
1

Logram: Efficient Log Parsing Using n-Gram
Dictionaries

Hetong Dai, Student Member, IEEE, Heng Li, Member, IEEE, Che-Shao Chen, Student Member, IEEE,
Weiyi Shang, Member, IEEE, Tse-Hsun (Peter) Chen, Member, IEEE,

Abstract—Software systems usually record important runtime information in their logs. Logs help practitioners understand system
runtime behaviors and diagnose field failures. As logs are usually very large in size, automated log analysis is needed to assist
practitioners in their software operation and maintenance efforts. Typically, the first step of automated log analysis is log parsing, i.e.,
converting unstructured raw logs into structured data. However, log parsing is challenging, because logs are produced by static
templates in the source code (i.e., logging statements) yet the templates are usually inaccessible when parsing logs. Prior work
proposed automated log parsing approaches that have achieved high accuracy. However, as the volume of logs grows rapidly in the era
of cloud computing, efficiency becomes a major concern in log parsing. In this work, we propose an automated log parsing approach,
Logram, which leverages n-gram dictionaries to achieve efficient log parsing. We evaluated Logram on 16 public log datasets and
compared Logram with five state-of-the-art log parsing approaches. We found that Logram achieves higher parsing accuracy than the
best existing approaches and also outperforms these approaches in efficiency (i.e., 1.8 to 5.1 times faster than the second-fastest
approaches in terms of end-to-end parsing time). Furthermore, we deployed Logram on Spark and we found that Logram scales out
efficiently with the number of Spark nodes (e.g., with near-linear scalability for some logs) without sacrificing parsing accuracy. In
addition, we demonstrated that Logram can support effective online parsing of logs, achieving similar parsing results and efficiency to
the offline mode.

Index Terms—Log parsing, Log analysis, N-gram

F

1 INTRODUCTION

Modern software systems usually record valuable runtime
information (e.g., important events and variable values) in
logs. Logs play an important role for practitioners to under-
stand the runtime behaviors of software systems and to di-
agnose system failures [1], [2]. However, since logs are often
very large in size (e.g., tens or hundreds of gigabytes) [3], [4],
prior research has proposed automated approaches to ana-
lyze logs. These automated approaches help practitioners
with various software maintenance and operation activities,
such as anomaly detection [5], [6], [7], [8], [9], failure diagno-
sis [10], [11], performance diagnosis and improvement [12],
[13], and system comprehension [10], [14]. Recently, the fast-
emerging AIOps (Artificial Intelligence for IT Operations)
solutions also depend heavily on automated analysis of
operation logs [15], [16], [17], [18], [19].

Logs are generated by logging statements in the source
code. As shown in Figure 1, a logging statement is com-
posed of log level (i.e., info), static text (i.e., “Found block” and
“locally”), and dynamic variables (i.e., “$blockId”). During
system runtime, the logging statement would generate raw
log messages, which is a line of unstructured text that
contains the static text and the values for the dynamic
variables (e.g., “rdd 42 20”) that are specified in the logging

• Department of Computer Science and Software Engineering, Concordia
University, Montreal, Canada.
E-mail: (he da, c chesha, shang, peterc)@encs.concordia.ca

• School of Computing, Queen’s University, Kingston, Canada.
E-mail: hengli@cs.queensu.ca

17/06/09 20:11:11 INFO storage.BlockManager:
Found block rdd_42_20 locally

Raw log
(Unstructured)

Logging
statement

logInfo("Found block $blockId locally")
(From: spark/storage/BlockManager.scala)

Timestamp: 17/06/09 20:11:11; Level: INFO
Logger: storage.BlockManager
Static template: Found block <*> locally
Dynamic variable(s): rdd_42_20

Parsed log
(Structured)

Fig. 1. An illustrative example of parsing an unstructured log message
into a structured format.

statement. The log message also contains information such
as the timestamp (e.g., “17/06/09 20:11:11”) of when the
event happened. In other words, logging statements define
the templates for the log messages that are generated at
runtime. Automated log analysis usually has difficulties
analyzing and processing the unstructured logs due to
their dynamic nature [5], [10]. Instead, a log parsing step
is needed to convert the unstructured logs into a struc-
tured format before the analysis. The goal of log parsing
is to extract the static template, dynamic variables, and the
header information (i.e., timestamp, log level, and logger
name) from a raw log message to a structured format. Such
structured information is then used as input for automated
log analysis. He et al. [20] found that the results of log
parsing are critical to the success of log analysis tasks.

In practice, practitioners usually write ad hoc log parsing
scripts that depend heavily on specially-designed regular
expressions [21], [22], [23] . As modern software systems

ar
X

iv
:2

00
1.

03
03

8v
1

 [
cs

.S
E

]
 7

 J
an

 2
02

0

2

usually contain large numbers of log templates which are
constantly evolving [24], [25], [26], practitioners need to
invest a significant amount of efforts to develop and main-
tain such regular expressions. In order to ease the pain
of developing and maintaining ad hoc log parsing scripts,
prior work proposed various approaches for automated log
parsing [21]. For example, Drain [22] uses a fixed-depth
tree to parse logs. Each layer of the tree defines a rule for
grouping log messages (e.g., log message length, preceding
tokens, and token similarity). At the end, log messages with
the same templates are clustered into the same groups. Zhu
et al. [21] proposed a benchmark and thoroughly compared
prior approaches for automated log parsing.

Despite the existence of prior log parsers, as the size of
logs grows rapidly [1], [2], [27] and the need for low-latency
log analysis increases [19], [28], efficiency becomes an im-
portant concern for log parsing. In this work, we propose
Logram, an automated log parsing approach that leverages
n-gram dictionaries to achieve efficient log parsing. In short,
Logram uses dictionaries to store the frequencies of n-grams
in logs and leverage the n-gram dictionaries to extract the
static templates and dynamic variables in logs. Our intuition
is that frequent n-grams are more likely to represent the
static templates while rare n-grams are more likely to be dy-
namic variables. The n-gram dictionaries can be constructed
and queried efficiently, i.e., with a complexity of O(n) and
O(1), respectively.

We evaluated Logram on 16 log datasets [21] and com-
pared Logram with five state-of-the-art log parsing ap-
proaches. We found that Logram achieves higher accuracy
compared with the best existing approaches, and that Lo-
gram outperforms these best existing approaches in effi-
ciency, achieving a parsing speed that is 1.8 to 5.1 times
faster than the second-fastest approaches. Furthermore, as
the n-gram dictionaries can be constructed in parallel and
aggregated efficiently, we demonstrated that Logram can
achieve high scalability when deployed on a multi-core
environment (e.g., a Spark cluster), without sacrificing any
parsing accuracy. Finally, we demonstrated that Logram can
support effective online parsing, i.e., by updating the n-
gram dictionaries continuously when new logs are added
in a streaming manner.

In summary, the main contributions1 of our work in-
clude:

• We present the detailed design of an innovative
approach, Logram, for automated log parsing. Logram
leverages n-gram dictionaries to achieve accurate
and efficient log parsing.

• We compare the performance of Logram with other
state-of-the-art log parsing approaches, based on
an evaluation on 16 log datasets. The results show
that Logram outperforms other state-of-the-art ap-
proaches in efficiency and achieves better accuracy
than existing approaches.

• We deployed Logram on Spark and we show that
Logram scales out efficiently as the number of Spark
nodes increases (e.g., with near-linear scalability for
some logs), without sacrificing paring accuracy.

1. The source code of our tool and the data used in our study are
shared at https://github.com/BlueLionLogram/Logram

• We demonstrate that Logram can effectively support
online parsing, achieving similar parsing results and
efficiency compared to the offline mode.

• Logram automatically determines a threshold of n-
gram occurrences to distinguish static and dynamic
parts of log messages.

Our highly accurate, highly efficient, and highly scalable
Logram can benefit future research and practices that rely
on automated log parsing for log analysis on large log
data. In addition, practitioners can leverage Logram in a
log streaming environment to enable effective online log
parsing for real-time log analysis.
Paper organization. The paper is organized as follows.
Section 2 introduces the background of log parsing and n-
grams. Section 3 surveys prior work related to log parsing.
Section 4 presents a detailed description of our Logram
approach. Section 5 shows the results of evaluating Logram
on 16 log datasets. Section 6 discusses the effectiveness of
Logram for online log parsing. Section 7 discusses the threats
to the validity of our findings. Finally, Section 8 concludes
the paper.

2 BACKGROUND

In this section, we introduce the background of log parsing
and n-grams that are used in our log parsing approach.

2.1 Log Parsing
In general, the goal of log parsing is to extract the static tem-
plate, dynamic variables, and the header information (i.e.,
timestamp, level, and logger) from a raw log message. While
the header information usually follows a fixed format that
is easy to parse, extracting the templates and the dynamic
variables is much more challenging, because 1) the static
templates (i.e., logging statements) that generate logs are
usually inaccessible [21], and 2) logs usually contain a large
vocabulary of words [23]. Table 1 shows four simplified
log messages with their header information removed. These
four log messages are actually produced from two static
templates (i.e., “Found block <*> locally” and “Dropping
block <*> from memory”). These log messages also contain
dynamic variables (i.e., “rdd 42 20” and “rdd 42 22”) that
vary across different log messages produced by the same
template. Log parsing aims to separate the static templates
and the dynamic variables from such log messages.

Traditionally, practitioners rely on ad hoc regular ex-
pressions to parse the logs that they are interested in. For
example, two regular expressions (e.g., “Found block [a-z0-
9]+ locally” and “Dropping block [a-z0-9]+ from memory”)
could be used to parse the log messages shown in Table 1.
Log processing & management tools (e.g., Splunk2 and ELK
stack3) also enable users to define their own regular expres-
sions to parse log data. However, modern software systems
usually contain large numbers (e.g., tens of thousands) of
log templates which are constantly evolving [21], [24], [25],
[26], [29]. Thus, practitioners need to invest a significant
amount of efforts to develop and maintain such ad hoc reg-
ular expressions. Therefore, recent work proposed various

2. https://www.splunk.com
3. https://www.elastic.co

https://github.com/BlueLionLogram/Logram

3

TABLE 1
Simplified log messages for illustration purposes.

1. Found block rdd 42 20 locally
2. Found block rdd 42 22 locally
3. Dropping block rdd 42 20 from memory
4. Dropping block rdd 42 22 from memory

approaches to automate the log parsing process [21]. In
this work, we propose an automated log parsing approach
that is highly accurate, highly efficient, highly scalable, and
supports online parsing.

2.2 n-grams
An n-gram is a subsequence of length n from an item
sequence (e.g., text [30], speech [31], source code [32], or
genome sequences [33]). Taking the word sequence in the
sentence: “The cow jumps over the moon” as an example,
there are five 2-grams (i.e., bigrams): “The cow”, “cow jumps”,
“jumps over”, “over the”, and “the moon”, and four 3-grams
(i.e., trigrams): “The cow jumps”, “cow jumps over”, “jumps
over the”, and “over the moon”. n-grams have been success-
fully used to model natural language [30], [34], [35], [36] and
source code [37], [38], [39]. However, there exists no work
that leverages n-grams to model log data. In this work, we
propose Logram that leverages n-grams to parse log data in
an efficient manner. Our intuition is that frequent n-grams
are more likely to be static text while rare n-grams are more
likely to be dynamic variables.

Logram extracts n-grams from the log data and store
the frequencies of each n-gram in dictionaries (i.e., n-gram
dictionaries). Finding all the n-grams in a sequence (for a
limited n value) can be achieved efficiently by a single pass
of the sequence (i.e., with a linear complexity) [40]. For
example, to get the 2-grams and 3-grams in the sentence
“The cow jumps over the moon”, an algorithm can move one
word forward each time and get a 2-gram and a 3-gram
starting from that word each time. Besides, the nature of
the n-gram dictionaries enables one to construct the dic-
tionaries in parallel (e.g., by building separate dictionaries
for different parts of logs in parallel and then aggregating
the dictionaries). Furthermore, the n-gram dictionaries can
be updated online when more logs are added (e.g., in log
streaming scenarios). As a result, as shown in our exper-
imental results, Logram is highly efficient, highly scalable,
and supports online parsing.

3 RELATED WORK

In this section, we discuss prior work that proposed log
parsing techniques and prior work that leveraged log pars-
ing techniques in various software engineering tasks (e.g.,
anomaly detection).

3.1 Prior Work on Log Parsing
In general, existing log parsing approaches could be
grouped under three categories: rule-based, source code-based,
and data mining-based approaches.
Rule-based log parsing. Traditionally, practitioners and
researchers hand-craft heuristic rules (e.g., in the forms

of regular expressions) to parse log data [41], [42], [43].
Modern log processing & management tools usually pro-
vide support for users to specify customized rules to parse
their log data [44], [45], [46]. Rule-based approaches require
substantial human effort to design the rules and maintain
the rules as log formats evolve [24]. Using standardized
logging formats [47], [48], [49] can ease the pain of manually
designing log parsing rules. However, such standardized
log formats have never been widely used in practice [23].
Source code-based log parsing. A log event is uniquely
associated with a logging statement in the source code (see
Section 2.1). Thus, prior studies proposed automated log
parsing approaches that rely on the logging statements in
the source code to derive log templates [5], [50]. Such ap-
proaches first use static program analysis to extract the log
templates (i.e., from logging statements) in the source code.
Based on the log templates, these approaches automatically
compose regular expressions to match log messages that
are associated with each of the extracted log templates.
Following studies [51], [52] applied [5] on production logs
(e.g., Google’s production logs) and achieved a very high
accuracy. However, source code is often not available for
log parsing tasks, for example, when the log messages are
produced by closed-source software or third-party libraries;
not to mention the efforts for performing static analysis
to extract log templates using different logging libraries or
different programming languages.
Data mining-based log parsing. Other automated log pars-
ing approaches do not require the source code, but in-
stead, leverage various data mining techniques. SLCT [53],
LogCluster [54], and LFA [54] proposed approaches that
automatically parse log messages by mining the frequent
tokens in the log messages. These approaches count token
frequencies and use a predefined threshold to identify the
static components of log messages. The intuition is that if
a log event occurs many times, then the static components
will occur many times, whereas the unique values of the
dynamic components will occur fewer times. Prior work
also formulated log parsing as a clustering problem and
used various approaches to measure the similarity/distance
between two log messages (e.g., LKE [8], LogSig [55], Log-
Mine [56], SHISO [57], and LenMa [58]). For example, LKE [8]
clusters log messages into event groups based on the edit
distance, weighted by token positions, between each pair of
log messages.

AEL [23] used heuristics based on domain knowledge
to recognize dynamic components (e.g., tokens following
the “=” symbol) in log messages, then group log messages
into the same event group if they have the same static
and dynamic components. Spell [59] parses log messages
based on a longest common subsequence algorithm, built
on the observation that the longest common subsequence of
two log messages are likely to be the static components.
IPLoM [60] iteratively partitions log messages into finer
groups, firstly by the number of tokens, then by the position
of tokens, and lastly by the association between token pairs.
Drain [22] uses a fixed-depth tree to represent the hierar-
chical relationship between log messages. Each layer of the
tree defines a rule for grouping log messages (e.g., log mes-
sage length, preceding tokens, and token similarity). Zhu
et al. [21] evaluated the performance of such data mining-

4

17/06/09 20:10:46 INFO rdd.HadoopRDD: Input split: hdfs://hostname/2kSOSP.log:21876+7292
17/06/09 20:10:46 INFO rdd.HadoopRDD: Input split: hdfs://hostname/2kSOSP.log:14584+7292
17/06/09 20:10:46 INFO rdd.HadoopRDD: Input split: hdfs://hostname/2kSOSP.log:0+7292
17/06/09 20:10:46 INFO rdd.HadoopRDD: Input split: hdfs://hostname/2kSOSP.log:7292+7292
17/06/09 20:10:46 INFO rdd.HadoopRDD: Input split: hdfs://hostname/2kSOSP.log:29168+7292
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_20 locally
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_22 locally
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_23 locally
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_24 locally

Input split: hdfs://hostname/2kSOSP.log:21876+7292
Input split: hdfs://hostname/2kSOSP.log:14584+7292
Input split: hdfs://hostname/2kSOSP.log:0+7292
Input split: hdfs://hostname/2kSOSP.log:7292+7292
Input split: hdfs://hostname/2kSOSP.log:29168+7292
Found block rdd_42_20 locally
Found block rdd_42_22 locally
Found block rdd_42_23 locally
Found block rdd_42_24 locally

3-grams # appearance
Input->split:->hdfs://hostname/2kSOSP.log:21876+7292 1
split:->hdfs://hostname/2kSOSP.log:21876+7292->Input 1
hdfs://hostname/2kSOSP.log:21876+7292->Input->split: 1
... 1
split:->hdfs://hostname/2kSOSP.log:29168+7292->Found 1
hdfs://hostname/2kSOSP.log:29168+7292->Found->block 1
Found->block->rdd_42_20 1
block->rdd_42_20->locally 1
rdd_42_20->locally->Found 1
locally->Found->block 3
... 1

2-grams # appearance
Input->split: 5
split:->hdfs://hostname/2kSOSP.log:21876+7292 1
hdfs://hostname/2kSOSP.log:21876+7292->Input 1
... 1
hdfs://hostname/2kSOSP.log:29168+7292->Found 1
Found->block 4
block->rdd_42_20 1
rdd_42_20->locally 1
locally->Found 4
... 1

Fig. 2. A running example of generating n-gram dictionary.

based parsers and they found that Drain [22] achieved the
best performance in terms of accuracy and efficiency. Our n-
gram-based log parser achieves a much faster parsing speed
and a comparable parsing accuracy compared to Drain.

3.2 Applications of Log Parsing

Log parsing is usually a prerequisite for various log analysis
tasks, such as anomaly detection [5], [6], [7], [8], [9], failure
diagnosis [10], [11], performance diagnosis and improve-
ment [12], [13], and system comprehension [10], [14]. For
example, Fu et al. [8] first parse the raw log messages to
extract log events. Based on the extracted event sequences,
they then learn a Finite State Automaton (FSA) to represent
the normal work flow, which is in turn used to detect
anomalies in new log files. Prior work [20] shows that
the accuracy of log parsing is critical to the success of log
analysis tasks. Besides, as the size of log files grows fast [1],
[2], [27], a highly efficient log parser is important to ensure
that the log analysis tasks can be performed in a timely
manner. In this work, we propose a log parsing approach
that is not only accurate but also efficient, which can benefit
future log analysis research and practices.

4 APPROACH

In this section, we present our automated log parsing ap-
proach that is designed using n-gram dictionaries.

4.1 Overview of Logram

Our approach consists of two steps: 1) generating n-gram
dictionaries and 2) parsing log messages using n-gram
dictionaries. In particular, the first step generates n-grams
from log messages and calculate the number of appearances
of each n-gram. In the second step, each log message is
transformed into n-grams. By checking the number of ap-
pearance of each n-gram, we can automatically parse the
log message into static text and dynamic variables. Figure 2
and 3 show the overview of our approach with a running
example.

4.2 Generating an n-gram dictionary

4.2.1 Pre-processing logs

In this step, we extract a list of tokens (i.e., separated
words) from each log message. First of all, we extract the
content of a log message by using a pre-defined regular
expression. For example, a log message often starts with
the time stamp , the log level, and the logger name. Since
these parts of logs often follow a common format in the
same software system (specified by the configuration of
logging libraries), we can directly parse and obtain these
information. For example, a log message from the running
example in Figure 2, i.e., “17/06/09 20:11:11 INFO stor-
age.BlockManager: Found block rdd 42 24 locally”, “17/06/09
20:11:11” is automatically identified as time stamp, “INFO”
is identified as the log level and “Storage.BlockManager:” is
identified as the logger name; while the content of the log
is “Found block rdd 42 24 locally”. After getting the content
of each log message, we split the log message into tokens.
The log message is split with white-space characters (e.g.,
space and tab). Finally, there exist common formats for some
special dynamic information in logs, such as IP address and
email address.

In order to have a unbiased comparison with other
existing log parsers in the LogPai benchmark (cf. Section 5),
we leverage the openly defined regular expressions that
are available from the LogPai benchmark to identify such
dynamic information.

4.2.2 Generating an n-gram dictionary

We use the log tokens extracted from each log message
to create an n-gram dictionary. Naively, for a log message
with m tokens, one may create an n-gram where n ≤ m.
However, when m has the same value as n, the phrases
with n-grams are exactly all log messages. Such a dictionary
is not useful since almost all log messages have tokens that
are generated from dynamic variables. On the other hand,
a small value of n may increase the chance that the text
generated by a dynamic variable has multiple appearances.
A prior study [61] finds that the repetitiveness of an n-
gram in logs starts to become stable when n ≤ 3. There-
fore, in our approach, we generate the dictionary using

5

2-grams # appearance
hdfs://hostname/2kSOSP.log:29168+7292->Found 1
Found->block 4
block->rdd_42_20 1
rdd_42_20->locally 1
locally->Found 4

3-grams # appearance
split:->hdfs://hostname/2kSOSP.log:29168+7292->Found 1
hdfs://hostname/2kSOSP.log:29168+7292->Found->block 1
Found->block->rdd_42_20 1
block->rdd_42_20->locally 1
rdd_42_20->locally->Found 1
locally->Found->block 3

Input split: hdfs://hostname/2kSOSP.log:29168+7292
Found block rdd_42_20 locally
Found block rdd_42_22 locally

block->rdd_42_20
rdd_42_20->locally

Fig. 3. A running example of parsing one log message using the dictionary. The n-gram dictionary is abbreviated using “...” to avoid repetitive similar
items.

phrases with two or three words (i.e., 2-grams and 3-grams).
Naively, one may generate the dictionary by processing
every single log message independently. However, such a
naive approach has two limitations: 1) some log events may
span across multiple lines and 2) the beginning and the
ending tokens of a log message may not reside in the same
number of n-grams like other tokens (c.f. our parsing step
“Identifying dynamically and statically generated tokens”
in Section 4.3.2), leading to potential bias of the tokens
being considered as dynamic variables. Therefore, at the
beginning and the ending tokens of a log message, we also
include the end of the prior log message and the beginning
of the following log message, respectively, to create n-grams.
For example, if our highest n in the n-gram is 3, we would
check two more tokens at the end of the prior log message
and the beginning of the following log message. In addition,
we calculate the number of occurrences of each n-gram in
our dictionary.

As shown in a running example in Figure 2, a dictionary
from the nine lines of logs is generated consisting of 3-grams
and 2-grams. Only one 3-grams, “locally->Found->block”,
in the example have multiple appearance. Three 2-grams,
“Found->block”, “Input->split:” and “locally->Found”, have
four to five appearances. In particular, there exists n-grams,
such as the 3-gram “locally->Found->block”, that are gen-
erated by combining the end and beginning of two log
messages. Without such combination, tokens like “input”,
“Found” and “locally” will have lower appearance in the
dictionary.

4.3 Parsing log messages using an n-gram dictionary

In this step of our approach, we parse log messages using
the dictionary that is generated from the last step.

4.3.1 Identifying n-grams that may contain dynamic vari-
ables

Similar to the last step, each log message is transformed into
n-grams. For each n-gram from the log message, we check
its number of appearances in the dictionary. If the number
of occurrence of a n-gram is smaller than a automatically
determined threshold (see Section 4.3.3), we consider that
the n-gram may contain a token that is generated from
dynamic variables. In order to scope down to identify
the dynamically generated tokens, after collecting all low-
appearing n-grams, we transform each of these n-grams

into n − 1-grams, and check the number of appearance of
each n − 1-gram. We recursively apply this step until we
have a list of low-appearing 2-grams, where each of them
may contain one or two tokens generated from dynamic
variables. For our running example shown in Figure 3, we
first transform the log message into two 3-grams, while
both only have one appearance in the dictionary. Hence,
both 3-grams may contain dynamic variables. Afterwards,
we transform the 3-grams into three 2-grams. One of the
2-grams (“Found->block”) has four appearances; while the
other two 2-grams (“block->rdd 42 20” and “rdd 42 20-
>locally”) only have one appearance. Therefore, we keep
the two 2-grams to identify the dynamic variables.

4.3.2 Identifying dynamically and statically generated to-
kens
From the last step, we obtain a list of low-appearing 2-
grams. However, not all tokens in the 2-grams are dynamic
variables. There may be 2-grams that have only one dy-
namically generated token while the other token is static
text. In such cases, the token from the dynamic variable
must reside in two low-appearing 2-grams (i.e., one ends
with the dynamic variable and one starts with the dynamic
variable). For all other tokens, including the ones that are
now selected in either this step or the last step, we consider
them as generated from static text.

However, a special case of this step is the beginning
and ending tokens of each log message (c.f. the previous
step “Generating an n-gram dictionary” in Section 4.2.2).
Each of these tokens would only appear in smaller number
of n-grams. For example, the first token of a log message
would only appear in one 2-gram. If these tokens of the log
message are from static text, they may be under-counted to
be considered as potential dynamic variables. If these tokens
of the log message are dynamically generated, they would
never appear in two 2-grams to be identified as dynamic
variable. To address this issue, for the beginning and ending
tokens of each log message, we generate additional n-
grams by considering the ending tokens from the prior log
message; and for the ending tokens of each log message, we
generate additional n-grams by considering the beginning
tokens from the next log message.

For our running example shown in Figure 3, “rdd 42 20”
is generated from dynamic variable and it reside in two 2-
grams (“block->rdd 42 20” and “rdd 42 20->locally”. There-
fore, we can identify token “rdd 42 20” as a dynamic vari-

6

able, while “block” and “locally” are static text. On the other
hand, since “hdfs://hostname/2kSOSP.log
:29168+7292->Found” only appear without overlapping to-
kens with others, we ignore this 2-gram for identifying
dynamic variables.

4.3.3 Automatically determining the threshold of n-gram
occurrences

The above identification of dynamically and statically gen-
erated tokens depends on a threshold of the occurrences of
n-grams. In order to save practitioners’ effort for manually
searching the threshold, we use an automated approach
to estimate the appropriate threshold. Our intuition is that
most of the static n-grams would have more occurrences
while the dynamic n-grams would have fewer occurrences.
Therefore, there may exist a gap between the occurrences
of the static n-grams and the occurrences of the dynamic n-
grams, i.e., such a gap helps us identify a proper threshold
automatically.

In particular, first, we measure the occurrences of each
n-gram. Then, for each occurrence value, we calculate the
number of n-grams that have the exact occurrence value.
We use a two-dimensional coordinate to represent the oc-
currence values (i.e., the X values) and the number of n-
grams that have the exact occurrence values (i.e., the Y
values). Then we use the loess function [62] to smooth
the Y values and calculate the derivative of the Y values
against the X values. After getting the derivatives, we use
Ckmeans.1d.dp [63], a one-dimensional clustering method,
to find a break point to separate the derivatives into two
groups, i.e., a group for static n-grams and a group for dy-
namic n-grams. The breaking point would be automatically
determined as the threshold.

4.3.4 Generating log templates

Finally, we generate log templates based on the tokens that
are identified as dynamically or statically generated. We
follow the same log template format as the LogPai bench-
mark [21], in order to assist in further research. For our
running example shown in Figure 3, our approach parses
the log message “Found block rdd 42 20 locally” into “Found
block $1 locally, $1=rdd 42 20”.

5 EVALUATION

In this section, we present the evaluation of our approach.
We evaluate our approach by parsing logs from the LogPai
benchmark [21]. We compare Logram with five automated
log parsing approaches, including Drain [22], Spell [59],
AEL [23], Lenma [58] and IPLoM [60] that are from prior re-
search and all have been included in the LogPai benchmark.
We choose these five approaches since a prior study [21]
finds that these approaches have the highest accuracy and
efficiency among all of the evaluated log parsers. In partic-
ular, we evaluate our approach on four aspects:
Accuracy. The accuracy of a log parser measures whether it
can correctly identify the static text and dynamic variables
in log messages, in order to match log messages with the
correct log events. A prior study [20] demonstrates the im-
portance of high accuracy of log parsing, and low accuracy

of log parsing can cause incorrect results (such as false
positives) in log analysis.
Efficiency. Large software systems often generate a large
amount of logs during run time [64]. Since log parsing is
typically the first step of analyzing logs, low efficiency in
log parsing may introduce additional costs to practitioners
when doing log analysis and cause delays to uncover im-
portant knowledge from logs.
Ease of stabilisation. Log parsers typically learn knowledge
from existing logs in order to determine the static and
dynamic components in a log message. The more logs seen,
the better results a log parser can provide. It is desired for a
log parser to have a stable result with learning knowledge
from a small amount of existing logs, such that parsing the
log can be done in a real-time manner without the need of
updating knowledge while parsing logs.
Scalability. Due to the large amounts of log data, one may
consider leveraging parallel processing frameworks, such
as Hadoop and Spark, to support the parsing of logs [65].
However, if the approach of a log parser is difficult to scale,
it may not be adopted in practice.

5.1 Subject log data
We use the data set from the LogPai benchmark [21]. The
data sets and their descriptions are presented in Table 2.
The benchmark includes logs produced by both open source
and industrial systems from various domains. These logs are
typically used as subject data for prior log analysis research,
such as system anomaly detection [66], [67], system issue
diagnosis [68] and system understanding [69]. To assist
in automatically calculating accuracy on log parsing (c.f.,
Section5.2), each data set in the benchmark includes a subset
of 2,000 log messages that are already manually labeled with
log event. Such manually labeled data is used in evaluating
the accuracy of our log parser. For the other three aspects of
the evaluation, we use the entire logs of each log data set.

TABLE 2
The subject log data used in our evaluation.

Platform Description Size
Android Android framework log 183.37MB
Apache Apache server error log 4.90MB

BGL Blue Gene/L supercomputer log 708.76MB
Hadoop Hadoop mapreduce job log 48.61MB
HDFS Hadoop distributed file system log 1.47GB

HealthApp Health app log 22.44MB
HPC High performance cluster log 32.00MB
Linux Linux system log 2.25MB
Mac Mac OS log 16.09MB

OpenSSH OpenSSH server log 70.02MB
OpenStack OpenStack software log 58.61MB
Proxifier Proxifier software log 2.42MB

Spark Spark job log 2.75GB
Thunderbird Thunderbird supercomputer log 29.60GB

Windows Windows event log 26.09GB
Zookeeper ZooKeeper service log 9.95MB

5.2 Accuracy
In this subsection, we present the evaluation results on the
accuracy of Logram.

7

Prior approach by Zhu et al. [21] defines an accuracy
metric as the ratio of correctly parsed log messages over
the total number of log messages. In order to calculate the
parsing accuracy, a log event template is generated for each
log message and log messages with the same template will
be grouped together. If all the log messages that are grouped
together indeed belong to the same log template, and all the
log messages that indeed belong to this log template are in
this group, the log messages are considered parsed correctly.
However, the grouping accuracy has a limitation that it
only determines whether the logs from the same events
are grouped together; while the static text and dynamic
variables in the logs may not be correctly identified.

On the other hand, correctly identifying the static text
and dynamic variables are indeed important for various log
analysis. For example, Xu et al. [5] consider the variation
of the dynamic variables to detect run-time anomalies.
Therefore, we manually check the parsing results of each log
message and determine whether the static text and dynamic
variables are correctly parsed, i.e., parsing accuracy. In other
words, a log message is considered correctly parsed if and
only if all its static text and dynamic variables are correctly
identified.

TABLE 3
Accuracy of Logram compared with other log parsers. The results that
are the highest among the parsers or higher than 0.9 are highlighted in

bold.

Name Drain AEL Lenma Spell IPLoM Logram
Android 0.933 0.867 0.976 0.933 0.716 0.848
Apache 0.693 0.693 0.693 0.693 0.693 0.699

BGL 0.822 0.818 0.577 0.639 0.792 0.740
Hadoop 0.545 0.539 0.535 0.192 0.373 0.965
HDFS 0.999 0.999 0.998 0.999 0.998 0.981

HealthApp 0.609 0.615 0.141 0.602 0.651 0.969
HPC 0.929 0.990 0.915 0.694 0.979 0.959
Linux 0.250 0.241 0.251 0.131 0.235 0.460
Mac 0.515 0.579 0.551 0.434 0.503 0.666

openSSH 0.507 0.247 0.522 0.507 0.508 0.847
Openstack 0.538 0.718 0.759 0.592 0.697 0.545
Proxifier 0.973 0.968 0.955 0.785 0.975 0.951

Spark 0.902 0.965 0.943 0.8645 0.883 0.903
Thunderbird 0.803 0.782 0.814 0.773 0.505 0.761

Windows 0.983 0.983 0.277 0.978 0.554 0.957
Zookeeper 0.962 0.922 0.842 0.955 0.967 0.955

Average 0.748 0.745 0.672 0.669 0.689 0.825

Results

Logram can achieve the best or over 0.9 accuracy in parsing
12 out of the 16 log datasets. Table 3 shows the accuracy on
16 datasets. Following the prior log-parsing benchmark [21],
we highlight the accuracy results that are higher than 0.9,
and highlight the highest accuracy in the same manner.
We find that Logram has a higher or comparable accuracy
compared to all other existing log parsers. On average,
our approach has an accuracy of 0.825, while the second
highest accurate approach, i.e., Drain, only has an average
accuracy of 0.748. In eight log data sets, Logram has an
parsing accuracy higher than 0.9 and in the four out of
the rest eight datasets, Logram has the highest parsing accu-
racy among all parsers. Since Logram is designed based on
processing every token in a log instead of comparing each

line of logs with others, Logram exceeds other approaches
in terms of parsing accuracy. In other words, even though
prior approaches may often correctly group log messages
together, the static text and dynamic variables from these
log messages may not be correctly identified. Take the log
parser, Spell as an example. When parsing Hadoop logs the
parsing accuracy is only 0.192. By manually checking the
results, we find that some groups of logs share the string
in host names that are generated from dynamic variables.
For example, a log message “Address change detected. Old:
msra-sa-41/10.190.173.170:9000 New: msra-sa-41:9000” in the
benchmark is parsed into a log template “Address change
detected. Old msra-sa-41/<*> <*> New msra-sa-41 <*>”. We
can see that the string “msra-sa” in the host names is not
correctly detected as dynamic variables. However, since all
the log messages in this category have such string in the
host names, even though Spell cannot identify the dynamic
variables, the log messages are still grouped together.

Finally, by manually studying the incorrectly parsed log
messages by Logram, we identify the following three reasons
of incorrectly parsed log messages:

1) Mis-split tokens. Some log messages contains spe-
cial tokens such as + and { to separate two to-
kens. In addition, sometimes static text and dynamic
variables are printed into one single token without
any separator (like white space). It is difficult for a
token-based approach to address such cases.

2) Pre-processing errors. The pre-processing of com-
mon formats may introduce mistakes to the log
parsing. For example, text in a common format (e.g.,
text of date) may be part of a long dynamic variable
(a task id with its date as part of it). However, the
pre-processing step extracts only the texts in the
common format, causing the rest of the text in the
dynamic variable parsed into a wrong format.

3) Frequently appearing dynamic variables. Some
dynamic variables contain contextual information
of system environment and can appear frequently
in logs. For example, in Apache logs, the path
to a property file often appear in log messages
such as: “workerEnv.init() ok /etc/httpd/conf/work-
ers2.properties”. Although the path is a dynamic
variable, in fact, the value of the dynamic variable
never changes in the logs, preventing Logram from
identifying it as a dynamic variable. On the other
hand, such an issue is not challenging to address in
practice. Practitioners can include such contextual
information as part of pre-processing.

5.3 Efficiency
To measure the efficiency of a log parser, similar to prior
research [21], [70], we record the elapsed time to finish
the entire end-to-end parsing process on different log data
with varying log sizes. We randomly extract data chunks of
different sizes, i.e., 300KB, 1MB, 10MB, 100MB, 500MB and
1GB. Specifically, we choose to evaluate the efficiency from
the Android, BGL, HDFS, Windows and Spark datasets, due
to their proper sizes for such evaluation. From each log
dataset, we randomly pick a point in the file and select a
data chunk of the given size (e.g., 1MB or 10MB). We ensure

8

Size (MB)

R
un

ni
ng

 T
im

e
(S

)

0.3 1.0 10.0 100.0 500.0

0.
5

5.
0

50
.0

10
00

.0

Logram Drain Spell AEL IPLoM Lenma

(a) Android
Size (MB)

R
un

ni
ng

 T
im

e
(S

)

0.3 1.0 10.0 100.0 500.0

0.
5

5.
0

50
.0

10
00

.0

Logram Drain Spell AEL IPLoM Lenma

(b) BGL
Size (MB)

R
un

ni
ng

 T
im

e
(S

)

0.3 1.0 10.0 100.0 500.0

0.
5

5.
0

50
.0

10
00

.0

Logram Drain Spell AEL IPLoM Lenma

(c) HDFS
Size (MB)

R
un

ni
ng

 T
im

e
(S

)

0.3 1.0 10.0 100.0 500.0

0.
5

5.
0

50
.0

10
00

.0

Logram Drain Spell AEL IPLoM Lenma

(d) Windows
Size (MB)

R
un

ni
ng

 T
im

e
(S

)

0.3 1.0 10.0 100.0 500.0

0.
5

5.
0

50
.0

10
00

.0

Logram Drain Spell AEL IPLoM Lenma

(e) Spark

Fig. 4. The elapsed time of parsing five different log data with various sizes. The x and y axes are in log scale.

that the size from the randomly picked point to the end of
the file is not smaller than the given data size to be extracted.
We measure the elapsed time for the log parsers on a
desktop computer with Inter Core i5-2400 CPU 3.10GHz
CPU, 8GB memory and 7,200rpm SATA hard drive running
Ubuntu 18.04.2 We compare Logram with three other parsers,
i.e., Drain, Spell and AEL, that all have high accuracy in our
evaluation and more importantly, have the highest efficiency
on log parsing based on the prior benchmark study [21].

Results

Logram outperforms the fastest state-of-the-art log parsers
in efficiency by 1.8 to 5.1 times. Figure 4 shows that
time needed to parse five different log data with various
sizes using Logram and five other log parsers. We note that
the for Logram, the time to construct the dictionaries is
already included in our end-to-end elapsed time, in order
to fairly compare log parsing approaches. We find that
Logram drastically outperform all other existing parsers. In
particular, Logram is 1.8 to 5.1 times faster than the second
fastest approaches when parsing the five log datasets along
different sizes.

The efficiency of Logram is stable when increasing the
sizes of logs. From our results, the efficiency of Logram is
not observed to be negatively impacted when the size of
logs increases. For example, the running time only increases
by a factor of 773 to 1039 when we increase the sizes of
logs from 1 MB to 1GB (i.e., by a factor of 1,000). Logram
keeps a dictionary that is built from the n-grams in log
messages. With larger size of logs, the size of dictionary may
drastically increasing. However, our results indicate that up
to the size of 1GB of the studied logs, the efficiency keeps
stable. We consider the reason is that when paring a new
log message using the dictionary, the look-up time for an
n-gram in our dictionary is consistent, despite the size of
the dictionary. Hence even with larger logs, the size of the
dictionary do not drastically change.

On the other hand, the efficiency of other log parsers
may deteriorate with larger logs. In particular, Lenma has
the lowest efficiency among all studied log parsers. Lenma
cannot finish finish parsing any 500MB and 1GB log dataset
within hours. In addition, Spell would crash on Windows
and Spark log files with 1G size due to memory issues. AEL
shows a lower efficiency when parsing large Windows and
BGL logs. Finally, Drain, although not as efficient as Logram,
does not have a lower efficiency when parsing larger sizes
of logs, which agrees with the finding in prior research on
the log parsing benchmark [21].

5.4 Ease of stabilisation

We evaluate the ease of stabilisation by running Logram
based on the dictionary from a subset of the logs. In other
words, we would like to answer the following question:
Can we generate a dictionary from a small size of log data
and correctly parse the rest of the logs without updating
the dictionary?

If so, in practice, one may choose to generate the dictio-
nary with a small amount of logs without the need of always
updating the dictionary while parsing logs, in order to
achieve even higher efficiency and scalability. In particular,
for each subject log data set, we first build the dictionary
based on the first 5% of the entire logs. Then we use the dic-
tionary to parse the entire log data set. Due to the limitation
of grouping accuracy found from the last subsection and
the limitation of the high human effort needed to manually
calculate the parsing accuracy, we do not calculate any
accuracy for the parsing results. Instead, we automatically
measure the agreement between the parsing result using the
dictionary generated from the first 5% lines of logs and the
entire logs. For each log message, we only consider the two
parsing results agree to each other if they are exactly the
same. We then gradually increase the size of logs to build
a dictionary by appending another 5% of logs. We keep
calculating the agreement until the agreement is 100%. As
running the experiments to repetitively parse the logs takes
very long time, we evaluated the ease of stabilisation on 14
out of the 16 log datasets and we excluded the two largest
log datasets (i.e., the Windows and Thunderbird logs).

Results

Logram’s parsing results are stable with a dictionary
generated from a small portion of log data. Figure 5 shows
agreement ratio between parsing results from using partial
log data to generate an n-gram dictionary and using all log
data. The red line in the figures indicates that the agreement
ratio is over 90%. In nine out of 14 studied log data sets, our
log parser can generate an n-gram dictionary from less than
30% of the entire log data, while having over 90% of the log
parsing results the same as using all the logs to generate
a dictionary. In particular, one of the large log dataset
from Spark gains 95.5% agreement ratio with only first 5%
of the log data. On the one hand, our results show that
the log data is indeed repetitive. Such results demonstrate
that practitioners can consider leveraging the two parts of
Logram in separate, i.e., generating the n-gram dictionary
(i.e., Figure 2) may not be needed for every log message,
while the parsing of each log message (i.e., Figure 3) can
depend on a dictionary generated from existing logs.

9

We manually check the other five log datasets and we
find that in all these data sets, some parts of the log datasets
have drastically different log events than others. For exam-
ple, between the first 30% and 35% of the log data in Linux,
a large number of log messages are associated with new
events for Bluetooth connections and memory issues. Such
events do not exist in the logs in the beginning of the dataset.
The unseen logs causes parsing results using dictionary
from the beginning of the log data to be less agreed with
the parsing results using the the entire logs. However, it
is interesting to see that after our dictionary learns the n-
grams in that period, the log parsing results become stable.
Therefore, in practice, developers may need to monitor the
parsing results to indicate of the need of updating the n-
gram dictionary from logs.

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

(a) Android

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

(b) Apache

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

(c) BGL

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

(d) Hadoop

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

(e) HDFS

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

(f) HealthApp

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

(g) HPC

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

(h) Linux

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

(i) Mac

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

(j) OpenSSH

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

(k) OpenStack

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

(l) Proxifier

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

(m) Spark

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

(n) Zookeeper

Fig. 5. The agreement ratio of log parsing results with having a part of
log to generate dictionary and using all logs to generate dictionary. The
red vertical lines indicate that the agreement ratios reach 90%.

5.5 Scalability
In order to achieve a high-scalability of log parsing, we
migrate Logram to Spark. Spark [71] is an open-source dis-
tributed data processing engine, with high-level API in
several program languages such as Java, Scala, Python, and
R. Spark has been adopted widely in practice for analyzing
large-scale data including log analysis. We migrate each
step of Logram, i.e., 1) generating n-gram model based
dictionaries and 2) parsing log messages using dictionaries,
separately to Spark. In particular, the first step of generat-
ing dictionary is written similar as a typically wordcount

example program, where each item in the dictionary is a
n-gram from a log message. In addition, the second step of
parsing log messages is trivial to run in parallel where each
log message is parsed independently4.

We evaluate the scalability of Logram on a clustering with
one master node and five worker nodes running Spark 2.43.
Each node is deployed on a desktop machine with the same
specifications as used in our efficiency evaluation (cf. Sec-
tion 5.3). In total, our cluster has four cores for each worker,
leading to a total of 20 cores for processing logs. We first
store the log data into HDFS that are deployed on the cluster
with a default option of three replications. We then run the
Spark based Logram on the Spark cluster with one worker
(four cores) to five workers (20 cores) enabled. We evaluate
the scalability on the same log datasets used for evaluating
the efficiency, except for Android due to its relatively small
size. We measure the throughput for parsing each log data
to assess scalability. Due to the possible noise in a local
network environment and the indeterministic nature of the
parallel processing framework, we independently repeat
each run 10 times when measuring throughput, i.e., number
of log messages parsed per second.

20000

30000

40000

50000

4 8 12 16 20
Number of Cores

T
hr

ou
gh

pu
t(

lo

g
m

es
sa

ge
s

pe
r

se
co

nd
)

(a) BGL

1e+05

2e+05

3e+05

4e+05

4 8 12 16 20
Number of Cores

T
hr

ou
gh

pu
t(

lo

g
m

es
sa

ge
s

pe
r

se
co

nd
)

(b) HDFS

1e+05

2e+05

3e+05

4 8 12 16 20
Number of Cores

T
hr

ou
gh

pu
t(

lo

g
m

es
sa

ge
s

pe
r

se
co

nd
)

(c) Windows

100000

150000

200000

4 8 12 16 20
Number of Cores

T
hr

ou
gh

pu
t(

lo

g
m

es
sa

ge
s

pe
r

se
co

nd
)

(d) Spark

Fig. 6. Box plots of running time of Logram with different number of
cores.

Results
Logram scales out efficiently with the number of Spark
nodes without sacrificing parsing accuracy. Figure 6 uses
boxplots to present the throughput (i.e., number of log
messages parsed per second) of Logram when we increase
the number of nodes from one (i.e., four cores) to five (i.e., 20
cores).As shown in Figure 6, the throughput increases nearly
linearly, achieving up to 5.7 times speedup as we increase
the number of nodes by a factor of five. In addition, Figure 6
shows that the throughput of Logram has low variance when
we repeat the parsing of each log dataset 10 times. We would
like to note that the parsing accuracy always keeps the same
as we increase the number of nodes. When the volume of
the parsed logs is very large (e.g., the Windows log data),
Logram allows practitioners to increase the speed of log

4. Due to the limited space, the detail of our implementation of the
Spark based Logram is available in our replication package.

10

parsing efficiently by adding more nodes without sacrificing
any accuracy.
Logram achieves near-linear scalability for some logs but
less scalabiltiy on other logs. A linear scalability means the
throughput increases K times when we increase the number
of nodes by a factor of K , which is usually the best one
usually expects to achieve when scaling an application [72],
[73]. The throughput of Logram when parsing the HDFS
and Windows logs increases by 5.7 to 4.8 times when we
increase the number of nodes from one to five, indicating a
near-linear or even super-linear scalability. However, Logram
achieves less scalability when parsing the BGL and Spark
logs. Specifically, the throughput of Logram when parsing
the BGL and Spark logs increases 3.3 and 2.7 times when
we increase the number of nodes by a factor of five.

6 MIGRATING Logram TO AN ONLINE PARSER

Logram parses logs in two steps: 1) generating n-gram dic-
tionaries from logs, and 2) using the n-gram dictionaries
to parse the logs line by line. Section 4 describes an offline
implementation of Logram, in which the step for generating
the n-gram dictionaries is completely done before the step of
parsing logs using the n-gram dictionaries (even when we
evaluate the ease of stabilisation in Section 5.4). Therefore,
the offline implementation requires all the log data used
to generate the n-gram dictionaries to be available before
parsing. On the contrary, an online parser parses logs line
by line, without an offline training step. An online parser is
especially helpful in a log-streaming scenario, i.e., to parse
incoming logs in a real-time manner.

Logram naturally supports online parsing, as the n-gram
dictionaries can be updated efficiently when more logs are
continuously added (e.g., in log streaming scenarios). In
our online implementation of Logram, we feed logs in a
streaming manner (i.e., feeding one log message each time).
When reading the first log message, the dictionary is empty
(i.e., all the n-grams have zero occurrence), so Logram parses
all the tokens as dynamic variables. Logram then creates a
dictionary using the n-grams extracted from the first log
message. After that, when reading each log message that
follows, Logram parses the log message using the existing n-
gram dictionary. Then, Logram updates the existing n-gram
dictionary on-the-fly using the tokens in the log message. In
this way, Logram updates the n-gram dictionary and parses
incoming logs continuously until all the logs are processed.
Similar to Section 5.4, we measure the ratio of agreement
between the parsing results of the online implementation
and the offline implementation. For each log message, we
only consider the two parsing results agreeing to each other
if they are exactly the same. We also measure the efficiency
of Logram when parsing logs in an online manner relative to
the offline mode. Specifically, we measure the efficiency dif-

ference ratio, which is calculated as
Tonline−Toffline

Toffline
where

Tonline and Toffline are the time taken by the online Logram
and offline Logram to parse the same log data, respectively.

Results
The online mode of Logram achieves nearly the same
parsing results as the offline Logram. Table 4 compares

TABLE 4
Comparing the parsing results of Logram between the online and

offline modes.
Subject Efficiency Difference Ratio Agreement with

log dataset 300k 1M 10M 100M 500M 1G offline results
HDFS 5.9% 0.0% -2.4% -1.5% -3.0% -0.8% 100.0%
Spark 0.0% -0.3% -0.6% 0.3% -3.0% -1.1% 99.9%

Windows 0.0% 0.0% 1.1% -0.0% -0.2% 0.6% 96.8%
BGL 7.1% 6.7% 7.2% 5.9% 7.4% N/A 98.7%

Android 5.9% 8.9% 6.6% 6.5% N/A N/A 95.0%
Note: a positive value means that Logram is loswer with online parsing than

offline.

the parsing results of Logram between the online and offline
modes. We considered the same five large log datasets
as the ones used for evaluating the efficiency of Logram
(cf. Section 5.3). The agreement ratio between the online
and offline modes of Logram range from 95.0% to 100.0%,
indicating that the parsing results of the online Logram are
almost identical to the parsing results of the offline Logram.
The online mode of Logram reaches a parsing efficiency
similar to the offline Logram. Table 4 also compares the
efficiency between the online and offlineLogram, for the
five considered log datasets with sizes varying from 300KB
to 1GB. A positive value of the efficiency difference ratio
indicates the online mode is slower (i.e., taking longer time),
while a negative value indicates the online mode is even
faster. Table 4 shows that the efficiency difference ratio
ranges from -3.0% to 8.9%. Overall, the online mode of
Logram is as efficient as the offline model. In some cases,
the online mode is even faster, because the online mode
parses logs with smaller incomplete dictionaries – thus
being queried faster – compared to the full dictionaries used
in the offline mode.

In summary, as the online mode of Logram achieves
similar parsing results and efficiency compared to the offline
mode, Logram can be effectively used in an online parsing
scenario. For example, Logram can be used to parse stream
logs in a real-time manner.

7 THREATS TO VALIDITY

In this section, we discuss the threat to the validity of our
paper.
External validity. In this work, we evaluate Logram on 16 log
datasets from an existing benchmark [21]. Logram achieves
a parsing accuracy higher than 0.9 on about half of the
datasets. We cannot ensure that Logram can achieve high
accuracy on other log datasets not tested in this work.
Nevertheless, through an evaluation on logs produced by
16 different systems from different domains (e.g., big data
applications and operation systems), we show that Logram
achieves similar accuracy as the best existing log parsing
approaches with a much faster speed. Future work can
improve our approach to achieve high accuracy on more
types of log data.
Internal validity. Logram leverages n-grams to parse log
data. n-grams are typically used to model natural languages
or source code that are written by humans. However, logs
are different from natural languages or source code as
logs are produced by machines and logs contain static
and dynamic information. Nevertheless, we show that n-
grams can help us effectively distinguish static and dynamic
information in log parsing. Future work may use n-grams to

11

model log messages in other log-related analysis. We use an
automated approach to determine the threshold for iden-
tifying statically and dynamically generated tokens. Such
automatically generated thresholds may not be optimal, i.e.,
by further optimizing the thresholds, our approach may
achieve even higher accuracy; while our currently reported
accuracy may not be the highest that our approach can
achieve.
Construct validity. In the evaluation of this work, we com-
pare Logram with six other log parsing approaches. There
exists other log parsing approaches (e.g., LKE [8]) that are
not evaluated in this work. We only consider five existing
approaches as we need to manually verify the parsing
accuracy of each approach which takes significant human
efforts. Besides, the purpose of the work is not to provide
a benchmark, but rather to propose and evaluate an inno-
vative and promising log parsing approach. Nevertheless,
we compare Logram with the best-performing log parsing
approaches evaluated in a recent benchmark [21]. Our re-
sults show that Logram achieves better parsing accuracy and
much faster parsing speed compared to existing state-of-the-
art approaches.

8 CONCLUSION

In this work, we propose Logram, an automated log parsing
approach that leverages n-grams dictionaries to parse log
data in an efficient manner. The nature of the n-gram
dictionaries also enables one to construct the dictionaries
in parallel without sacrificing any parsing accuracy and
update the dictionaries online when more logs are added
(e.g., in log streaming scenarios). Through an evaluation of
Logram on 16 public log datasets, we demonstrated that Lo-
gram can achieve high accuracy and efficiency while parsing
logs in a stable and scalable manner. In particular, Logram
outperforms the state-of-the-art log parsing approaches in
efficiency and achieves better parsing accuracy than existing
approaches. Finally, We demonstrate that Logram can effec-
tively supports online parsing when logs are continuously
generated as a stream with similar parsing results and
efficiency to the offline mode. This is the fist work that uses
n-grams in log analysis, which demonstrates a success on
leveraging a mix of the (un)natural characteristics of logs.
Logram can benefit future research and practices that rely on
automated log parsing to achieve their log analysis goals.

REFERENCES

[1] T. Barik, R. DeLine, S. M. Drucker, and D. Fisher, “The bones of
the system: a case study of logging and telemetry at microsoft,”
in Proceedings of the 38th International Conference on Software Engi-
neering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 - Companion
Volume, 2016, pp. 92–101.

[2] J. Cito, P. Leitner, T. Fritz, and H. C. Gall, “The making of cloud
applications: an empirical study on software development for the
cloud,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015, 2015, pp. 393–403.

[3] A. J. Oliner and J. Stearley, “What supercomputers say: A study
of five system logs,” in The 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2007, 25-28
June 2007, Edinburgh, UK, Proceedings, 2007, pp. 575–584.

[4] B. Schroeder and G. A. Gibson, “Disk failures in the real world:
What does an MTTF of 1, 000, 000 hours mean to you?” in 5th
USENIX Conference on File and Storage Technologies, FAST 2007,
February 13-16, 2007, San Jose, CA, USA, 2007, pp. 1–16.

[5] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I. Jordan,
“Detecting large-scale system problems by mining console logs,”
in Proceedings of the 22nd ACM Symposium on Operating Systems
Principles 2009, SOSP 2009, Big Sky, Montana, USA, October 11-14,
2009, 2009, pp. 117–132.

[6] ——, “Online system problem detection by mining patterns of
console logs,” in ICDM 2009, The Ninth IEEE International Confer-
ence on Data Mining, Miami, Florida, USA, 6-9 December 2009, 2009,
pp. 588–597.

[7] J. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants from
console logs for system problem detection,” in 2010 USENIX
Annual Technical Conference, Boston, MA, USA, June 23-25, 2010,
2010.

[8] Q. Fu, J. Lou, Y. Wang, and J. Li, “Execution anomaly detection
in distributed systems through unstructured log analysis,” in
ICDM 2009, The Ninth IEEE International Conference on Data Mining,
Miami, Florida, USA, 6-9 December 2009, 2009, pp. 149–158.

[9] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automatic
identification of load testing problems,” in 24th IEEE International
Conference on Software Maintenance (ICSM 2008), September 28 -
October 4, 2008, Beijing, China, 2008, pp. 307–316.

[10] Q. Fu, J. Lou, Q. Lin, R. Ding, D. Zhang, and T. Xie, “Contextual
analysis of program logs for understanding system behaviors,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13, San Francisco, CA, USA, May 18-19, 2013,
2013, pp. 397–400.

[11] “Automated root cause analysis for spark application
failures - o’reilly media,” https://www.oreilly.com/ideas/
automated-root-cause-analysis-for-spark-application-failures,
(Accessed on 08/13/2019).

[12] K. Nagaraj, C. E. Killian, and J. Neville, “Structured comparative
analysis of systems logs to diagnose performance problems,” in
Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2012, San Jose, CA, USA, April
25-27, 2012, 2012, pp. 353–366.

[13] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The
mystery machine: End-to-end performance analysis of large-scale
internet services,” in 11th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’14, Broomfield, CO, USA, October
6-8, 2014., 2014, pp. 217–231.

[14] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and
P. Martin, “Assisting developers of big data analytics applications
when deploying on hadoop clouds,” in 35th International Confer-
ence on Software Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013, 2013, pp. 402–411.

[15] Y. Dang, Q. Lin, and P. Huang, “Aiops: real-world challenges
and research innovations,” in Proceedings of the 41st International
Conference on Software Engineering: Companion Proceedings, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019., 2019, pp. 4–5.

[16] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J. Lou, C. Li,
Y. Wu, R. Yao, M. Chintalapati, and D. Zhang, “Predicting node
failure in cloud service systems,” in Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, 2018,
pp. 480–490.

[17] S. He, Q. Lin, J. Lou, H. Zhang, M. R. Lyu, and D. Zhang,
“Identifying impactful service system problems via log analysis,”
in Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018, 2018, pp. 60–70.

[18] N. El-Sayed, H. Zhu, and B. Schroeder, “Learning from failure
across multiple clusters: A trace-driven approach to understand-
ing, predicting, and mitigating job terminations,” in 37th IEEE
International Conference on Distributed Computing Systems, ICDCS
2017, Atlanta, GA, USA, June 5-8, 2017, 2017, pp. 1333–1344.

[19] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang, “Capturing
and enhancing in situ system observability for failure detection,”
in 13th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018., 2018,
pp. 1–16.

[20] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study
on log parsing and its use in log mining,” in 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), June 2016, pp. 654–661.

https://www.oreilly.com/ideas/automated-root-cause-analysis-for-spark-application-failures
https://www.oreilly.com/ideas/automated-root-cause-analysis-for-spark-application-failures

12

[21] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu,
“Tools and benchmarks for automated log parsing,” in Proceedings
of the 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada,
May 25-31, 2019, 2019, pp. 121–130.

[22] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log
parsing approach with fixed depth tree,” in 2017 IEEE International
Conference on Web Services, ICWS 2017, Honolulu, HI, USA, June 25-
30, 2017, 2017, pp. 33–40.

[23] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “An au-
tomated approach for abstracting execution logs to execution
events,” Journal of Software Maintenance, vol. 20, no. 4, pp. 249–267,
2008.

[24] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W. Godfrey,
M. Nasser, and P. Flora, “An exploratory study of the evolution of
communicated information about the execution of large software
systems,” Journal of Software: Evolution and Process, vol. 26, no. 1,
pp. 3–26, 2014.

[25] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices in
open-source software,” in 34th International Conference on Software
Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, 2012, pp.
102–112.

[26] B. Chen and Z. M. J. Jiang, “Characterizing logging practices in
java-based open source software projects - a replication study
in apache software foundation,” Empirical Software Engineering,
vol. 22, no. 1, pp. 330–374, 2017.

[27] M. Lemoudden and B. E. Ouahidi, “Managing cloud-generated
logs using big data technologies,” in International Conference on
Wireless Networks and Mobile Communications, WINCOM 2015, Mar-
rakech, Morocco, October 20-23, 2015, 2015, pp. 1–7.

[28] H. Li, T. P. Chen, A. E. Hassan, M. N. Nasser, and P. Flora,
“Adopting autonomic computing capabilities in existing large-
scale systems: an industrial experience report,” in Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2018, Gothenburg, Sweden, May
27 - June 03, 2018, 2018, pp. 1–10.

[29] H. Li, W. Shang, Y. Zou, and A. E. Hassan, “Towards just-in-
time suggestions for log changes,” Empirical Software Engineering,
vol. 22, no. 4, pp. 1831–1865, 2017.

[30] W. B. Cavnar, J. M. Trenkle et al., “N-gram-based text catego-
rization,” in Proceedings of the 3rd annual symposium on document
analysis and information retrieval, SDAIR ’94, vol. 161175. Citeseer,
1994.

[31] M. Siu and M. Ostendorf, “Variable n-grams and extensions for
conversational speech language modeling,” IEEE Trans. Speech and
Audio Processing, vol. 8, no. 1, pp. 63–75, 2000.

[32] S. Nessa, M. Abedin, W. E. Wong, L. Khan, and Y. Qi, “Software
fault localization using n-gram analysis,” in Wireless Algorithms,
Systems, and Applications, Third International Conference, WASA
2008, Dallas, TX, USA, October 26-28, 2008. Proceedings, 2008, pp.
548–559.

[33] A. Tomovic, P. Janicic, and V. Keselj, “n-gram-based classification
and unsupervised hierarchical clustering of genome sequences,”
Computer Methods and Programs in Biomedicine, vol. 81, no. 2, pp.
137–153, 2006.

[34] C. Lin and E. H. Hovy, “Automatic evaluation of summaries using
n-gram co-occurrence statistics,” in Human Language Technology
Conference of the North American Chapter of the Association for Com-
putational Linguistics, HLT-NAACL 2003, Edmonton, Canada, May 27
- June 1, 2003, 2003.

[35] P. F. Brown, V. J. D. Pietra, P. V. de Souza, J. C. Lai, and R. L. Mercer,
“Class-based n-gram models of natural language,” Computational
Linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[36] E. Charniak, Statistical language learning. MIT press, 1996.
[37] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the

naturalness of software,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE’12, 2012, pp. 837–847.

[38] M. Rahman, D. Palani, and P. C. Rigby, “Natural software revis-
ited,” in Proceedings of the 41st International Conference on Software
Engineering, ser. ICSE ’19. Piscataway, NJ, USA: IEEE Press, 2019,
pp. 37–48.

[39] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“A statistical semantic language model for source code,” in Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2013. New York, NY, USA: ACM,
2013, pp. 532–542.

[40] S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python. O’Reilly, 2009.

[41] R. Vaarandi, “Simple event correlator for real-time security log
monitoring,” Hakin9 Magazine, vol. 1, no. 6, pp. 28–39, 2006.

[42] C. V. Damasio, P. Fröhlich, W. Nejdl, L. M. Pereira, and
M. Schroeder, “Using extended logic programming for alarm-
correlation in cellular phone networks,” Applied Intelligence,
vol. 17, no. 2, pp. 187–202, 2002.

[43] S. E. Hansen and E. T. Atkins, “Automated system monitoring and
notification with swatch.” in LISA, vol. 93, 1993, pp. 145–152.

[44] R. Ramati, “A beginners guide to logstash grok,” https://logz.io/
blog/logstash-grok, (Accessed on 08/14/2019).

[45] L. Bennett, “Lessons learned from using
regexes at scale,” https://www.loggly.com/blog/
lessons-learned-from-using-regexes-at-scale/, (Accessed on
08/14/2019).

[46] S. Documentation, “About splunk regular expressions,”
https://docs.splunk.com/Documentation/Splunk/7.3.1/
Knowledge/AboutSplunkregularexpressions, (Accessed on
08/14/2019).

[47] M. Documentation, “W3c logging,” https://docs.microsoft.
com/en-us/windows/win32/http/w3c-logging, (Accessed on
08/14/2019).

[48] “Apache/ncsa custom log format,” https://www.loganalyzer.
net/log-analyzer/apache-custom-log.html, (Accessed on
08/13/2019).

[49] M. Documentation, “Iis log file formats,” https://docs.microsoft.
com/en-us/previous-versions/iis/6.0-sdk/ms525807(v=vs.90),
(Accessed on 08/14/2019).

[50] M. Nagappan, K. Wu, and M. A. Vouk, “Efficiently extracting
operational profiles from execution logs using suffix arrays,” in
ISSRE 2009, 20th International Symposium on Software Reliability
Engineering, Mysuru, Karnataka, India, 16-19 November 2009, 2009,
pp. 41–50.

[51] W. Xu, L. Huang, and M. I. Jordan, “Experience mining google’s
production console logs.” in SLAML, 2010.

[52] D. Schipper, M. F. Aniche, and A. van Deursen, “Tracing back log
data to its log statement: from research to practice,” in Proceedings
of the 16th International Conference on Mining Software Repositories,
MSR 2019, 26-27 May 2019, Montreal, Canada., 2019, pp. 545–549.

[53] R. Vaarandi, “A data clustering algorithm for mining patterns
from event logs,” in Proceedings of the 3rd IEEE Workshop on IP
Operations & Management (IPOM 2003)(IEEE Cat. No. 03EX764).
IEEE, 2003, pp. 119–126.

[54] M. Nagappan and M. A. Vouk, “Abstracting log lines to log event
types for mining software system logs,” in Proceedings of the 7th
International Working Conference on Mining Software Repositories,
MSR 2010 (Co-located with ICSE), Cape Town, South Africa, May 2-3,
2010, Proceedings, 2010, pp. 114–117.

[55] L. Tang, T. Li, and C. Perng, “Logsig: generating system events
from raw textual logs,” in Proceedings of the 20th ACM Conference on
Information and Knowledge Management, CIKM 2011, Glasgow, United
Kingdom, October 24-28, 2011, 2011, pp. 785–794.

[56] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen,
“Logmine: Fast pattern recognition for log analytics,” in Proceed-
ings of the 25th ACM International on Conference on Information and
Knowledge Management, ser. CIKM ’16. New York, NY, USA: ACM,
2016, pp. 1573–1582.

[57] M. Mizutani, “Incremental mining of system log format,” in 2013
IEEE International Conference on Services Computing, Santa Clara, CA,
USA, June 28 - July 3, 2013, 2013, pp. 595–602.

[58] K. Shima, “Length matters: Clustering system log messages using
length of words,” CoRR, vol. abs/1611.03213, 2016.

[59] M. Du and F. Li, “Spell: Streaming parsing of system event logs,”
in IEEE 16th International Conference on Data Mining, ICDM 2016,
December 12-15, 2016, Barcelona, Spain, 2016, pp. 859–864.

[60] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering
event logs using iterative partitioning,” in Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Paris, France, June 28 - July 1, 2009, 2009, pp. 1255–
1264.

[61] P. He, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural
language descriptions in software logging statements,” in Proceed-
ings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. ACM, 2018, pp. 178–189.

https: //logz.io/blog/logstash-grok
https: //logz.io/blog/logstash-grok
https://www.loggly.com/blog/lessons-learned-from-using-regexes-at-scale/
https://www.loggly.com/blog/lessons-learned-from-using-regexes-at-scale/
https://docs.splunk.com/Documentation/Splunk/7.3.1/Knowledge/AboutSplunkregularexpressions
https://docs.splunk.com/Documentation/Splunk/7.3.1/Knowledge/AboutSplunkregularexpressions
https://docs.microsoft.com/en-us/windows/win32/http/w3c-logging
https://docs.microsoft.com/en-us/windows/win32/http/w3c-logging
https://www.loganalyzer.net/log-analyzer/apache-custom-log.html
https://www.loganalyzer.net/log-analyzer/apache-custom-log.html
https://docs.microsoft.com/en-us/previous-versions/iis/6.0-sdk/ms525807(v=vs.90)
https://docs.microsoft.com/en-us/previous-versions/iis/6.0-sdk/ms525807(v=vs.90)

13

[62] “loess function — r documentation,” https://www.
rdocumentation.org/packages/stats/versions/3.6.1/topics/
loess, (Accessed on 01/02/2020).

[63] “Ckmeans.1d.dp function — r documentation,” https:
//www.rdocumentation.org/packages/Ckmeans.1d.dp/
versions/3.4.0-1/topics/Ckmeans.1d.dp, (Accessed on
01/02/2020).

[64] A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in
log analysis,” Commun. ACM, vol. 55, no. 2, pp. 55–61, Feb. 2012.

[65] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards automated
log parsing for large-scale log data analysis,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 6, pp. 931–944, 2017.

[66] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System
log analysis for anomaly detection,” in 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE), Oct 2016, pp.
207–218.

[67] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Pro-
ceedings of the 38th International Conference on Software Engineering
Companion, ser. ICSE ’16. New York, NY, USA: ACM, 2016, pp.
102–111.

[68] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
detection and diagnosis from system logs through deep learning,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17. New York, NY, USA: ACM,
2017, pp. 1285–1298.

[69] A. Oliner and J. Stearley, “What supercomputers say: A study
of five system logs,” in Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, ser.
DSN ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 575–584.

[70] P. He, J. Zhu, P. Xu, Z. Zheng, and M. R. Lyu, “A directed
acyclic graph approach to online log parsing,” arXiv preprint
arXiv:1806.04356, 2018.

[71] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: Cluster computing with working sets,” in Proceedings
of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
10–10.

[72] N. J. Gunther, P. Puglia, and K. Tomasette, “Hadoop superlinear
scalability,” ACM Queue, vol. 13, no. 5, p. 20, 2015.

[73] H. Zhu, Z. Bai, J. Li, E. Michael, D. R. K. Ports, I. Stoica, and X. Jin,
“Harmonia: Near-linear scalability for replicated storage with in-
network conflict detection,” CoRR, vol. abs/1904.08964, 2019.

Hetong Dai is a Master student in the De-
partment of Computer Science and Software
Engineering at Concordia University, Montreal,
Canada, supervised by Weiyi Shang. His re-
search lies within Software Engineering, with
special interests in software engineering for
ultra-large-scale systems, software log mining
and mining software repositories. He obtained
his BS from Nanjing University. Contact him at
he da@encs.concordia.ca

Heng Li is a postdoctoral fellow in the School
of Computing at Queen’s University, Canada.
His research lies within Software Engineering
and Computer Systems, with special interests
in Artificial Intelligence for DevOps, software log
mining, software performance engineering, min-
ing software repositories, and qualitative stud-
ies of software engineering data. He obtained
his BE from Sun Yat-sen University, MSc from
Fudan University, and PhD from Queen’s Uni-
versity, Canada. He worked at Synopsys as

a full-time R&D Engineer before starting his PhD. Contact him at
hengli@cs.queensu.ca

Che Shao Chen is studying Master of Soft-
ware Engineering at Concordia University, Mon-
treal, Canada. His interests and research ar-
eas are Software Engineering with special inter-
ests in software engineering for ultra-large-scale
systems related to Software Refactoring, Data
Mining, software log mining, and mining soft-
ware repositories. He is supervised by Professor
Weiyi Shang, who is an assistant professor and
research chair at Concordia University. He ob-
tained his BS from Tamkang University. Contact

him at c chesha@encs.concordia.ca

Weiyi Shang is an Assistant Professor and Con-
cordia University Research Chair in Ultra-large-
scale Systems at the Department of Computer
Science and Software Engineering at Concor-
dia University, Montreal. He has received his
Ph.D. and M.Sc. degrees from Queens Uni-
versity (Canada) and he obtained B.Eng. from
Harbin Institute of Technology. His research in-
terests include big data software engineering,
software engineering for ultra-largescale sys-
tems, software log mining, empirical software

engineering, and software performance engineering. His work has been
published at premier venues such as ICSE, FSE, ASE, ICSME, MSR
and WCRE, as well as in major journals such as TSE, EMSE, JSS,
JSEP and SCP. His work has won premium awards, such as SIGSOFT
Distinguished paper award at ICSE 2013 and best paper award at
WCRE 2011. His industrial experience includes helping improve the
quality and performance of ultra-large-scale systems in BlackBerry.
Early tools and techniques developed by him are already integrated
into products used by millions of users worldwide. Contact him at
shang@encs.concordia.ca; http://users.encs.concordia.ca/shang.

Tse-Hsun (Peter) Chen is an Assistant Pro-
fessor in the Department of Computer Science
and Software Engineering at Concordia Univer-
sity, Montreal, Canada. He leads the Software
PErformance, Analysis, and Reliability (SPEAR)
Lab, which focuses on conducting research on
performance engineering, program analysis, log
analysis, production debugging, and mining soft-
ware repositories. His work has been published
in flagship conferences and journals such as
ICSE, FSE, TSE, EMSE, and MSR. He serves

regularly as a program committee member of international conferences
in the field of software engineering, such as ASE, ICSME, SANER,
and ICPC, and he is a regular reviewer for software engineering jour-
nals such as JSS, EMSE, and TSE. Dr. Chen obtained his BSc from
the University of British Columbia, and MSc and PhD from Queen’s
University. Besides his academic career, Dr. Chen also worked as a
software performance engineer at BlackBerry for over four years. Early
tools developed by Dr. Chen were integrated into industrial practice for
ensuring the quality of large-scale enterprise systems. More information
at: http://petertsehsun.github.io/.

https://www.rdocumentation.org/packages/stats/versions/3.6.1/topics/loess
https://www.rdocumentation.org/packages/stats/versions/3.6.1/topics/loess
https://www.rdocumentation.org/packages/stats/versions/3.6.1/topics/loess
https://www.rdocumentation.org/packages/Ckmeans.1d.dp/versions/3.4.0-1/topics/Ckmeans.1d.dp
https://www.rdocumentation.org/packages/Ckmeans.1d.dp/versions/3.4.0-1/topics/Ckmeans.1d.dp
https://www.rdocumentation.org/packages/Ckmeans.1d.dp/versions/3.4.0-1/topics/Ckmeans.1d.dp
http://users.encs.concordia.ca/∼shang
http://petertsehsun.github.io/

	1 Introduction
	2 Background
	2.1 Log Parsing
	2.2 n-grams

	3 Related Work
	3.1 Prior Work on Log Parsing
	3.2 Applications of Log Parsing

	4 Approach
	4.1 Overview of Logram
	4.2 Generating an n-gram dictionary
	4.2.1 Pre-processing logs
	4.2.2 Generating an n-gram dictionary

	4.3 Parsing log messages using an n-gram dictionary
	4.3.1 Identifying n-grams that may contain dynamic variables
	4.3.2 Identifying dynamically and statically generated tokens
	4.3.3 Automatically determining the threshold of n-gram occurrences
	4.3.4 Generating log templates

	5 Evaluation
	5.1 Subject log data
	5.2 Accuracy
	5.3 Efficiency
	5.4 Ease of stabilisation
	5.5 Scalability

	6 Migrating Logram to an Online Parser
	7 Threats to Validity
	8 Conclusion
	References
	Biographies
	Hetong Dai
	Heng Li
	Che Shao Chen
	Weiyi Shang
	Tse-Hsun (Peter) Chen

