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ABSTRACT

Recent deployments of Network Function Virtualization (NFV) ar-
chitectures have gained tremendous traction. While virtualization
introduces bene�ts such as lower costs and easier deployment of
network functions, it adds additional layers that reduce transparency
into faults at lower layers. To improve fault analysis and predic-
tion for virtualized network functions (VNF), we envision a run-
time predictive analysis system that runs in parallel with existing
reactive monitoring systems to provide network operators timely
warnings against faulty conditions. In this paper, we propose a
deep learning based approach to reliably identify anomaly events
from NFV system logs, and perform an empirical study using 18
consecutivemonths in 2016-2018of real-world deployment data on
virtualized provider edge routers. Our deep learning models, com-
binedwith customization and adaptationmechanisms, can success-
fully identify anomalous conditions that correlate with network
trouble tickets. Analyzing these anomalies can help operators to
optimize trouble ticket generation and processing rules in order to
enable fast, or even proactive actions against faulty conditions.
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1 INTRODUCTION

Recent deployments of Network Function Virtualization (NFV) ar-
chitectures [1] have gained tremendous traction. NFV allows net-
work functions previously handled by hardware to be implemented
as software running on commodity servers. Its advantages include
simplifying deployment of new functionality, easier management
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through hosted VMs, and lower costs from using commodity hard-
ware. The downsides are that 1) today’s newly implemented virtu-
alized network functions (VNFs) and their host commodity servers
are more failure prone than dedicated hardware [11, 12, 23], and
2) virtualization introduces more layering and less visibility into
lower layer events, e.g. faults. These downsides might negatively
impact NFV deployment. For example, a critical question for NFV
systems is whether they can provide availability similar to that of
traditional carrier-grade systems, with up to �ve 9s (99.999% of up-
time) [5].

In this paper, we describe our e�orts to predict network failures
and reduce downtime on one of the largest known NFV deploy-
ments to date, deployed on the edge of IP backbone network of a
large ISP in the US. We focus on one of the important VNF types -
vPE (virtualized Provider Edge router). We explore the design and
performance of a system that would allow us to identify poten-
tial signatures for predicting trouble tickets in near-real-time, by
applying a combination of deep learning models (LSTMs), model
customization and sharing via transfer learning to syslogs.

While applying machine learning (including deep learning mod-
els) to failure prediction itself is not new [22, 28, 37], our work
faces a unique combination of three challenges. First, because fail-
ures are relatively rare, our data is extremely imbalanced, making
it very di�cult to train a supervised learning model for fault ticket
prediction. Second, since each VNF has its own speci�c con�gu-
ration and tra�c characteristics, it is likely that no single model
will work well across VNFs. Third, periodic software updates con-
stantly alter system functionality and tra�c characteristics on the
data plane. Thus we do not have the luxury of collecting a large
training set to build a model for long term use. Instead, models
must be built quickly using short windows of data, and deployed
before they are made obsolete by the next software update or con-
�guration change.

Our solution includes several techniques as follows:

• To address the data imbalance, we use an unsupervised anomaly
detection approach to train a Long Short-Term Memory (LSTM)
network [14] model with “normal” logs. Abnormal log patterns
trigger predictions of network faulty conditions.

• To address VNF diversity, we use clustering to identify VNFs
with similar con�guration and log behaviors, and aggregate them
(treat them as a single unit with the combined syslogs).

• To address the temporal dynamics of infrastructure changes, we
use incremental training that resembles transfer learning. This
helps us to quickly bootstrap a model after software updates,
without incurring extended delays for collecting training data.
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We evaluate ourmethodology using network trouble tickets col-
lected over a 18-month period on vPE routers deployed in produc-
tion environments. Our evaluation results demonstrate that syslog
anomalies often occur before network trouble tickets are gener-
ated. We can �lter through these anomalies to identify any poten-
tial early warning signals or predictive signatures.

2 RELATED WORKS

Reliability and Fault Management in NFV. [9, 30] addressed
the necessity and challenges of reliability, resiliency and fault man-
agement in NFV, showing that one of the key challenges is the co-
operation and latency between layers. [18] studied the correlation
among network resource alarms and produced rules for root cause
analysis. [21, 24] leveraged Self-Organizing Map (SOM)-based clus-
tering to identify di�erent types of network failures based on SNMP
measurements, but requires su�cient samples of each failure type
in advance. [31] collected metrics from both hypervisor and VM
layers, and applied Random Forest to classify VNF behaviors. All
of these evaluated small-scale, self-de�ned network failures.

Trouble Prediction/Detection in Networking. While exist-
ing works [16, 20] achieve trouble detection based on Key Per-
formance Indicators (KPIs), such as CPU utilization and packet
loss, our work focuses on VNF syslogs. The majority of existing
works apply supervised trouble prediction/detection, by building
binary classi�ers that are trained with both normal and abnormal
events. [10, 19, 29] applied simple failure predictionmethods based
on characteristics of failure events, and developed Hidden Markov
Model (HMM) and shallow machine learning approaches for net-
work failure prediction. To capture sequential patterns in the mon-
itoring data, [37] designed sequential features and applied Random
Forest to learn omen and non-omen patterns for switch hardware
failures in data centers. [36] applied LSTM to detect a single type
of failure for server cluster down. The key challenge faced by the
above supervised methods is that they require su�cient anoma-
lous data to train the model, which takes a signi�cant amount of
time to collect, e.g. multiple years according to the above studies.

To reduce data collection latency, several works resorted to un-
supervised approaches. [35] extracted features on state variables
and identi�ers, and applied PCA to perform anomaly detection.
[8, 17] applied LSTM on network intrusion detection for Linux sys-
tem calls and OpenStack experiments on CloudLab. While we also
take an unsupervised learning approach, our work di�ers from ex-
isting works by focusing on predictive analysis of failures in NFV
systems.

3 INITIAL ANALYSIS

Using data from a real-world NFV deployment, we study di�erent
types of network failures and their spatial and temporal patterns.
We also examine patterns of the syslogs at the VNF layer, which
we will use to predict network failures.

3.1 Datasets

Our dataset includes both network trouble tickets and VNF sys-
logs collected from 38 vPEs (virtualized Provider Edge routers), de-
ployed by a tier-1 ISP’s backbone network, over a time period of
18 months. vPE degradation can cause service impairments on cus-
tomer networks. Predicting these trouble events allows operators

or closed-loop automations to trigger mitigation actions prior to
each event and help minimize its impact.

Network Trouble Tickets. Trouble tickets capture actionable
network events. Each ticket includes the time of occurrence, the
root cause, and the ticket duration. Our dataset includes the en-
tire set of trouble tickets at these 38 vPEs, with the following six
categories of root causes:

• Maintenance: expected or schedulednetwork actions or changes;

• Circuit: connection between two devices (on speci�c interfaces)
is down.

• Cable: cable disconnection due to environmental or human arti-
facts.

• Hardware: failures of cards that constitute the chassis system
and components that constitute a card.

• Software: failures due to software issues.

• Duplicate: follow-up failures when the original issue is not re-
solved.
For each trouble ticket, we track both the ticket report time

and the repair �nish time. Trouble tickets are triggered by sig-
nals from various network monitoring systems matching against
known problem signatures, via a series of ticket processing logic,
such as pattern matching and event correlation. Thus the ticket re-
port time is often at or after the �rst occurrence of a symptom of
the network fault. Since the ticket generation process is imperfect,
it may miss early symptoms and introduce signi�cant delays be-
tween the �rst occurrence of symptoms and the actual generation
of a ticket.

VNF Syslog. Syslogs are complex, unstructured, free-form texts
generated by the systems to describe a wide range of events [26,
35]. One vPE could have millions of syslog messages per year. Both
keywords and relationships among di�erent types of logmessages [8,
17, 26, 37] de�ne the key structural patterns of syslogs. We use the
well-known Signature tree [26] approach to transform raw syslogs
into a structured representation for convenient relationship mod-
eling.

We also compare our vPE syslogs to those of pPEs (physical
Provider Edge routers) with similar number of network tickets. We
observe that vPE syslogs have 77% less volume than pPE syslogs,
and contain many fewer log messages on physical layer. This con-
�rms our intuition that NFV reduces each vPE’s visibility of lower
layer events.

3.2 Trouble Ticket Analysis

To help understand the predictability of trouble tickets, we focus
our analysis on (1) ticket temporal distribution/frequency and (2)
similarity of ticket patterns between vPEs.

Temporal Distribution. Figure 1(a) shows tickets with di�er-
ent root causes over time. We found that maintenance is the dom-
inant factor, but they are predictable (since they are prescheduled
events). Duplicated tickets and circuit tickets are the next two ma-
jor contributors.Overall, the ticket data is highly skewed. Figure 1(b)
plots the distribution of inter-arrival time of non-duplicated tick-
ets per vPE. We see that non-duplicated tickets arrive more than
40 minutes apart. 80% of time gaps between consecutive tickets are
longer than 10 hours, and 25% of gaps between consecutive tickets
are longer than 1000 hours (42 days). Finally, we observe that du-
plicated tickets often arrive in bursts.
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Figure 1: Ticket analysis of aggregated vPEs.
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Figure 2: Tickets distributed across time
(18 months) and vPEs.

 0

 0.25

 0.5

 0.75

 1

0 10 20 30 40

C
o
s
in

e
 S

im
ila

ri
ty

vPE (Sort by Cosine Similarity)

Figure 3: Cosine similarity of syslog distribution betweenall
vPEs and individual vPE.

Per vPE Ticket Behaviors. Figure 2 shows non-maintenance
trouble tickets across vPEs (sorted by their ticket volume per vPE).
Each point indicates that the corresponding vPE (y) has ticket on
a given time interval (x). Clearly the ticket pattern is non-periodic
and vPE-dependent – a few vPEs have far more tickets than oth-
ers. There is no obvious bias in time or towards any speci�c vPE.
Another observation is that sometimes, multiple vPEs experience
network faulty conditions in the same time interval (marked by
the vertical bar). A deeper look at the data showed that these tick-
ets are triggered by issues of core routers that led to disruptions
at all attached vPEs. However, such cases are very rare, and only
contribute to a very small percentage of trouble tickets.

3.3 VNF Syslog Analysis

We perform temporal and spatial analysis onVNF syslogs collected
at vPEs. To analyze “normal” syslog entries unrelated to network
failure events, we prune the log to remove any entries that are
within 3 days of a ticket’s active period (the period between a
ticket’s arrival time to when it is marked as resolved).

Correlation across vPEs. We �rst ask the question: do vPEs’
syslogs display similar behaviors during normal operations (i.e., no
failures)? We compute the cosine similarity [32] of syslog distribu-
tions for each vPEv , and that of the aggregated syslog over all vPEs

V , i.e.,
Σn
i=1s (v )is (V )i

√

Σn
i=1s (v )

2
i

√

Σn
i=1s (V )2

i

, where s (·) denotes the syslog distribu-

tion. We use a sliding time window of one month across syslogs,
and calculate the normalized frequency distribution.

Figure 3 shows the quantile values (0%, 25%, 50%, 75%, 100%) of
the cosine similarity across time. Only one third of vPEs have a
similar syslog distribution (cosine similarity > 0.8), and there are
5 vPEs that have < 0.5 in cosine similarity. This indicates that sys-
log patterns vary across vPEs, possibly due to di�erences in server

roles, con�gurations and tra�c. Therefore, we will need per-vPE
customized models to detect anomalies on vPE syslogs.

Impact of System Updates. Another key �nding is that some
vPEs’ syslogs had sudden changes between late 2017 and early
2018, triggered by system updates that changed the syslog distri-
bution. We compute the cosine similarity of syslog distributions
between consecutive months. We found that before the system up-
dates, cosine similarity is consistently above 0.8, but drops below
0.4 following a system update. This means that we need to update
models of vPE syslogs quickly (using short windows of data), so
that they do not become obsolete.

4 PREDICTING TICKETS FROM SYSLOG
ANOMALIES

In this section, we describe our e�ort to identify speci�c (or anoma-
lous) patterns in vPE syslogs that may potentially serve as early
detection or warning signatures for (trouble) ticketing conditions.

4.1 Methodology

Our empirical analysis in §3 identi�es three key challenges for pre-
dicting trouble tickets via vPE syslogs. First, trouble tickets are rela-
tively rare across our vPE syslogs. With such imbalanced data, it is
very di�cult to train a supervised learning model for fault predic-
tion. Second, the volume and complexity of syslog datamake it di�-
cult tomanually select the feature set necessary to trainMLmodels
on log behavior. Third, since syslog distributions vary across vPEs
and over time, we need to customize machine learning models for
each vPE, and re-train them after system updates. Both can lead to
large overheads in terms of data collection delay.

To address the �rst two challenges, we build a Long Short-Term
Memory (LSTM) network [14] that automatically learns syslog pat-
terns during normal operations (§4.2). Instead of supervised train-
ing, we take an anomaly detection approach using a baseline model
trained using “normal” syslog data. Thus we are una�ected by the
rarity of trouble ticket events. Each detected anomaly can poten-
tially serve as an indicator for network faulty conditions. To ad-
dress the third challenge of data collection latency, we apply both
clustering and online learning techniques to reduce the amount of
training data required to customizemodels for individual vPEs (§4.3).

After detecting anomalies, we associate amapping between them
and relevant trouble tickets. We de�ne a time window ahead of the
ticket generation as the predictive period, and the time between
ticket report and repair �nish as the a�ected period. As shown in
Figure 4, if an anomaly is detected during the predictive or a�ected
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Figure 4: Mapping syslog anomalies to trouble tickets.

period of a ticket, we associate that anomaly to the ticket. Speci�-
cally, an anomaly detected during the prediction period of a ticket
is treated as an “early warning signal,” and those detected during
a ticket’s a�ected period are treated as “post event symptoms.” Al-
though there are many reasons why anomalies may occur before
the ticket time, some of the early warning signals may be converted
into alternative ticket-triggering signatures. Anomalies which are
not associated with tickets will be treated as false alarms. We vary
the length of the predictive period to see performance changes in
Section 5.

4.2 LSTM-based Anomaly Detection

As a language for communication between users/programs and
the system, vPE syslogs display sequential patterns. An accurate
model of syslogs must be able to capture those sequential patterns.
Thus we consider the Long Short-Term Memory (LSTM) network,
which is well-known for its capability of capturing the compre-

hensive and intricate patterns embedded in sequential data1. With
su�cient training data, LSTM can automatically learn normal pat-
terns of syslogs, and �ag deviations from the norm as anomalies. In
fact, LSTMs have demonstrated great success in detecting a wide
range of anomalies, such as server faults in distributed systems or
anomalies in sentiment analysis [8, 17, 33].

Unlike traditional linear classi�ers, our approach does not rely
on feature engineering. For the input of LSTM, we use each indi-
vidual logmi , which captures system events for a speci�c interval
([ti , ti−1)) (mi appears at ti ). Instead of using just raw log entries,
we apply the aforementioned signature tree approach [26] to ex-
tract and categorize a speci�c template (or signature) from the raw
data, marked by a tuple of (mi , ti −ti−1),mi ∈ S , where S is the tem-
plate collection. Given k syslog tuples, we train our LSTM model
to predictmk+1. This is a multi-class classi�cation problem where
the output is a probability distribution over the template set S .

Model Training. We train the LSTM network using syslogs
produced during “ticket-free” network operations. As mentioned
in Section 3.3, we prune syslog entries that occur within a 3-day
bu�er around the active window of actual tickets. We also experi-
mented with larger window sizes but did not observe notable dif-
ferences.

Detecting Anomalies. Using a trained LSTM model, we detect
an anomaly as follows. To determine whether an incoming syslog
mk+1 is normal or abnormal, we plugin the previously observed
k syslogs into the model and derive the probability distribution of
prediction of the (k + 1)th log. Ifmk+1 is normal, then the corre-
sponding log-likelihood value should be high (above a threshold),

1LSTM is a special case of Recurrent Neural Networks (RNN). It is equipped with
explicit memory cells that have the ability to remember long-term dependencies over
sequences. [14] provides a detailed tutorial of LSTM.

and abnormal if not. By changing the threshold value, we can de-
rive a precision-recall curve (PRC), which is the most widely used
measure to evaluate anomaly detection systems [6].

LearningMinority SyslogPatterns. While LSTMs are designed
to automatically learn patterns of normal syslog entries, minority
patterns are generally hard to learn given their rare appearances in
the training data. The result is a high false alarm rate. We address
this by over-sampling the minority (normal) patterns [4]. Specif-
ically, we use month i’s syslog to train a LSTM model that will
be used to detect anomalies during month (i + 1). We apply the
LSTM model training in multiple rounds, using month i’s normal
syslog as training data. After each round of training, we test the
model using the original training data and identify normal syslog
patterns that are misclassi�ed as anomalies. We then over-sample
these patterns and randomly sample all other patterns, and use the
resulting data to adjust the model weights. The process exits when
the false positive rate cannot be further improved.

4.3 Customization and Adaptation

Since the syslog distribution varies across vPEs, a general LSTM
model will likely achieve suboptimal accuracy. The ideal solution
is to build a customized model per vPE, but the resulting training
overhead and data collection latency are unacceptable. We address
this tradeo� between model accuracy and data collection latency
using vPE grouping [16]. We apply K-means [13] to group vPEs
and choose the number of groups K based on modularity. vPEs in
the same cluster show similar patterns in syslog distributions, and
their training data will be aggregated together to build a uni�ed
model for the group. For our dataset, we produced 4 vPE clusters,
which led to 4 LSTM models.

We also reduce the latency of training data collection using on-
line (or incremental) learning. Speci�cally, eachmonthwe perform
a round of incremental training by updating the model weights us-
ing the newly arrived syslog entries. Since the syslog distribution
is relatively stable, we do not observe signi�cant changes in model
weights.

The exception is that between late 2017 and early 2018, the vPE
network had a system upgrade, and some vPEs’ syslog distribu-
tions were signi�cantly modi�ed. As a result, the number of false
alarms increased by a factor of 14, indicating that the model is
out-of-date and required updating. The naive solution is to retrain
the entire model, but rebuilding a reasonable training dataset takes
more than 3 months. We want a solution that can retrain the mod-
els in a much shorter time window.

To address this challenge, we consider transfer learning [27],
where a pretrained neural network model (i.e. a “teacher model”
that was trained before the system update) is adapted using limited
training data to a student model that can respond to new syslog
behavior. Speci�cally, we build the student model by �rst copying
the teacher model, then training the student model using new sys-
log data to �ne tune the top layers of the model. For our cases, one
week of new training data is su�cient to quickly update the model
after a major software update.

5 EVALUATION

In this section, we evaluate our LSTM-based anomaly detection
system, and the feasibility of using vPE syslog anomalies as (early)
warning signatures of network trouble tickets.
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5.1 Experimental Setup

We implemented our anomaly detection system using Keras [2]
with Tensor�ow [3] as the backend. For model optimization, we
variedmodel parameters tominimize the categorical cross entropy [15],
but found that model performance is generally insensitive to pa-
rameter choices. Our �nal LSTM model consists of 2 LSTM layers
and 1 dense layer.

Estimating Ground Truth of Syslog Anomalies. Evaluation
of our anomaly detection system requires ground truth of syslog
anomalies, which we approximate using trouble tickets. For each
trouble ticket, we de�ne a time window before its generation time
as the predictive period, and the time window after its generation
till the reported ticket repair time (ticket duration) as the a�ected
period. As shown by Figure 4, if any syslog anomaly falls into the
predictive period or the a�ected period of a ticket, we will treat it
as a true anomaly. So one ticket can possibly have multiple (early)
signatures. On the other hand, any anomaly outside of these peri-
ods is treated as a false positive. We tried multiple values of predic-
tive periods, from 1 hour to 2 days, and found that the detection
performance converges at 1 day.

Another interesting observation is that after matching syslog
anomalies with non-duplicated tickets, each ticket is associated
with at least two anomalies (in the predictive period). These anom-
alies are close to each other, less than 1 minute apart on average.
Thus we con�gure the detection system to report a warning signa-
ture for network trouble tickets upon detecting a small cluster of
two or more anomalies.

Training and Testing. We use syslog data from the �rst month
of the 18-month data for initial model training. At the end of each
month, we update the LSTM model using fresh data from the pre-
vious month, and test the updated model using data from the sub-
sequent month. Both initial model training and monthly model up-
dates complete in less than one hour.

5.2 Accuracy of Anomaly Detection

Precision, Recall, F-Measure. We start with three standard
metrics on anomaly detection [25]. Precision shows the percentage
of true anomalies among all anomalies detected; Recall measures
the percentage of anomalies in the data set (tickets as the ground-
truth) being detected; and F-measure is the harmonic mean of the
two.

Figure 5 plots the Precision-Recall Curve (PRC) produced by
adjusting the aforementioned threshold in LSTM log probability

(§4.2). Our �nal operating point is the one that maximizes the F-
measure, with precision at 0.8 and recall at 0.81. In this case, our
system can e�ectively identify anomalies while achieving low false
positives at 0.6 per day for all vPEs.

Comparison to Existing Methods. We consider two existing
methods on anomaly detection:

• Autoencoder [7] is a feed-forward multi-layer neural network in
which the desired output is the input itself. After training the
auto-encoder with normal data, the reconstruction error can be
used as an anomaly indicator.We use the TF-IDF (term-frequency,
inverse document frequency) Features [36] as the input to Au-
toencoder.

• One-Class SVM [34] uses shallow learning to build a model of the
normal syslog training data, which requires feature engineer-
ing (mapping the data into a high dimensional feature space via
a kernel). If a new syslog entry deviates signi�cantly from the
model, it is marked as anomaly.

For a fair comparison, we applied the same customization and adap-
tion mechanisms (§4.3) on all three approaches.

Figure 6 shows the performance of the three approaches. The
two deep learning approaches (LSTM, Autoencoder) largely out-
perform the traditional classi�cation approach (one-class SVM), be-
cause feature engineering is highly challenging given the volume
and complexity of the vPE syslogs. LSTM slightly outperforms Au-
toencoder (a precision of 0.82 vs. 0.77), by capturing sequential pat-
terns of the syslogs.

Gains ofCustomizationandAdaptation. Weusemicrobench-
marks to understand the contribution of model customization (a
single model for all vPEs vs. customized models per vPE) and fast
model adaptation (following a system update). Figure 7 plots the
model F-measure across the 18month period.Model customization
produces signi�cant improvement in model F-measure and preci-
sion (results not shown due to space limits). Our model adaptation
component allows the system to quickly recover from disruption
caused by software updates using just 1-week of training data. Us-
ing training data longer than 1 week does not produce signi�cant
improvements.

Reducing Training Overhead. Our design uses both vPE clus-
tering and transfer learning to reduce the amount of syslog train-
ing data (for constructing and adapting the LSTMmodel). We eval-
uate their e�ectiveness by comparing each to their corresponding
baselines. Using vPE clustering, we are able to reduce the amount
of (initial) training data from 3 months to 1 month. Using transfer
learning, we reduce the recover time (from software updates) from
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Figure 8: Anomaly detection for di�erent types of tickets:X
time after ticket generation.

3 months down to 1 week. This means we can build and maintain a
high-quality prediction model without incurring expensive delays
for collecting training data.

5.3 Trouble Ticket-based Evaluation

We use trouble tickets as approximate ground truth to evaluate
how e�ectively our method can discover anomalous syslog con-
ditions. Figure 8 shows the probability of detecting any anomaly
related to a ticket (at least 15 minutes prior to the ticket arrival,
at least 5 minutes prior, 0 minute prior, until 5 minutes after, and
until 15 minutes after) for each individual (non-duplicated) ticket
type, and across all the tickets.

We seek to answer the following questions:

Q1: What types of network trouble tickets show early signs in VNF

syslogs?

Answer: We discover VNF syslogs appear before multiple trouble
ticket types (e.g., Circuit, Software, Cable and Hardware). Syslogs
related to circuit failure tickets have the highest probability of oc-
currence before the ticket generation (74%), followed by Software
(55%), Cable (40%) and Hardware (28%). This indicates that despite
reduced visibility into lower faults caused by virtualization, VNF
syslogs do capture anomalous conditions related to network trou-
ble tickets.

Q2: For failures that do not display syslog anomalies before ticket

generation, will any of their anomalies show up to the syslog shortly?

Answer: Yes, for majority of tickets (80%), vPE syslogs will display
anomalous patterns within 15 minutes after the ticket generation.
Thismeans that patterns of failures becomevisible at theNFV layer
after a small delay, which can be leveraged by NFV for trouble
ticket analysis, diagnosis and management.

Q3: How early do we observe syslog anomalous conditions compared
to ticket generations?

Answer: The majority of detected syslog anomalies are 5 minutes
ahead of the ticket generation. For Circuit, 36% of syslog anomalies
are 15 minutes ahead, and the ratio is even higher for Cable (39%)
and Hardware (38%) categories. Althoughmore in-depth investiga-
tion is required, these results indicate the possibility that operators
may be able to leverage these syslog anomalies to either improve
their ticketing process, or identify predictive or early conditions
indicative of network failures.

Q4: Can a single or group of anomalies serve as warning signatures

for a group of near-term trouble tickets?

Answer: This is related to the question of whether a single sys-
log anomaly (or a cluster of syslog anomalies) can be associated

with multiple trouble tickets. Based on our current dataset, this
has never happened, mostly because the tickets are rare and well-
separated. We plan to con�rm this �nding using larger-scale stud-
ies in the future.

Operational Findings. The anomalies identi�ed by our model
can be categorized into four scenarios. First, the detected condi-
tions are likely true predictive signals for near-term network prob-
lems. For example, we identi�ed a condition that involves a man-
agement daemon error message about some peer session connec-
tion failures with a particular controller ("invalid response from

peer chassis-control"). When an anomaly with this condition was
observed, it was typically followed some time later by a trouble
ticket. We need to investigate this apparently predictive signature
further to understand the underlying vPE behaviour. Second, the
detected conditions can be analyzed and turned into early detec-
tion signatures on faulty conditions. For example, we found that a
storm of protocol session �aps ("BGP UNUSABLE ASPATH: bgp re-
ject path") across multiple peers within a short time interval can be
turned into a quick detection signature (with minimum false pos-
itives). This anomaly detection outperforms existing service level
monitors, which normally have a longer detection delay. Third, the
detected conditions could be part of the events that triggered the
trouble tickets. This may be due to event response procedures in
existing ticketing process �ows, such as intentional delays added
to suppress transient issues. Our �ndings may help operations to
further optimize such ticketing process �ows. Fourth, the detected
conditions are coincidental to the ticket (i.e., involving unrelated
syslog anomalies). This scenario is relatively rare and should be
carefully managed, e.g., through adding suppression rules in ticket
processing �ows. In future work, we will further categorize the
detected conditions into these four scenarios.

6 CONCLUSION

We use system log and network trouble tickets in a real-world de-
ployment to study the problem of failure prediction in NFV net-
works. We propose a new method to detect anomalies from NFV
syslogs that can potentially be used as early indicator of network
issues that would typically result in trouble tickets. We validate
our methodology using a sample dataset collected over 18-months
on virtualized provider edge (vPE) routers in a production NFV en-
vironment. We observed that our LSTM-based anomaly detection
system discovers syslog anomalous conditions that often occur be-
fore the trouble tickets. We believe our methodology can help the
network operations teams to either (a) identify predictive or early
warning signals, or (b) improve upon the current ticketing process
that will enable timely response to NFV failures.
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