlights a partic-
ularly important capability of the SCORE system—
the ability to highlight potential SRLG database errors.
Links missing from databases, incorrect optical layer
routing information regarding circuits and other poten-
tial errors in databases play havoc with capacity planning
and network operations and so must be identified. In this



Type of Component #SRLGS Final Thld #SRLGS #Correctly #Incorrectly Comment
problem Name (Thld.=1.0) (Thld.=Final) localized localized
Router Router A 27 0.8 1 1 0 No event reported by

some links
Router Router B 20 0.9 3 3 0 No event reported by

some links
Router Router C 12 0.7 1 1 0 No event reported by

some links
Router Router D 1 1 1 1 0 -
Router Router E 18 0.8 1 1 0 No event reported by

some links
Router Router F 1 1 1 1 0 -
Router Router G 4 1 4 4 0 -
Module Module A 1 1 1 1 0 -
Module Module B 1 1 1 1 0 -
Module Module C 1 1 1 1 0 -
Optical Sonet A 8 0.9 2 1 1 No observation re-

ported by one link and
database problem

Failed
Transceiver

Sonet B 1 1 1 1 0 -

Short term Flap Sonet C 2 0.7 1 1 0 No observation re-
ported by one link

Optical Amplifier Sonet D 2 0.6 1 1 0 No observation re-
ported by one link

Fiber Cut Fiber A 3 0.5 1 1 2 Database problem
Fiber Span Fiber Span A 1 1 1 1 0 -
Protocol Bug OSPF Area A 20 0.7 4 4 0 Incorrect SRLG mod-

eling
Protocol Bug OSPF Area A 4 1 4 4 0 OSPF Area A MPLS

enabled interfaces

Table 2: Summary of real, tier-1 backbone failures successfully diagnosed by SCORE.

scenario, the database error was highlighted by the fact
that we were unable to identify a single SRLG for a sin-
gle network failure, even after lowering threshold using
in the SCORE algorithm.

The other three SONET failures were all correctly iso-
lated to the SRLG containing the failed network element;
in two cases we again had to lower the threshold used
within the algorithm to account for links for which we
had no failure notification (in one of these cases, the
missing link was indeed a result of the interface having
been operationally shut down before the failure).

We tested our SCORE prototype on a second, previ-
ously identified failure scenario impacted by a SRLG
database error (fiber A in table 2). Again, the SCORE
system was unable to identify a single SRLG as being
the culprit even as the threshold was lowered; no SRLG
in the database contained all of the circuits reporting the
fault. Again, a database error was highlighted by the in-
ability of the system to map the failure to a single SRLG.

The final case that we evaluated was one in which a
low-level protocol implementation problem (commonly
known as a software bug) impacted a number of links
within a common OSPF area. This scenario occurred
over an extended period of time, during which three
other independent failures were simultaneously observed
in other areas. When a threshold of 1.0 was used in the
SCORE algorithm, the event in question was identified
as being the result of 20 independent SRLG failures—

a large number even for the extended period of time.
As the threshold was reduced to a final value of 0.7,
the event was isolated to four individual SRLGs—three
SRLGs in other OSPF areas (corresponding to the inde-
pendent failures) and the OSPF area in question. Thus,
the SCORE algorithm was correctly able to identify that
the event corresponded to a common OSPF area. How-
ever, further investigation uncovered that the reason why
not all links in the OSPF area were impacted was that
only those interfaces that were currently MPLS-enabled
were affected. Thus, an additional SRLG was added to
our SRLG database that incorporated the links in a given
area that were MPLS enabled—application of this en-
hanced SRLG database successfully localized all of the
SRLGs impacted by the four simultaneous failures with
a threshold of 1.0. We conclude that the threshold used in
the SCORE algorithm can allow our results to be robust
to incomplete modeling of all of the possible SRLGs—
any level of modeling of risk groups can be inadequate
as there could be more complicated failure scenarios that
cannot be modeled by humans perfectly a priori. How-
ever, SCORE enables operators to continually learn new
SRLGs through further analysis of new failure scenarios,
thereby enhancing the SRLG models.

6.2 Localization precision
While the 18 faults we studied demonstrate SCORE’s
ability to accurately localize faults, it does not give any
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Figure 9: CDF of localization precision out of about
3000 real faults we have been able to localize.

indication of how precise the localization is. Each SRLG
to which we localize a fault actually consists of one or
more physical components, so isolating a fault to a par-
ticular SRLG does not fully isolate the fault to an indi-
vidual component. In this section, we evaluate the pre-
cision of SCORE using a metric we call the localization
precision. The localization precision of a given obser-
vation is defined as the ratio of the number of suspect
components after localization to that before localization.
In other words, it is the fraction of components that are
likely to explain a particular fault (or observation) using
our localization algorithm out of all the components that
can cause a given fault.

In Figure 9, the cumulative distribution function of the
localization precision is shown. From Figure 9, we ob-
serve that SCORE localizes faults to less than 5% for
more than 40% of the failures and to less than 10% for
more than 80% of the failures. We conclude that SCORE
identifies likely root causes very precisely from a large
set of possible causes for a given failure. We note, how-
ever, that we do not know the root cause of all 3000 faults
shown here; we cannot speculate on SCORE’s accuracy
except for the 18 faults discussed previously.

7 Related work
Network engineers commonly employ the concept of
Shared Risk Link Groups to disjoint paths in opti-
cal networks; SLRGs are key input into many traffic-
engineering mechanisms and protocols such as General-
ized Multi-Protocol Label Switching (GMPLS). Due to
their importance, recent work has attempted to automat-
ically infer SRLGs [18]. To the best of our knowledge,
however, we are the first to use SRLGs in combination
with IP-layer fault notifications to isolate failures in the
optical hardware of a network backbone without the need
for physical-layer monitoring.

Monitoring and management is a challenging problem
for any large network. It is not surprising, then, that a
number of research prototypes [3, 5, 9, 14, 15, 22] and
commercial products have been developed to diagnose
problems in IP and telephone networks. Commercial net-
work fault management systems such as SMARTS [19],
OpenView [11], IMPACT [12], EXCpert [15], and Net-
FACT [10] provide powerful, generic frameworks for
handling fault indicators, particularly diverse SNMP-
based [2] measurements and rule-based correlation ca-
pabilities. These systems present unified reporting inter-
faces to operators and other production network manage-
ment systems.

In general, previous systems correlate alarms from a
particular layer in order to isolate problems at that same
layer (e.g., route flapping, circuit failure, etc.). For ex-
ample, Roughan et. al. proposed a correlation-based
approach to detect forwarding anomalies such as BGP-
related failures [17]. Their approach was to detect events
of potential interest by correlating multiple data sources,
while our approach uses these evens to diagnose the root
cause(s), which may or may not be at the BGP layer.

The problem of fault isolation is not limited to net-
working, of course; similar problems exist in any com-
plex system. Regardless of domain, fault detection sys-
tems have taken three basic approaches: rule- or model-
based reasoning [1, 6, 11], codebook approaches [19,
23], or machine learning (such as Bayesian and Belief
Networks [4, 13, 20]). The difficulty with probabilis-
tic or machine-learning approaches is that they are not
prescriptive: it is not clear what sets of scenarios they
can handle besides the specific training data. Rule-based
and codebook systems (otherwise known as “expert sys-
tems”) are often even more specific, only being able to
diagnose events that are explicitly programmed. Model-
based approaches are more general, but require detailed
information about the system under test. Dependency-
based systems like ours, on the other hand, allow gen-
eral inference without requiring undue specificity. In-
deed, the specific use of dependency graphs for problem
diagnosis has been explored before [8], but not in this
particular domain.

Our problem as defined in Section 3.1 falls into the
more general class of inference problems which include
problems in other domains such as traffic matrix esti-
mation, tomography, etc. Hence, techniques applied in
these domains could potentially be used to solve this
problem. For example, in [24], the authors reduce the
problem of traffic matrix estimation to an ill-posed lin-
ear inverse problem and apply a regularization technique
to estimate the traffic matrix. Our problem can also be
solved using matrix inversion using an incidence ma-
trix to model the risks. While these methods can work
well with perfect data, it is unclear how to adapt these



techniques to deal with imperfect loss notifications and
SRLG database errors. Our greedy approximation, on
the other hand, obtains 95% accuracy for a large class
of failures (see Section 5.1) while remaining robust to
errors in the SLRG database. Hence, the accuracy im-
provement from exact techniques is likely to be limited.

8 Conclusions
Using our risk modeling methodology, we have devel-
oped a system that accurately localizes failures in an
IP-over-optical tier-1 backbone. Given a set of IP-layer
events occurring within a small time window, our heuris-
tics pinpoint the shared risk (group of IP and/or optical
devices) that best explains these events. Given the harsh
operational reality of maintaining complex associations
between objects in the two networking layers in sepa-
rate databases, we find that it is necessary to go beyond
identifying the single best explanation, and, instead, to
generate a set of likely explanations in order to be robust
to transient database glitches.

We put forward a simple, threshold-based scheme that
suggests promising explanations while admitting incon-
sistencies in the data supporting these explanations up to
a given threshold. We find that not only does our ap-
proach increase the accuracy and robustness of fault lo-
calization, but it also provides a way to identify problems
with the topology database; we are aware of no alterna-
tive automated means of detecting such errors. Accurate
modeling of shared risks is critical to IP network design.
For example, a misidentification of a shared risk might
produce a design believed to be resilient to any single
SRLG failure but which in fact is not.
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