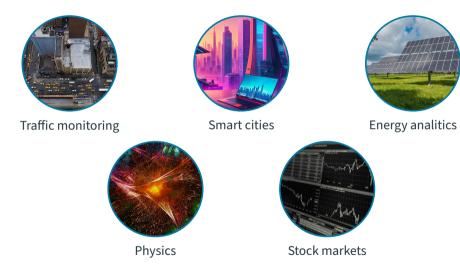
Graph Deep Learning for Spatiotemporal Time Series

Forecasting, Reconstruction and Analysis

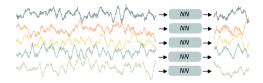
Cesare Alippi, Daniele Zambon, Andrea Cini, Ivan Marisca

ECML/PKDD, Turin · September 22, 2023

Graph Machine Learning Group (gmlg.ch) The Swiss Al Lab IDSIA Università della Svizzera italiana



Deep learning for time series forecasting



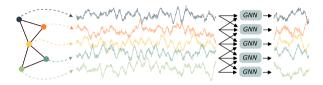
The standard deep learning approach to time series forecasting consists in training a single neural network on a collection of time series.

- Each time series is treated independently from the others.
- A single set of shared learnable parameters is used to predict each time series.
- Resulting models are effective and efficient.

Dependencies across time series are often discarded.

^[1] K. Benidis et al., "Deep Learning for Time Series Forecasting: Tutorial and Literature Survey", ACM CS 2022.

Relational inductive biases



One way out is to embed such relational structure as an architectural bias into the processing.

Graph neural networks provide appropriate neural operators.

- Message-passing blocks allow for localizing the predictions
 - $ightarrow\,$ conditioning on observations at related time series (neighboring nodes).
- Parameters are shared and the model can operate on arbitrary sets of time series.

^[2] D. Bacciu *et al.*, "A gentle introduction to deep learning for graphs", NN 2020.

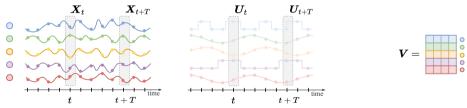
^[3] M. M. Bronstein et al., "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges" 2021.

Spatiotemporal time series

Spatiotemporal time series Collections of time series

We consider a set of N correlated time series, where each i-th time series is associated with:

- an observation vector $oldsymbol{x}_t^i \in \mathbb{R}^{d_x}$ at each time step t;
- a vector of exogenous variable $oldsymbol{u}_t^i \in \mathbb{R}^{d_u}$ at each time step t;
- a vector of static (time-independent) attributes $oldsymbol{v}^i \in \mathbb{R}^{d_v}.$



Capital letters denote the stacked representations encompassing the N time series in the collection, e.g., $X_t \in \mathbb{R}^{N \times d_x}$, $U_t \in \mathbb{R}^{N \times d_u}$.

^[4] A. Cini et al., "Graph Deep Learning for Time Series Forecasting: A Comprehensive Methodological Framework" 2023.

Spatiotemporal time series Correlated time series

We assume a time-invariant stochastic process

 $oldsymbol{x}_{t}^{i} \sim p^{i}\left(oldsymbol{x}_{t}^{i} \middle| oldsymbol{X}_{< t}, oldsymbol{U}_{\leq t}, oldsymbol{V}
ight)$

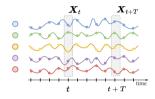
generating the data x_t^i for all $i = 1 \dots N$ and $t \in \mathbb{N}$.

Note that the time series:

- can be generated by different processes,
- can depend on each other,
- are assumed

homogenous, synchronous, regularly sampled.

 \rightarrow These assumptions can be relaxed, as we will discuss in the 2nd part.



Notation:
$oldsymbol{X}_{t:t+T} = [oldsymbol{X}_t, \cdots, oldsymbol{X}_{t+T-1}]$
$oldsymbol{X}_{< t} = [oldsymbol{X}_0, \cdots, oldsymbol{X}_{t-2}, oldsymbol{X}_{t-1}]$

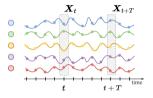
Spatiotemporal time series Relational information

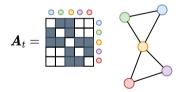
We assume the existence of functional dependencies between the time series.

 $\rightarrow~{\rm e.g.},$ forecasts for one time series can be improved by accounting for the past values of other time series.

We model pairwise relationships existing at time step t with adjacency matrix $A_t \in \{0, 1\}^{N \times N}$.

- A_t can be **asymmetric** and **dynamic** (can vary with t).
- ightarrow We call spatial the dimension spanning the time series collection.



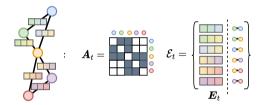


Relational information with attributes

Optional edge attributes $e_t^{ij} \in \mathbb{R}^{d_e}$ can be associated to each non-zero entry of A_t .

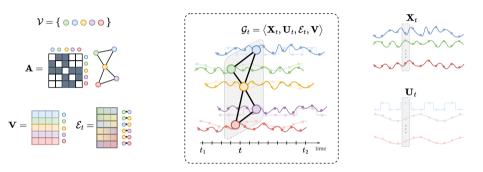
The set of attributed edges encoding all the available relational information is denoted by

$$\mathcal{E}_t \doteq \{ \langle (i,j), \boldsymbol{e}_t^{ij} \rangle \mid \forall i,j : \boldsymbol{A}_t[i,j] \neq 0 \}.$$



 \rightarrow For many applications, A_t changes slowly over time and can be considered as constant within a short window of observations.

Spatiotemporal time series Spatiotemporal time series



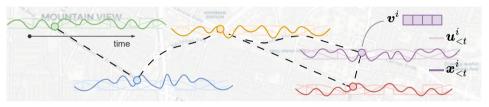
We use the terms node and sensor to indicate the N entities generating the time series.

ightarrow We refer to the node set together with the relational information as sensor network.

The tuple $\mathcal{G}_t \doteq \langle \mathbf{X}_t, \mathbf{U}_t, \mathcal{E}_t, \mathbf{V} \rangle$ contain all the available information associated with time step t.

Spatiotemporal time series **Example: Traffic monitoring system**

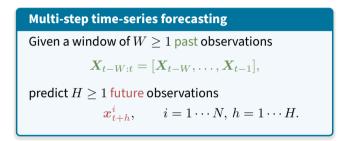
Consider a sensor network monitoring the speed of vehicles at crossroads.

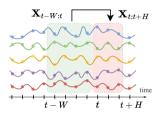


- $X_{< t}$ collects past traffic speed measurements.
- U_t stores identifiers for time-of-the-day and day-of-the-week.
- V collects static sensor's features, e.g., type or number of lanes of the monitored road.
- $\ensuremath{\mathcal{E}}$ can be obtained by considering the road network.
 - Road closures and traffic diversions can be accounted for with a dynamic topology \mathcal{E}_t .

Spatiotemporal time series

Time series forecasting





In particular, we are interested in learning a parametric model p_{θ} approximating the unknown data distribution p

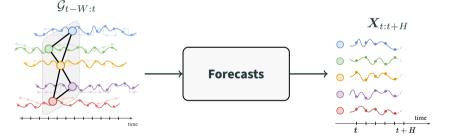
$$p_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{t+h}^{i} \middle| \boldsymbol{X}_{t-W:t}, \boldsymbol{U}_{t-W:t+h}, \boldsymbol{V}\right) \approx p^{i}\left(\boldsymbol{x}_{t+h}^{i} \middle| \boldsymbol{X}_{< t}, \boldsymbol{U}_{\leq t+h}, \boldsymbol{V}\right)$$

- heta is the model parameter vector.

Spatiotemporal time series

Time series forecasting + relational inductive biases

Condition the model on the relational information $\mathcal{E}_{t-W:t}$



F The conditioning on the sequence of attributed graphs acts as a regularization to localize predictions w.r.t. the neighborhood of each node.

Spatiotemporal time series **Point forecasts**

For simplicity, we focus here on point forecasts, rather than the modeling of full data distributions *p*, and consider predictive model

$$\widehat{oldsymbol{x}}_{t+h}^i = \mathcal{F}\left(\mathcal{G}_{t-W:t}, oldsymbol{U}_{t:t+h}; oldsymbol{ heta}
ight)$$

where $\widehat{m{x}}_{t+h}^i$ approximates, e.g., $\mathbb{E}_p\left[m{x}_{t+h}^i
ight]$.

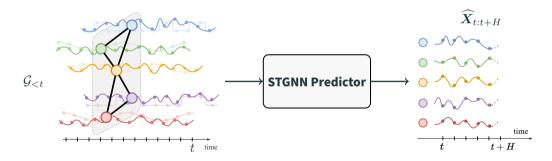
Parameters θ can be learned by minimizing a cost function $\ell(\,\cdot\,,\,\cdot\,)$ (e.g., MSE) on a training set

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{NT} \sum_{t=1}^{T} \ell\left(\widehat{\boldsymbol{X}}_{t:t+H}, \boldsymbol{X}_{t:t+H}\right)$$
$$= \arg\min_{\boldsymbol{\theta}} \frac{1}{NT} \sum_{t=1}^{T} \left\| \boldsymbol{X}_{t:t+H} - \widehat{\boldsymbol{X}}_{t:t+H} \right\|_{2}^{2}$$

Spatiotemporal Graph Neural Networks

Spatiotemporal Graph Neural Networks Spatiotemporal Graph Neural Networks

We call Spatiotemporal Graph Neural Network (STGNN) a neural network exploiting both temporal and spatial relations of the input spatiotemporal time series.



We focus on models based on message passing.

Spatiotemporal Graph Neural Networks Message-passing neural networks

To process the spatial dimension, we rely on the message-passing (MP) framework

$$\boldsymbol{h}^{i,l+1} = \mathsf{UP}^l\Big(\boldsymbol{h}^{i,l}, \underset{j\in\mathcal{N}(i)}{\mathsf{AGGR}}\Big\{\mathsf{MSG}^l\big(\boldsymbol{h}^{i,l}, \boldsymbol{h}^{j,l}, \boldsymbol{e}^{ji}\big)\Big\}\Big), \tag{1}$$

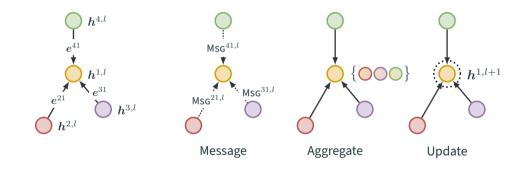
Where:

- $\mathsf{Msg}^l(\,\cdot\,)$ is the **message function**, e.g., implemented by an MLP.
- AGGR{ \cdot } is the permutation invariant aggregation function.
- $UP^{l}(\cdot)$ is the **update function**, e.g., implemented by an MLP.

Aggregation is performed over $\mathcal{N}(i)$, i.e., the set of neighbors of node i.

^[5] J. Gilmer et al., "Neural message passing for quantum chemistry", ICML 2017.

Spatiotemporal Graph Neural Networks Message passing in action



Spatiotemporal Graph Neural Networks Spatiotemporal message passing

Starting from the MP framework, we can define a general scheme for spatiotemporal message-passing (STMP) networks:

$$\boldsymbol{h}_{t}^{i,l+1} = \mathsf{UP}^{l}\left(\boldsymbol{h}_{\leq t}^{i,l}, \underset{j \in \mathcal{N}_{t}(i)}{\mathsf{AGGR}}\left\{\mathsf{MSG}^{l}\big(\boldsymbol{h}_{\leq t}^{i,l}, \boldsymbol{h}_{\leq t}^{j,l}, \boldsymbol{e}_{\leq t}^{ji}\big)\right\}\right)$$

Rather than vectors, STMP blocks process **sequences**.

 \rightarrow STMP blocks must be implemented with operators that work on sequences! We will look at different implementations of STMP blocks in the following.

^[4] A. Cini et al., "Graph Deep Learning for Time Series Forecasting: A Comprehensive Methodological Framework" 2023.

Spatiotemporal Graph Neural Networks A general recipe

We consider STGNNs can be expressed as a sequence of three operations:

$$oldsymbol{h}_{t-1}^{i,0} = extsf{Encoder}\left(oldsymbol{x}_{t-1}^{i},oldsymbol{u}_{t-1}^{i},oldsymbol{v}^{i}
ight),$$
 (2)

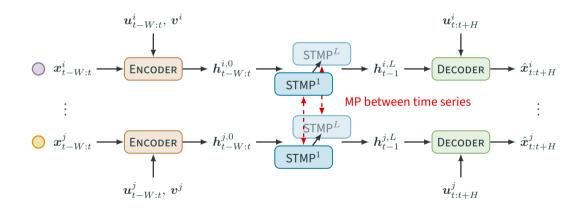
$$H_{t-1}^{l+1} = \text{STMP}^{l} \Big(H_{\leq t-1}^{l}, \mathcal{E}_{\leq t-1} \Big), \quad l = 0, \dots, L-1$$
 (3)

$$\hat{\boldsymbol{x}}_{t:t+H}^{i} = \mathsf{Decoder}\left(\boldsymbol{h}_{t-1}^{i,L}, \boldsymbol{u}_{t:t+H}^{i}\right). \tag{4}$$

Where:

- + $\mathsf{Encoder}(\ \cdot\)$ is the encoding layer, e.g., implemented by an MLP.
- STMP is a stack of STMP layers.
- $DECODER(\cdot)$ is the readout layer, e.g., implemented by an MLP.

Spatiotemporal Graph Neural Networks Framework overview



Spatiotemporal Graph Neural Networks Design paradigms for STGNNs

Depending on the implementation of the STMP blocks, we categorize STGNNs into:

• Time-and-Space (T&S)

Temporal and spatial processing cannot be factorized in two separate steps.

• Time-then-Space (TTS)

Embed each time series in a vector, which is then propagated over the graph.

• Space-then-Time (STT)

Propagate nodes features at first and then process the resulting time series.

$$\bigcirc x_{t-W:t}^{i} \longrightarrow \boxed{\texttt{Encoder}} \xrightarrow{\texttt{STMP}^{L}} \xrightarrow{\texttt{Decoder}} \hat{x}_{t:t+H}^{i}$$

$Spatiotemporal \ {\it Graph Neural Networks / Architectures} \\ Time-and-Space$

In T&S models, representations at every node and time step are the results of a joint temporal and spatial encoding

$$oldsymbol{H}_{t-1}^{l+1} = \mathsf{STMP}^l \Big(oldsymbol{H}_{\leq t-1}^l, \mathcal{E}_{\leq t-1}\Big)$$

Several options exist.

- Integrate MP into neural operators for sequential data.
 - Graph recurrent architectures, spatiotemporal convolutions, spatiotemporal attention, ...
- Use temporal operators to compute messages.
 - Temporal graph convolutions, spatiotemporal cross-attention, ...
- Product graph representations.

Example 1: From Recurrent Neural Networks...

Consider a standard GRU [6] cell.

$$\boldsymbol{r}_{t}^{i} = \sigma \left(\boldsymbol{\Theta}_{r} \left[\boldsymbol{x}_{t}^{i} || \boldsymbol{h}_{t-1}^{i}
ight] + \boldsymbol{b}_{r}
ight)$$
 (5)

$$\boldsymbol{u}_{t}^{i} = \sigma \left(\boldsymbol{\Theta}_{u} \left[\boldsymbol{x}_{t}^{i} || \boldsymbol{h}_{t-1}^{i}\right] + \boldsymbol{b}_{u}\right)$$
(6)

$$\boldsymbol{c}_{t}^{i} = \tanh\left(\boldsymbol{\Theta}_{c}\left[\boldsymbol{x}_{t}^{i}||\boldsymbol{r}_{t}^{i}\odot\boldsymbol{h}_{t-1}^{i}\right] + \boldsymbol{b}_{c}\right) \tag{7}$$

$$\boldsymbol{h}_{t}^{i} = \left(1 - \boldsymbol{u}_{t}^{i}\right) \odot \boldsymbol{c}_{t}^{i} + \boldsymbol{u}_{t}^{i} \odot \boldsymbol{h}_{t-1}^{i}$$
 (8)

Time series can be processed **independently** for each node or as a **single multivariate** time series.

^[6] J. Chung et al., "Empirical evaluation of gated recurrent neural networks on sequence modeling" 2014.

Spatiotemporal Graph Neural Networks / Architectures ...to Graph Convolutional Recurrent Neural Networks

We can obtain a T&S model by implementing the gates of the GRU with MP blocks:

$$\boldsymbol{Z}_t^l = \boldsymbol{H}_t^{l-1} \tag{9}$$

$$\boldsymbol{R}_{t}^{l} = \sigma \left(\mathsf{MP}_{r}^{l} \left(\left[\boldsymbol{Z}_{t}^{l} || \boldsymbol{H}_{t-1}^{l} \right], \mathcal{E}_{t} \right) \right),$$
(10)

$$\boldsymbol{O}_{t}^{l} = \sigma \left(\mathsf{MP}_{o}^{l} \left(\left[\boldsymbol{Z}_{t}^{l} || \boldsymbol{H}_{t-1}^{l} \right], \mathcal{E}_{t} \right) \right), \tag{11}$$

$$\boldsymbol{C}_{t}^{l} = \tanh\left(\mathsf{MP}_{c}^{l}\left(\left[\boldsymbol{Z}_{t}^{l}||\boldsymbol{R}_{t}^{l}\odot\boldsymbol{H}_{t-1}^{l}\right],\mathcal{E}_{t}\right)\right),\tag{12}$$

$$\boldsymbol{H}_{t}^{l} = \boldsymbol{O}_{t}^{l} \odot \boldsymbol{H}_{t-1}^{l} + (1 - \boldsymbol{O}_{t}^{l}) \odot \boldsymbol{C}_{t}^{l}, \tag{13}$$

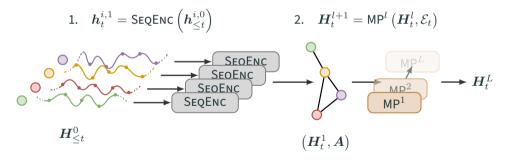
These T&S models are known as graph convolutional recurrent neural networks (GCRNNs) [7].

^[7] Y. Seo et al., "Structured sequence modeling with graph convolutional recurrent networks", ICONIP 2018.

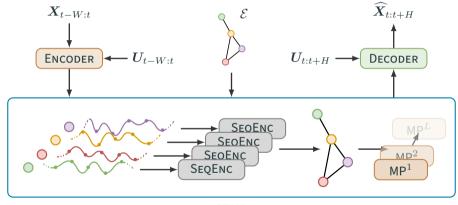
Spatiotemporal Graph Neural Networks / Architectures Time-then-Space models

The general recipe for a TTS model consists in:

- 1. Embedding each node-level time series in a vector.
- 2. Propagating obtained encodings throughout the graph with a stack of MP layers.



Spatiotemporal Graph Neural Networks / Architectures Full TTS model



STMP

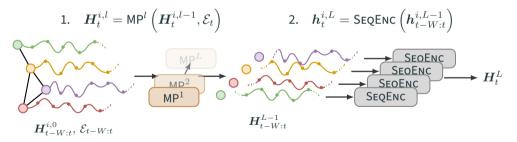
Spatiotemporal Graph Neural Networks / Architectures **Pros & Cons of TTS models**

- **Pros:** (c) Easy to implement and computationally efficient.
 - 🙂 We can reuse operators we already know.
- **Cons:** (2) The 2-step encoding might introduce information bottlenecks.
 - Accounting for changes in topology and dynamic edge attributes can be more problematic.

$Spatiotemporal \ {\it Graph Neural Networks / Architectures} \\ Space-then-Time$

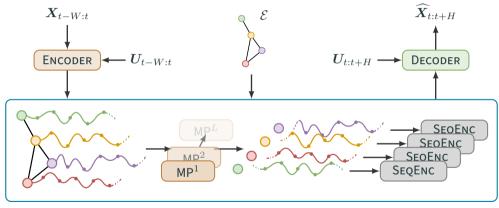
In STT approaches the two processing steps of TTS models are inverted:

- 1. Observations are propagated among nodes w.r.t. each time step using a stack of MP layers.
- 2. Each sequence of representations is processed by a sequence encoder.



🙁 They do not have the same computational advantages of TTS models.

Spatiotemporal Graph Neural Networks / Architectures Full STT model



STMP

Coding Spatiotemporal GNNs

Coding Spatiotemporal GNNs tsl: PyTorch Spatiotemporal Library

tsl (Torch Spatiotemporal) is a python library built upon PyTorch and PyG to accelerate research on neural spatiotemporal data processing methods, with a focus on **Graph Neural Networks**.

Notebook Spatiotemporal Graph Neural Networks with tsl

