
Myunghwan Kim (Stanford University)
Roshan Sumbaly (LinkedIn Corp.)
Sam Shah (LinkedIn Corp.)

v

Machine 1

Machine 2

Machine 2 Machine 3~100

In this web architecture, a service is the atomic unit of functionality. Such an architecture allows easy abstraction and modularity for implementation and reuse, as well as independent scaling of components.

• Service Request Increase

• Software Bug / Error

• Overload: High latency

• Server Outage

• Service Request Increase

• Software Bug / Error

• Overload: High latency

• Server Outage

Monitoring teams are dedicated
to detect any anomalies (24 hrs)

� Anomalies can be detected by
� Monitoring team
� Alarms set up by some rules
� Smart anomaly detection algorithms, etc.

� What is the next step once an anomaly is detected?
� Root Cause Detection: Find the root cause of the anomaly
� Then, fix it properly

� Root Cause Detection problem
� Site availability is revenue impacting, so short recovery time is critical
� Finding the root cause may consume engineers’ efforts

Goal: Minimize resource for finding root causes

� Conventional approach
� Check metrics (e.g., throughput, latency) of each service week over week
� Analyze error logs delivered by API
� May use domain knowledge to narrow down search space

� However,
� Hard to maintain perfect logging system
� Hard to keep up-to-date domain knowledge of fast evolving system
� Time consuming to check metrics of many services
� Time consuming to analyze the logs of many services

large number of <service, API>

� Conventional approach
� Check metrics (e.g., throughput, latency) of each service week over week
� Analyze error logs delivered by API
� May use domain knowledge to narrow down search space

� However,
� Hard to maintain perfect logging system
� Hard to keep up-to-date domain knowledge of fast evolving system
� Time consuming to check metrics of many services
� Time consuming to analyze the logs of many services

Can we provide candidate services to look at?

Input Output

Anomaly Information
• Time
• Anomalous service
• Anomalous metric

Metrics
• Anomalous metric for services

Call-graph
• Caller-callee between services
• Directed & unweighted

Ranked List of Services
• The order of services to

investigate

1. DataManagement
2. PYMK
3. Profile
…

Example

� Unsupervised problem
� Labeled data is hard to collect
� Labeled data in the past may not be valid now

▪ Software bugs have been fixed
▪ Performance of bottleneck service has been improved
▪ New deployed service has caused high latency

� Fast algorithm
� Provide the output (ordered list) online
� Do not join API metadata online to obtain call trees

� Call graph ≠ 100% dependency graph
� Call graph does not necessarily indicate dependency, the path of

anomaly propagation

� Different task size
� For example, when showing status update of my friends, the task

depends on # of my friends & their update frequency.

� External factor
� Colocation: Colocated services might show similar anomalous

behavior due to hardware failure, regardless of the call graph
� Malicious user requests

Frontend Service

NewsFeed AdModule

friends = 3

Frontend Service

NewsFeed AdModule
friends = 1000

An edge X -> Y in the call graph does not mean that
 Y propagates an anomaly to X

The user with 1000 connections may have a bottleneck on the update generation sensor, while for a user with just 3 connections all updates might be cached and the bottleneck would instead be the profile information fetching sensor.

� Three Key Components
� Pattern Similarity

▪ Root cause service would show similar anomalous behavior with the service
where an anomaly is detected with respect to a certain metric

� External factor finding
▪ Assumption: If some external factor exists, all the affected services would

show similar anomalous behaviors

� Randomized algorithm on the call graph
▪ Deterministic algorithm may be hard to apply for the call graph that does

not necessarily represent dependency

• We propose MonitorRank
• MonitorRank improves PR@5 by about 30% on average

Precision at top K indicates the probability that top K sensors given by each algorithm actually are
 the root causes of each anomaly case.

� Three Key Components
� Pattern Similarity

▪ Root cause service would show similar anomalous behavior with the service
where an anomaly is detected with respect to a certain metric

� External factor finding
▪ Assumption: If some external factor exists, all the affected services would

show similar anomalous behaviors

� Randomized algorithm on the call graph
▪ Deterministic algorithm may be hard to apply for the call graph that does

not necessarily represent dependency

• We propose MonitorRank
• MonitorRank improves PR@5 by about 30% on average

Time
partitioned
database

Services

Batch-mode
engine

Hadoop

Metrics collection

Aggregated metrics

Call graph +
External factors

database

Real-time engine

User interface

Kafka

Time
partitioned
database

Services

Batch-mode
engine

Hadoop

Metrics collection

Aggregated metrics

Call graph +
External factors

database

Call graph generation
External factor finding

Real-time engine

User interface

Pattern Similarity
+ External factors
+ Call graph

� Runs periodically (for example, bi-weekly)

� Goal: Find services that usually show similar anomalous
behaviors in some metric even though they are not
connected in the call graph

� Q: What is “anomalous behavior” in the unlabeled data?
▪ Pseudo-anomaly: Moment showing a sudden rise / drop in a given metric
▪ High recall is favorable, and low precision is OK

� Q: What is “similar behavior”?
▪ Pattern similarity function between two services given a time window

� Our solution: Pseudo-anomaly Clustering Algorithm

Dan Pei

recall=tp/(tp+fn)
precision=tp/(tp+fp)

—> group those metrics that often become abnormal at the same time even though they are not connected in the call graph

• Find pseudo-anomalies on every user-
facing service and metric for a certain
time period

• For given service and metric, find a set
of services representing high pattern
similarity with the given service at
each pseudo-anomaly

• Select such sets with a certain support

• Remove sets if the services end up with
a common leaf node in the call graph

• Mitigates false positives by threshold-
based pseudo-anomaly detection

𝑣3

𝑣2 𝑣1

v1 and v2 are co-located

low similarity

Due to the co-location of v1 & v2,
the correlation between v1 and v2 can be high even when the correlation between v1 and v3 is low

because v1 and v2 were correlated through a common neighbor sensor v3

This is for finding the external factors of a given service’s given metric

A separate clustering problem for each frontend sensor

 If sensors are affected by the same external factor, their pattern similarity scores with regard to the seed sensor will be close and high.

� By taking user input, returns the ordered list of services online
� Input: anomalous service, time, and metric
� Ingredients: input, metrics, pseudo-anomaly clusters, and call graph
� Our solution: MonitorRank

� MonitorRank
� Random-walk based algorithm on the call graph
� Run a walk based on pattern similarity between the anomalous service

for a given metric and anomaly time
� Personalized PageRank

▪ Random jump also based on pattern similarity with the anomalous service

� In the end, a single score (root cause score) is given to each service
▪ Represents the stationary distribution that non-experts are investigating a

certain service

Va

This is the time series similarity between the anomalous service Va with other time series at a particular time window when the anomaly happens.

𝑣2 (0.7)

𝑣6 (0.2)

𝑣3 (0.8)
𝑣4 (0.1)

𝑣5 (0.3)

𝑣1 (0.9) 𝑣𝑎

Numbers in () indicate pattern similarity with 𝑣𝑎

0.8
0.1

0.7 0.8

0.3 0.3

0.8

0.2

Call Graph

the anomalous service

This is the time series similarity between v_i and anomalous service Va’s. It signifies the relevance of the service v_i to the given anomaly.

𝑣2 (0.7)

𝑣6 (0.2)

𝑣3 (0.8)
𝑣4 (0.1)

𝑣5 (0.3)

𝑣1 (0.9) 𝑣𝑎

Numbers in () indicate pattern similarity with 𝑣𝑎

Random jump to a service
proportionally to pattern similarity

0.8
0.1

0.7 0.8

0.3 0.3

0.8

0.2

alpha is the probability of random jump, 1-alpha is the probability of random walk

𝑣2 (0.7)

𝑣6 (0.2)

𝑣3 (0.8)
𝑣4 (0.1)

𝑣5 (0.3)

𝑣1 (0.9) 𝑣𝑎

Numbers in () indicate pattern similarity with 𝑣𝑎

Random jump to a service
proportionally to pattern similarity

With probability 1 − 𝛼,
walk to a neighbor
proportionally to its pattern similarity

0.8
0.1

0.7 0.8

0.3 0.3

0.8

0.2

alpha is the probability of random jump, 1-alpha is the probability of random walk

𝑣2 (0.7)

𝑣6 (0.2)

𝑣3 (0.8)
𝑣4 (0.1)

𝑣5 (0.3)

𝑣1 (0.9) 𝑣𝑎

Numbers in () indicate pattern similarity with 𝑣𝑎

Random jump to a service
proportionally to pattern similarity

With probability 1 − 𝛼,
walk to a neighbor
proportionally to its pattern similarity

With probability 𝛼,
random jump to a service
proportionally to pattern similarity

0.8
0.1

0.7 0.8

0.3 0.3

0.8

0.2

alpha is the probability of random jump, 1-alpha is the probability of random walk

𝑣2 (0.7)

𝑣6 (0.2)

𝑣3 (0.8)
𝑣4 (0.1)

𝑣5 (0.3)

𝑣1 (0.9) 𝑣𝑎

Numbers in () indicate pattern similarity with 𝑣𝑎

Random jump to a service
proportionally to pattern similarity

With probability 1 − 𝛼,
walk to a neighbor
proportionally to its pattern similarity

With probability 𝛼,
random jump to a service
proportionally to pattern similarity

Repeat this procedure
until convergence

0.8
0.1

0.7 0.8

0.3 0.3

0.8

0.2

alpha is the probability of random jump, 1-alpha is the probability of random walk

𝑣2 (0.7)

𝑣6 (0.2)

𝑣3 (0.8)
𝑣4 (0.1)

𝑣5 (0.3)

𝑣1 (0.9) 𝑣𝑎

Numbers in () indicate pattern similarity with 𝑣𝑎

Random jump to a service
proportionally to pattern similarity

With probability 1 − 𝛼,
walk to a neighbor
proportionally to its pattern similarity

With probability 𝛼,
random jump to a service
proportionally to pattern similarity

Repeat this procedure
until convergence

0.8
0.1

0.7 0.8

0.3 0.3

0.8

0.2

alpha is the probability of random jump, 1-alpha is the probability of random walk

𝑣2 (0.7)

𝑣6 (0.2)

𝑣3 (0.8)
𝑣4 (0.1)

𝑣5 (0.3)

𝑣1 (0.9) 𝑣𝑎

Numbers in () indicate pattern similarity with 𝑣𝑎

Random jump to a service
proportionally to pattern similarity

With probability 1 − 𝛼,
walk to a neighbor
proportionally to its pattern similarity

With probability 𝛼,
random jump to a service
proportionally to pattern similarity

Repeat this procedure
until convergence

0.8
0.1

0.7 0.8

0.3 0.3

0.8

0.2

𝑣2 (0.7)

𝑣6 (0.2)

𝑣3 (0.8)
𝑣4 (0.1)

𝑣5 (0.3)

𝑣1 (0.9) 𝑣𝑎

Numbers in () indicate pattern similarity with 𝑣𝑎

Random jump to a service
proportionally to pattern similarity

With probability 1 − 𝛼,
walk to a neighbor
proportionally to its pattern similarity

With probability 𝛼,
random jump to a service
proportionally to pattern similarity

Repeat this procedure
until convergence

0.8
0.1

0.7 0.8

0.3 0.3

0.8

0.2

- A node’s root cause score is the probability of visiting each node.
- It represents the stationary distribution that multiple non-experts are investigating a certain service.
- We assume that more visits on a certain node by our random walk implies that the anomaly on that node can best explain the anomalies of all the other nodes.

� Frontend -> Backend direction of call graph
� Could be trapped into branches with low pattern similarity
� Solution: Allow backward edges with weight multiplied by 𝜌 < 1
� Local exploration (while random jump is global exploration)

� Random-walk enforces moving
� What if no neighbors represent high pattern similarity?
� Solution: Add self edges with weight subtract by max. pattern

similarity of out-going neighbors

𝑣1 (0.7) 𝑣2 (0.1)
0.1

0.7 𝜌

𝑣1 (0.7)

𝑣3 (0.2) 0.2

𝑣2 (0.1)
0.1

0.7-0.2

� How do we combine pseudo-anomaly clusters?
� Find the best matched clusters given pattern similarity score for each

backend service

▪ Use the criterion 𝑚𝑖𝑛.𝑠𝑐𝑜𝑟𝑒 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝑚𝑎𝑥.𝑠𝑐𝑜𝑟𝑒 𝑛𝑜𝑡 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 as each cluster score

▪ Find the cluster of maximum cluster score

� Compute average similarity of services in the selected cluster

� Add the average similarity to the pattern similarity of each service in
the cluster

� Do the random-walk as before

MonitorRank blends the pseudo-anomaly clusters with the random walk algorithm by finding the best-match cluster with the current metric data and giving more scores to sensors in the selected cluster.

v_i on the previous page

If the root cause of the current anomaly is the common external factor of some pseudo-anomaly cluster C, then the pattern similarity scores of sensors in C, would be higher than any sensor not in C

By regarding the average pattern similarity score of sensors in C* as the pattern similarity score of the external factor corresponding to C*, we add this average score to Sc for every sensor c ∈ C∗. In this way, we leverage the fact that engineers in the monitoring team examine the sensors related to the external factor first.

� Datasets
� From LinkedIn site issue management system

▪ Latency (25 examples), Error count (71 examples), Throughput (35 examples)

� Baseline methods
� Random Selection (RS): Pick up services in a random order
� Node Error Propensity (NEP): Pick up services that produce more errors
� Sudden Change (SC): Pick up services that show the most change

compared to previous time window given a metric
� Timing Behavior Anomaly Correlation (TBAC) [Marwede et. al.]

▪ Correlation + Call graph
▪ However, considers the call graph as a dependency graph

� We will see PR@K as evaluation metrics in this talk
� PR@K = (# of detected root causes) / min(# of root causes, K)

Precision at top K indicates the probability that top K sensors given by each algorithm actually are the root causes of each anomaly case.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Latency ErrorCount Throughput

RS

NEP

SC

TBAC

MonitorRank

MonitorRank outperforms the other methods

PR
@

5

� Use only partial subcomponents
� Pattern Similarity (PS), Pseudo-anomaly Clustering (PAC), and

Random Walk (RW)

0.7

0.75

0.8

0.85

0.9

0.95

PS PS+PAC PS+RW ALL

PR@1

PR@3

PR@5

Each component plays some role,
while the effect by RW > the effect by PAC

� Both TBAC and MonitorRank use the call graph
� Q: Do they use it properly?

0.45

0.55

0.65

0.75

0.85

0.95

PS TBAC PS + RW

PR@1

PR@3

PR@5

Randomized way improves performance
under the circumstance that call graph ≠ dependency

� Build framework to reduce resource for root cause detection
of an anomaly in a service-oriented architecture
� Considers pattern similarity, external factors, and call graph
� In particular, admits the situation that call graph does not necessarily

represent dependency
� MonitorRank provides improved list of root cause services by about

30% on average in terms of PR@5
� Randomized algorithm works better than deterministic algorithm on

the given call graph situation

� Future work
� May use weighted call graph given by some metric such as throughput
� Might be combined with standardized text logs

� Troubleshooting
� Monalytics [Wang et. al. ICAC’11]
� VScope [Wang et. al. Middleware’12]

� Anomaly detection
� Subspace method [Mahimkar et. al. CoNext’11]
� Matrix factorization [Xiong et. al. ICDM’11]
� Streaming data [Tan et. al. IJCAI’11]

� Root cause detection
� Supervised algorithm [Ahmed et. al. SysML’07] [Chen et. al. ICAC’04]
� Anomaly correlation + Graph algorithm

▪ [Arefin et. al. ISM’10] [Marwede et. al. CSMR’09] [Jiang et. al. CNSM’10]

Thank you

