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Datacenter downtime costs are growing steadily 

• IT component failure is a significant
contributor to datacenter downtimes.
• Disks are among the most frequently

failing components in today’s IT
environments.

$5617/min
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$7908/min
(2013)

$8851/min
(2016)

Source: http://www.emerson.com/en-us/News/Pages/ 
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Datacenter downtime costs are growing steadily 

Can we mitigate this issue?



Objectives

• Given S.M.A.R.T monitoring data
for disks (disk sensors’ data),
provide the subset of S.M.A.R.T
attributes that are indicative of
an impending disk replacement.

• Use these attributes to build a
statistical model that
automatically predicts disk
replacement with high accuracy.
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Data

• Monitoring data (S.M.A.R.T indicators) from a large population of disks
(>30000) collected over 17 months.

• Labels indicating whether a disk failed or not.

When is a disk labeled as failed?

• The disk stopped working

• The disk is non-responsive to commands

• The RAID system reports that the drive cannot be written or read, or it shows
evidence of failing soon



Goal: Predictive Replacement Component



Prediction pipeline

Changepoint
detection

Time series
compression Classification

Exponential smoothing
for compact time series
representation.

Build a regularized
greedy forests model
to distinguish the
healthy disks from
those likely to fail.

Informed
downsampling

Time series
changepoint detection.
Identify subset of
SMART parameters
indicative of disk
failure.

Informed down-
sampling of the dataset
via k-means clustering
to address the high class
imbalance.



Changepoint detection
Goal: Reveal the most informative predictors with respect to the disks to the domain
experts.

Assumption: When a SMART attribute is informative of disk replacement, we expect a
significant shift in its values at some time point before the disk failure.

Approach: Let 𝑆" = (𝑠&, 𝑠(, … , 𝑠*) be the time series for a target SMART attribute.

• If ∃ a timestamp 𝑡 < 𝑝 when a significant change in the values of the attribute 𝑆"
occurs (e.g., the values start increasing), then we consider 𝑆" a potential attribute
relevant for the disk replacement



Changepoint detection

Steps towards changepoint detection:
1. Choose a time t that has the largest change: 

We take 𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥5𝑀𝐿(𝜏) where 𝑀𝐿 𝜏 = log 𝑝 𝑠&:5 =𝜃& + log(𝑝 𝑠5@&:* =𝜃( )
provided that 𝑀𝐿 𝜏 is significantly larger than log(𝑝 𝑠&:* A𝜃 )

2. We assess whether the change is permanent:

a. We let Γ5 = (𝑠5, … , 𝑠*) be the time series observed after point 𝑡. We generate Ψ =
D𝑠5, … , D𝑠* that has no changepoint at time 𝑡, i.e., we compute the posterior

distribution of Ψ given the values in the pre-change period (𝑠&, … , 𝑠5) the values of a
control (healthy) time series 𝑥&:*

t p



Changepoint detection

• b. Finally, a SMART attribute is indicative of 
a disk replacement if the probability 
distributions of the actual time series 
(measured after the detected change point) 
and the synthetic one generated based on 
the values of a healthy disk are 
significantly different. 

Formally, if Γ and Ψ are drawn from
probability distributions 𝑃 and 𝑄, we check:

t



Results-Subset of relevant SMART indicators



Compact time series representation 

Goal: Provide a compact, highly informative representation of the time series of 
each indicator.
Observations :
• The single day record is not stable due to the recovery mechanisms embedded in the disk 
• For timely predictions, one should not consider as observations for the failed class just the

entries from the last day before the disk fails

Approach: We use a window to split the raw data set into segments. We aggregate 
segments to a single value using exponential smoothing over a specific time 
window. 
Exponential smoothing :𝑆5 = 𝑎𝑌5 + (1 − 𝑎)𝑆5J&. For a window length of size 𝑘, 𝑆5
becomes the weighted average of a 𝑘 past observations up to 𝑌5JL



Informed downsampling
Observations : Classification algorithms are typically optimized to maximize the accuracy,
therefore when trained on imbalanced datasets they exhibit poor predictive performance. 

Goal: Extract a subset of the data for the dense class –in our case the healthy disks

Approach:

• Cluster the observations from the healthy disk set into k clusters using the K- means 
clustering algorithm.
• Choosing k close to the number of samples available for the faulty class samples. 

• For each cluster, select the data points closest to the respective cluster centroid as 
representatives for the healthy disk class.

• We generate a balanced training set: union of the observations for the faulty class and
the reduced subset of data points for the healthy class



Disk classification: healthy vs. likely to fail

• Goal: Learn ℎ: 𝑋 → {0,1} that minimizes the loss 𝑙(ℎ 𝑥 ; 𝑦) that quantifies the 
prediction quality 

• Approach: Regularized Greedy Forests (RGF), a variant of Gradient Boosted 
Decision Trees in which structure search and the optimization step are
decoupled:

- RFG introduce an explicit regularization term that takes advantage of individual tree 
structures. 

- Performs a greedy search on forest structure changing operations by repeatedly evaluating
the maximum loss reduction of all the possible structure changes;



Transfer learning 

• Observations: Different models 
of a single disk manufacturer 
have similar SMART reporting 
but different distributions of the 
values reported for the SMART 
attributes. 

• Goal: Transfer the learnings
from a specific disk model to a
new disk model of the same
manufacturer.



Transfer learning 
• Approach: Use the unlabeled data for the 

target (new) disk model to conduct a 
sample selection de-biasing 

• The idea behind the algorithm is to train a 
classifier that can rank the observations 
linked to a source disk model based on 
their similarity to observations pertaining to 
the target disk model. 

• This enables to sample the observations 
from the source disk model (which are 
already labeled) that are more 
representative for learning the class labels 
for the target disk model, i.e. that matches 
the distribution of the source disk model to 
the target disk model. 



Results – Prediction accuracy

In case of the replaced disks, Seagate has 4x more data points and 2x more non-null SMART indicators 
than Hitachi, which has a smaller number of drives in the dataset and 60% less predictors. 

For the healthy class, Hitachi achieves better performance (as compared to the faulty ones 
) because of the lower variability in the values of the SMART parameters recorded for healthy disks.



Results – Comparison with emulated human rules

We train a decision tree on the subset of SMART indicators that is
commonly considered when assessing disk health.

If one were to do proactive replacement using only this small subset of indicators, the number of disks 
one could correctly identify drops by almost 50% 



Results – Transfer learning
trained on SgtA trained on HitA



Results – High confidence rules from a decision tree model

First, the primarily important SMART indicators are somewhat different. The pending sector count (Count of 
“unstable” sectors , SMART 197 raw) and the read error rate (SMART 1 normalized)  seem to be model and even 
manufacturer agnostic, while the command timeout (The count of aborted operations due to HDD timeout, SMART 188), 
the average spin up time and the reallocated sectors count are disk model-specific. 

Second, we note a very large difference in the number of read errors (SMART_1_RAW) that determine a faulty disk 
state. For Seagate, this threshold is in hundreds of millions, while for Hitachi they are 6 orders of magnitude lower. We 
attribute this gap to the fact that this indicator is vendor specific, and therefore a comparison across manufacturers is not
feasible. 



Early vs. late prediction accuracy

• We evaluate how many of the replaced disks our model correctly captures 
based on snapshots of the SMART indicators taken 1, 3, 10 and 30 days prior 
to the actual replacement. 

For both Seagate and Hitachi, an administrator can identify 73 to 75% of the disks to replace a month in 
advance, which provides her/him with the possibility of planning the replacement in advance, while still using 
the drives for another 25-30 days. 



Conclusion

• The model provides an automatic tool for the disk replacement problem that enables the 
administrators to identify faulty disks in due time. 

• It mitigates the reliability issues of storage service providers by allowing administrators to 
backup the data and plan the actual replacement in advance.

• Such models are sensitive to the number of SMART attributes they use. This explains the 17%
gap in accuracy for the two disk manufacturer.

• Transfer learning can be applied across different models of the same disk manufacturer

• The pipeline can be easily applied to any disk model or manufacturer as long as SMART data 
is collected. 


