
Latent graph learning



Spatial (or temporal) edges Edges related to a node

Edges related to a time step Edges related to a node

[21] D. Zambon et al., “Where and How to Improve Graph-based Spatio-temporal Predictors” 2023.
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Latent graph learning

Learning and adjacencymatrix

� Relational information is not always available
� or might be ine�ective in capturing spatial dynamics.

� Relational architectural biases can nonetheless be exploited
! extract a graph from the time series or node attributes

Xt

Graph extraction

eA

• It can be interpreted as regularizing a spatial attention operator.

[22] A. Cini et al., “Sparse graph learning from spatiotemporal time series”, JMLR 2023. 55



Latent graph learning

Time-series similarities

Probably, the simplest approach to extract a graph from the time series
is by computing time series similarity scores.

• Pearson correlation

• Correntropy

• Granger causality

• Kernels for time series

• . . .

! Thresholding might be necessary to obtain binary and sparse graphs.

56



Latent graph learning

Latent graph learning

An integrated approach: learn the relations end-to-end with the downstream task

• as a function of the input data,
• as trainable parameters of the model,
• or both.

This problem is known as latent graph learning (or latent graph inference).

Two di�erent approaches:

1. learning directly an adjacency matrix eA 2 RN⇥N ;
2. learning a probability distribution over graphs p� generating eA.

� One key challenge is keeping both eA and the subsequent computations sparse.
! challenging with gradient-based optimization.
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Latent graph learning

Direct approach

A direct approach consists in learning eA as function ⇠( · ) of edge
scores� 2 RN⇥N as

eA = ⇠ (�)

Edge scores�

! can be a table of learnable model parameters,

! obtained as a function of the inputs and/or other parameters.

Function ⇠( · ) is a nonlinear activation

! it can be exploited to make eA sparse.
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Latent graph learning

Direct approach: factorization methods

Many of the methods directly learning eA, learn a factorization of the former to amortize the cost
of the inference:

eA = ⇠ (�) � = ZsZ
>
t

with

• Zs 2 RN⇥d source node embeddings

• Zt 2 RN⇥d target node embeddings

Zs and Zt can be learned as tables of
(local) parameters or as a function of
the input window.

[23] Z. Wu et al., “Graph wavenet for deep spatial-temporal graphmodeling”, IJCAI 2019.

59



Latent graph learning

Pro & Cons of the direct approach

� Easy to implement.

� Many possible parametrizations.

� Edge scores are usually easy to learn end-to-end.

� It o�en results in dense computations withO(N2) complexity.

� Sparsifying eA results in sparse gradients.

� Encoding prior structural information requires smart parametrizations.
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Latent graph learning

Probabilistic methods

In this context, probabilistic methods aim at learning a parametric distribution p� for eA by
minimizing

L(�) = E bA⇠p�

h
`

⇣
cXt:t+H ,Xt:t+H

⌘i
. (15)

• Again, we can factorize� andmake p� input dependent, e.g.,

� = ⇠
�
ZsZ

>
t

� eA ⇠ p� (A|X<t,U<t,V )

• Di�erent parametrizations of p� allow for embedding sparsity priors on the sampled
graphs [22].

� Gradient-based optimization requiresr�L(�)

! it can be challenging and computationally expensive.

[22] A. Cini et al., “Sparse graph learning from spatiotemporal time series”, JMLR 2023.
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Latent graph learning

Monte Carlo gradient estimators

� One approach is to reparametrize eA ⇠ p�(A) as: eA = g (�, ") , " ⇠ p(")

decoupling parameters� from the random component ": r�L(�) = E"

h
r�`(cX,X)

i
.

� Practical and easy to implement,
� rely on continuous relaxations andmake subsequent computations scale withO(N2).

� Conversely, score-function (SF) gradient estimators rely on the relation

r�Ep�

h
`(cX,X)

i
= Ep�

h
`(cX,X)r� log p�

i

� su�er from high variance (use variance reduction techniques),
� allow to keep computations sparse.

!we can use Monte Carlo estimator.
[24] T. Kipf et al., “Neural relational inference for interacting systems”, ICML 2018.
[22] A. Cini et al., “Sparse graph learning from spatiotemporal time series”, JMLR 2023.
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