

# TOWARDS SPATIOTEMPORAL FOUNDATION MODEL IN CYBERSPACE

# DAN PEI TSINGHUA UNIVERSITY

2024/04/26

## OUTLINE

- The Definition of Cyberspace
- Spatiotemporal Data in Cyberspace
- Spatiotemporal Tasks in Cyberspace
- The necessity of explicitly modeling both spatial and temporal information
- NetMan's past efforts
- Outlook on Spatiotemporal Foundation Models in Cyberspace



# DEFINITION OF CYBERSPACE

### Cyber system

**Cyber Physical System** 







# TIME SERIES DATA IN CYBERSPACE

- Time series data is a collection of data points arranged in temporal order.
- Time series data has significant temporal dependence, and both the value and time of data points affect their physical meaning.
- Univariate Time Series (UTS):
  - There is only one data point at a time
- Multivariate Time Series (MTS):
  - Multiple data points at the same time





# DEFINITION OF SPATIOTEMPORAL DATA IN CYBERSPACE



- The temporal information and spatial relationship between time series
- Taking server clusters as an example:
  - Temporal information: monitoring metrics
  - Spatial information: e.g. topology connections between servers

## GENERALIZED SPATIOTEMPORAL DATA IN CYBERSPACE: GRAPH-STRUCTURED TIME SERIES DATA



5

Not limited to temporal and spatial information itself, but also includes external information (dynamic and static)

#### **Graph Deep Learning for Spatial Time Series**

Forecasting, Reconstruction and Analysis Cesare Alippi, Daniele Zambon, Andrea Cini, Ivan Marisca

# TAKING AIOPS AS AN EXAMPLE: SPATIO-TEMPORAL INFORMATION 4-TUPLE



## THE DOMAINS COVERED BY SPATIOTEMPORAL DATA IN CYBERSPACE



#### Wireless Network

Social Networks

### **Cyber Physical System**



loT



Smart Transportation



Smart Healthcare



Industrial

Internet

# SPATIOTEMPORAL TASKS IN CYBERSPACE

### **Classify spatiotemporal tasks into the three categories**

| Temporal<br>Analysis | Time series prediction, anomaly detection, data imputation, classification, concept drift detection, what-if analysis |
|----------------------|-----------------------------------------------------------------------------------------------------------------------|
|                      |                                                                                                                       |

| Spatial  | Clustering, outlier detection, causal discovery, |
|----------|--------------------------------------------------|
| Analysis | causal inference, relationship prediction        |

Spatiotemp oral Anaysi <sup>8</sup>

### EXAMPLES OF CYBERSPACE TASKS FOCUSED ON TEMPORAL ANALYSIS

### Taking anomaly detection as an example

- The conventional approach is to learn normal patterns from the time series data itself to determine anomalies
- In some cases, anomalies in time series are difficult to determine, and relying solely on temporal information cannot cover all scenarios → The need for exogenous variables



### EXAMPLES OF CYBERSPACE TASKS OF FOCUSED ON SPATIAL ANALYSIS

### Taking outlier detection as an example

- Detected instances that do not conform to normal mode
- Judging through evaluation metrics such as the shape, similarity, and distan of monitoring data is often not comprehensive → The need for temporal information





### AN EXAMPLE CYBERSPACE TASK FOCUSED ON SPATIOTEMPORAL ANALYSIS

### Taking Root Cause Analysis as an Example (Temporal Then Spatial)

- RCA in Cyberspace systems:
  - Usually, it is necessary to first perform anomaly detection on the time series
  - Using anomaly results as the input to root cause analysis



# SPATIAL INFORMATION IN CYBERSPACE

- The complex spatial information in Cyberspace can be formulated as graph
- In Cyberspace, graphs are usually heterogeneous:
  - Topology Graph
  - Call Graph
  - Correlation Graph
  - Causal Graph
  - Knowledge Graph
- Graph can be hierarchical or Multi-attribute (Cubiod)
- The graph is usually incomplete, probabilistic, and dynamic









# SUMMARY OF SPATIOTEMPORAL TASKS IN CYBERSPACE

| Focus<br>Task                            | Temporal Analysis | Spatial Analysis | Time=>Space | Time+Space |
|------------------------------------------|-------------------|------------------|-------------|------------|
| Time series forecasting (TS forecasting) |                   |                  |             |            |
| Univariate anomaly detection (UTS AD)    |                   |                  |             |            |
| Multivariate anomaly detection (MTS AD)  |                   |                  |             |            |
| What if Analysis                         |                   |                  |             |            |
| Causal Discovery                         |                   |                  |             |            |
| Causal Inference                         |                   |                  |             |            |
| Outlier Detection                        |                   |                  |             |            |
| Time series clustering (TS Cluster)      |                   |                  |             |            |
| Trace anomaly detection (Trace AD)       |                   |                  |             |            |
| Root cause analysis (RCA)                |                   |                  |             |            |

# THE CHALLENGES FACED WHEN USING ONLY TEMPORAL INFORMATION

- Availability challenge:
  - There is a lot of room for improvement in performance
- Practical challenges:
  - Interpretability
  - Interactive
- Universal challenge:
  - Cross-task (prediction, anomaly detection, classification, root cause localization...)
  - Cross-domain (AlOps, network security, Internet of Things...)
  - Few-shot, zero-shot







# THE SIGNIFICANCE OF FEW-SHOT AND ZERO-SHOT IN CYBERSPACE

- The universality of testing models with few-shot or zero-shot samples
- Require the model to learn deep knowledge from the data
- How to define few-shot samples and zero-shot samples in the spatiotemporal domain?
  - Few-shot sample capability: Fast fine-tuning with a small amount of data can significantly improve performance
  - Zero-shot sample capability: Can achieve relatively satisfactory performance by directly working with new data without the need for additional fine-tuning
- The significance of few-shot or zero-shot samples for model application
  - Collecting data in a production environment requires a significant amount of time
  - Whether it can be "plug and play" affects whether the model can be quickly deployed







## WHY DO WE NEED BOTH TIME AND SPACE IN CYBERSPACE

- Time series are usually not self-contained data
- The time series are more likely to be observation of the "effects", but the "cause" variable might not directly overserved.
- Therefore, it is necessary to keep adding more relevant time series, the their relationship with existing time sereies



# FEASIBILITY ANALYSIS IN CYBERSPACE

- Different tasks often focus on utilizing different temporal and spatial information
- Different tasks ultimately boils down to extracting knowledge from spatiotemporal information and utilizing it anyway. Then why not directly model it as a whole using the 4-tuple, graph-structed time series data?
- Time series forecasting (TS forecasting)
- Univariate anomaly detection (UTS AD)
- Multivariate anomaly detection (MTS AD)
- What if Analysis
- Causal Discovery
- Causal Inference
- Outlier Detection
- Time series clustering (TS Cluster)
- Trace anomaly detection (Trace AD)





17

## NETMAN' S PAST EFFORTS IN SPATIOTEMPORAL ANALYSIS IN CYBERSPACE

### Focus on Temporal Analysis

#### Mainly focused on anomaly detection



## NETMAN' S PAST EFFORTS IN TEMPORAL ANALYSIS IN CYBERSPACE

### Focus on temporal analysis

- Mainly focused on anomaly detection
- Explored transfer learning, SFT, utilizing more external information, and Human Feedback



Transfer learning



### Explicitly Modeling Exogeneous information





Adding Human Feedback

Explicitly modeling spatial information

## NETMAN' S PAST EFFORTS IN SPATIAL ANALYSIS IN CYBERSPACE

WEB.S

WEB.I

### Focus on spatial analysis

- Time series clustering, causal discovery, causal inference
- Cannot be independent of time information



Flux-feature of 2

KPI Y ---- Flux-feature of 1

24



## NETMAN' S PAST EFFORTS IN SPATIOTEMPORAL ANALYSIS IN CYBERSP.

Alerting services-

& CMD,

C1-1C6

ErcfErcfG

(C5,C6)

CI : Entry Call

INPUT:

Alerting services -

& CMD

#### Focus on spatiotemporal information

- Mainly focusing on root cause localization and trace anomaly detection
- Use temporal information first, then use spatial information
- Or utilize both temporal and spatial information simultaneously







- Difficulty in balancing multiple tasks simultaneously (prediction, anomaly detection, classification, etc.)
- Difficult to consider multiple domains at the same time (AIOps, network security, Internet of Things, industrial Internet, etc.)
- There is still significant room for improvement in performance with few or zero samples
- Lack of universal and effective methods for utilizing external information

22

Time-series in task 2

## THE NECESSITY OF LARGE-SCALE MODELS IN THE SPATIOTEMPORAL DOMAIN

...

- Complex and diverse data
  - Different fields, different patterns, and different structures
  - At the temporal level
  - At the spatial level
  - External information level
- The tasks are complex and diverse:
  - Forecast
  - Anomaly detection
  - Root cause localization
  - • • •
- Disadvantages of small models:
  - Universal type
  - Scalability



...

### WHAT DOES THE SPATIOTEMPORAL MODEL NEED TO DO? Powerful Backbone

- A Backbone with strong expression ability
- Can effectively compress and utilize a large amount of spatiotemporal knowledge, understanding ability, and reasoning ability
- Has to enable the scaling law to be effective (concise, capable of large-scale parallelization)
- Is Transformer suitable?
- Is the Diffusion structure effective?
- How to handle modality (Alerts, Logs) data?







### GOALS FOR THE SPATIOTEMPORAL FOUNDATION MODEL

## **G**eneral Pre-training Task

- Universal pre-raining tasks
- Can help the model fully learn knowledge from spatiotemporal data
  - Extract and compress spatiotemporal information comprehensively
  - Learn spatial reasoning skills for simultaneous use of time and space
  - Next Token Prediction, Masked Reconstruction, or something else?
- How to obtain high-quality self-contained data for pre-training?



告警分析

告誓收敛

故障处理

微服务故障分类

成本效率

暂能客程

异常检测

业务指标异常检测

### **OpenAIOps Live Benchmark**

- The metrics and graphs have to be relatively complete, supplemented by spatiotemporal data governance (data normalization, data imputation, multimodal alignment)
- OpenAlOps Live Benchmark:
  - Data, Small Models, Chaos Engineering: Red Blue Confrontation
- Full data in the data center?
- Digital twin system?
- Emulation system?





# CONCLUSION

- Everything is interconnected and interdependent in cyberspace
- Need for joint modeling of temporal and spatial information, as graph-structured time series (4-tuple)
- The spatiotemporal model is both necessary and feasible, and the best route is still an open question
- The prospect of the spatiotemporal model is promising, but there is still a long way to go.
- We will explore and advance step by step, eventually arriving at a powerful spatiotemporal foundation model







Q&A