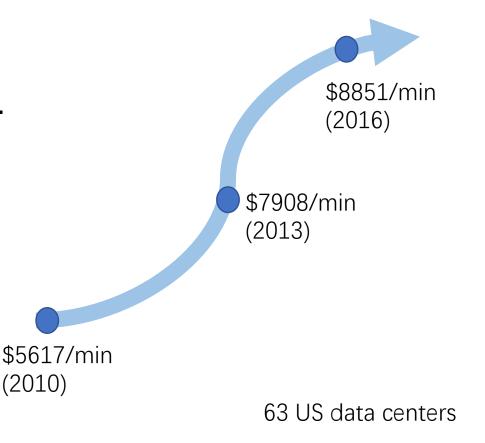
# Predicting Disk Replacement towards Reliable Data Centers


Mirela Botezatu , Ioana Giurgiu , Jasmina Bogojeska , Dorothea Wiesmann , IBM Research

## Outline

- Motivation
- Dataset characterization
- Prediction disk replacement
- Experimental results
- Conclusion

## Datacenter downtime costs are growing steadily

- IT component failure is a significant contributor to datacenter downtimes.
- Disks are among the most frequently failing components in today's IT environments.



Source: http://www.emerson.com/en-us/News/Pages/

## Datacenter downtime costs are growing steadily

Can we mitigate this issue?

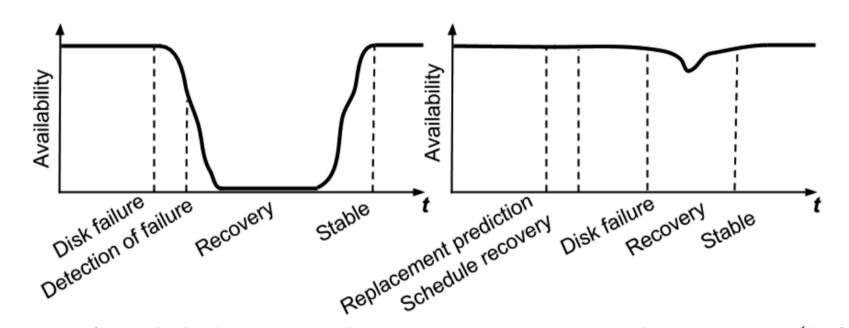



Figure 1: Availability: without proactive replacement (left) vs. with proactive replacement(right)

## Objectives

- Given S.M.A.R.T monitoring data for disks (disk sensors' data), provide the subset of S.M.A.R.T attributes that are indicative of an impending disk replacement.
- Use these attributes to build a statistical model that automatically predicts disk replacement with high accuracy.

|             |                                                                                                                          |                                                                                              |           | 0xC1 hesaderimal notations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|             |                                                                                                                          |                                                                                              |           | Hoph Higher raw value is better                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
|             |                                                                                                                          |                                                                                              |           | the $\frac{1}{\sqrt{2}}$ there are value is before $\sim 80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
|             |                                                                                                                          |                                                                                              |           | Critical Control Contr |  |  |  |  |  |  |  |  |  |
|             |                                                                                                                          |                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| 1D +<br>01  |                                                                                                                          | Low                                                                                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| Ox01        | Read Error Rate                                                                                                          | ۷                                                                                            |           | Weddre specific trait value). Stores data initiated to the rate of hardware read enrors that ecourted when reading data from a data surbace. The raw value has different shortware for different vendors and is often not meaningful as a decimal number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| 02<br>0x02  | Throughput Performance                                                                                                   | A<br>High                                                                                    |           | Overall generally throughput partomance of a hand data drive. If the value of this attribute is a force and the set of the solution of the solution of the data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| 03<br>0x03  | Spin-Up Time                                                                                                             | Low<br>V                                                                                     |           | erage time of spinds spin up (hon zero RPM to May operational (initiaeconto)).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| 04<br>0x04  | Start/Stop Count                                                                                                         |                                                                                              |           | ally of spindle startishing spikes. The spindle turns on, and hence the court is increased, both when the hand dak is turned on after having before been turned entriely of (disconnected from power source) and when the hard dak returns from having previously been put to since mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| 05<br>0x05  | Reallocated Sectors Count                                                                                                | Low<br>¥                                                                                     |           | cont of relationship sectors. The naw value represents a count of the bid sectors that have been found and remapped [26]. Thus, the higher the attribute value, the more sectors the drive has had to realizate. This value is primarily used as a metric of the life expectancy of the drive, a drive which has had any realizations at all is significantly more<br>ally to lait in the immediate months [22][26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| 05<br>0x06  | Read Channel Margin                                                                                                      |                                                                                              |           | gin of a channel white moding data. The function of this ambudue is not specified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| 07<br>0x07  | Seek Error Rate                                                                                                          | Varies                                                                                       |           | theory reports to any walk, Take of tasks errors of the magnetic basis. If there is a partial failure in the mechanical positioning system, then seek errors wall arise. Such a failure may be due to numerous factors, such as damage to a serve, or thermal widening of the basis (arise tasks to different vendors and is often not<br>entropy) as a domain motion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| 08<br>0x08  | Seek Time Performance                                                                                                    | ▲<br>High                                                                                    |           | Average performance of each operations of the magnetic heads. If this althouse is discussing, it is a sign of problems in the mechanical subsystem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| 09          | Power-On Hours                                                                                                           |                                                                                              |           | Court of hour in power on state. The raw value of this attribute shows bad icourt of hours (or minutes, or seconds, depending on manufacture) in power on state [ <sup>27]</sup><br>By default, the total expected filetime of a hard dait in perfect condition is defined as 5 years (turning every day and right on all days). This is equal to 1855 days in 24/7 mode or 43800 hours. <sup>428</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| 0x09        | On some pre-2005 drives, bits new value may pathence emsterably and/or "weap security" (reset to zero periodically) [98] |                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| 10<br>0x0A  | Spin Retry Count                                                                                                         | Low<br>V                                                                                     | A<br>[30] | Court of retry of spin start attempts. This attribute stores a trial court of the spin start attempts to reach the fully operational speed (under the condition that the first attempt was unsuccessful). An increase of this attribute value is a sign of posterns in the hard disk mechanical subsystem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
| 11<br>0x0B  | Recalibration Retries or Calibration Retry Count                                                                         | Low                                                                                          |           | This altibute indicates the court that recalibration was requested (under the condition that the first attempt was unsuccessful). An increase of this altibute value is a sign of problem in the first disk mechanical adoption.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| 12<br>0x0C  | Power Cycle Count                                                                                                        |                                                                                              |           | This abhole indicates the count of full hard dals power exist 0 yoldes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| 13<br>0x0D  | Soft Read Error Rate                                                                                                     | Low<br>¥                                                                                     |           | Ubcontected hauf ensure reported to the operating system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| 22<br>0x16  | Current Helium Level                                                                                                     | A<br>High                                                                                    |           | Specific to Held where from HGST. This value measures the Hellum Institute of the drive specific to Hell amountaturer. It is a pre-fail attribute that the internal environment is and dispectration. <sup>[31]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| 170<br>0xAA | Available Reserved Space                                                                                                 |                                                                                              |           | See altour E8 <sup>122</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| (00405      | SSD Program Fall Count                                                                                                   |                                                                                              |           | (phgetor) The total rundber of Rash program operation takines since the of the was deployed. <sup>[30]</sup> Electrical to attribute 181.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| 172<br>0xAC | SSD Erase Fail Count                                                                                                     |                                                                                              |           | (Ringston) Courts the number of face hease failures. This abbute staums the total number of Face hease operation failures since the drive was deployed. This abbute is identical to abbute 182.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| 173<br>0xAD | SSD Wear Leveling Count                                                                                                  |                                                                                              |           | Ourste te machinum worst irrate count on any block.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| 174<br>0xAE | Unexpected power loss count                                                                                              |                                                                                              |           | Note loom as These of Netrad Court per conventional INDD terminology. Rev value reports for number of undean shuddown, convubitive over the life of a SSD, where as "insteam shuddown" is the randout of your without STANDEY AMEDIATE as the last command (equations of the laster) random is a stream shuddown" is the randout of the stream shuddown is the randout of the stream shuddown is the randout of the stream shuddown is the stream shuddown is the randout of the stream shuddown is the randout of the stream shuddown is the randout of the randout of the randout of the stream shuddown is the randout of t |  |  |  |  |  |  |  |  |  |
|             |                                                                                                                          |                                                                                              |           | Last text result as microseconds to discharge cap, saturated at its maximum value. Also logs minutes since last test and lifetime number of tests. Raw value contains the following data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| 175         | Power Loss Protection Failure                                                                                            |                                                                                              |           | <ul> <li>Bytes 01: Last set result an infromecoris to disabute at max value. Test result expected in range 25 - mesult -&gt; 5000000, lower indicates specific entry code.</li> <li>Bytes 23: Munits and tast at a statute at max value.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| 0xAF        | Forei Loss Frontauri Finand                                                                                              | Bytes 4-5: Lifetime number of tests, not incremented on power cycles, suburate at max value. |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
|             |                                                                                                                          |                                                                                              |           | Normalized value is set to one on test failure or 11 if the capacitor has been tested in an excessive temperature condition, otherwise 100. <sup>[34]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| 176<br>0xB0 | Erase Fail Count                                                                                                         |                                                                                              |           | SMART parameter indicates a number of flush insise command tabuvas. <sup>[90]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| 177<br>0xB1 | Wear Range Delta                                                                                                         |                                                                                              |           | Data between modiwork and least work Fails Books. It excludes the weaktwelling of the S50 works on a more tochnical way.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| 179<br>0xB3 | Used Reserved Block Count Total                                                                                          |                                                                                              |           | Pre-Far antibute used at least in Barmung devices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
|             |                                                                                                                          |                                                                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |

ID 193 Attribute code in decimal and

#### Data

- Monitoring data (S.M.A.R.T indicators) from a large population of disks (>30000) collected over 17 months.
- Labels indicating whether a disk failed or not.

When is a disk labeled as failed?

- The disk stopped working
- The disk is non-responsive to commands
- The RAID system reports that the drive cannot be written or read, or it shows evidence of failing soon

## Goal: Predictive Replacement Component

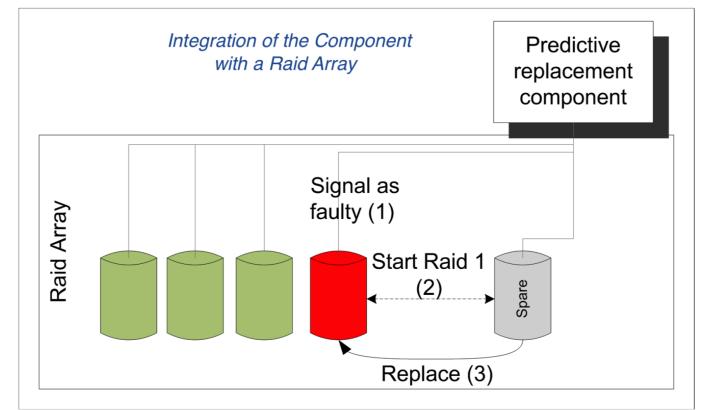
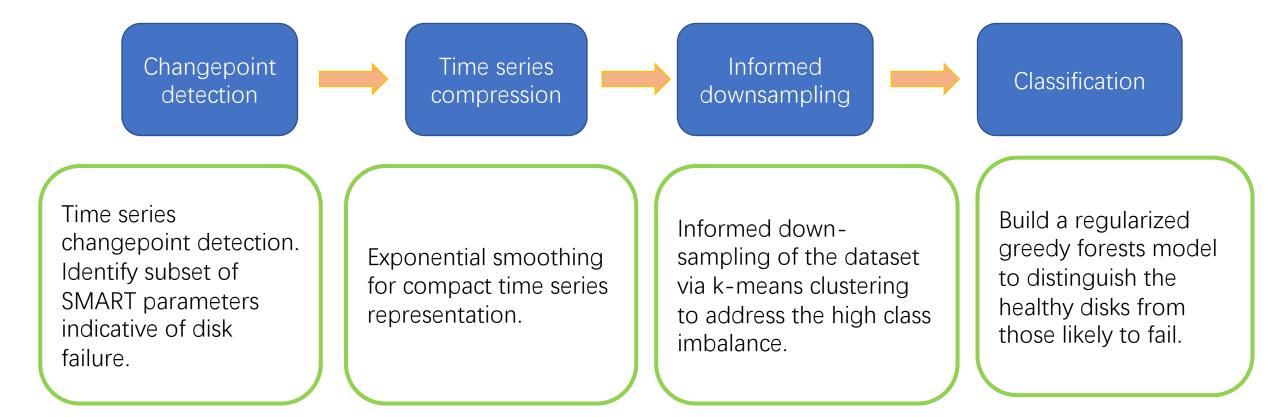




Figure 7: Integration of the predictive replacement component with storage arrays

## Prediction pipeline



## Changepoint detection

Goal: Reveal the most informative predictors with respect to the disks to the domain experts.

Assumption: When a SMART attribute is informative of disk replacement, we expect a significant shift in its values at some time point before the disk failure.

Approach: Let  $S_i = (s_1, s_2, ..., s_p)$  be the time series for a target SMART attribute.

• If  $\exists$  a timestamp t < p when a significant change in the values of the attribute  $S_i$  occurs (e.g., the values start increasing), then we consider  $S_i$  a potential attribute relevant for the disk replacement

#### р

### Changepoint detection

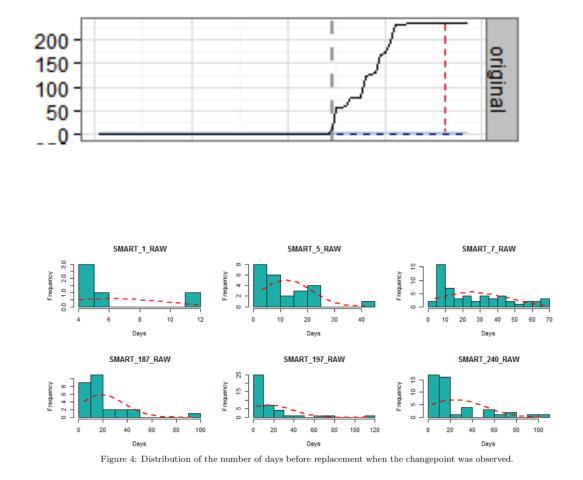


Steps towards changepoint detection:

1. Choose a time *t* that has the largest change:

We take  $t = argmax_t ML(\tau)$  where  $ML(\tau) = \log\left(p(s_{1:t}|\widehat{\theta_1})\right) + \log(p(s_{t+1:p}|\widehat{\theta_2}))$ provided that  $ML(\tau)$  is significantly larger than  $\log(p(s_{1:p}|\widehat{\theta}))$ 

2. We assess whether the change is permanent:


a. We let  $\Gamma_t = (s_t, \dots, s_p)$  be the time series observed after point t. We generate  $\Psi = (\widetilde{s_t}, \dots, \widetilde{s_p})$  that has no changepoint at time t, i.e., we compute the posterior distribution of  $\Psi$  given the values in the pre-change period  $(s_1, \dots, s_t)$  the values of a control (healthy) time series  $x_{1:p}$ 

## Changepoint detection

 b. Finally, a SMART attribute is indicative of a disk replacement if the probability distributions of the actual time series (measured after the detected change point) and the synthetic one generated based on the values of a healthy disk are significantly different.

Formally, if  $\Gamma$  and  $\Psi$  are drawn from probability distributions P and Q, we check:

$$\begin{cases} H_0: P = Q\\ H_1: P \neq Q \end{cases}$$



#### Results-Subset of relevant SMART indicators

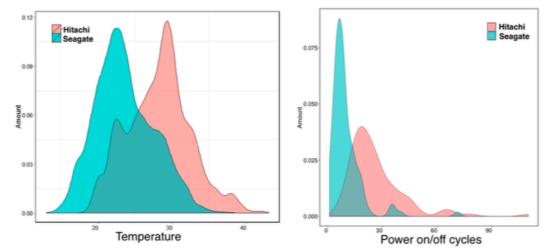



Figure 3: Distribution of the temperature and of the power on off cycles across the replaced disks for Hitachi and Seagate.

|                          | $\mathbf{SgtA}$ |                         | $\operatorname{HitA}$ |                         |  |
|--------------------------|-----------------|-------------------------|-----------------------|-------------------------|--|
|                          | Ratio           | Inp.                    | Ratio                 | Inp.                    |  |
| SMART_1_norm             | 23%             | $\checkmark$            | 28%                   | $\checkmark$            |  |
| SMART_1_raw              | 2%              | $\checkmark$            | 15%                   | $\checkmark$            |  |
| SMART_3_norm             | —               | ×                       | 13%                   | $\checkmark$            |  |
| SMART_3_raw              | —               | ×                       | 15%                   | $\checkmark$            |  |
| SMART_5_norm             | 2%              | $\checkmark$            | 22%                   | $\checkmark$            |  |
| SMART_5_raw              | 19%             | $\checkmark$            | 31%                   | $\checkmark$            |  |
| SMART_7_norm             | 14%             | $\checkmark$            | _                     | ×                       |  |
| SMART_7_raw              | 26%             | $\checkmark$            | _                     | ×                       |  |
| SMART_183_norm           | 0.5%            | ×                       | _                     | ×                       |  |
| SMART_183_raw            | 0.5%            | ×                       | _                     | ×                       |  |
| SMART_184_norm           | 1%              | $\checkmark$            | _                     | ×                       |  |
| SMART_184_raw            | 1%              | $\checkmark$            | _                     | X                       |  |
| SMART_187_norm           | 21%             | $\checkmark$            | _                     | ×                       |  |
| SMART_187_raw            | 21%             | $\checkmark$            | _                     | ×                       |  |
| SMART_188_norm           | 0%              | ×                       | _                     | X                       |  |
| SMART_188_raw            | 10%             | $\checkmark$            | _                     | X                       |  |
| SMART_189_norm           | 1%              | $\checkmark$            | _                     | ×                       |  |
| SMART_189_raw            | 1%              | $\checkmark$            | _                     | X                       |  |
| SMART_190_norm           | 2%              | $\checkmark$            | _                     | X                       |  |
| SMART_190_raw            | 2%              | $\checkmark$            | _                     | ×                       |  |
| SMART_193_norm           | 10%             | $\overline{\checkmark}$ | _                     | X                       |  |
| SMART_193_raw            | 63%             | $\checkmark$            | _                     | X                       |  |
| SMART_194_norm           | 2%              | $\checkmark$            | 31%                   | $\checkmark$            |  |
| SMART_194_raw            | 2%              |                         | 2%                    |                         |  |
| SMART_196_norm           |                 | ×                       | 20%                   | $\overline{\checkmark}$ |  |
| SMART_196_raw            | _               | X                       | 26%                   | $\overline{\checkmark}$ |  |
| SMART_197_norm           | 5%              | $\checkmark$            | 4%                    | $\overline{\checkmark}$ |  |
| SMART_197_raw            | 27%             | $\checkmark$            | 22%                   | $\overline{\checkmark}$ |  |
| SMART_198_norm           | 6%              | $\overline{\checkmark}$ |                       | ×                       |  |
| SMART_198_raw            | 27%             |                         | _                     | X                       |  |
| SMART_199_norm           | 0%              | ×                       | _                     | X                       |  |
| SMART_199_raw            | 0.5%            | ×                       | _                     | ×                       |  |
| SMART_240_norm           | 0.5%            | ×                       | _                     | ×                       |  |
| SMART_240_raw            | 21%             | $\overline{\checkmark}$ | _                     | X                       |  |
| SMART_241_norm           | 0%              | •<br>_                  | _                     | ×                       |  |
| SMART_241_norm           | 15%             | $\checkmark$            | _                     | ×                       |  |
| SMART_242_norm           | 0%              | ×                       | _                     | ×                       |  |
| SMART_242_norm           | 19%             | $\widehat{\checkmark}$  | _                     | ×                       |  |
| ole 2: SMART correlation |                 |                         | C + A                 |                         |  |

Table 2: SMART correlation frequencies for SgtA and HitA. A  $\checkmark$  indicates the predictor is included in the classification task.

#### Compact time series representation

Goal: Provide a compact, highly informative representation of the time series of each indicator.

Observations :

- The single day record is not stable due to the recovery mechanisms embedded in the disk
- For timely predictions, one should not consider as observations for the failed class just the entries from the last day before the disk fails

Approach: We use a window to split the raw data set into segments. We aggregate segments to a single value using exponential smoothing over a specific time window.

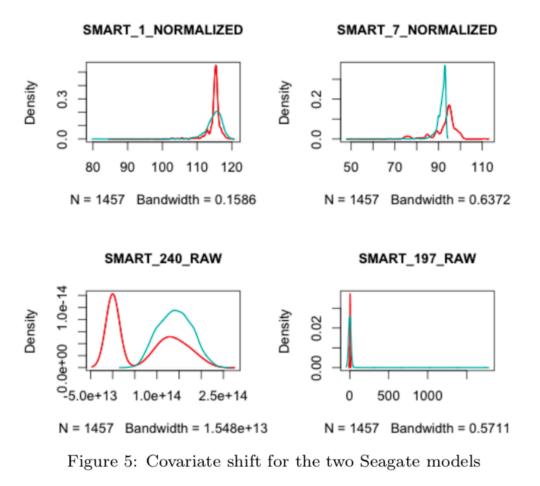
Exponential smoothing :  $S_t = aY_t + (1 - a)S_{t-1}$ . For a window length of size k,  $S_t$  becomes the weighted average of a k past observations up to  $Y_{t-k}$ 

## Informed downsampling

Observations : Classification algorithms are typically optimized to maximize the accuracy, therefore when trained on imbalanced datasets they exhibit **poor predictive performance**.

Goal: Extract a subset of the data for the dense class – in our case the healthy disks

Approach:


- Cluster the observations from the healthy disk set into k clusters using the K- means clustering algorithm.
  - Choosing k close to the number of samples available for the faulty class samples.
- For each cluster, select the data points closest to the respective cluster centroid as representatives for the healthy disk class.
- We generate a balanced training set: union of the observations for the faulty class and the reduced subset of data points for the healthy class

## Disk classification: healthy vs. likely to fail

- Goal: Learn  $h: X \to \{0,1\}$  that minimizes the loss l(h(x); y) that quantifies the prediction quality
- Approach: Regularized Greedy Forests (RGF), a variant of Gradient Boosted Decision Trees in which structure search and the optimization step are decoupled:
- RFG introduce an explicit regularization term that takes advantage of individual tree structures.  $\hat{h} = argmin_{h \in H}[\ell(h(\mathbf{x}); y) + R(h)]$
- Performs a greedy search on forest structure changing operations by repeatedly evaluating the maximum loss reduction of all the possible structure changes;

## Transfer learning

- Observations: Different models of a single disk manufacturer have similar SMART reporting but different distributions of the values reported for the SMART attributes.
- Goal: Transfer the learnings from a specific disk model to a new disk model of the same manufacturer.



## Transfer learning

- Approach: Use the unlabeled data for the target (new) disk model to conduct a sample selection de-biasing
- The idea behind the algorithm is to train a classifier that can rank the observations linked to a source disk model based on their similarity to observations pertaining to the target disk model.
- This enables to sample the observations from the source disk model (which are already labeled) that are more representative for learning the class labels for the target disk model, i.e. that matches the distribution of the source disk model to the target disk model.

Algorithm 3 Transfer learning for different models

**Input:**  $D_{DM_1} = \{x_i, y_i\}_i^n$ , the labeled data collected from disk model 1, and  $D_{DM_2} = \{x'_i, y'_i\}_i^m$  the unlabeled data from disk model 2.

- 1. Let  $D_{DM_1} = \{x_i, y_i\}_i^n$  be the labeled data collected from disk model 1, and  $D_{DM_2} = \{x'_i, y'_i\}_i^m$  be the unlabeled data from disk model 2.
- 2. Let  $D_{aug} = \{x_i, "DM_1"\}_i^n \cup \{x'_i, "DM_2"\}_i^m$
- 3. Use  $D_{aug}$  to learn a function  $f: X \to [0, 1]$ , such that f(x) represents the probability of a disk being of type " $DM_1$ " or " $DM_2$ ".
- 4. Sample a subset  $D_{sub}$  from  $D_{DM_1}$  according to f.
- 5. Use  $D_{sub}$  to learn a function  $g: X \to [0,1]$  (call the procedure in Algorithm 2) such that g(x) represents the probability of a disk of type  $DM_2$  needing replacement.

**Output:** Predictive model for disk replacement for disk model 2.

#### Results – Prediction accuracy

|          |    | RO              |      | GB   | $\mathbf{DT}$ | R               | $\mathbf{F}$ | SV              |      | $\mathbf{L}$    | R    | D               | T    |
|----------|----|-----------------|------|------|---------------|-----------------|--------------|-----------------|------|-----------------|------|-----------------|------|
|          |    | $\mathbf{SgtA}$ | HitA | SgtA | HitA          | $\mathbf{SgtA}$ | HitA         | $\mathbf{SgtA}$ | HitA | $\mathbf{SgtA}$ | HitA | $\mathbf{SgtA}$ | HitA |
|          | Р  | 0.98            | 0.84 | 0.97 | 0.82          | 0.93            | 0.82         | 0.93            | 0.72 | 0.73            | 0.72 | 0.89            | 0.74 |
| Replaced | R  | 0.98            | 0.79 | 0.96 | 0.78          | 0.94            | 0.76         | 0.95            | 0.65 | 0.81            | 0.59 | 0.87            | 0.61 |
|          | F  | 0.98            | 0.81 | 0.96 | 0.80          | 0.94            | 0.79         | 0.94            | 0.68 | 0.77            | 0.65 | 0.88            | 0.67 |
|          | Sd | 0.01            | 0.02 | 0.01 | 0.04          | 0.05            | 0.08         | 0.02            | 0.05 | 0.07            | 0.1  | 0.04            | 0.03 |
|          | Р  | 0.99            | 0.93 | 0.98 | 0.92          | 0.97            | 0.92         | 0.97            | 0.87 | 0.89            | 0.85 | 0.94            | 0.86 |
| Healthy  | R  | 0.98            | 0.95 | 0.98 | 0.94          | 0.96            | 0.93         | 0.96            | 0.90 | 0.85            | 0.90 | 0.95            | 0.91 |
|          | F  | 0.98            | 0.94 | 0.98 | 0.93          | 0.97            | 0.92         | 0.96            | 0.88 | 0.87            | 0.87 | 0.94            | 0.88 |
|          | Sd | 0.01            | 0.02 | 0.02 | 0.03          | 0.04            | 0.05         | 0.02            | 0.04 | 0.08            | 0.05 | 0.02            | 0.02 |

Table 3: Precision, Recall, F-score, Deviation of different classifiers - median on 100 runs , each of which using randomly-drawn training and test data points

In case of the replaced disks, Seagate has 4x more data points and 2x more non-null SMART indicators than Hitachi, which has a smaller number of drives in the dataset and 60% less predictors.

For the healthy class, Hitachi achieves better performance (as compared to the faulty ones ) because of the lower variability in the values of the SMART parameters recorded for healthy disks.

### Results – Comparison with emulated human rules

We train a decision tree on the subset of SMART indicators that is commonly considered when assessing disk health.

|          | DT on the reduced subset |      |      |  |  |  |
|----------|--------------------------|------|------|--|--|--|
|          |                          | SgtA | HitA |  |  |  |
|          | Precision                | 0.95 | 0.66 |  |  |  |
| Replaced | Recall                   | 0.53 | 0.44 |  |  |  |
|          | F-score                  | 0.68 | 0.51 |  |  |  |
|          | Sd                       | 0.06 | 0.15 |  |  |  |
|          | Precision                | 0.70 | 0.84 |  |  |  |
| Healthy  | Recall                   | 0.98 | 0.96 |  |  |  |
|          | F-score                  | 0.81 | 0.92 |  |  |  |
|          | Sd                       | 0.02 | 0.12 |  |  |  |

Table 5: Simple decision tree with (insufficient but commonly used) subset of SMART indicators

If one were to do proactive replacement using only this small subset of indicators, the number of disks one could correctly identify drops by almost 50%

### Results – Transfer learning

| trai     | ned | trained on HitA |      |      |      |            |  |  |
|----------|-----|-----------------|------|------|------|------------|--|--|
|          |     | SgtB            |      |      | HitB |            |  |  |
|          |     | Base            |      | arn. | Base | Tr. Learn. |  |  |
| Replaced | P   | 0.65            | 0.90 |      | 0.53 | 0.76       |  |  |
|          | R   | 0.52            | 0.82 |      | 0.84 | 0.78       |  |  |
|          | F   | 0.58            | 0.86 |      | 0.65 | 0.77       |  |  |
| Healthy  | Р   | 0.89            | 0.96 |      | 0.92 | 0.83       |  |  |
|          | R   | 0.93            | 0.98 |      | 0.73 | 0.82       |  |  |
|          | F   | 0.91            | 0.97 |      | 0.81 | 0.83       |  |  |

 Table 4: Precision, recall and F-score to illustrate the importance of transfer learning

#### Results – High confidence rules from a decision tree model

| Line | Model   | Rule                                                                 | Outcome | Confidence |
|------|---------|----------------------------------------------------------------------|---------|------------|
| 1    | Seagate | If $SMART_197_raw < 2$ and $SMART_188_raw > 0$                       | Healthy | 100%       |
|      |         | and $SMART_1_normalized \in [0, 117)$                                |         |            |
| 2    | Seagate | If $SMART_{197}raw > 2$                                              | Replace | 100%       |
| 3    | Seagate | If $SMART_197_raw < 2$ and $SMART_188_raw > 0$                       | Replace | 80%        |
|      |         | and $SMART_{-1}$ normalized > 117                                    |         |            |
| 4    | Seagate | If $SMART_197_raw < 2$ and $SMART_188_raw = 0$                       | Replace | 97%        |
|      |         | and $SMART_187$ normalized < 100 and $SMART_240_raw < 14780$ billion |         |            |
| 5    | Hitachi | If $SMART_197_raw > 1$ and $SMART_3_raw > 626$                       | Replace | 100%       |
| 6    | Hitachi | If $SMART_197_raw > 5$ and $SMART_3_raw < 626$                       | Replace | 92%        |
|      |         | and $SWART_5 raw > 17$                                               |         |            |
| 7    | Hitachi | If $SMART_197_raw > 1$ and $SMART_3_raw < 626$                       | Replace | 100%       |
|      |         | and $SMART_5_raw < 17$                                               |         |            |
| 8    | Hitachi | If $SMART_{197}raw < 1$ and $SMART_{5}raw < 7200$                    | Healthy | 97%        |
|      |         | and $SMART_3_raw > 629$ and $SMART_1_raw \in [0, 109]$               |         |            |

Table 6: Examples of rules extracted from a decision tree model trained on the Seagate and Hitachi datasets obtained with Algorithm 1

First, **the primarily important SMART indicators are somewhat different**. The pending sector count (Count of "unstable" sectors, SMART 197 raw) and the read error rate (SMART 1 normalized) seem to be model and even manufacturer agnostic, while the command timeout (The count of aborted operations due to HDD timeout, SMART 188), the average spin up time and the reallocated sectors count are disk model-specific.

Second, we note **a very large difference in the number of read errors (SMART\_1\_RAW)** that determine a faulty disk state. For Seagate, this threshold is in hundreds of millions, while for Hitachi they are 6 orders of magnitude lower. We attribute this gap to the fact that this indicator is vendor specific, and therefore a comparison across manufacturers is not feasible.

## Early vs. late prediction accuracy

• We evaluate how many of the replaced disks our model correctly captures based on snapshots of the SMART indicators taken 1, 3, 10 and 30 days prior to the actual replacement.

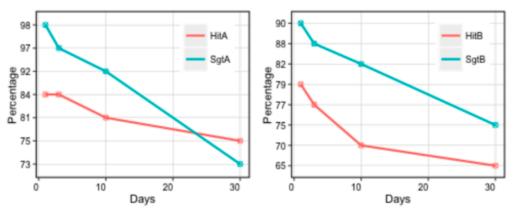



Figure 6: Percentage of disks correctly predicted as replaced on snapshots taken 1,3,10 and 30 days before the actual replacement event.

For both Seagate and Hitachi, an administrator can identify 73 to 75% of the disks to replace a month in advance, which provides her/him with the possibility of planning the replacement in advance, while still using the drives for another 25-30 days.

#### Conclusion

- The model provides an automatic tool for the disk replacement problem that enables the administrators to identify faulty disks in due time.
- It mitigates the reliability issues of storage service providers by allowing administrators to backup the data and plan the actual replacement in advance.
- Such models are sensitive to the number of SMART attributes they use. This explains the 17% gap in accuracy for the two disk manufacturer.
- Transfer learning can be applied across different models of the same disk manufacturer
- The pipeline can be easily applied to any disk model or manufacturer as long as SMART data is collected.